\

Dimension reduction and error estimates

Georges Griso, Louiza Merzougui, Nadia Bengouga

» To cite this version:

Georges Griso, Louiza Merzougui, Nadia Bengouga. Dimension reduction and error estimates. 2025.
hal-04881120

HAL Id: hal-04881120
https://hal.science/hal-04881120v1

Preprint submitted on 11 Jan 2025

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-04881120v1
https://hal.archives-ouvertes.fr

Dimension reduction and error estimates
L. Merzougui®, G. Griso(®, N. Bengouga(®

(a)(c) Laboratory of Partial Differential Equations and Their Aplications, Faculty of Mathematics and
informatic, Univetsity of Batna2, Batna, Algeria,
(b), Laboratoire Jacques-Louis Lions (LJLL), Sorbonne Université, F-75005 Paris,
(a) email: l.merzougui@univ-batna2.dz
(b) email: georges.griso@ gmail.com,
(c) email: nadia.bengouga@univ-batna.dz

Abstract

The aim of this paper is twofold: to provide asymptotic behavior and error estimates results
for an elliptic dimension reduction problem. The problem is posed in a bounded and thin domain
Qs = 0 xws CR™xR"” m,n > 1 where ws = dw when § — 0 (the thickness of 5 is of
order § while its diameter is of order 1). The limit problem is elliptic and is posed in O. Under the
assumption that O has a smooth boundary (C*+!) and homogeneous Dirichlet boundary condition,
we give two important results: an estimate of the global error, whose order is §'/2, and an estimate
of the L2 global and H L interior errors, whose order is d.
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1 Introduction

In this paper, we consider tools similar to those used to study elasticity problems for beams, plates
or shells. We first transform the thin, variable domain 25 = O Xxwj into a fixed domain 2 = Oxw
where O, w are respectively open sets in R” (m > 1) and R™ (n > 1) with Lipschitz boundary,
ws = dw. This geometrical transformation is a dilation of ratio 1/4, it takes {2’} xws to {2’} xw for
all 2’ € O. Then, we define the first operator Il used in this paper; the dimension reduction operator.
This operator maps LP(§2s) onto LP(2), p € [1, +o0] and is also one to one. The mean value operator
M., the second important tool used here, transforms any function ¢ belonging to L”(€2s) into the
function M., (¢) belonging to LP(O). M, (¢)(z) is the mean value of ¢ over the fiber {z'}xw,
x' € O. This operator captures the main part of the function ¢. We therefore have the decomposition
of a function ¢ € LP()s) as follows:

¢:q)+$a q>:Mw5(¢)'

The function ¢ is the residual part of ¢.

We apply the above tools to study the sequence formed by the solutions, indexed by § > 0, of the
following problems:

Find us € Hllaé(Q(;) ={ve H'(Q) | v=0o0nTs=yxws} such that,

1.1
AsVus - Vodx = fsvdzx, Yv € H%S(Q(;), (1D

Qs Qs



where f5 € L*(Qs), v C 00 (see Subsectionfor more details).
We decompose us = Us + s where Us = M., (us) and we use the operator I1; to obtain the asymp-
totic behavior of the residual term @s. We show that

Us ~U  weaklyin H}(0) = {¢ € H'(O) | ¢ =0ae. onv} 1.2)

where U/ is the unique solution of the following problem (see Subsectiond.T|and Theorem [5.3|for more
details):
Find U € H% (O) such that

/A*vu-wdx’:/ fode, (1.3)
@] o
Vo € HL(0),

where the matrix A* depends on the limit of the sequence {II5(As)}s and also of the asymptotic be-
havior of the sequence {IIs(us)}s.

Then, proceeding in a similar way to that developed in [7, 8], we prove errors estimates. Under the
assumptions: f5 = f € L?(0), 0O of class C1'! and the homogeneous lateral Dirichlet (or Neumann)
boundary conditions on 9O xw;, we obtain the global H* error estimate (of order & 1/2)_then the global
L? error (of order §) and the H'! interior error which is of order §.

Other mathematical problems involve with small geometrical parameters. This is the case, for exam-
ple, in periodic homogenization. In [6], the authors have introduced the unfolding operator 7z, which
makes it possible to deal in a fixed domain with both macroscopic and microscopic variables. Also
in linear and nonlinear elasticity for thin domains, we can use a dimension reduction operator which
allows to work in a fixed domain (see [2, 4]). In [6, Chapter 11] the authors deal with an elasticity
problem that simultaneously combines homogenization and dimension reduction. In the case of peri-
odic homogenization and elliptic problems, numerous papers and books have studied error estimates.
The global error estimates were first obtained in Bensoussan and Papanicolaou’s book [1]] (see also
[S] a book by D. Cioranecu and P. Donato and [13] a book by O. A. Oleinik and al.). In all these
books, the result was obtained under the additional assumption that the correctors belong to W1>°(Y")
(Y = (0,1)™ being the reference cell). In [7], G. Griso obtained global error estimates without any
additional assumptions about the correctors. All these authors assume that the homogenization prob-
lem is posed in a bounded domain 2 C R™ with a smooth boundary (C''!) and homogeneous Dirichlet
or Neumann boundary conditions. G.Griso in [8, Theorem 3.2] completed the first result of error es-
timates by giving interior H' and global L? error estimates. Interestingly, if ¢ is the size of the small
cells, the global error estimate is of order £'/2 while the H' interior and L? error estimates are of order
€. More recent work has produced error estimates with a weaker assumption about the boundary (see
[14} [15]). In elasticity also some error estimates have been obtained (see e.g. [9, (10, [12]]).

The paper is organized as follows:

* In Section 2] we give the notations.

* Section [3]is divided into two parts. We first define the operators IIs (the dimension reduction
operator) and M,,; (the mean value operator) and then give their properties. We also introduce
the decomposition of any function ¢ defined on Qs, ¢ = ® + ¢ where & = M, ().

* Section 4] is devoted to presenting the elliptic problem. Then, we give the estimates and the
convergences of the terms of the decomposition of u.



