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Abstract

This paper investigates Stokes flow through a filter composed of a rigid, thin, periodic, and closely
packed array of parallel long rods with a non-circular, anisotropic cross-section, having the shape of
a slot. The analysis is restricted to regions far from the top and bottom boundaries, where the flow
becomes effectively two-dimensional due to the invariance of the structure in the third dimension.
In 2D formulation, we will refer to the cross-section of the rods as obstacles. The obstacles are
much thinner than the distance between them, so the filter has wide channels. The form of the
obstacles is parametrized to enable detailed analysis. We explore the critical scaling of the filter
permeability and various regimes based on the relationships between the obstacle distance, length and
thickness. In addition, the paper presents three new tools: (1) estimates for small periodic obstacles
with unilateral constraints; (2) a rescaled version of the Necas inequality for thin domains, analogous to
Korn’s inequalities; and (3) a demonstration of the invariance of estimates under local diffeomorphisms
(changes in obstacle shape), including the derivation of a sharp constant.

Keywords: Periodic unfolding method, Stokes flow, Neumann sieve, homogenization, Necas inequality
Mathematics Subject Classification (2010): 35Q30, 35B27, 35J50, 47H05, 74K20, 76D07.

1 Introduction

This paper investigates Stokes flow through a filter composed of a rigid, thin, periodic, and closely
packed array of parallel long rods with a non-circular, anisotropic cross-section, having the shape of a
slot. The original three-dimensional region of the process is described as:

Q.5 = Q5 x (—Ls, L3)

where L3 is a large positive real number defining the extent along the third coordinate x3. The analysis
focuses on regions sufficiently far from the top and bottom boundaries of the structure (x3 = 4+L3),
where boundary effects become negligible and the flow behaves effectively as two-dimensional. Moreover,
due to the structural invariance with respect to translations along the third direction, the original three-
dimensional (3D) problem can be simplified to a two-dimensional (2D) formulation in domain €2.5. This
reduction significantly simplifies the analysis while retaining the essential physical characteristics of the
problem. In further discussion, we will refer to the cross-sections of the rods, which act as flow barriers,
as obstacles. This terminology helps to emphasize their role in modifying the fluid flow through the
filter. Obstacles, parametrized by smoothed diamonds, are considered thin in the direction orthogonal to
the flow, with their thickness much smaller than the distance between them, forming a plate structure

9This study was carried out with financial support from DFG, within the framework of the project OR. 190/6-3.



with anisotropic double porosity and large channels. We study the critical scale for the permeability of
the plate and different regimes with regard to the relation between distance, length and thickness of the
obstacles.

The motivation to study the filter efficiency arose from the analysis of limiting behavior in fluid-solid
interaction problems for Stokes flow through a porous thin plate. When pore size and plate thickness are
of the same order, the limiting 2D interface becomes impermeable, blocking the flow in the asymptotic
limit. As shown in [I9} 27, [31], the velocity trace vanishes on the 2D interface separating the two fluid
domains in such cases. This observation prompted the exploration of filters with larger pores, specifically
a double-porosity structure, to ensure the permeability of the filter and derive a form of the interface
Darcy law.

Our motivation for the obstacle shape stems from fundamental principles discussed in boundary layer
theory (see [39]). In aero- and hydrodynamics, hole shapes such as Laval nozzles [I8] and Venturi tubes
[38] are known to accelerate or decelerate the flow by smoothly decreasing or increasing the cross-sectional
area of the hole. These nozzles and tubes are widely used in industry. We expect the same effect when
selecting the appropriate shape of the obstacle for microstructure&{ﬂ

There are numerous studies on Stokes flows or similar problems through Neumann-type sieves or
porous plates [II, 2], 6 7, 8, 12, 15, 16l 17, 24, 25, 26, B0l [34], 37], as well as in volume domains [T}, 10,
11}, 12), [14] [34]. These works differentiate between two configurations: one with volumetric periodicity
of obstacles in all n directions (with n as the space dimension) and another involving an n — 1 periodic
boundary layer with obstacles separating two bulk domains. In the n-periodic case, imposing Dirichlet
conditions on small obstacles introduces an additional zero-order term in the second-order PDE governing
the domain without obstacles. For the n — 1 periodic configuration (a sieve), this results in a Robin-type
jump condition on the interface between the two bulk domains as the layer collapses to an n—1-dimensional

1
hyperplane. The coefficient in front of the ”strange term” differs by a factor of 7 (see e.g. [12]).
e

There are new tools, useful for some classes of problems, developed in this paper:

The first new tool, presented in Section extends the methods from [13] 28], 34] for estimating bound-
ary layers under zero Dirichlet conditions on small periodic holes or obstacles to the case of unilateral
non-penetration constraints, where only the normal component of the velocity and the tangential trac-
tion vanish. It also demonstrates that the channels satisfy Korn-type inequalities and can be classified
as Korn-type domains.

One of the key auxiliary tools developed in this paper is the rescaling of the Necas constant (see
Appendix , used for pressure estimates with respect to domain topology. For the Necas inequality, also
known as Lions’ lemma, we refer to [3, [4] [5 9] 32, 33| B5] 40].

Finally, the last useful result, presented in Appendix [C] is the invariance of the estimates under
local diffeomorphisms (obstacle shape changes) and the derivation of a sharp constant that can be used,
e.g., in multi-scale shape optimization problems. Similar results, demonstrating that the diffeomorphism
applied to the microstructure remains in the corrector and does not influence the estimates or limits,
were also shown in [23] 29] [3T], while it was demonstrated in [22] that the diffeomorphism applied to the
macro-domain only affects the macro-problem in the limit.

The paper is organized as follows. Section [2] presents the geometric setting of the problem. Three
small geometric parameters are introduced to parametrically describe the obstacles in the 2D setting: €
represents the distance between the filter wires, while 61 and do describe the cross-sectional shapes of the
wires.

In Section |3, the strong and weak formulations for the 2D Stokes flow through two bulk domains
separated by a rigid filter or porous plate are provided. At the left boundary of the channel, the initial inlet
pressure is specified, while at the right boundary, a free outlet condition is applied. The no-penetration
condition is imposed on the walls of the channel and the obstacles.

! Tt is also interesting to note that the pillars of bridges built a few centuries ago have an elongated, pointed shape to
facilitate the flow of the river they span (you can see this when you visit Paris, for example).



Section [4 provides important tools for obtaining estimates and was described above.

Section [5| is dedicated to obtaining a priori estimates for the velocity and pressure. The estimates
for pressure are derived using the tools developed in Section 4. To estimate the pressure, we apply the
Necas inequality, the properties of which were discussed in detail in Sections [B] [C] providing a rigorous
foundation for the analysis in the context of the Stokes flow problem.

Section [6] is dedicated to the study of the asymptotic behavior of the solution and the derivation of

0
limit models. In this section, based on the previously derived estimates and the critical ratio \@5—1, we
2

classify the limit models into three distinct regimes: \/Eg—l — 0, ﬁ% — 0, ﬁ% — 00. The first two
2 2

regimes are analyzed in the present section. The third regime falls outside the scope of this work, as the
estimates suggest that fluid flow in this regime is not governed by the shape of the inclusions. This regime
may be investigated within the framework of an evolutionary problem, which would provide insights over
extended time scales.

