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Abstract—This paper addresses uncertainty in re-
source demands and heterogeneous requests with affinity
and anti-affinity constraints on virtual nodes and links in
traditional Virtual Network Embedding. This is realized
using stochastic modeling and methods based on an initial
Integer-Linear Programming (ILP) model formulation of
the VNE problem. The ILP is extended to build a non-
linear Chance-Constrained Programming (CCP) model
to address uncertainty. The derived CCP model is then
linearized for exploitation by standard solvers. Numer-
ical experiments and comparisons with state-of-the-art
methods illustrate the efficiency of our approaches. The
results provide insight to cloud service providers on their
resource investment to serve clients with affinity and anti-
affinity requirements under uncertainty.
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I. BACKGROUND AND MOTIVATIONS

The Virtual Network Embedding (VNE) problem,
mapping virtual Networks (VN) onto Substrate Net-
works (SN), has received widespread attention from
researchers (1). So far, the state-of-the-art addressing
the NP-hard VNE problem (2) has paid limited atten-
tion to uncertainty in resource demands and specific
client constraints. Clients requesting network services
can have diverse and significant variations in their
requirements within their own VNs and across dif-
ferent clients’ requests as hinted in (3). Therefore,
there is a need to address the client-constrained VNE
problem under uncertainty. The uncertainty in resource
demands appears because clients often have partial
and incomplete knowledge of their needs, leading to
imprecise consumption and user requirements in com-
puting power (CPU) and bandwidth. This poses chal-
lenges for service providers to ensure the provisioning
of resources with sufficient margins and confidence
to maintain user quality of service. Compared with
the deterministic case, the stochastic VNE problem
has rarely been studied in the current state of the
art. The works (4; 5; 6; 7) handle uncertain CPU
and bandwidth requirements via stochastic simulation.
The authors of (8; 9; 10; 11) use chance constraints
to quantify uncertainty and apply robust techniques

(the τ -robust method) to solve the stochastic VNE
problem. In comparison with existing stochastic VNE
works, we resort to probability distributions to derive
a deterministic equivalent formulation for the non-
linear chance-constrained mathematical model. The
deterministic equivalent formulation replaces uncertain
elements (non-linear) by linear representations that can
be handled by solvers (12).

The specific client constraints correspond to separa-
tion and co-localization requirements on virtual nodes
and links also known as affinity and anti-affinity con-
straints. To our knowledge, existing VNE works focus
on these constraints on virtual nodes, often neglecting
them on virtual links (3). Network slicing for example
faces demands of isolated VN requests with specific
link anti-affinity constraints stemming from different
verticals. This motivates us to fill the identified gap
in current VNE studies by integrating client-specific
constraints and restrictions on virtual nodes and links
in mathematical modeling. Further, the majority of
state-of-the-art studies address to some extent (anti-)
affinity requirements within a specific VN request (see
(3; 13; 7; 14; 15)). However, clients’ VN requests
come along with security, resilience, isolation, and
performance requirements and thus impose constraints
on hosting and connectivity services across different
VN requests. As far as we know, previous works in
(16) and (17) consider the mapping of service function
chains (a particular case of the VNE) under anti-affinity
constraints across VN requests using simulations rather
than formal optimization approaches.

We aim to fill these research gaps and consequently
support cloud service providers in resource investment,
in order to satisfy client requirements with affinity and
anti-affinity constraints under uncertainty. Our contri-
butions are summarized as follows:

1) We address the VNE problem by not only address-
ing uncertainty and variations in client demands
but also by complying with node and link affin-
ity and anti-affinity constraints within and across
VN requests (see Section II). An Integer Linear



Programming (ILP) model for jointly mapping
virtual nodes and links considering affinity and
anti-affinity constraints;

2) We propose a stochastic programming with
chance constraints for the VNE problem con-
sidering uncertain CPU and bandwidth requests;

3) We derive an equivalent formulation of the
chance-constrained programming model to resort
to standard solvers.