Section[3]is devoted to limit problems. A limit problem posed in the reference domain €2 - Oxw
and a second one, posed in O, satisfied by the limit of the principal term of the decomposition
of ug.

In Section [6] under the assumptions that 9O is of class C1', fs = f € L?(0) and the homoge-
neous Dirichlet and Neumann conditions, we give the H! error estimate.

In Section under the same assumptions as Section@ we give respectively the L? global error
and H'! interior error estimates.

Appendix contains the proof of some technical lemmas.

In this paper, the constants appearing in the estimates will always be independent from 4.

2 Notations

(el, e Cmy €mtly - - - ,em+n) is the usual basis of RN, N =m+n,m > 1, n > 1,
O a bounded domain in R with Lipschitz boundary,

w a bounded domain in R™ with Lipschitz boundary, the origin of R"™ belongs to w,

~ a measurable subset of 0O (possibly empty),

Qgi(’)xm,wlgiéw,

e I's = v X ws,

* =0 X w,

e I'=v X w.
We denote 2/ = (z1,...,2,,) the curent point of O and 2" = (yy1,. .., Tmin) (tesp. X’ =
(Xom+1,- -+, Xintn) ) the curent point of wg (resp. w).

The measure of the set S is denoted |S].

3 The operators II;, M, and the decomposition

3.1

The operators

Definition 3.1. (Dimension reduction operator.) For ¢ Lebesgue-measurable on (s, the dimension
reduction operator 11 is defined as follows:

Os(¢) (2", X") = (2, 6X") for a.e. (2, X" eQ=0xw

I15(¢) is a Lebesgue-measurable function on €.

Proposition 3.2. Properties of s (p € [1,+00])

1.

115 is a continuous linear operator from LP)s) into LP(€2),



2. Forany u,v € LP(Q;5), we have I15(uv) = I15(u)lls(v).
3. Forany u € LP(85),

5”/Hg(u)(x’,X")d:E’dX”:/ w(x', 2")dx'dz".
Q Qs

4. Foranyv € LP(Q) the function I15(v) belongs to LP(2) and we have
ITLs(v) | Lr) = 0 7 vl e (0y)- (3.1
5. For any v € WYP(Qy) the function Tg(v) belongs to WP (Q)and we have

olls(v) ov olls(v) ov
o = (a) Txr = (5)

(t,7) e {1,....m}x{m+1,...,m+n}

and

|V I5(v) = 57%“v3’,UHLP(Q<;)’

= (51_%“quv

HLP(Q (3.2)

|90 TIs(o

o) = o)

Definition 3.3. (Mean value operator.) For any function ¢ belonging to L (§)5) we define the mean
value operator M5 as

1
5wl Jo

M (9) (') = ¢(x 2")dz"  forae 2’ € O.

Lemma 3.4. Forany ¢ € LP(Qs), p € [1, —I—OO], we have

1
[Mous (D) r(0) < —5 1l Lr(02s)- (3.3)

w‘p P

Moreover, if p € WHP(Qs) then M, (¢) belongs to Wl’p((’)) and we have

Hvx’Mwa(Qb)H P S —1= [Vl o Qs G.4)
Lr(0) ()"

W ;
Proof. Step 1. We prove (3.3)).
1 1
Let p be in (1, 4-00). Denote p' the conjugate of p, — + — =1, p" € (1, +00).
p p

Using the Holder inequality we obtain

1
|IM, (& / | M (6)(2)[Pdx’ —/ / (2, 2" )dx"
° LP(O) ’ (@] 5n|w| ws
— / 1 d 1
W‘w,p/O] [ ot aas
1

< W / ( /w 5 y¢(x’,x")|f’dx”)‘1’ ( / dm”)”l/]pdx’

ws

p /
dx

p /
dz

5np| ’pH¢HLp (%) ‘ 6‘7 5np| ‘pH¢HLP () (57\0‘)]?’

5T Pl P61



1 1
Since — + — = 1, we have B/ — p = —1. Then, the above inequality gives (3.3).
p p p

Step 2. We prove (3.4).

Observe that

1
07wl

Then, (3.3) yields (3:4) for p € (1, 4+00).
In the case p = 1, we obtain the estimates (3.3)-(3.4) by direct calculation. In the case p = 400, we
obtain the estimates (3.3)-(3.4) by passing to the limit (p — +00). O

Vo My (6)(2) / Vo', 2" )da" = My (V) (2) fora.e. 2’ € O.

3.2 The decomposition
Any function ¢ belonging to L (£25) is decomposed as
p=P+¢ where ® = M, (¢) and ¢ = ¢ — . (3.5)

Lemma 3.5. For any ¢ € LP(§s), p € [1,+00], decomposed as (B3.5), we have ® € LP(O), ¢ €
LP(Qs) and the following estimates:

1 _
12l Lr (o) < e 191l e (025) 19l zr(0s) < 2[19llLr(025)- (3.6)
wlrdr

Moreover, if ¢ belongs to WLP(5) then ® € WP (0O), ¢ € WHP(Qy5) and

1
Hvxlq)HLP(O) < m”vx@nm(ﬂa)’

161l Lo (5) < COlIVar @l Lo(ag)
IV 9llLras) < 21V dllLe(as) IVardllzeas) = IVardll ey

3.7)

The constant does not depend on 9.

Proof. First, the estimate (3.6)1 (resp. (3.7)1) is (3.3) (resp. (3.4)).
Then, (3.6); yields

[l Lo (5) = l6 = @l ()
< 1@l rs) + 1@l Lr(02s)
n 1
<@l rs) + 07 [P 1@l Lr0) < 2[10] Lr(0s)-

Thus, (3.6)2 is proved.
Now, we prove (3.7).
The Poincaré-Wirtinger inequality yields (see [3, Chapter 9])

[6(2', ) = My (8) (@) Lo(wg) < COIVard(@', )l Lr(wy) ~ forae. a’ € O.

The constant only depends on w. Then, the above inequality leads to (3.7)s.
It remains to prove (3.7)s 4.