The unfolding operator, discussed in Appendix [A] addresses the boundary layer and the unfolding of
boundaries or interfaces, as demonstrated, for example, in [12] 20}, 24 25| [36].

2 The domain

We consider a viscous fluid occupying a two-dimensional domain. This domain is separated in two
parts by a thin porous periodic filter. It depends on three small parameters é1, do and &, the first two
are related to the size of the obstacles and the last to the size of the periodicity cell (see Fig. . Our
goal is to study the asymptotic behavior and to obtain a limiting model when ¢, d1, do — 0.

We denote

Q= (—Ly, L) x (— Lo, La), O = {0} x (—Lo, L),
Q~ = (—L1,0) x (— Lo, Ly), Qt = (0,L1) x (— Lo, La)
Q, = (—Li,—r) x (— L2, L2), QF = (r,L1) x (— L, L),
OF = {47} x (Lo, La), r € [0, L],
Y =(-2,2) x (0,1), Y, =7rY, re(0,¢.
In this paper, we consider obstacles defined by two strictly positive parameters d1, do satisfying
o< 5L

We denote Fj the reference obstacle. Fj is the open set whose boundary is given by the two curves

parameterized by
te1 — b“(t)eg,
M(t) = d t e [—51,51],
tel +b (t)eg,

t t
where b"(t) = 621#“(5), bd(t) = 52wd<a>, t € [~61,61], where % and 9% belong to the following set:

C= {w e W*®(R) | =0 in R\ (=1,1), (t) >0, and [¢/'(t)] <2, Vt € [-1,1], [¢] @) = L,

there exist an interval I C [—1,1] and ¢y € [—2,2] such that ¢/(t) =¢y, Vi€ I}.

Note that
u u\/ 52 m " 52
B[] oo (r) = 02, ()] oo (r) < 25 () || oo (m) < 0?7
51 5 (2.1)
2 " 2
[b%| oo () = 02, (b || oo (my < 257 (™) || oo (ry < C?-
1



The constant C' depends on ¥* and 3%

Furthermore, we assume that the sum of the constants associated with the ¥* and ¢ functions (cyw and
cyd) is non-zero.
Let us denote by (see Fig.

F} =F;nY. and F? = (cey +F5)NY.

the two portions of obstacles included in Y.
Observe that v is the unit normal vector to F 51 and v is the unit normal vector to F 52:

(b") (t)e1 + ez (b?) (t)e; + e

V() = ;i) = — . tE(=61,0). (2.2)
V14 [(bY) ()2 V14 [(bd) ()]
Then, we define
Yo =Y.\ FJUF}
and the domain Y
Y5 = U YE, YE = pees + Vs

pe{—Ng,...,Nc.—1}
L
where N, = [—2} € nd Pe = { — Ng, ... ,NS}. The fluid-domain is
€
Qes = Q\ | (pees + Fy).
PEPe

We denote parts of boundary 0.5 (see Fig. |2)

Ios = 0Y 5 NONs = 00 \ o0,
Fl = (—Ll,Ll) X {:l:LQ},

5 ={—L1} x (— La, La),
5" ={Li} x (= Lg, L).

We introduce the space of admissible velocities as
V() = {6 € H(Qe5)* | ¢-v =0 ae. on IesUT1},

the normal components of velocities of the fluid vanish on I';s U I';, which corresponds to the non-
penetration condition, and its subspace of solenoidal fields as

Vaddion = {6 € Vad(Qs) | V-6 =0 ae. in Q).

2For simplicity we assume that ¢ is such that Ly = N.e.
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Figure 2: The fluid-domain 2.5 with the set Y5

3 The microscopic problem

The function v.s : Q.5 — R? will denote the fluid velocity, while p.s : .5 — R the fluid pressure. In

the fluid-domain €).5 we consider the following problem:

—2uV - D(vgs) + Vpes = 0
V- v,s=0

Vs -V =0

D(vs)v-7=0

( — 2uD(ves) +p551)7/ =Pv
( — 2uD(ves) +p561)7/ =0

in
in

on

Qes,
Qes,
FesUTh,
Fes UTh,

in
2

out
FQ 5

(3.1)



where 1 is a coefficient of viscosity of the fluid, P € L?(T'¥") specifies the boundary pressure; v is a unit
normal vector and 7 is a unit tangential vector; D(v) is the symmetric gradient of v.

Hence, the variational formulation to problem (3.1)) is
Find (U567 peé) € Vad,div() X L2<Qsé) such that

3.2
2#/ D(ves) : D(9) dx—/ PesV - ¢dr = [ Pordas, V€ Vaa(Qes), (3:2)
Qg5 Qcs an
Our aim is to study the asymptotic behavior of (Ua;, pa;) as (g, 01,02) — (0,0,0).
4 Preliminary results
4.1 Some inequalities to obtain the estimates of the elements of V ,4({2.5)
Let us denote T}, the trapezoid whose two edges are (see Fig
{0} x (—d,d) and {r} x (=r,r), de (0,7/2).
We remind that for every ¥ € H'(Y,), we have
1
121 o) < 2(5 12 + 700 W Eegy,))- W
10220y, < 4 (1072 (a0 T 71102 CllT2(y,))-
Below, we recall a classical result (see [13], [28]).
T2
/ r
d Tar
z1
Figure 3: Hlustration for Lemma [4.1
Lemma 4.1. Let ¢ be in H'(Ty,), such that ¢ =0 a.e. on {0} x (—d,d). Then, we have
r
620,y < Cryfin ()16l 2, .- (4.2)
The constant does not depend on r and d.
4.2 Estimates of the elements of V ;(Q.s)
Lemma 4.2. For any ¢ € V,q(Qes) there exists ay which depends on ¢1 such that
6= asetll s ) < CID@) 10 "
4.3

16— areillimas ) < CID@) 20,0,

The constants are independent of €, d1 and 2.



Proof. Step 1. We prove that there exists a; , af € R, such that

6= a7 eulla; ) < CIDG) oy

(4.4)
¢ — ay elHHl(Q6+1) < C|D(¢ )HLQ(Q;)'

The constants are independent of 4.
We only show (4.4)1, the proof of (4.4)2 is similar. In €25 the 2D-Korn inequality gives a rigid displace-
ment rs, (x) = (a] — b x2)er + (a; + b~ x1)es, such that (see [21, Theorem 2.3])

¢~ x5l ) < CID@pz(a (4.5)

The constant does not depend on 4.

From the estimate (4.5)) we derive the following trace inequality:
16— e, oo ) < Cllé = el y < CIDO 2o -
1 51
Remind, that ¢o =0 a.e. on I'1 N le. Thus, we have
Hr51,2||L2(1“1rm§—1) < C||D(¢)||L2(le)

and then
|a2_| +1o7] < CHF&,?HL‘Z(Fng) < CHD(qb)HL?(Qg )
1 1

Hence (4.4); is proved.
Step 2. We prove the estimates

First, we estimate |a] — a]|. From , we derive

N:—1 N:—1

)
> !\¢1—af\|iz(9552)30( > lor =T lZagr, nor )+ Z Hai”m . )) < CID(6) 220
p=—Ne p=—N:
3 1ot <0 X - + Z 1o, ) < 12O
Bt 1 L2(Q§52)_ i 1 1 LQ(Q§62|’1Q+ 3331 L2( Qp >~ L2(Qgs)?

where Q5 = (—Li, L1) x (pe + d2, (p + 1)e — d2). The constants do not depend on ¢, §; and J.