Section II describes the stochastic client-
constrained VNE problem. Section III provides
an ILP-based model for the deterministic issue
and then addresses the stochastic version using
chance-constrained programming and its deterministic
equivalent formulation. Section IV assesses the
performance of our proposed algorithms. Conclusions
and future work are provided in Section V.

II. PROBLEM DESCRIPTION

A. Network Topology and Attributes

We model the SN as an undirected graph GS “

pNS , LS , CPUS , BWSq, where NS and LS repre-
sent respectively the sets of physical nodes and links.
Parameters CPUS and BWS denote the available
CPU of nodes and bandwidth of links, respectively.
We make sure that the generated SN graphs guarantee
the existence of a “path” between any pair of physical
nodes. If there is more than one path available between
physical nodes m and n, the Shortest Available Path
is selected (a path containing links with bandwidths no
less than the requested bandwidth of a virtual link).

We represent heterogeneous VN requests
as undirected graphs denoted by GV “

pNV , LV ,ČCPU
V
,ĆBW

V
, α,

#»

β pβn, βlqq, where
NV and LV represent respectively the sets of virtual
nodes and links. The uncertain CPU on nodes and
bandwidth on links are represented by ČCPU

V
and

ĆBW
V

. Notably, we define affinity and anti-affinity
constraints (for nodes α and links

#»

β ) as follows:

‚ Within a given VN, and for each pair of the same
VN nodes i and j, we use α to represent node
affinity (co-localization when αij “ 1) and node
anti-affinity (separation when αij “ 0). We do not
consider link separation in VN hosting requests
since tenants (owners of the VNs) can use flow
classifiers to build their own forwarding graphs
(just like in ETSI NFV’s VNF-FG solutions (18)).

‚ Across different VN requests (V Nt and V N´t,
where “´t” indicates other VNs different from t),
we use βn for node anti-affinity (when βn “ 0)
between nodes of V Nt and nodes of V N´t. We
use βl to denote link anti-affinity (when βl “ 0)
between links of V Nt and links of V N´t.

B. Problem Characteristics and Measures

We consider that VN requests arrive dynamically
as Poisson processes, and embedded requests depart
following an exponential service time when substrate
resources are released (3). For simplicity and without
loss of generality, we handle VN requests sequentially
although they could be processed in a batch mode since
a batch is also just a more complex graph with more
constraints. Monitoring the conditions and states of
the SN at each allocation step is essential to capture
the dynamic behavior of the SN. The update of SN
topology and resources is determined by three factors:
1) Mapping a VN request leads to resource (CPU and
bandwidth) occupation. The ratio of resource occupa-
tion is algorithm-dependent, determining SN resource
availability for future embedding; 2) Decommissioning
the mapped VN requests frees/releases resources after
VN departures; 3) Anti-affinity constraints may cause
disconnected SN into multiple specific sub-graphs de-
pending on the used algorithm.

For each VN request (or one allocation step), we
minimize the usage of bandwidth resources in the
SN. We focus on the following metrics to assess the
performance of our algorithms:

‚ Acceptance ratio that indicates the number of suc-
cessfully embedded VNs out of the total number
of received VN requests.

‚ Resources usage ratio that records the percentage
of used SN nodes and links.

‚ Convergence time of a successful mapping that
reflects the efficiency of the proposed methods.

Since the classical VNE problem is NP-Hard (3), the
VNE problem incorporating (anti)-affinity constraints
and uncertainty is harder and consequently NP-Hard.

III.MATHEMATICAL MODELING

We present mathematical models and algorithms for
both deterministic and stochastic VNE problems.

A. Deterministic Integer Linear Programming

The parameters and decision variables used in the
deterministic ILP are defined in Tab. I.