First observe that V,»¢ = V¢, thus (3.7)3 is proved.
Thus, we get

va’gnLP(Qg) = Hvx’¢ - vx’q)”Lf’(Qg)
<|[Vedllrrs) + [IVar @l Lo ay)-
We conclude using (3.7). OJ

4 The elliptic problem, estimates, convergences

We recall the following result which is a consequence of Fubini’s theorem:

Lemma 4.1. For any (¢1,¢2) € LY (O)xL'(ws) (resp. (¢1,®2) € LY (O)xL'(w)) the function ¢
(resp. ®) defined by

o2, 2") = ¢1(2)po(2")  forae (2,2") € Qs,
(resp. ®(2', X") = ¢1(2")P2(X") forae (2',X") € Q)

belongs to L*(Qs) (resp. L*(92)) and we have

19121 5) = o1l o) |02l 1 (ws),  (resp (| @]l L) = ll@1llLr o) P2l ) )-

4.1 The elliptic problem

For any ¥ € L'(0) we denote Mo (¥) the mean value of ¥ over O
1
Mop(V) = / U da’.
10l Jo

From now on, any function v in Hf, (Qs) will be decomposed as (3.5)

v=V+7, V = My, (v), Ve H|(0), veH Q). 4.1
Denote .
) ve H () |v=0onT if |y| >0,
HE (Q5) = { 1( 24 o . i
{ve H'(Qs) [ Mo(V) =0}  ify=4
and

®ec H'(O)|®=0o0n if |y| >0,
H1(0) < { 1( ) | 7} | ]
{0 e HY(O) | Mo(®) =0} ity =4
Using the decomposition (.1]) of v € H%é (Q5) and due to (3.7)2 we have
191l £2(025) < COlI V| L2(05)- 4.2)
Then,
e if |y| > 0 the Poincaré inequality and (3.7):-(3.2); lead to
IVlz20) < CIVaVlirzo) < CO 2 ||Vl 12,y

which in turn yields
IVIIz2(04) < ClIIVYL2(04)5 4.3)



* if v = ¢ then, the Poincaré-Wirtinger inequality and (3.7)); lead to
Vlizzo) = IV = MoW)llr20) < ClIVaVllr2(0) < C6 2| Vo]l 12(qy)

which in turn yields
Vllz2(0q) < ClVOllL20y)-

As a consequence of the above estimates (4.2)-(4.3)-(4.4), in both cases we get
[vllz2(05) < ClIVYIL2(05)-
In this paper, we study the following elliptic problem:
Find us € Hllé (Qs),

AsVugs - Vodx = fsvdzx, Yu € H%(s (Qs),
Qs Qs

where Aj is a N x N matrix. The entries a;; ;5 of the matrix As satisfy

/"

a;ij5(T) = agj <%), x=(2/,2") € Qs, a;j € L (w)

and f5 € L*(25). The functions a;; also satisfy: there exists ¢ > 0 such that

N N

ZZaij(X”)&fj > c|¢|?, forae. X” € w and V¢ € RV,

i=1 j=1
We decompose u; as (3.3)

us = Us + ug, Us = M, (us), Us € Hvl((')), Us € Hllg (Qs5).
Note that since us € H 115 (€25), we have
Us € H)(O) and s € HE ().

Lemma 4.2. Problem (.6) admits a unique solution satisfying

sl sy < Cllfsllzzcas)-

4.4)

4.5)

(4.6)

4.7

4.8)

4.9)

Proof. The coercivity assumption and the Lax-Milgram theorem give the existence and uniqueness to

the solution of the problem (4.6).
The Cauchy-Schwarz inequality and (4.3) yield

| [ susde| < Wslonlluslian < Clfsllanl Vuslzz,
5

(4.10)

Now, we choose v = u; as test function in (4.6). Then, the coercivity assumption and (4.10) yield

cllVusl 20, < Cllfsll 2 Vusl L2 (y)-

The above together with (4.5)) ends the proof of (4.9).



4.2 [Estimates of the decomposition terms

In this subsection, we consider the sequence {u }s of solutions to problem (4.6). We give estimates
of the terms appearing in the decomposition of us and then, the asymptotic behavior of these terms in

the following subsection.
We recall that us is decomposed as (4.8). We set

U(; = H(;(ﬂ(;).
Lemma 4.3. We have

[Us|| 20y < C6~ 2| f5ll 2

1Usll 2 + 1IVx1Usll 20 <O 2’||f<$||L2 @) NVarUslr2) < C6~ 2| £l L2 (%)

Proof. The estimates of this lemma are the immediate consequences of (3.6)-(3.7), (4.9) and the prop-

erties of the operator II; (see Proposition [3.2)).

Now, we assume that
II5(fs) — F weakly in L*(Q).

So, the sequence {I15(fs)}s is uniformly bounded in L?(2). Hence, f;s satisfies
1 fsllr2(0s) = 5%HH5(JC5)HL2(Q) <052,
The above estimate (4.12) and those of Lemma[4.3]yield
1Usll 12 0) < C,
HU6||L2(Q) + |[VxnUsllr2) < €9,
4.3 First convergences

For any V € L'(£2) we denote M., (V') (') the mean value of V over the fiber {2’} xw
./\/lw (2) | | / ' X"MdX", forae. ' € O.
w

M,, is a continuous linear operator from L' () into L'(0O).

Set
HY (w) = {VeHl ) | Mo (V }

LX(0; Hy(w)) = {V € L(0;H'(w)) | V(«,) € Hy(w) forae. 2’ in O},
We endow the space L*(O; Hy,(w)) with the semi-norm

IVlicm, = [Vxr Vi

Lemma 4.4. The semi-norm | - ||pr,, is a norm equivalent to the usual norm of L*(O; H'(w)).

O]

@.11)

4.12)

(4.13)



Proof. We first have
IVIZa, = IVx Vi) < VT2 + IV V2@ = VI 20,0 (w))-
Now, observe that
Vliee = [ [V X do'ax”

_ /Q V(! X") — My (V) ()| de dX".

