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Abstract. In the classical theory of multiple series the notation of variation of a
sequence plays an important role. According to the concept of I−convergence the
notion of I−variation of a sequence was recently introduced. In this paper we will
examine applications of I−variation of a sequence mainly in the theory of multiple
series in particular in relation with the notion of I−convergence.

1 Definitions and notations

We recall the basic definitions and connection that will be used throughout this paper.
Let N be the set of all positive integers. Let x = (xn) be a sequence of real (complex)
numbers, K ⊆ N, K = {k1 < k2 < ... < kn < ...} (an infinite set) and the restriction
of the sequence x to the part K is x |K = {xk1 < xk2 < ... < xkn < ...} = (xkn). A
family I, ∅ ≠ I ⊆ 2N is called an ideal, provided that I is additive (A,B ∈ I implies
A ∪B ∈ I) and hereditary (A ∈ I, B ⊂ A implies B ∈ I).

The ideal is called non-trivial if I ̸= 2N. If I is a non-trivial ideal, then I is called
admissible if it contains the singletons ({n} ∈ I for every n ∈ N). In other words, for
an admissible ideal I we have Ifin ⊆ I, where Ifin is the ideal of all finite subsets of N.
In all paper we will only consider admissible ideals. The associated filter to an ideal I
is defined by φ(I) = {M ⊂ N : N \M ∈ I}.

The notion of I−variation of a sequence x was recently introduced in [5].

Definition 1. A sequence x = (xn) is said to be of bounded I−variation for an
ideal I if there exists a set K = {k1 < k2 < ... < kn < ...} ∈ φ(I) such that
V ar x|K =

∑∞
n=1 |xkn − xkn+1| < +∞. A sequence x is said to be of bounded variation

if V ar x|N < +∞.

It is clear that bounded variation of a sequence x implies bounded I−variation of
the sequence x for all admissible ideals I ⊆ 2N.

Further properties of sequences having bounded I−variation are investigated in [2],
[4] and [5].

The notion of statistical convergence was introduced independently by Fast [6] and
Schoenberg [12]. The notion of I−convergence introduced by Kostyrko, Šalát and
Wilczyński [10] corresponds to the natural generalization of the notion of statistical
convergence.

Definition 2. We say that a sequence x = (xn) of real (complex) numbers is
I−convergent to a number L and we write I − lim xn = L, if for each ε > 0 the
set A(ε) = {n ∈ N : |xn − L| ≥ ε} belongs to the ideal I.
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If I is an admissible ideal then for every sequence x = (xn) we immediately have
that limn→∞ xn = L (classic limit) implies that x also I−converges to a number L
but the opposite does not have to be true.

Let Id = {A ⊆ N : d(A) = 0}, where d(A) is the asymptotic density of the set A ⊆ N
(d(A) = limn→∞

♯{a≤n:a∈A}
n

, where ♯M denotes the cardinality of the set M ). In the
case when I = Id then Id−convergence coincides with the statistical convergence. If
I = Ifin then Ifin−convergence is the usual convergence.

I−convergence satisfies usual axioms of convergence i.e. the uniqueness of limit,
arithmetical properties etc. The class of all I−convergent sequences is a linear space
(see [10]). In the same paper there also was defined another type of convergence related
to an ideal I so called I∗−convergence.

Definition 3. A sequence x = (xn) of real (complex) numbers is said to be
I∗−convergent to a number L and we write I∗ − lim xn = L, if there is a set H ∈ I,
such that for the set M = N \ H = {m1 < m2 < ... < mk < ...} ∈ φ(I) we have
limk→∞ xmk

= L, where the limit is in the usual sense.

It is easy to see that for an admissible ideal I we have that I∗−convergence implies
I−convergence. The converse does not have to be true (see [10] where authors moreover
give a characterization of ideals I for which I−convergence and I∗−convergence are
equivalent by means of property (AP)).

Definition 4. An ideal I (not necessarily admissible) is said to satisfy the condition
(AP) if for every countable family of mutually disjoint sets (An) belonging to I there
exists countable family of sets (Bn) such that the symmetric difference Aj△Bj is finite
for j ∈ N and B =

⋃∞
j=1 Bj ∈ I.

There exist many examples of ideals having or not having the property (AP) ( see
e.g. [1], [10]).

Proposition 5 (see [10]). From I− lim xn = L the statement I∗− lim xn = L follows
if and only if I satisfies the property (AP).

An ideal I (not necessarily admissible) is called P−ideal if for each sequence (An)
of sets belonging to I there exists a set A∞ ∈ I such that An \ A∞ is finite for all
n ∈ N. The notions of P−ideal and ideal having the property (AP) coincide ( see [3]).

We will also use the following facts.

Proposition 6 (see [10]). Let I1, I2 be admissible ideals such that I1 ⊆ I2. If I1 −
lim xn = L then I2 − lim xn = L.

Proposition 7 (see [5]). Let x = (xn) be a sequence of real (complex) numbers having
bounded I−variation for an admissible ideal I. Then x is I∗−convergent and so it is
also I−convergent.