For each VN request, our objective is an optimal
mapping minimizing the total used SN bandwidth. This
is formulated by (1).

min
ÿ

iPNV

ÿ

jPNV

ÿ

mPNS

ÿ

nPNS

BWV
pi,jq ¨ QS

pm,nq ¨ y
pm,nq

pi,jq

(1)
Our optimization is subject to the linear constraints:

ÿ

mPNS

xm
i “ 1, @i P NV (2)

ÿ

mPNS

ÿ

nPNS

y
pm,nq

pi,jq
“ 1, @pi, jq P LV (3)



TABLE I: Parameters and decision variables

Parameters
NS Set of physical nodes in the SN graph.
NS

occupied Set of occupied physical nodes in the SN graph. It is initialized to an empty set and is updated after each VNE.
LS Set of physical links in the SN graph.
PS Set of shortest available paths (for all given pairs of physical nodes) in the SN graph.
PS

occupied Set of paths containing occupied physical links (hosting at least one virtual link) in the SN graph.
CPUS

m Available CPU resources of physical node m P NS .
BWS

pm,nq Available bandwidth resources of physical link pm,nq P LS and m,n P NS .
QS

pm,nq Number of physical links in path pm,nq, where QS
pm,nq ě 2 refers to a path with at least two links.

NV Set of virtual nodes in a VN graph.
NV

isopĎ NV
q Subset of virtual nodes with isolation (anti-affinity) requirements in a VN graph.

LV Set of virtual links in a VN graph.
LV

isopĎ LV
q Subset of virtual links with isolation (anti-affinity) requirements in a VN graph.

CPUV
i Required CPU resources of virtual node i P NV .

BWV
pi,jq Required bandwidth resources of virtual link pi, jq P LV and i, j P NV .

αij = 0 if virtual nodes i and j must be separated; 1 if must be co-located, where i, j P NV .
βni = 0 if virtual node i does not share physical nodes with other VNs (node anti-affinity); 1 otherwise, i P NV .
βlpi,jq = 0 if virtual link pi, jq does not share physical links with other VNs (link anti-affinity); 1 otherwise, pi, jq P LV and i, j P NV .
Decision variables
xm
i = 1 if virtual node i P NV is mapped to physical node m P NS ; 0 otherwise.

y
pm,nq

pi,jq
= 1 if virtual link pi, jq P LV is mapped to physical path pm,nq P PS ; 0 otherwise.

ÿ

nPNS

y
pm,nq

pi,jq
“ xm

i , @pi, jq P LV ,m P NS (4)

ÿ

mPNS

y
pm,nq

pi,jq
“ xn

j , @pi, jq P LV , n P NS (5)

ÿ

iPNV

CPUV
i ¨ xm

i ď CPUS
m, @m P NS (6)

ÿ

iPNV

ÿ

jPNV

BWV
pi,jq¨y

pm,nq

pi,jq
ď BWS

pm,nq, @pm,nq P PS

(7)
xm
i ` xm

j ď 1 ` αi,j , @i, j P NV ,m P NS (8)

xm
i ě ´1 ` xm

j ` αi,j , @i, j P NV ,m P NS (9)

xm
i ď βni, @i P NV

iso, m P NS
occupied (10)

y
pm,nq

pi,jq
ď βlpi,jq, @pi, jq P LV

iso, pm,nq P PS
occupied

(11)
xm
i , y

pm,nq

pi,jq
P t0, 1u, @i, j P NV ,m, n P NS (12)

Constraints (2) (resp. (3)) guarantee the hosting
of each virtual node i (resp. virtual link pi, jq) in
one and only one available physical node m (resp.
in one and only one available physical path pm,nq,
no splitting). To realize the joint mapping of virtual
nodes and links, we rely on constraints (4) and (5),
ensuring that for a virtual node i mapped to physical
node m, a virtual link pi, jq needs to be mapped to
a physical path pm,nq with node m as the source or
endpoint and node n as the other point. Constraints
(6) and (7) state that the occupied resources (CPU
and bandwidth) due to VN embedding must respect
the available limit of the updated SN. Constraints (8)
and (9) meet the affinity and anti-affinity requirements
of virtual nodes of the same VN request, i.e., their co-
localization and separation. Specifically, if αi,j = 0,