Then, the Poincaré-Wirtinger inequality applied in the cross-sections leads to
/ V(' X") = Mo (V)(2)dX" < C / VxnV (2, X")|2dX" forae. 2’ € O.
w w
Finally integrating with respect to z’ yields
VL) < ClIVxr V2@ (4.14)

and thus o B
IVizz0:m )y < CIV |lLm,-
This ends the proof of the lemma. O

Lemma 4.5. There exist a subsequence of {0}, still denoted {6}, U € Hi((’)) andU € L?*(0; H#(w))
such that

Us —~ U weakly in Hi((’)),
1—- = .
gUg -~U weakly in L*(O; H#(w)), (4.15)
VuUs —0 weakly in L*(Q)™.
Proof. The convergences (@.13) are the consequences of the estimates (4.13). O

As a consequence of the above lemma we obtain the following corollary:

Corollary 4.6. For the same subsequence of {3}, we have

Is(us) = U weakly in H(Q).

S Limit problems

Theorem 5.1. Let us be the solution to problem [@.6) decomposed as B8) (Us € H1(0), us €
Hlls (Q5)). For the whole sequence {0} we have

Us - U strongly in HA&(O),

1—

SU(; —U strongly in L*(O; H#(w)), (5.1)
VoUs — 0 strongly in L*(Q)™

where Us = ().



The couple (U,U) € H%((’)) x L*(0; H;/E (w)) is the unique solution to the following problem:

A\ Vo IRl / IRl / /
A — - )l da'dX" = Fodx'dX" = My, (F)pdx',
K% (waU> <VX"W> ! Q v |w|o (g dx (52)

V(¢ V) € H(O) x L*(O; Hy (w)).

Proof. Step 1. We show (5.2)).
Let ¢ be in Hi (O) and ¥ in C'(2) such that ¥ vanishes in a neighborhood of 9O xw.

7

We take ¢5 = ¢ + Vs, where Us(2',2") = 5 (a?’, %) , as a test function in problem (4.6).

We have
II5(ps) — & strongly in H(9),
1. — — — — (5.3)
S5(T5) =0, Vlls(Ts) = 6V, ¥.

We transform (4.6) using I1s. This gives

/A vx/i/{ﬁvx,m Vx/1¢+vx,115@5) Ay /H () TLs(65)da'd X"
— . — X = X .
0 sV Us SV TI5(T5) q CMOITeRRe

We pass to the limit (6 — 0) using the convergences (.11)-(.15) and (5.3). We obtain (5.2) with
(¢, W) as a test function. By density, in L?(O; H;% (w)), of the test functions belonging to C1(9)

and vanishing in a neighborhood of dOxw, we obtain (5.2) for any function (¢, ¥) € H}(O) x
L*(O;H # (w)). The coercivity assumption (4.7)) and the Lax-Milgram theorem give the existence and
uniqueness of the solution to problem (5.2). The uniqueness of the solution implies that the whole
sequences converge to their limits.

Step 2. We show the strong convergences (9. 1)).
We chose v = u; as the test function in then transform equality using I1s. This gives

V. Us + V. Us VU +VuUs
/ o G S I (R S A K / Ws(fo)udsda'dX".
Q 5 X 1 5 X 4 Q

Then, the weak convergences (4.15)-(4.11) and the weak lower semi-continuity of the LHS we obtain

vm’u vx’u / "
/ A (VXHU> (VXNU> da'dX

< limint ( ( “fot Ve U5> : (vx,lu " WU&) dz'dX")
- *VX” Us gvX” Us

) /U§ +V, U5 Vaeld + Vxlﬁg o
< lim sup ( VX” i ) . ( %VX"UJ > dx'dX )

:limsup< / 5 f(;)u(;d:c’dX”) —hm( / 15 ( f5)u5da:’dX”) - / Fudd'dX".
Q

Q

Thus, the above inequalities are equalities and therefore we have

vx’ué + VI’U(S V..U
x’ : 2 N
( %VXNU(S ) — (V;@U) strongly in L=(2)".

10



Hence o
Vs = My (Volls + Vi Us) — VU strongly in L*(Q)™,

VoUs — 0 strongly in L*(Q)™,
1 _ _
SVX// Us — Vx»U strongly in L*(Q)™.
The strong convergences above as well as {.14)-@.15)) give those in (5.1). O

Corollary 5.2. We have
s(us) — U strongly in H' ().

In order to obtain the problem satisfied by ¢/, we introduce m correctors x;, 1 < ¢ < m.
They are are the solutions to

YzEH;L#(W), ie{l,...,m},

€; ‘ 0 b ) 5.4
/WA (VX”Xz) (VX”Q/)> dX" = O’ VQ,Z) c H#(w)

where (e1, ..., e,,) is the usual basis of R™.
Theorem 5.3. We have
— — U
Uz, X") = @(x’)yi(X”) forae. (', X") € Oxw. (5.5)
=1 t

The function U is the unique solution to the following problem:

FindU € H%((’)) such that

/ A*VU -Vodx' = / M, (F) ¢da’, (5.6)
@] (@

V¢ € H, (0),

where the entries of the matrix A* = (a};)1<i, j<m are given by

1 e; e
e p— A L J )l dx”. 5.7
rw\/w (vwxi) (vmxj) ©7)

Proof. Step 1. We express U.
In (3.2) we take ¢ = 0. Using (5.4)), this leads to

/wA(X”) <VX”U?@”7X”)> ' (VX”‘S(X")> ax

LA oo
=2 % AXY (%) ' (v X,,\I(i(x")> ax”

=1 LW

N ’ 0 0 .
- z_: Or; /wA(X ) <VX”X1‘(X”>> ' <VX”‘1’(X ”)> “
forae. 2'in O, VU € Hy(w).

11



Thus

0
0

A — = OU_ dX" =0 ae.inO, VUe HL(w).
A w35 | (o) 2670w b

i=1
Hence m
— ou
U= oz} 0l X
i=1

Step 2. We give the entries of the matrix A*.

In (5.2), we take ¥ = g ¢
vx’u ’¢ / " / / "
A — |- rdX" = Fodr'dX"”.