Hence

N.—1 N.—1
2L1 (g — 262)Nelay — ai"|2 = Z llay — HL2 F,, y < 2 Z H¢1 ap ||L2(QP )"‘ l[¢1 —af ||L2(QP ))
p=—N¢ —Ne
< CID@)II72 1+
Therefore |a] — af| < C||D(¢ M 2. This and (4.4) gives (4.3), setting a; = a; . O

Lemma 4.3. Assume 62 > 0. For any ¢ € V44(Q5) we have

Vo2 + 1101 — arll 2y + [102ll25) < ClID(D)L2(0s)s

(4.6)
61 = a1l 2oy + 162l 202y < CID@) 20
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Figure 4: Tllustration for Lemmas

and

01 € €
61l 2v.g) < O\ [0 (5 )ID@)10s €2lliav.s) < Coyin (5 ) 1D(6) 120,

J € €
0111202 < OVEE\1n (5 )1D@ 20 I102liaor) < OVE I (5) 1D 12000

Moreover, we have
51 3
9111200 < (14 Va1 (5) ) ID@ 20 (4.8)

The constants do not depend on €, 61 and ds.

Proof. Step 1. Preliminary constructions and definition.
We start with a few constructions (see FigH)

1
e D! is the disc of radius I centered in (0,e/2),

1
e D? is the disc of radius 3¢ centered in (—e,e/2).

Step 2. We show that Y4 is star-shaped with respect to the disc D}.

Let P(t) = (t,b%(t)) (t € [~61,61]) be an arbitrary point belonging to the boundary dF} and M = (z1, z2)
be a point in the disc D!. The interval (P(t), M] is included in Y4, otherwise the segment [P(t), M]
would contain another point P(t') # P(t) of the boundary OF}. Thus

7o = bU(t) _ bU(t) —b'(t)

x —t t—t
We have
2@ - bu(t) —bu(t')| ‘a:Q —b“(t)‘ - 7e/16 — 65 - 7e/16 —¢/10 3
o t—t Sl m—t 1T /16461 T e/164+¢/2 5

) 1
This contradicts the fact that — < - and proves that the interval (P(t), M] is included in Y5 for all

00 — 5
te [—(51, (51]
Similarly, we prove that the interval (P(t), M|, where P(t) € 0F? and M € D}, is included in Y.5. Hence,
the domain Y4 is star-shaped with respect to the disc D;.



Step 3. In this step we prove

Vol 2oy + 101 — arllrecyos) + 92l z2(v.s) < CID(@) I 22(0.4)- (4.9)

Since the domain YE% is star-shaped with respect to the disc pe + D! and has a diameter less than 3¢, by
the 2D Korn’s inequality (see [21, Theorem 2.3]), there exists a rigid displacement

_ (ap1 + by(z2 — pe) p
rp(z) = < aps — byt , r €Yy, (4.10)
such that
¢ = rpllL2yry < CellD(@)L2(ve), V(¢ —rp)llr2vzy < ClID(@)| L2y, (4.11)

where the constants do not depend on €, §; and Js.
Now, we consider DZ? = pe + D2 € (st_l UY%). We have

lbpl < CIVEl oz < CUVON gy + V(6 — 1)l 2rs)).

e(lapa| +elbp|) < C”rp,2||L2(D§vP) < C(”¢2||L2(D§vp) + [|p2 — I'10,2||L2(YE’;)),

e(lapr —ar| +glbpl) < Cllrp1 — CL1||L2(D§,IJ) < C(||¢1 - alHLz(ng) +1[¢1 —rp1 L2(Y§:s))'

Since the discs D2 (p € E¢) are included in 5, , the above estimates, those (4.11)) and (4.3); lead to

S22 < CID@) e,y 3 Elapel < CID@) P

PEE: 2 ) ; PEE. (4.12)
S lapy — arl? < CID@) B
PEE:
As a consequence of (4.12) and again (4.11)), we have
IV61220v.0) = D IV6l320vm) < C D (202 + 196 = 5p)IBayy ) < CIDO) 2240,
pEEe peES
Ié2llZoy. = D ||¢2H%2(y§5) (4.13)
PEE:
S C Z (52|ap72|2 + 54|bp’2 + ||¢2 - rp,2||%2(yg%)) g CHD(qb)H%Q(QE(;)
PEEe
and
l61 = a1l3aiyy = D o1 = a1l2am) < C(X0 Plapa —arlP+ 3 161 = apalldays))
SN . N , (4.14)
<C Z (5 |apy — a1]” +7[bp|” + [[¢1 — rp,1||L2(y;3)) < ClID(D)72(0.)-
PEE:

The constants do not depend on ¢ and 1, d2. This ends the proof of (4.9)).
Then, (4.1, (4.3) together with (4.9)) yield the estimates (4.6]).

Step 4. In this step we show that for every ¢ € Hl(Yg(;)2 satisfying ¢ - v* = 0 and ¢ - v = 0 a.e. on the
boundary of the obstacles, we have

01 € €
P11l 22(veg) < 055*2 In (E> VOl r2(vy)s [¢2ll2(v.s) < Cey/In (5*1) Vol r2(vy)- (4.15)

9



By definition of the set C there exist two intervals I; and I3 included in [—1, 1], such that

0 0
I/u(t):V _w te ol

1 — )
0% + 263

—025261 + 5162

(4.16)

Vd(t) =V = t e ols.

We remind that ¢; + co # 0.

If t € 0117 (resp. 6112) the part of the boundary of F(S1 (resp. F52) is flat and as a length of order 4;.
Now, consider the cone C; (resp. C) whose edges pass through the ends of the flat segment of F} (resp.
F?) and which contains the disc D].

Since ¢ - v1 (resp. ¢ - v2) vanishes on the flat part of the boundary of F} (resp. F?), we extend ¢ - v
(resp. ¢ - 12) by 0 in the part of the cone Cy (resp. C2) containing a small part of F} (resp. F2).

Now, we apply the result of Lemma[4.1] Using simple geometric considerations, we can show that d is of
order 61 and r of order €. That gives

9
¢ v1llzzon + 16~ waloy < Oy 1o () V6l 2qvcs)

As a consequence form above inequality and (4.16]), we obtain

Jilzzon < Cey i () IVl Ioaluzcon < Coyfin (5) 196l e0r,

The constants do not depend on ¢, §; and Jo.

Since Y. is star-shaped with respect to the disc D!, 21, Lemma 2.1] gives

¢l 2(v.s) < C(I9ill L2pry + €l Vil L2(vy)) -

Then, the above inequalities yield (4.15)).
Step 5. Due to the estimates (4.15)), for Y5 = U YZ we have

pGEa
01 € €
lo1llacvs) < Cegy i (5 )ID@Nizgsy Id2llzry < Coy i (5)ID@N 2y (@417
Then, from (4.1); and the above inequalities, we derive an estimate of the traces on OF

0 € €
[91lz202) < OVEgy [ (5 ) ID@)iz@y 192l a0z < OVE I (£)ID(@) 120 (418)

So, the estimates (4.7)) are proved.