we obtain xm
i ` xm

j ď 1, indicating two nodes i and
j in this VN are separated; If αi,j = 1 and xm

j = 1,
then we get xm

i = 1, achieving the co-localization of
these two nodes. Constraints (10) ensure that if virtual
node i has an anti-affinity requirement βni “ 0 (i.e.,
i belongs to the set NV

iso), then i cannot be hosted by
physical node m that is not free (i.e., serves at least one
virtual node). Similarly, constraints (11) enforce that a
physical path containing non-free links cannot be used
to serve a virtual link with an anti-affinity requirement.
Constraints (12) define the ranges of decision variables.

B. Stochastic Chance-Constrained Programming

To handle uncertain CPU and bandwidth require-
ments, namely ČCPU

V
i and ĆBW

V
pi,jq, we introduce

chance constraints to ensure that the probability of re-
specting available physical resource capacity expressed
in constraints (6) and (7) remains above specified
levels. This helps service providers in managing risks
caused by uncertainty. The following constraints (13)
and (14) provide a mapping guarantee that confidence
levels will not exceed the amount of available SN
resources (CPU and bandwidth, respectively).

P

˜

ÿ

iPNV

ČCPU
V
i ¨ xm

i ď CPUS
m

¸

ě π1, @m P NS

(13)

P

ˆ

ÿ

iPNV

ÿ

jPNV

ĆBW
V
pi,jq ¨ y

pm,nq

pi,jq
ď BWS

pm,nq

˙

ě π2,@pm,nq P PS

(14)

where π1 (resp. π2) represents the confidence level of
respecting available CPU (resp. available bandwidth)
resources of a physical node (resp. link) in the SN.
With chance constraints (13) and (14), we obtain the



Chance-Constrained Programming (CCP) model:

Model CCP Objective: (1)
Subject to: (2) ´ (5), (8) ´ (12), (13), (14)

To solve the CCP model using classical solvers, we
transform the chance constraints using approximation.

C. Chance Constraint Approximation

The Gaussian distribution is commonly used and
found adequate to approximate chance constraints (see
(19)), we use it in Proposition 1 to approximate chance
constraints (13) and (14) in the CCP model. For the
sake of simplicity and with no loss of generality, we
represent variables xm

i and y
pm,nq

pi,jq
by x and y.

Proposition 1. If uncertain CPU requirements (resp.
bandwidth) of virtual node i (resp. link pi, jq)
rely on ČCPU

V
i „ N pµi, σ

2
i q (resp. ĆBW

V
pi,jq „

N pµpi,jq, σ
2
pi,jq

q), then chance constraints (13) and
(14) can be respectively approximated by:

ÿ

iPNV

µi ¨ x ` Φ´1pπ1q ¨

d

ÿ

iPNV

σ2
i ¨ x2

ď CPUS
m,@m P NS

(15)

ÿ

iPNV

ÿ

jPNV

µpi,jq ¨ y ` Φ´1pπ2q ¨

d

ÿ

iPNV

ÿ

jPNV

σ2
pi,jq

¨ y2

ď BWS
pm,nq, @pm,nq P PS

(16)
where Φp¨q denotes the cumulative distribution function
of the Standard Normal (Gaussian) distribution.

Proof: As ČCPU
V
i „ N pµi, σ

2
i q, chance con-

straints (13) are equivalent to:

P

«

ř

iPNV

ČCPU
V
i ¨ x ´

ř

iPNV
µi ¨ x

c

ř

iPNV
σ2
i ¨ x2

ď

CPUS
m ´

ř

iPNV
µi ¨ x

c

ř

iPNV
σ2
i ¨ x2

ff

ě π1, @m P NS

(17)

The inequality in the brackets r¨s of constraints (17)
thus follows a N p0, 1q and (17) can be standardized
using the properties of the standard normal distribution:

Φ

»

—

—

–

CPUS
m ´

ř

iPNV
µi ¨ x

c

ř

iPNV
σ2
i ¨ x2

fi

ffi

ffi

fl

ě π1, @m P NS (18)

equivalent to:

CPUS
m ´

ř

iPNV
µi ¨ x

c

ř

iPNV
σ2
i ¨ x2

ě Φ´1pπ1q, @m P NS (19)

Constraints (19) can be easily transformed to the ex-
pected constraints (15). Chance constraints (14) can be
approximated into (16) using the same proof steps.