/Q <VX”U> <VX"‘1’> ol

g, \ (5,

.. We obtain

This gives

1 L~ Jx; " a%
/ ey do'dX" = / R, X" (2 )dx' d X"
0 o |wl

|w| Zl SZVX”Xi Z —Vxnxj

/ M, (F) ¢da’.
The above LHS is also equal to
m

= e \ MU
. X",
Z Z/ <VX”X’L> <VXHXJ) 8[1:‘71 ax] d

=1 j=1

Hence, we obtain
/ 2.2 o g’ / Mo (F)da’
0= x; 0x;j
where the a;; are given by G7).
Step 3. We prove the coercivity of the matrix A*.
For every ¢ € R™, we have

m m o | o .,
33 e =325 [ 46 (o) o (orls,) "

=1 j=1

) £ 3
=— [ A|ly RS = |ax”.
|w]/w Z&Vxnxi ijvX”Xj
i=1

j=1

12

(5.8)



The coercivity of the matrix A (see (@.7)) yields
m m 1 m
DD etk 2 / (I + Y IGPIV ) dX” = clé .
i=1 j=1 v i=1
This proves the coercivity of the matrix A*. O
From now on, we assume that

e 90 of class C™,
g f5 = f € L2(0)7

5.9
e v =00 homogeneous lateral Dirichlet condition, (>9)
or~y=¢ homogeneous Neumann condition
If v = ¢ we further assume that
Mo(f)=0. (5.10)

6 Global error estimates

6.1 Preliminary lemmas
Now, problem 4.6 becomes
Find us € Hp (),
/ AgVU5-Vvd$:5"|w]/ fVdez, 6.1)
Qs 10)
Yu € Hll(; (Q5), wvdecomposed as (3.3), v=V +7.

and now, the estimate (4.9) is

sl e gy < Cllfsllziy) = CO2 £l r2(0)- (6.2)
Lemma 6.1. Under the assumptions (3.9)-(G.10) we have U € H*(O) N H3(O) and
Ul m2(0) < Cllfllz20)- (6.3)

Proof. In the case of the lateral homogeneous Dirichlet condition, we apply [11, Theorem 9.15] to
obtain U € H2(O) N H}(O)and [11, Lemma 9.17] to obtain the estimate (6.3). In both cases we also
refer to [3, Section 9.6]. O

Denote

e p(a’) = dist(a’, 00) the distance between 2’ € O and 90.

* ps the function defined by




* Os the open set
Os ={2' € O] p(z') < 6}.

Note that we have
0 < ps(z’) <1, forae. 2’ in O,

ps(z)) =1, fora.e. 2/ in O\ O,
1
IV psll o) = 5-
Lemma 6.2. For any vy € H'(O), we have

191 2205 < COY2 Y] 11 (0

(1 = p8)¥llz2(0) < CO2 ]l (0,

o5l (o) < C8 % ]l (0)-
Proof. Step 1. We prove (6.4);.

6.4)

We first recall that since the boundary of O is smooth, the trace theorem gives (see [3, Chapter 9])

191 200y < CllY |10
Then, from [6, Proposition12.2] we get
1912205 < C(6Y2¥]|1200) + IVl L2(0y) < CT2][ 11100y,
from which (6.4); 2 follow since
1
(1= ps)¥ll 20y < 1¥ll22(05) < CO2 1Y H1(0)-

Step 2. We prove (6.4)s.
Due to (6.4); we have

IV (ps)| 220y < [(Varps) ¥l z2(0) + ls Vel L2 0y
< |IVarpslle (o) 191 22(05) + V2l L2 (0)

1
< 51¥lez o) + 1IVardllzzo)
_1
<52 ([Yll g (o)

and

1
1ps¥ 20y < Mol oo (05) 1Y L2(05) < NVl 22005 < COZ (1Y) 51 (0)-

This ends the proof of (6.4)s.

We define, u3”, an approximated solution to problem (6.1) by

ug”(z) = U(2) +T5" (2),
_a - ou, ,_ sx" fora.e. x € Q.
Uy’ (x) =6 Z Pé(x')%(l")xi <5>

i=1 v

Since U € H?*(Q) N H,(O) the function ug” belongs to Hy, (Qy5).

(6.5)

"In the case of the homogeneous lateral Dirichlet boundary condition, we need to multiply the function

14



Theorem 6.3. Under the assumptions (5.9)-(5.10) we have

a l,n
Jus — ug” | sy < CO212 || fll 12(0)- (6.6)

m
The constant depends on the matrix A and Z 1 || 271 (w0)-
i=1

Proof. The essential part of the proof of estimate (6.6) consists in calculating and estimating the quan-
tity
AsV(us —ugh) - Vodz, Vo € Hp (Qs).

Qs
We have for a.e. x € ()5
VU 5o (U o 2
Us \T) = ou ’ _ Iﬁ mo o " : 6.7
= i=1 ¢
D1 Dy

Step 1. In this step we show
a l,n
|| A4s(9 = Di) - Vods] < COF Iy IVolloy. Vo€ HE (00 68)
8

First, we estimate Dyy.
Due to Lemma[d.T]and (3.1) we have

D11l 22(05)
5 )
<3 (092 (osg)

i=1

oo () 2 + 0 = D

prio % (5) e o))

3

o ou
o0l + |05 = 1 -

o019 Xil2 )

L2( L2(

Then, the estimates (6.4)2 3 and (6.3) lead to
l.n = _ l.n
IDutllzz@y < O85 5 Ul ey (3 il ) < €57 5 1 lsoy (69)
i=1

As a consequence of the above and (6.3), we obtain (6.8).
Step 2. In this step, we apply the dimension reduction operator I1;.

O " , . .

Z 8—”(1’)@ (%) by ps(z”) to construct an approximated solution which belongs to Ht, (€2s). In the Neumann case,
T

i=1

there is no need to multiply by ps(z”); the reader can reproduce the proofs of the theorems in this section and the next, and

see that the results are the same. The proofs will be a little simpler in this case. Here, we have chosen to use the same

approximated solution to avoid 2 proofs.