Finally, (4.7)3 and (4.6); lead to (4.8]). O

5 A priori estimates

For every open set A, we denote

Ma(é) = Vl” /Aqbdx, Vo € L1(A).

10



5.1 Estimates of v

Set 5
- o <
C(€,51,(52)—1+\@62 ln((Sl).
Lemma 5.1. The following estimate holds:

[1D(ves)ll 22 (2.5) < Cele, 01, 02) 1Pl po(ri)- (5.1)

Moreover, we have

IVvesl2(a.) < Cele, 61, 62) 1Pl L2 piny

[o1,e6ll 22(05) < Cele, 01, 02)* 1Pl Lagripy,
1 €
”U1’5‘5HL2(O§E) = C\/‘g(g In (a)c(& 61, 02) Pl L2 ripy (5.2)
lv2.coll 22(0.5) < Cele, 01, 62) Pl p2(rgy.
€
[v2.e8ll 20y < OVEY 0 (5 ) el 818 [P ey
The constants C' do not depend on &, §1 and Js.

Proof. We choose ¢ = v as test function in (3.2)), this gives
2,u/ D(ves) : D(ves)dr = | Pugs dao
Qsé

Then, by virtue of Cauchy-Schwarz inequality, we obtain

1D (ves) 1220, < ClIPIl L2rimy lvesill 2 rny- (5.3)

Constant C depends on Li, Ls, 1 and does not depend on €, §1, do.
We recall that for any ¢ € H 1(951) we have

[Wllzaegy < CUWl ey ) + ¥l oy )
The constant does not depend on d;. Then, due to (4.6)); and (4.8)) we obtain
[Ves1ll Lo riny < Cele, b1, 02) ([ D(ves) [ 2(as)- (5.4)

From above inequality (5.4) and (5.3) we get (5.1)). Then, the estimates of Lemma lead us to the
estimates (5.2]). 0

5.2 Estimates of p.s

Lemma 5.2. We have the following estimate of the pressure in g4:

[1Pesllz2(0.s) < Cele, 61, 62) [Pl L2 (riny- (5.5)
The constant is independent of €, §1 and 5.

Proof. Step 1. We prove

Hp56HL2(Q;) + Hp65||L2(Qj) < Ccfe, 51752)“77”L2(F§")’ (5'6)

11



First, the Necas inequality (see the recalls in Section |B|) and (5.1)) give
925 — Moz (0o8)ll 202 < Cot IVPslg 10y < CID sl oty < Celerd1,62) Pz
The constants Cqz do not depend on ¢, d1, 02 since from Proposition we have

L1—€/2 2L2
2L2 7L1—€/2

L1 2L,
—L 222 Loy,
2L2’L1/2} ¥)

Cor < max{ }C’(Y) < max{

Now, in (3.2]) we choose a test function ¢g € Hl(Q)2 vanishing in (—¢,€) X (—Lg, L2) and such that

/ V. ¢odr=— _ oo - er1dxo + ¢p - erdxro = 1.
oF rin

out
l—‘2

Choosing ¢q as test function in (3.2) leads to

|, ps¥ dnda =2 [ Dlwer): Do) de— [ Pon-exdan.

in
€ FQ

Thus

‘/Qi p=sV - do dJU‘ < 2#/ |D(ves) : D(¢o)] der/Fm |P|l¢o - e1|dxs
€ 2

of
< C(”D(UEJ)HL2(Q§E) + ||PHL2(1"§"))HD(@Z)O)”L?(Q}) < Ce(e, 61, 02) 1Pl L2 (rimy-

Observe that since ¢ = 0 a.e. on O7 and ¢g € HI(Q)2 we have || - 61HL2(F§71) < C||D(¢O)||L2(Q;) and
HD(qﬁo)HLQ(Q?) < C, the constant does not depend on . So, we get

Mz (pes) = /Q Mz (pes) V - o do = /Q , (Mo (0s) )V - b+ |

o psﬁv : (bOdm

€

< [[Maz (Pes) — pesll 2 o2) 1D (G0) ] 2z + ‘ /Qi pesV - ¢o dl") < Ce(e, 01, 02) [Pl L2 (ripny)-
Similarly, we show that
_MQSE (peﬁ) < CC(E, o1, 52)H7DHL2(F§”)

Hence ‘MQSE (pes)| < Ce(e, b1, 62)||P|| L2 (ripny- This completes the proof of (5.6).
Step 2. We prove

Hp‘E(SHLQ(YE(;) < CC(E, 611 52) ||P||L2(FZ2”) (57)
Proposition (Property 2) and Lemma yield
Z Hpaé - MYE% (pa5) HQLQ(YS%) < CHD(Uaé)HiQ(Qsé)- (58)

PEEe

The constant does not depend on €, §; and Js.

From and we obtain
Z HMY;; (P=s) HiQ(YfémQ;) <2 Z pré_/\/tY:jS (Pes) H;(%)JFQ Z HpﬂsHi?(Yg}nQ;) < CHD(U65)Hi2(955)‘
PEE: PEE: PEE:

Hence
Hp55HL2(Y&;) < CHD(Ueé)HL2(Q€5)'

This leads to (5.7) from which and (5.6)) the estimate ([5.5]) follows. O
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6 Asymptotic behavior

Based on the a priori estimates in Lemma we can distinguish three different classes.
4]
° \/gfl — 0.
2
01
2

o \/E%%ooanddgzo.
2

This work will be devoted to examining the first two classes of obstacles, for which we will consider two
distinct cases.

)
Case 1: ﬁé—l — 0.
2

Case 2: §; = ke, k € (0,1/2] and \Eg—l — 6 € (0,+00).
2

Remark 6.1. In Case 3, all estimates blow up.

In each case, fluid movement within the Q.5 domain is influenced by the shape of the inclusions. In cases
1 and 2, fluid motion is strongly or partially slowed by the inclusions (inclusions control fluid motion). In
the third case, fluid movement within the Q.5 domain is no longer controlled by the inclusions. The third
case should be studied again in the context of an evolutionary problem, which would provide information
over long time scales.

Lemmas [5.1}5.2] give us the following estimates for the casesl and 2:

Lemma 6.1. Let parameters €, 61, d2 satisfy cases 1 or 2, we have

ID(wes)ll22(0) < CIPll 2y loes et aes) < ClIPl 2y,
) € € (6.1)
vrelizoz) < CVEg A ()Pl Tvzesllieoz) < CVEy I (57) IPloaeg
and
Ipesllzzcans) < CIPll 2. (6.2)

The constants do not depend on €, 61 and ds.

From now on, since the pressure p.s is uniformly bounded in L*(Q.s) we extend it by 0 in Q\ Q.
The extension is still denoted p.s5. So, we have

Ip=sllz2) < ClIP I 2(ryy- (6.3)

The constant does not depend on e, 61 and ds.

6.1 Auxiliary tools

Before looking at the different cases, let us consider some auxiliary tools: an extension operator, which
will facilitate the convergences in the domains fo, and the function ©., used to construct test functions.