Definition 8. An infinite series
∑∞

n=1 an for real (complex) numbers an, n = 1, 2, ...
is said to be I−convergent if the sequence of the partial sums (sn) is I−convergent,
where sn =

∑n
k=1 ak. The number s = I − lim sn is said I−sum of the series.

I−notions have been developed in several directions and used in various parts of
mathematics, for example [1], [7], [11], [9] and [13].
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2 Main results

In this section we are going to study the application of the concept of I−variation of a
sequence in the theory of multiple series (

∑∞
n=1 anβn, where an and βn are real (com-

plex) numbers for n = 1, 2, ...) in particular in relation to the notion I−convergence.
In connection with this we formulate two theorems and we are going to investigate
what happens when the classical notions will be replaced by its I−analogs in these
theorems.

The following result is ascribed by Hardy [8] to Dedekind.

Theorem A. Let a series
∑∞

n=1 an be convergent series and (βn) be a sequence of
bounded variation. Then the series

∑∞
n=1 anβn is convergent too.

The previous theorem can be reversed in a certain sense. In [8] Hardy attributes
this result to Hadamard.

Theorem B. Let (βn) be a sequence such that for each convergent series
∑∞

n=1 an also
the series

∑∞
n=1 anβn is convergent. Then the sequence (βn) is of bounded variation.

The following theorem shows that an I−analog of Theorem A is valid only in the
case when I = Ifin. Moreover by means of an I−analog of Theorem A is the ideal
Ifin characterized.

Theorem 9. The following assertions are equivalent:

(i) For every sequence (βn) with bounded I−variation the I−convergence of a series∑∞
n=1 an implies the I−convergence of the series

∑∞
n=1 anβn.

(ii) I = Ifin.

Proof.
(ii)⇒(i) is Theorem A (see [8]).
(i)⇒(ii) Let I be an admissible ideal such that I ̸= Ifin. There exists an infinite set
K = {k1 < k2 < ... < kn < ...} ∈ I. Then the set M = {k2 < k4 < ... < k2n < ...}
belongs also to I. We define the sequence (sn) of partial sums of a series

∑∞
n=1 an

that unambiguously determines terms of the series
∑∞

n=1 an. Put sn = 1 if n ∈ M ,
and sn = 0 otherwise. We obtain the terms of the series, a1 = s1 and an = sn − sn−1

if n ≥ 2. It follows that the series
∑∞

n=1 an is I∗−convergent to zero since sn = 0 for
n ∈ N \M ∈ φ(I). Thus the series

∑∞
n=1 an is also I−convergent to zero.

Now we define the sequence (βn) as follows: βn = 1 if n ∈ M , and βn = 0 otherwise.
The sequence (βn) has bounded I−variation, since V ar β |N\M= 0. But the series∑∞

n=1 anβn is not I−convergent since it has non-negative terms and contains infinitely
many 1’s. Put Sn =

∑n
k=1 akβk. Since anβn = 1 if n ∈ M , and anβn = 0 otherwise,

we have Sn ≥ 0 and moreover anβn ≥ 0, so the sequence (Sn) is nondecreasing. As
we can see Sk2n = n. Thus for every real (complex) number L and ε = 1 the set
N \ A(1) = {n ∈ N : |Sn − L| < ε} is finite, so that N \ A(1) ∈ I, thus the set A(1)
cannot be in I, because I is an admissible ideal.
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The following examples show that Theorem 9 is valid only for the ideal Ifin even
if not all assumptions of Theorem 9 in statement (i) are replaced by their I−variants.
Example 10 shows that for every admissible ideal I ̸= Ifin there exist a convergent
series

∑∞
n=1 an and a sequence (βn) with bounded I−variation such that the series∑∞

n=1 anβn does not have to be I−convergent. Example 11 shows that for every
admissible ideal I ≠ Ifin there exist an I−convergent series

∑∞
n=1 an and a sequence

(βn) having bounded variation such that the series
∑∞

n=1 anβn does not have to be
I−convergent.

Example 10. Let the set K has the same meaning as in the proof of Theorem 9 in the
implication (ii)⇒(i). Put the terms of series

∑∞
n=1 an as follows: an = 1

n2 if n ∈ K,
and an = 0 otherwise. It is clear that the series

∑∞
n=1 an is convergent. Define the

sequence (βn), βn = n2 if n ∈ K, and βn = 0 otherwise. Since N \ K ∈ φ(I) so the
sequence (βn) has bounded I−variation. The series

∑∞
n=1 anβn is the series having

non-negative terms containing infinitely many 1’s, so it is not I−convergent.

Example 11. Let the set M has the same meaning as in the proof of Theorem 9 in
the implication (ii)⇒(i). The terms an of series

∑∞
n=1 an are defined by means of the

partial sums of this series. Put Sn = n2 if n ∈ M , and Sn = 0 otherwise. Then a1 = S1

and an = Sn−Sn−1 if n ≥ 2. It is clear that the series
∑∞

n=1 an is I−convergent to zero
(it even is I∗−convergent to zero, since N \M ∈ φ(I)). Consider the sequence (βn),
βn = 1

n2 if n ∈ M , and βn = 0 otherwise. The sequence (βn) has bounded variation.
Again the series

∑∞
n=1 anβn having non-negative terms and containing infinitely many

1’s. Thus it is not I−convergent.