15



Let ¢ be in H%é (Qs), Lemmagives OIS H%((’)) and ¢ € H%é (€25) such that

¢ =P+ 09,
1
[Vor®| 120y < 72 IVardllz2(ay),

_ jw|z0% (6.10)
191l 2(5) < CHV 19l 12(05)s

1VaBlliz@y < SIVedlizay 1Vl = 51 Vel
Set & = I15(), we have & € H'(£2) and from the above estimates (6-T0) and Proposition 3.2 we have
12|20y < CT2(Vand|l L2(y),
Ve ‘I’”L2 <2572V, 1Ol L2(05)5 IV xn®|| 1200y = 5_n/2HVz”¢HL2(95)'
Due to Pr0p0s1t10n [3-2]and problem (5.2) we obtain

VU
AsDy-Vodr=6" | A
o, sDr-Vodx / <VX~U

Estimate (8.1)2 in Lemma (see Appendix), the fact that I/ belongs to H%(O) and (3.7)4 imply that

‘/ <VX"U ) (W) - (vv;q;>> )da'ax”

- _n 1 _n
< CllAl oo Ul 200y ( 3 IRl ) (62 I8l 20 + 0275 961 22(0, i)
=1

(6.11)

> (Ve)da'dX", V¢ € Hp (Qy).

1 n
< Co272 | fll 1200y I VOl r2() -

Then, from the above we get

AsDy - Vodx — 5”/ A ( Vybl) . <er<1>> dx'd X"
Q

s

VxnU) \Vxn® (6.12)
1, n
< OO 2|l 22(0) VOl 220
So, the above estimate and (5.2)) give
1, n
|| 4sDr-Voda— [ fods] < C8E a0 Tl
§ S
Therefore, using (6.8)
a, l,mn
‘ [ A5(Vus = V) V6 dm‘ < O | fll 120y VSl 220 6.13)
5

Step 3. We prove (6.6).
We take ¢ = us — ug” as a test function in (6-13)) and then, due to the coercivity of the matrix As (see
@7)), we deduce that
19 (us = ") 2() < O3 2 £l 2(0)
which, using the fact that us — ug" belongs to Hy 1, ($26), leads to (6.6). O

Remark 6.4. In the proof of Theorem we only used the fact that U € H?*(O), which means that
if we have 0O Lipschitz, U € H?(O) and y a measurable subset of OO then, the estimate (6.6) still
holds.
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7 L? global error and H' interior error estimates
7.1 L? global error estimate

First, we introduce a second family of correctors, the iﬂ 1 < ¢ < m, defined by

Xi € Hy(w), i€e{l,...,m},

0 e; " 1 (7.1)
/w A (VX” w) <VX”XZ> dX" =0, Ve Hi(w)

where (e1, ..., €,,) is the usual basis of R™.

Theorem 7.1. Under the assumptions (5.9)-(5.10) we have

[t~ U]z 0 < COll 220 )
us — ugP || p2(qy < COT2 HfHL?(O)
The constants depend on the matrix A and of the H' norms of the two families of correctors.
Proof. Step 1. In this step we show that
1015(Vus) 22050 < €21l 22(0)- (1.3)

First, from (6.7)-(6.9) and the properties of IL;, we have

VU
HH(g(Vugp)— o (
8$i ¢

1
< C82 | fllp2(0)-

L2(Q)

i=1
Then, Lemmas [4.1H6.1H6.2| imply

(s

As a consequence of Theorem [6.3]and the above, we get

< CHVI'UHL2(05)<Z Xl rr1 ) + 1) < CO%|f 20y
=1

X”X ‘ L2(0sxw)

ITs(Vus)| L2 (05 xw) < IMs(Vug®) || 1205 xw) + 1Hs(Vus — ug?)| 120y < Co3 1 £l z2(0)-

Thus, is proved.
We recall that the function ug is decomposed as (4.8)).
Now, let ® be in H?(0) N H7(O). We set

"

Xz(sis ), fora.e. x € Q. (7.4)

b5 = @+ ¢;, —52% 895@

2 Observe that if A is a symmetric matrix then X; = ;.

17



Function ¢s is an admissible test function (by construction, it belongs to H%é (Q5)), we choose it in

@.6). This gives

AsVus - Vs dr = 5"’w’ / f®dx'
s © (1.5)
— /AH5(vu5).H5(v¢5)dm’dX”:\w\/ foda'.
Q (@

Step 2. In this step we show that

Vo ®
Alls(Vug) - 0P dz'dX" — / ® da’ =P . (7.6
‘/Q 5(Vug) b il v || Of x | £1(0)- (7-6)
First, we show that
= OB _
d Z; Var (P6 o, ) Xi , §
[ asve - | LT 42'dX"| < Collfl oo IVar®lmy. A7)
Z(P(S - 1)87VX"§Z
i=1
We have 5% 9 5
OV (% 8x-) - %5Vx/p5 +0psVar (8a:>

Since the supports of

0] 0P
-6V ps and (ps — 1)633 « ps and

ox; :
1 — ps are bounded by 1 izn L*°(0Oy), then proceeding as in Step 1 of the proof of Theorem and due

to the estimates (6.4)1 2, (7.3) and (6.3)), we obtain

o
(Z i%z) 5vx’p§
’ /QAHJ(Vué) ’ m =1 od dz'dX" < C(S”fHLQ((’))||V:Jc’q)HH1(O)- (7.8)
Z(P(S - 1)87VX"E

We also have

‘ / Alls(Vug) - 5”2( ) ) da'dX"

0

< | fllz20) IV @l 1 (0)

Hence, (7.7) is proved.
As a consequence of (7.5)); and (7.7) we get (7.6).