Let ¢ be in HY(QC) (resp. ¢ € H*(Q.)), we define the operators £ and £ by

€

o(x) for a.e. x € Q_,

& (9)(x) {

EL(9)(=) {

d(—2e — 1, 2) for a.e. x € Q° \Qig,
o(x) for a.e. v € QF,
¢(

26 — x1,x2) for a.e. x € QF \Qig,

13



Lemma 6.2. The extension operators EX from HY(QF) into H'(QF) satisfy

Vo e HY(QD), €2 (@D)lm@o-) < Clldllmazy  IE7 (D)2 < CUISN 207y + eIVl L2 g0ry),
Voe H'(QY), [IEX (@) m@n) < Clldlmary, 1€ @D20) < CUdl 208 + el VIl L20))-

Moreover, for every ¢ € H'(Q.5) we have

1EX(0) — EZ (D)l 12(0) < CVEV O 12(00.)- (6.4)
The constants do not depend on €, 61 and ds.

Proof. The estimates of £X(¢), for ¢ € H'(QF), are the immediate consequences of the definitions of
these operators.

Now, let ¢ be in H(£.s), to obtain (6.4)), we have to estimate

Lo
/ |62, 22) — $(—2¢, 2)[*ds.

— Lo

Since the small domains Ysp , p € E, are star-shaped with respect to a ball of radius £/16 and have a
diameter less than 3¢, the Poincaré-Wirtinger inequality gives

[ Me(@”ﬂ(yﬁ;) < CEHVﬁbHL?(YE{;)-

The constant does not depend on € and do. Then, we get the following estimates of the traces

16 = M) 20, < C (10 = M@y + 5]

L2((e,2e) x (—LQ,LQ))> ’

09 |12
—_ 2 P
16~ Me(8) o) < C (216~ Me@)ayny + <] el N |

As a consequence of the above estimates and a trace result (see e.g. (4.1);) we obtain

Lo
2
/ | lo(@e,2) — o(-22,22)Pdes < CEIV0l o,
The constant does not depend on e. This leads to (6.4)). [

Now, we define the e-periodic function 1.5 € W1*°(0, 1) by

1 if te :o, 6?1]
veslt) = | 5 <2(i1 —t) if t e %2%]
0 if e 2%1}

and O, € W (Q.s) by

o= EI ()0 ((2)) - 2 (2t {Z])] orne

where for a.e. t € R, {t} is the fractional part of ¢, it belongs to [0, 1).
Observe that the support of O is included in U (—01,01) X (=201 + &&,201 + &e).
§€2e

14



Lemma 6.3. We have

52 52
19clz2(0.5) < Cma VOl r2(0.45) < Cm'
The constants do not depend on €, 41 and 5.
Proof. We have
0 _ 9% Ve <2 6.5
H EHLOO(QE(;) - av H 6HL°°(QE§) > % ( : )

2

0
Since the measure of the support of ©. is bounded by C ;1

where the constants do not depend on ¢, d;

and J2. These lead to the estimates of the lemma. O]
01
6.2 Case 1: \/56— —0
2
We introduce the following spaces:
v@Q )= {pc H(Q)? | =0 ae.on T1NQ°, ¢=0 ae on O},
v @)= {peVIQ) | V.¢=0 ae on 7},
vt = {pe H' (M) | ¢2=0 ae. on Ih'NQ"T, ¢=0 ae on O},
v @) = {pev(@Qt) | V.g=0 ae on Q7).
)
Lemma 6.4. Let (ves,pe5) be the solution of the problem (3.2) and \/55—1 — 0.
2
Then there exist v~ € VE;?)O(Q_), p~ € L?(Q7) such that
Veslg- = v~ weakly in L3(Q7)?,
Vueslg- — Vo~ weakly in L*(Q7)%*2, (6.6)
peslo- — p~  weakly in L*(Q7)2
The pairs (v—,p~) € ng)jo(Q_) x L?(Q7) is the solution to
zﬂ/ D) : D(6) dar —/ pV-ddr= [ Péidrs, Ve VO@Q). (6.7)
In QF we have
Veslgr — 0 weakly in L*(Q7)?,
Vueslor =0 weakly in L2(QF)2*2, (6.8)
peslor — 0 weakly in L*(Q1)2
Moreover, we have
D(ves)1g-na.; — D(v™)  strongly in L3(Q7)2*2,
D(ves)lgina,, — 0  strongly in L*(Q7)**2, 69
and  Veslg- — v strongly in L3 (Q7)?, (6.9)
Ugslor — 0 strongly in L2(Q1)2

15



Proof. Step 1. From the estimates in (6.1]); 2, we obtain, up to a subsequence of {¢,d1,d2}, that there
exist vt € HY(QF)2, p*t € L2(QF) such that
Veslgr — v weakly in L2(QF)2,
V- vgslge = 0 weakly in L2(OF),
Vueslor — Vot weakly in L2(QF)%*2,

peslor — pt  weakly in L2(QF)2.

(6.10)

The estimates (6.1)3 4 yield
vEF=0 a.e. on OU (F1 ﬂ@Qi).

As a first consequence, v~ belongs to V%ZO(Q_) and vt € V(%?)O(Qﬂ.

Step 2. We prove , (6.7)).
Let ¢ be in V(l)(Q*) vanishing in a neighborhood of @. We choose ¢ as test function in (3.2)).
For ¢ sufficiently small, one has

24 D(ves) : D(¢) dax — / PesV - ¢pdr = [ Po1drs.
(O o i

Passing to the limit and taking into account the above convergences yield (6.7)). Then, a density argument
gives (6.7) for any ¢ € V() (Q~). The uniqueness of the solution to problem (6.7) implies that the whole
sequences go to their limits.

Step 3. We prove .

Now, in (3.2)) we choose a test function ¢ € HI(Q)2 vanishing in (—e¢,¢e) x (—Lg, L2). Choosing ¢ as test
function in (3.2)) leads to

o [ D(ves): D(6)d + 2 /Q  D(vss) : D(¢) da /

peav'ﬁbdw—/ pesV - dde = | Poy dus.
Or - o

: ry

Passing to the limit and taking into account convergence (|6.10)), we get

2u D(v™): D(¢)dx +2u D(v"): D(¢)dx / p V-o¢dx / ptV-gpde= [ Podas.
Q- o+ - o+ i

So, the pair (v, pT) € Vgi)}o(Q*) x L?(Q7T) is the solution to
2u D(vt): D(¢)dx — / pTV.-¢pdr=0.
Qt Qt

A density argument gives the above equality for any ¢ € V(l)(Q+). As a consequence, we obtain

(ut, p*) = (0,0) and then the convergences for the whole sequences.

Step 4. We prove .

First, observe that from the estimate (6.1])2 and convergences (|6.10) we have
D(ves)lg-ng., — D(v™)  weakly in L*(Q7)**?,

6.11
D(ves)lgina,, — 0 weakly in L*(Q1)2*2, (6.11)

Now, in (3.2]) we choose as a test function ves

2,u/ D(ves) : D(ves) dx = Pues,1 dxa.
QE§

in
F2
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Hence
QM/Q (D(ve(g)lgeé) : (D(veg)lgeé) dr = [ Puesidrs.