Since the obtained constraints (15) and (16) still
make the resolution of (1) hard, we propose to trans-
form them by introducing a continuous variable sm1 ě

0 for constraints (15):
ÿ

iPNV

σ2
i ¨ x2 ď psm1 q2, @m P NS (20)

ÿ

iPNV

µi ¨x`Φ´1pπ1q ¨ sm1 ď CPUS
m,@m P NS (21)

Similarly, constraints (16) can be transformed by
introducing a continuous variable s

pm,nq

2 ě 0:
ÿ

iPNV

σ2
pi,jq ¨ y2 ď

”

s
pm,nq

2

ı2

, @pm,nq P PS (22)

ÿ

iPNV

ÿ

jPNV

µpi,jq ¨ y ` Φ´1pπ2q ¨ s
pm,nq

2

ď BWS
pm,nq, @pm,nq P PS

(23)

Given Proposition 1, we transform the CCP model
to its deterministic equivalent formulation, namely the
Second-Order Cone Programming (SOCP) model:

Model SOCP Objective: (1)
Subject to: (2) ´ (5), (8) ´ (12), (20) ´ (23)

IV.NUMERICAL SIMULATIONS

We evaluate performance through numerical simula-
tions using a commercial off-the-shelf PC with an Intel
Core CPU of 1.60 GHz and 8 GB RAM. The proposed
models are solved using the CPLEX 22.1. We generate
VN requests with a maximum of 10 nodes and 15
links and SN graphs with up to 50 nodes and 200
links. For each virtual node, we randomly generate
the associated required CPU resources in the [5, 20]
range. For each physical node, we randomly generate
an available amount of CPU in the range [50, 100]. For
each virtual link, we randomly generate a bandwidth
request in the range [5, 20] Mbps, and each available
physical link has radom bandwidth resources in the
range [50, 100] Mbps. The simulation duration is up
to 10,000 time units with VN requests following a
Poisson process arrival with an average rate λ of 1
arrival per 100 time units and an exponential service
rate µ of 1 departure every 750 time units. For Gaussian
distributions, the mean values of CPU and bandwidth



requirements correspond to the above generation. The
standard deviations are set to 2 (using this value for
the normal distribution, with 2σ “ 4, corresponds
to 95% of the values for the generated samples to
behave with an uncertainty amounting to about 25% in
input requests and 40% uncertainty for 99.7% of the
samples at 3σ). Confidence levels in chance constraints
are reported to provide insight into these variations in
average values obtained with 10 independent runs.

A. Impact of Anti-affinity Constraints

We examine our methods by first investigating the
impact of the anti-affinity constraints on the acceptance
ratio using the deterministic ILP. Fig. 1 depicts the evo-
lution of the acceptance ratio with increasing received
VN requests with anti-affinity constraints. We con-
sider two scenarios: one with significant (80% of the
received VNs) generations of anti-affinity constraints
(simultaneously for nodes and links) and the second
with weak anti-affinity constraints (20% of the received
VNs). We use 10 runs for each performance point in
both scenarios and the corresponding average for the
acceptance ratio evaluation. The observed acceptance
ratio is 80% for the highly constrained scenario 1
and as expected a much better 91% acceptance ratio
for the less constrained scenario 2. This demonstrates
the efficiency of the proposed algorithm that finds
embedding solutions despite the stringent affinity and
anti-affinity constraints, within and across VNs, that
induce higher resource (nodes and links) utilization.