Step 3. In this step we show that

Vi ®
| / Valls ) 0 ' dX" — |u] / f®da’
//H5 u(g) a vX”Xz O (7.9)

< OO fllL2 o) IVar @l o)

18



The estimate (8.4) (see Lemma[8.2)in Appendix) implies

\7 Var @
(s (10 ")) (§R 00 | @] < oo atlne
Q 5 Vol () oz ' -
=1

As a consequence of the above and we obtain (7.9).
Step 4. In this step we show that

Vo Us

) / 8115 : (Wq}) da'dX" — |w| / f® da’
Bz, VXX 0 o (7.10)
<O fllz oI Ve @l 0y
From the definition of the correctors ; (see (7.1)), we get
O vz/(I)
/A<1 _ > 0P _ | d'dX" =0
o \5VxHs(as) 2 O
- (7.11)
0 Vi ®
d Al = 0U, . oo ~ | de'dX" =0.
an /Q 8 6VX”X1 aivX”Xl X
i=1 i=1
.. 1 _ = OUs _ . .
The above equalities allow to replace EV s (s) by Z a—v xX; in (7.9). This leads to
i
i=1
/u(§ V /(D
81/15 — do'dX" — |w /  da’
’/ ' Z*VX" Xi “Jo! (7.12)

< 4| fllz2 0 va’CI)HHl(O)‘

As a consequence of the definition (5.4) of the correctors ; and (7.12)), the estimate ( is proved.
Step 5. In this step we show (7.2);.
The definition of the entries of the matrix A* and (7.10) yield

‘ /O A Uy - Vo ® da’ — /O Fo da’ o[Vl 10 (7.13)
Taking into account (5.6) and (7.13)), we obtain
| /O A (Us = U) - VD da’ OV ® 111 0. (7.14)
Now, let 15 be in H(O) the solution of the variational problem
/OA*Vz/gb -V ptpsdr = /O(u(; —U)pdz, Vo€ HI(O). (7.15)
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Due to assumptions (3.9)-(5.10), the function s belongs to H*(0) N H1(O) and satisfies

In (7.13), we take as test function ¢ = Us — U and in ([7.14) we choose ® = 1)5. Then, thanks to the
estimate we obtain

2 *
leds — Ul| 20y = /OA Vo (Us —U) - Vptpsdr < CO| fll 20y I Vartbs o)
< CO|lfllzz(o) [Us = Ul| 120

This gives (7.2));.
Step 6. In this step we show (7.2)s.
As a consequence of the estimates (3.7)2 and (@ we obtain

_ _a a 3.n
[ds — T5" | 12(g) < COlIV (us — ug”) 205y < C27 2| fl| L2(0)-

The above estimate together with (7.2)); lead to (7.2)2. ]

7.2 H' interior error estimate
Theorem 7.2. Under the assumptions (5.9)-(.10) we have

1V (us — u§") 1205 < COY 2 fll2(0)- (7.17)
The constant depends on the matrix A and the H' norms of the two families of correctors.

Proof. Step 1. Preliminary results.
Let ¢ be in H{._(25). We decompose ¢ as (3:3)

¢p=0+¢  where ® =M, (¢) and ® € H}(O), ¢ € Hf (Qy).
First, from the estimate (6.4)1, (3.7)1,4 and the fact ||p|| < (0,) = 0, We have
[V (0@) | 22(05) < [IVarplleo(05) 1PN 2205) + 121l Lo (05) | Var @l 12 (04)
1
<002 ||V ®|r2(0) + 8| Var®| 2 (0;)
1 l_n
< 082|210y < C627 2|V bl 12(0;)
and
IV (pD) | 1205 xws) = 10V Dl L2005 xws) < ol Loe(05) Ve @l L2(05xws) < IVl L2(05)-
The above estimates yield
1
V(0D L2(05 xws) < CIZIV P Lr(25)- (7.18)
Then, transforming by I and using (3.2) we obtain
1l _n
15 (V(09)) | £2(05 xws) < CO272[IV | 120004,

(7.19)
3_n
IV x5 (p9)) | 1205 xw) < CO27 2|Vl 12(0;)-
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Besides, since ¢ € Hll§ (€2s), there exists a constant C' which does not depend on § such that (see (4.3))

IV(pd) r2(05) < 1@l L2(5) + [IVAllL2(05) < ClIVAIl L2(02y)- (7.20)
Step 2. In this step we show that

ol [ fo®da’ = [ AT(91) 1159 (p0) do'ax”

<C8" || fll 20y IVl 2(2s) -

(7.21)

1 _
In (52) we choose as a test function (p@, 51’[5( p¢)). This gives

Vald Vo (p®)
/ Al &= U
Q P 8.’171 5VXNH§<p¢

)) do'dX" = \w\/ fp®da'. (7.22)

Since all the components of | s~ OU % belong to L*(w, H(0)), using (8:T)2, we obtain

x/u I (V 1 Ve (o2) da'dX"
\ / vxm o(V(p9)) = < VxrIls(p) !

_n 1l _n
SCHV:L«'UHHl(O)<Z IXillmr ) (8 21V (00 z2(p) + 82 % 9 (00)]| 120 xs))-
i=1

Then, equality (7.22)) together with the above estimate and (6.3)-(7.18)-(7.20) yield
VU

ddr' — [ A ou I lax"
ol [ fpwar— | Moo 5(V (p6)) da'd

(7.23)

<C|Ifll 20y (6"~ 2HV¢IIL2 @) + 02 E[V0) | L2(05 ) < COE | f |20y [V ell L2002

Now, we have

0 Z Vs (Pé%)%

1=1 . ! "
| /Q Al o T15(V (p¢)) da’ dX

1— _— "
Z( p&)a V xnX;

ou
( 5 xz> OV ps
<| / Al Ty (V (p@)) da'd X"
Y a- pa)afvx'fxz

=1

m BUN
+)/QA 5p5z;vml(8sz;{i>><i 115V (po))da’dX"|.

(7.24)
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m
ou~_
J Z Vi (,06 87@) Xi
Observe that the support of | ,, =} is included in Osxw. Thus, as to prove (7.8)

Ao TV (p0)da' dX"| < Va2, T15( (99)) 20,0

1 1_n n
< C02 | Vold|l 1r1(0)02 2 [Vl Logay) < C8 2| fllr2(0) IVl 12 (05)-
The second term in the RHS of (7.24)) is less than
CO ||Vl || 10y T (V (p0) | 22(2) < C5 2 || Fl 2 (0 VDl L2 (62 -

Then, from the above estimates, (7.23)) and (7.24) we derive (7.21).