Then, by the convergences (6.11)), (6.10) and the weak lower semicontinuity of the LHS we obtain

2 | D(w7):D(w )dr+2u [ D(@"):D(w')dz <liminf <2u/ (D(ves)1a.,) = (D(ves)la.,) d:c)

Q- Qt Q

<limsup <2M/Q (D(UE(;)]_QE(;) : (D(’UE(;)]_QE&) da;) = limsup( - Pues dm)

in
FZ

:lim( - Pues dxg) = Pu; dxos =2u D(v™): D(v7)dx.
i O-

in
F2

So, the above inequalities are equalities and therefore the convergences in are proved. ]

6.3 Case 2: 0; = ke, k € (0,1/2] and \/E% — 6 € (0,400)
2

Denote
Z =R x(0,1), Zg = (—a,a) x(0,1), a>0, Y =7;.
We introduce the following spaces:
V(Q) ={peH(Q)? | ¢2=0 ae. on 1 UO},
Viio(Q) = {6 €V(Q) | V-¢=0 aec. inQ},
H'(2) = {® € H,(2) | V,@ € IX(2)%, @(0,") € L*(0,1) },

' {CD e HY(Z) | ®(y1,1) = ®(y1,0) =0 for a.e. y; € (—k, K?)},

= {(@1,@:) € H'(2) x H}(2) | My (®1) =0},

Hy(Z

)
)
)
H(Z) = {cp e H'(Z) | ®(y1,1) = By;,0) for ae. y; € R\ [—m,,@]},

(Z)
W(2)
Wino(Z) = {(@1, ®y) e W(Z) |V, ®=0 ac. in Z}.

We endow H!(Z) with the norm

I8l 2 = \/IV6122) + 1900, ) 120,1:

Lemma 6.5. Let (v5,p-5) be the solution to the problem (3.2)).
Then, there exists (v, p) € Vaino(Q) x L?() such that

D(ves)la., — D(v) strongly in L*(€)?*?,
Ueslas — U strongly in L*(Q)?, (6.12)
Peslor = p strongly in L*(Q).

The pair (v, p) € Vaino () x L2(2) is the unique solution to

2M/QD(U):D(¢)da:—/QpV-¢dx: Poidrs, Vo e V(Q). (6.13)

in
FZ
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Proof. Step 1. We show the convergences

EE (ves) — U0 weakly in H(QF)2,

5 (6.14)
DPes — P weakly in L*(Q).

Using the operators Esi (see Lemma ) we extend the restrictions v_ sjoz to obtain functions belonging
to H'(Q%)2. Estimates of Lemmas and lead to

IEX (vell oty < ClPlaryy, 165 (vesn) = €2 (ves )l z20) < CVEIPI 2.

(6.15)
1€ (ves. ) L2(0) < OVEIP N Laqripy-

The constants do not depend on ¢, §; and Jo.
Hence, there exist a subsequence of {e}, still denoted {¢}, and (v, p) € Vgiwo(Q2) x L?(Q2), such that the

convergences ((6.14) hold.
Step 2. Let ¢ be in V() such that ¢ = 0 in Q1 and in a neighborhood of ©. We choose ¢ as test
function in (3.2)). Passing to the limit gives

2u D(v) : D(¢) dx — / pV-odr = | Poidrs. (6.16)
Q- - F%n
Then, we choose ¢ € V() such that ¢ = 0in 2~ and in a neighborhood of O. Passing to the limit gives
2u D(v) : D(¢) dx — / pV - ¢pdr =0 (6.17)

Q+ Qt

A density argument gives (6.13)) for all test functions in V() such that ¢ = 0 a.e. on O.
Step 3. In this step we show that there exists 7 € L?(OQ; Wy;0(Z)) and p € L?(O x Z) such that

21
2,u/ D(v dac—/ pV - gbdx—i—f Dy(D) : Dy(Oez) ¢y dza dy
0 OxZ
. (6.18)
—/ ﬁ8y2(9d>1 dxody = Po1dxo, Vo € V(Q),
0 Joxz rin
Let ¢ be in C1(Q). We set
Pe (w1, 22) = ¢1($171’2)(91 + 65(1'1,33'2)62), (z1,22) € Q. (6.19)
The function ¢. € V().
From the definition of ¢. and estimates (/6.5)), we have
o P
(IVotllzmoy % + Il 2z ) < € f|r<z>uW1 ~(@) (6:20)
and then ,
b — pre; weakly in H(Q) (6.21)

since the support of O, is included in U (=01,61) x (=201 + &e,201 + &¢) (its measure is of order ).
§€Ee
We choose ¢, as test function in (3.2]). This gives

2 / D(w.): DG ds~ [ ps¥ oode= [ Poudan (6.22)
56 Qsé Fan
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First, we have

/ D(vzy) - <Z>€)dx—/ D(Ugg):D(¢1e1)dx—>/ D) : D(érer) do
oz “ (6.23)

‘ ,P¢€’1 dxg = ‘ P¢1 dxs.
rye rye

It remains to obtain the limits of the quantities below in in Y4
/ D(ves) : D(¢10.€2) dx = / O: D(ves) : D(¢1e2) dx +/ @1 D(vgs) : D(Oc€2) du,
56 Ysé
/ Pes 02($109¢) dw = / O p=s D21 dx + / $1 Pes 020 dv.
Ys§ Ys§ Ysé

Due to the estimate (6.5)); the first terms in the right-hand sides tend to 0.
Now, we consider the second terms in the RHS.

Using the unfolding operator 7., we obtain

/Y 105020 dr=c | T()T2 (pes) T (020:) diva dy
ed

OxZ

= /s ZT*(¢1)\[ *(p=s) Ve T (02©:) daa dy

and / $1D(ves) : D(O.e2)dr = ¢ T (p1)T(D(ves)) : T (D(Og€2)) dza dy
Yes OxZ

= T2 ($1)Ve T (D(ves)) « Ve T2 (D(Ocez)) daz dy.

OxZ

From Lemmas there exist a subsequence of ¢, still denoted {e}, ¥ € L?(O; Wys0(Z)) and
p € L*(O x Z) such that

VETX (Vues) = V0 weakly in L?(O x Z)?,
VETX (pes) = P weakly in L*(O x Z), (6.24)
VETZ(VO.) — %Vy@ strongly in L*(O x Z)%
The third convergence in holds since
)

*k 1 fd
\@7; (Vo) = %Vyz (©c) = 51\@vy@

P 1
and NG — g
Passing to the limit gives

1
| orpsosedns g [ 010.005(00)0,,00) doa dy
Yes X

and

/Y ¢1D(U55) : D(@EGQ) dr — — 1

9 ¢1 (O, .Z‘Q)Dy(a) : Dy (@eg) d.’L‘2 dy.
OxZ
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Hence, we obtain

21 ~
2,&/ D gblel) dr — / (¢1€1) dx + ? ¢1Dy(v) : Dy (@eg) dxo dy
. Ox7 (6.25)
~3 $1P 0y, O drady = [  Poridrs.
oxZ rin

A density of argument gives (6.24)) for all functions ¢ = (¢1,0) € V(2). Equalities (6.16]), (6.17) and
(6.24) lead to (6.18) for every ¢ € V(Q).