Fig. 1: VN acceptance ratios under significant and
weak anti-affinity constraints by the deterministic ILP.
B. Impact of Confidence Levels in Chance Constraints

We now test the impact of the confidence levels
π1 and π2 on acceptance ratios based on the SOCP
model. We consider an SN of 30 nodes and 134 links
confronted with 50 VN requests with a significant
number of generated anti-affinity constraints (80% of
the received VNs). The curve for π1 in Figure 2 is
obtained by first varying π1 from 80% to 99% in
confidence levels while fixing π2 at a given value. We
repeat the π1 assessment for each ensuing fixed value
of π2 until all values of π2 in the interval [80%, 99%]
are spanned. The curve for π2 is obtained similarly, by

now fixing the value of π1. For each fixed value of π1,
π2 will vary from 80% to 99% in confidence levels in
order to obtain a single point for the π2 curve. This
time the abscissa values correspond to the successive
values of π1 from 80% to 99%. The plots report the
averaged acceptance ratio for each point in the curves.
The acceptance ratios in the worst case decrease to
86% from 88% as the requirement for confidence levels
becomes more stringent, specifically at the highest
value of 99% confidence level. The small performance
loss in acceptance ratio of 2% (from 88% to 86%)
illustrates the robustness of the SOCP algorithm for
increasing confidence level requirements concerning
uncertainty management. This robustness of the SOCP
model is due to expressions in the mathematical model
constraints (21) (resp. 23) that make available fewer
resources via ϕ´1pπq that acts as an increasing function
for increasing values of π causing less embedding suc-
cess and thus decreasing acceptance ratio. Improving
the robustness of the obtained solutions requires an
increase in confidence levels but induces lower accep-
tance ratios. This result also informs service providers
that they need to trade off robustness and acceptance
ratios. The more important decreasing trend for π1 is
due to fewer nodes than links (paths) in the SN.

Fig. 2: VN acceptance ratios under different
confidence levels π1 and π2 in the CCP model.

C. Comparison to the State-of-the-Art Method

To benchmark our approaches, we compare them
with the only robust solution, i.e., the τ -RP model (9)
in Appendix. We use physical networks with 30 nodes
and 94 links subject to a significant number of anti-
affinity constraints for 5,000 time units. Figure 3 de-
picts resource usage rates (in terms of servers and links)
by the deterministic ILP, SOCP (using 95% for both π1

and π2), and τ -RP model (with τ calculated using (28).
One can observe that the deterministic ILP-based solu-
tion, assuming perfect knowledge of the VN requests,
therefore unaware of the inherent demand uncertainty
in the VN resource requirements, would underestimate
the needs and erroneously expect to use only 57% of
available servers and 23% of available links in the SN.
Taking into account uncertainty, the SOCP model uses



70% of the servers and 29% of the links in the SN,
while the τ -RP method needs 85% servers and 34%
links. This also clearly highlights that our proposed
approximation (SOCP) outperforms the state-of-the-art
τ -RP method that overestimates the needs in servers
and links while SOCP uses fewer resources to meet
target acceptance ratios. The stochastic methods protect
service providers from SLA violations as seen around
5,000 time units in the reported results corresponding
to high and nominal load in VN requests.

Fig. 3: Node/link usage rates by ILP, SOCP, τ -RP.

This claim on the SOCP method is verified by ana-
lyzing the performance results jointly with the achieved
VN requests acceptance ratio and the algorithms con-
vergence speed. SOCP outperforms τ -RP across all
metrics. Both extend the ILP with uncertainty protec-
tion capabilities and the needed margins in required
hosting resources to minimize SLA violations. The
stochastic approaches also provide insights depicted
in Figure 3 that an additional proportion of resources
is required when VN demands are uncertain (29%
instead of 20% in link resources compared with the
values indicated by the ILP and 70% instead of 55%
in node resources). We rely on acceptance ratio and
convergence time to further compare the performance
of SOCP with τ -RP with additional simulations. Tab. II
reveals SOCP advantage in acceptance ratio compared
with τ -RP (with a gap close to 1.5% for different
confidence levels). SOCP converges in less than 4
seconds, while τ -RP finds feasible solutions in at best
18 seconds. Hence, SOCP offers service providers
robust capabilities to handle uncertainties without com-
promising computational efficiency, unlike τ -RP.