Step 3. In this step we show (7.17)).
Taking as test function p¢ in [.6) gives

/ AsVus - V(pg) da = 6" |w| / fp®dx'.
Qs 1)
The above equality and estimate (7.21]) yield

|| A5 — ) - V(po)da| < € E 120y 6 20, (7.25)
5

Now, as a test function in (7.23), we choose ¢ = p(us — ug”). So, ([7.23)) leads to
) / AspV (us — ugh) - pV(us — ugh) d:n‘
Qs
< 2‘ AspV (us — ug’) - (us — ug”)Vpdx (7.26)
Qs
+ C(SH%HfHB(O)(HPV(UJ - U?)HL?(Q(;) + [lus — U?HL?(Q(;))-
The above and ((7.2))- lead to
‘ /Q AspV (us — u) - (us — ul?)Vp dx‘ < C|pV (us — w2 || 2o s — w2l 20
é
< C62| fll 20y 1oV (us — ug?) || 20y )-
The above inequality, and the coercivity assumption yield

el (s — 1) Bagay) < OO E Il 20pllo(Ts — V) | oy + O 1 2000
C2
2¢
which in turn gives (7.17). 0

& a n n
< 5lp(Vus — VusP )72y + 5207 " 112200y + COH 1720
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8 Appendix
Lemma 8.1. For any ¢ € H'(Qs) decomposed as (3.3) (® € H'(O) and ¢ € H(Qs)). We have

Vo ®
_ - < O§1—%
HH5(V¢) <1vX,,q>> ’LQ(w;H—l(O)) < O 2[|Vo| 12(05),
g 8.1)

V@ " 1
Jrscve) - <1vx,,q>> | < 8 (1991200 + 52 IV 20, )
)

L2(wi(HY(0)))
where ® = Tl5(¢), (H(O))" is the dual space of H*(O).
The constants do not depend on 0.

Proof. First, remind that V¢ = V® + Vo, Vo = V. Hence

VIICID v$/6
(Vo) = <(1SVX,,<I>> - < 0 )

Let ¥ be in L?(w; H} (0))™. We have
/ V,®- UdrdX" = — / B div, (U)da'dX".
Q 0

From the estimates (3.7)2 4 and (3.1)) we obtain

)/Q@divxf(‘l’)dﬁfldX" < 1@l 2@ 1| 2w 113 (0)) < C" 21Vl L2005 19| L2103 (0

This yields (8.1));.
Now, let ¥ be in L?(w; H'(O))™. Estimate (6.4); gives

1
19 2205 xw) < CO2 V]| 2wy 1 (0))- (8.2)
We have
/ Vy® - Udr'dX" = / Vap®-(1— p(;)\Ifd:L'/dX//-i-/ Vo ® - ps¥de’dX”
Q Q Q
(8.3)
/ V@ - psWde'dX" = — / ® psdiv, (V)dz'dX" — / D (Vyps) - Ydz'dX".
Q Q Q
Then, from 8.2), 3-1)), 3:2) and (3.7)2 3 we get

‘ / V® - (1— ps)Wda’dX"
Q

<NV @l 2205 xu) 1Pl 22(05 xw)
_n 1
< C6 2|V @l 1205 xws) 0 2 1YW | L2 (w; 51 (0)) 5

_ _ c
‘/va@"lfdﬁ/dX" < Cll2l 220w ¥l 22w (0)) + 5 12l 2205 %) W] £2 (05 x00)

_n 1 _n
< C(6" 2| Vardlirzig + 02 2 [ Vardll 1205 xws) ) ¥ | 22 (w11 (0)) -
This yields (€.I))2. O
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As a consequence of the previous lemma, we have

Lemma 8.2. Let u; be the solution to problem @.6) (decomposed as (3:3) with Us € H1(O) and
Us € H%B(Qg)). We have

vm/z/{é

[ms(vus) ~ {1
=V xnU
5 X 1

<06 8.4
oy = C 1f1lL2(0) (8.4)

where U5 = Is(us).

Proof. We have

us = (us — ug’) + ug”.

Hence
Vs = Vg (U5 — ugp) + Vgcﬂugp.

Using the estimate (6.6), we obtain
0173V (s — )| 2(05) < O3 £ 220)- (8.5)

Besides, using (6.4); we obtain (remind that V»ug? = V. ug")

IV x5 (Ts”) || L2 (05 xw) H Z5P57VX”X1

L2 (05 ><w)

< Cl6psll o (00 VUl L2005 (D IV xXill22(w))-

i=1
Then, estimates (3.2)2-(6.3)-(6.4)1 and the fact that [|6ps || 1 (0,) = 0 yield
2| Vo (W) | L2 0 xes) = IV x0TT5 (D) 1205 %) < CO°[1 £l 22(0)- (8.6)
The above estimates (8.3)-(8.6) lead to
65 | Vartssl| 2 0, sy < O3 2200y (8.7)
Now, again from (6.6), we have
072 |V (us — ugh) | 22(05) < C8|1 fllz2(0)- (8.8)

Furthermore, due to (6.4); we get
IVar (us?) 2205 xws) < IVl L2(05xws) + Ve (@7 )| 22(05 xws)
l,n .
< CO 2 U 20y + | Var (T57) | 12(05 xws) -
Then, Lemma [.T|and again (6.4); yield

IV T 0 < 3 (6057 ()5 (5]
i=1 !

< O E Ul o) (3 Iallza) + COFVatdll o) (3 Iall2)
i=1 =t

< O ||U| 20

L2(Osxws) + Hvx, (5P6) E?ZXi (3) ‘ L2(05Xw5))
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Then (6.3) and the above lead to
52|V (@) | 1205 xwg) < 02 f Il 2200y

Finally, the above, (8.8, and (8.1)2 give (8.4). O
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