Step 4. We show that

2% Dy (D) : Dy() dao dy — / PV, -bdrady =0, Vi e L2(O;W(Z)). (6.26)
OxZ OxZzZ

Let @ be in C1(O) and ¢ in W(Z)NCY(Z)? such that ¢ vanishes in the neighborhood of [—, x] x {0, 1}.

Now, consider the test function

¢ () = \/Ecb(@) (C/gl (g) (81 + @g(l‘)eg) + qu52 (§>e2) for a.e. x € (4.

For e small enough, ¢. is an admissible test function belonging to V,4(€.s5). We take it as a test function
in (3.2) and apply 7" (see Proposition for the properties of this operator)

2 [ VETH(D(s) s VETZ(D(6) dasdy — | VETI (pes)VETZ(V - 62) dan dy
OxZ OxZ
I (6.27)
= |, PleDEve o (=2 daa.

By definition of the function ©. we have for a.e. (x2,y1,y2) € O X Z

T2 (@) (w2, y1,y2) = VT (®) (22, y2) (51(% y2)<91 + gi@(yl,w)%) + da(y1, y2)e2>

and thus

\}57?(%) - <I>(¢A31e1 + ;5262) strongly in L*(O x Z)%

Consider now the gradient of the function ¢,

VETZ (Vo) (@2, y1,42) = jgvyz*ws)(m,yhm)
=Vy (72*(@)(9027312) <$1(y1,y2)(e1 + 20(y1, ya)e ) 2 (Y1, y2)e ))
=’ <5[$2] +sy2) <$1(y1,y2)(e1 + 20y, p2)e ) 2(y1,y2)e )

&
+T2(®) (22, y2)Vy (ﬁgl (y1,y2)e1 + ¢2(y1,y2)e2) + 5*i7}*(‘1))(9327y2)vy (@Aﬁ (Y1, y2)9(y1’y2)e2)
for a.e. (x2,y1,y2) € O x Z.

Thus
VETZ (Vo) — @V, (dre1 + daes) = ®Vyb  strongly in LAH(O x Z)2. (6.28)
Passing to the limit in the LHS of (6.27)), we obtain
2n) VET (D(ves)) : VETZ (D(¢e)) daa dy — s VET (pes)VETS (V- ) daa dy
X X

(6.29)
Lo / BD, (@) : Dy(d) dus dy — / OFV, - §drs dy.
OxZ OxZ
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Now, we consider the RHS of ([6.27)).

Applying the 1D unfolding operator 7. with the macroscopic domain O and the reference cell (0, 1), we
obtain

P(z2)® (3?2)\f¢1(—f =

Fin

// (P)( 132,y2)\[¢1( ,y2> dzadys.

We have
T:(P®) — PP strongly in L*(O x (0,1)).

Besides, Lemma [6.6] gives
\[¢1< - — ) — 0 weakly in L*(0,1).
Thus, the RHS of (6.27)) goes to 0.
As a result, passing to the limit in (6.27) give
2,;/ D, (1) : Dy(9) daa dy —/ PV, - pdrydy =0,
OxZ OxZ

Vo eClO) and Voe W(Z)nCY(Z).

(6.30)

Due to the density of the set of test functions in L%(0; W(Z)), we get (6.26) for all ¢ € L2(0; W(Z)).

Step 5. Existence and uniqueness of the solution.

Problem (6.26) admits the trivial solution (u,p) = (0,0). Therefore, (6.27) reduces to (6.13). Clearly,
(6.13) admits a unique solution, so the whole sequences converge to their limits.

Step 6. We prove (6.12]).
First, observe that from the estimate (6.1])2 and convergence (6.14]); we have

D(ves)lg-na,; — D(v) weakly in L*(Q7)**%,

6.31
D(ves)lging,, — D(v) weakly in L2(Q1)2*2, (6.31)

In (3.2) and (6.13]) choosing as tests function v.5 and v respectively, we obtain

2;1/9 (D(ve(;)lgga) : (D(va;)lggé) dx = o Pugs 1 dxa.
2

and
Qu/ D(v v)dx = Puy dxs.
rin

The weak lower semicontinuity of the LHS and the above convergences (6.31)) give

2;@/ D(v v)dx < 2pliminf (/Q (D(ves)La.,) : (D(ves)1a.,) dx)
<2plimsup (/ﬂ (D(ves)la.y) = (D(ves)layy) da;)

=limsup ( Puesa d:vg) = lim ( Puesa d:nz) = Puvidry = 2,u/ D(v) : D(v) dz,

rin rin Q

and the convergences in (6.12); » are proved.
We prove the strong convergence ((6.12))3.

in
F2
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To do that, first in (3.2)) and (6.13]) we choose a test function ¢ € H&(Q)2 vanishing in (—¢,¢) x (—La, La).
This leads to

/i PesV - pdx = 2;1/i D(vgs) : D(¢) de,
Q Q

£ £

/Q? pV-(ﬁda;:ZM/ D(v) : D(¢) de.

oF
Subtracting the second from the first gives

/i (pg(; - p)V ~pdx = QM/i (D(va;) — D(U)) : D(¢) dx. (6.32)
QZ Q

Below, we show that ||V (pes — p)l g-1(qz) = 0-
Indeed, using the definition (B.2)), (6.32]) and Cauchy-Schwarz inequality, we obtain

. s =)V -os
Q

[V (pes —p)HHA(Qi) = sup £
GEHY(UF)”, V8] 2t 20 IVEll @)
o [ | Dlves =) : D¢} da (6.33)
== sup £
GEH (), Vel 2 g, 20 VOl 22y

< C||D(ves — U)||L2(Qg[)

since
1Dl 202) < ClIVEll ozy Vo € HEOQE)

The constant does not depend on €. Now, we have

1pes = pll 20y < 1(Pes = p) = Moz (P=s = )|l 12 () + 4L1Lao| Mz (pes — p)]- (6.34)
The Necas inequality (see (B.1))) gives
(P25 = p) = Moz (pes — P)ll 22y < CODV (o5 — D)l 102 (6.35)

Let w1 and wa be the following open subset of €2 :

1 2
w1 = (_ L17_§L1> X (_L27L2)) w2 = (_ ng - & _5) X (_L2’L2)'

Since the dimensions of these open sets do not depend on ¢ and these domains are isomorphic, their
Necas constants are equal and do not depend on . So, from (B.8)) the Necas constant C'(€27) does not
depend on ¢, similarly we show that the Necas constant C'(2F) does not depend on e.

Hence, from — we obtain
|(pes — p) — MQ} (Pes — p)HLz(Qg) < OV (p=s — p)HHfl(QEi) < C||D(ves — U)||L2(Qai)-
Then, the above together with lead to
Ipes = pll 22y < ClID(Wes = V)l 2y + 4L1L2| Mgz (pes — p).