V. CONCLUSIONS AND FUTURE WORK

We addressed virtual network embedding faced with
uncertain, integrating node and link affinity and anti-
affinity constraints within a VN request and across
different VN requests. We provided first an ILP-based
approach for the case of exactly known clients’ de-
mands with affinity (e.g., co-localization) and anti-
affinity (e.g., separation or isolation) constraints in
nodes and links. For VN requests that are typically un-
certain in required hosting nodes (e.g., CPU) and links

(e.g., bandwidth), we propose a stochastic optimization
approach based on chance constraints to provide robust
solutions for the VNE problem under uncertainty. We
confirmed the relevance of the stochastic approach
through performance evaluation and a comparison with
a state-of-the-art robust method. Our method provides
insight into service providers’ additional resources and
investment needed to absorb or handle uncertainty
in the clients’ VNE demands. Future work will ad-
dress stochastic VNE when the CPU and bandwidth
probability distribution functions are not known in
advance, using Distributionally Robust Optimization
for assumption-free approximation solutions.

TABLE II: SOCP and τ -RP comparison

Confidence level Acceptance ratio (%) Convergence time (s)
π1 π2 SOCP τ -RP Gapa SOCP τ -RP

98% 98% 86.4 85.2 1.3% 3.8 18.6
95% 88.6 87.8 0.9% 3.8 18.5
90% 90.4 89.2 1.3% 3.8 18.7

95% 98% 88.4 87.2 1.3% 3.8 18.6
95% 88.8 87.7 1.1% 3.8 18.8
90% 89.8 88.4 1.3% 3.8 18.7

90% 98% 89.8 88.0 1.9% 3.8 18.6
95% 90.2 88.6 1.7% 3.8 18.7
90% 90.8 89.4 1.5% 3.8 18.5

aAcceptance Ratio Gap = (SOCP - τ -RP) / SOCP * 100%

APPENDIX: τ -ROBUST METHOD

To realize the comparison of our SOCP approach and
the τ -Robust method in (9), we introduce continuous
variables um ě 0 and vm

i ě 0 (denoted as u1 and v1

for simplicity) for virtual nodes (CPU), and continuous
variables upm,nq ě 0 and v

pm,nq

pi,jq
ě 0 (denoted as u2

and v2) for virtual links (bandwidth). Then, we obtain
the following inequalities consistent with (9):
ÿ

iPNV

´

CPU
V
i ¨ x ` v1

¯

`τ1¨u1 ď CPUS
m, @m P NS

(24)
u1 ` v1 ě yCPUV

i ¨ x, i P NV ,m P NS (25)
ÿ

iPNV

ÿ

jPNV

´

BW
V
pi,jq ¨ y ` v2

¯

` τ2 ¨ u2

ď BWS
pm,nq, @pm,nq P PS

(26)

u2 `v2 ě zBW
V
pi,jq ¨y, pi, jq P LV , pm,nq P PS (27)

where CPU
V
i and BW

V
pi,jq represent the mean values

of uncertain CPU and bandwidth, while yCPUV
i and

zBW
V
pi,jq denote their standard deviation. This trans-

formation leads to the τ -Robust Programming model:
Model τ -RP Objective: (1)

Subject to: (2) ´ (5), (8) ´ (12), (24) ´ (27)

To determine the value of τ1 (resp. τ2) that can
transform the chance constraints with a probability of
π1 (resp. π2), (20) proposed the following relationship:

π1 “ 1 ´ Φ

˜

τ1 ´ 1
a

|NV |

¸

(28)
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