Let us focus on the I−analog of Theorem B. For this we need the following Abel
theorem, which we can prove in a simpler way than the one stated in the literature, in
our opinion.

Lemma 12 ([14], p.75, Theorem 2.4.13). Let (un) be a sequence with un ≥ 0 for all
n ≥ 2 and u1 > 0 such that

∑∞
n=1 un = +∞. Denote Un = u1 + u2 + ... + un,

n = 1, 2, .... Then the series
∑∞

n=1
un

Un
= +∞.

Proof. We will use Cauchy-Bolzano criterion. For k ≥ 1, m ≥ 1 we have

m∑
i=1

uk+i

Uk+i

=
uk+1

Uk+1

+
uk+2

Uk+2

+ ... +
uk+m

Uk+m

≥ uk+1 + uk+2 + ... + uk+m

Uk+m

=

Uk+m − Uk

Uk+m

= 1 − Uk

Uk+m

.
For k being fix we have limm→∞

Uk

Uk+m
= 0. Then there exists m0 ∈ N such that for

every m ≥ m0 we obtain Uk

Uk+m
≤ 1

2
and so

∑m
i=1

uk+i

Uk+i
≥ 1

2
. Thus Cauchy-Bolzano

criterion is not satisfied, so the series
∑∞

n=1
un

Un
is divergent.

Before we state the I−analogue of Theorem B, we prove Theorem B in order to
gain a slight generalization. Again the proof is simpler and more precise than the one
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given in the literature, of course in our opinion. In the assumption of the theorem
an arbitrary convergent series is not necessary but it is sufficient to limit ourselves to
series that are convergent to zero. Theorem B is equivalent to the following statement
that we are going to prove.

Theorem C. If a sequence (βn) has unbounded variation then there exist a convergent
series

∑∞
n=1 an such that the series

∑∞
n=1 anβn is divergent.

Proof. For brevity, we put bn = βn − βn+1. Then by assumption we have
∑∞

n=1 |bn| =
+∞. Without loss of generality we can assume b1 ̸= 0 thus Bn = |b1|+|b2|+...+|bn| > 0
for n = 1, 2, .... Define the terms of the series

∑∞
n=1 an by means of its partial sums

sn =
∑n

k=1 ak = sign bn
Bn

and subsequently a1 = s1 and an = sn − sn−1 for n ≥ 2.
Using Abel process we obtain for the series

∑∞
n=1 anβn the following equation:

n∑
k=1

akβk = a1β1 + (s2 − s1)β2 + ... + (sn − sn−1)βn =

s1(β1 − β2) + s2(β2 − β3) + sn−1(βn−1 − βn) + snβn =
n−1∑
k=1

skbk + snβn . (2.1)

We have skbk = |bk|
Bk

≥ 0. Using the Lemma 12 where we put un = |bn| and Un = Bn,

n ≥ 1 and we obtain that
∑∞

n=1 snbn = +∞.
We show that the sequence (snβn) is bounded. Indeed βn = β1 −

∑n−1
k=1 bk , so

|snβn| =
|βn|
Bn

≤ |β1|
Bn

+

∑n−1
k=1 |bk|∑n
k=1 |bk|

≤ |β1|
Bn

+ 1.

Since limn→∞Bn = +∞, it follows that the sequence (snβn) is bounded. By (2.1)
we gain limn→∞

∑n
k=1 akβk = +∞. Moreover limn→∞

∑n
k=1 ak = limn→∞ sn =

limn→∞
±1
Bn

= 0.

By this way the proof of Theorem C is finished and its analysis shows that we have
proved a stronger claim as Theorem B.

Theorem 13. Let (βn) be a sequence such that for each convergent series
∑∞

n=1 an
with zero sum also the series

∑∞
n=1 anβn is convergent then the sequence (βn) is of

bounded variation.

Now we can move on the I−analogue of Theorem 13 resp.Theorem C.

Theorem 14. Let I be an admissible ideal and (βn) be a sequence such that for
each I−convergent series

∑∞
n=1 an having zero sum also the series

∑∞
n=1 anβn is

I−convergent. Then the sequence (βn) is of bounded I−variation.

Proof. By contradiction, suppose that the sequence (βn) is of infinite I−variation.
Then for every set K ∈ φ(I) we have V ar β|K = +∞. Especially for the set K we
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can take N. Therefore
∑∞

k=1 |βn − βk+1| = +∞. Using the Theorem C, we find a
sequence (an) satisfying the following properties.

lim
n→∞

n∑
k=1

ak = 0 (2.2)

lim
n→∞

n∑
k=1

akβk = +∞ (2.3)

The first property (2.2) implies that
∑∞

n=1 an is I−convergent to zero. By (2.3) we
have that

∑∞
n=1 anβn is not I−convergent since the series has non-negative terms and

contains infinitely many 1’s.
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