Besides, since
Peslo., — p weakly in L*(Q)

we have ‘./\/lgg[ (Pes — p)| — 0. Finally, the strong convergence (6.12)); and the above imply (6.12)3. O
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Lemma 6.6. For any function ¥ € H'(Z) we have
Va >0, \/qu(ﬁ, ) 50 strongly in L2(0,1). (6.36)
€

Proof. First, for any a > 0, we have

()l

So, the sequence {ﬁlll(g, )} is uniformly bounded in L2(0,1).
€

Consider now, the following subspace of H!(Z2):

2 2

. (6.37)

ov
‘ L2(Z)

a1

2 a
£2(0,1) < 2“\1’(07 ')HL2(0,1) T e

V(Z)= {\I/ € H'(Z) | 3b > 0 such that ¥ is a constant function in (b, +00) x (0, 1) }

We know that V(Z) is dense in H'(Z). Consequently, if ¥ belongs to this space, then we have

a

ﬁ@(; ) — 0 strongly in L?(0,1).

Now, let ¥ be in H'(Z). For any > 0 there exists ¥, € V(Z), ¥, being a constant function in
(b, +00) x (0,1), such that
¥ — Uy ller(z) < n-

Then, from we obtain
Ve (Z)-m(z)

The constant does not depend on . Thus

vee (C)l

2o < 2Ve || (U=W8) (0, )| 1200y TV V(T=0) || 12 ) < CIIY—Tp|l1(z) < C.

< (2.

+Cn.

L2(0,1) L2(0,1)

For ¢ sufficiently small, this gives

Vel ()l

This ends the proof of (6.36)). O

< (C+1)n.

L2(0,1)

A The unfolding operators 7. and 7

B

5212 — 6 € [0,+00)

In this section we assume that 01 = ke, k € (0,1/2],

For a.e. t € R, we have the following decomposition:

t t
€ €
where [-] is the integer part and {-} the fractional part.

Now, we introduce a specific unfolding operator which mixed the periodic unfolding operator in xo
direction and a scaling in the direction x.
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Definition A.1 (The unfolding operator 7). For every Lebesgue-measurable function ¢ on ), the un-
folding operator T; : Q — O x Z is defined as follows:

¢(€ [%} € —|—5y) for a.e. (z2,y) = (z2,y1,92) € O X Z, e,

0 otherwise.

Te(¢) (2, y) = { (A1)

If a function ¢ is defined in 2.5 we extend it by 0 in the obstacles and denote with " its extension. So,
for every Lebesgue-measurable function ¢ on (1.5, the unfolding operators 7 : Q.5 = O x Z is defined
as follows:

T2 (6) = To(9). (A2)
Denote

, 5 5y .,
Fu = {y € 2| 24M(y) <90 <1- Zy(y) }

and

w 02 ) 02
OF5, = {yl €(=r k) [pp=1-"1 (yl)}, OFgs, = {y1 € (=h k) [ y2 = ;@bd(yl)}
are parts of the boundary of the domain Fs,.

Proposition A.1 (Properties of operators 7: and 7). The linear operator T (resp. T2) defined by
&) (resp. (A2)) satisfies:
(i) for all functions 1,vs € LY(Q) (resp. ¢1,¢2 € L' (zs))

Te(rvp2) = Te(n) Te(ha),  (resp. T2 (o1 ¢2) = T2 (d1) T2 (92));

(ii) for every function v € L' (Q) (resp. ¢ € L' (Qs))
1
L m@eadendy = | v

(resp. /(’) ; T (P)(x2,y) dre dX = i/g o(z)dx),

(iii) for every function 1 € L*(Q) (resp. ¢ € L*(Qes))

1
17D L2(0x2) = %WHLZ(Q),

1
(resp. | T (D)l 2(0x2) = %lllﬁllp(gsa))?
(iv) for every function 1 € HY(Q) (resp. ¢ € H*(Qes))

T (V) = évgﬂg(w) a.e. in OxXZp e,

(resp. T2 (Vo) = %Vyﬁ(w) ae. in Ox (Fs,NZp, ).

Proof. The properties of the 7; are omitted here as they are similar to those obtained in [I1][S.9.3].
The property (ii) for the operator 7.* follows from the fact that

Vo € L' (Qes) oz T2 (@) (22, y) dwa dy = s Te(9) (w2, y) do dy

:s/Q a(x)dxze/ﬂeé o(x) d.
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The property (iii) for the operator 7* follows from the fact that for any function ¢ € H'(Q.s)

7:: (qu) = gvy’]; (¢) a.e. 1 O X (F€52 M ZL1/6)' ]
Lemma A.1. Let {w.}. be a sequence of functions belonging to H(Qys) satisfying
|wellL2(y_g) + ellwell g1 (o, < Ce. (A.3)

Then, there exist a subsequence of {€}, still denoted {e}, and W € L*(O;H'(Z)) such that

\1[7;*(%) W weakly in L2(0; I2,.(2)),
) (A4)

\7@ S (eVwe) = V,W  weakly in L*(O x Z)2.

Proof. From the estimates (A.3)), the definition of the operator 7 and its properties (iii)-(iv), we have

m

o * C *
1T (we)llr2oxzr) < CVE, 1T (we)llp2(0x2) < 77 1T (eVwe)llz2(0x2) < CVe.

Then, there exist a subsequence of {¢}, still denoted {¢}, W € L?(O; LZQOC(Z)) and F € L2(O x Z)2, such
that
1
NG
1
%E*(vaa) — F  weakly in L*(O x Y)2.

Now, for any a > 1 and any test function ¢ € C}(O x Z,)? (function with compact support in O x Z,)
we have for € small enough

T (we) = W weakly in L(O; L?m(Z))

1
/ T2 (Vwe) - pdxady = / V, T2 (we) - ¢ dzs dy.
OxZq OxZg

3

Then, from the above convergences

1
lim — F(eVwe) - pdaady = F - ¢dxydy.
e [ TV gdndy= [ F-gdnay
Besides
Ve VT2 (we) - ¢daady = —/2 T2 (we) div () daa dy,
OXZg OxXZg
and lim /e 5*(w5)divy(gb)dx2dy:/ W div ,(¢) dza dy.
e—0 OXZ, OxZa
Therefore, we have
/ F-¢drody =— W - divy(¢) dza dy.
oxY OxY

Since C1(O x Z,)? is dense in L?(0, H}(Z,))?, the above equality is satisfied for any ¢ € L*(O, H}(Z,))?.
Hence, for any a > 1 we have V,W = F a.e. in O x Z,. Therefore V,W = F a.e. in O x Z. So (A.4)),
is proved.

To prove the periodicity, in the direction ez, of the restriction of W to the domains (—oo, —k) x (0, 1)
and (k,+00) x (0,1), we proceed as in [I1, Theorem 1.36]. O

3Here, for every a > 1 we have || 7" (we)llrz(oxz,) < Cav/e. The constant does not depend on ¢, it depends on a.
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We define the operator M. from L!(Y.s) into L'(O) by

M (®)(pe) = ®(peey + ) dx, Vo e LY(Y.s),

‘ 5’ Y
M (D) (x2) = M (P)(pe) Vxg € [pe,(p+1)e), pe{—Ng...,N.—1}.

Lemma A.2. Let {w.}. be a sequence of functions belonging to H'(Qy.s) satisfying
|well g1, < C- (A.5)

Then, there exist a subsequence of {€}, still denoted {e}, and w € H'(Q) and W € L*(O; H (Z)) such
that

EF(we) — Wi+ weakly in H'(QF)?,
T (we) = wjo  weakly in L*(0; L} .(2)),
| N (A.6)
T W) S W weakly in 05 LE,(2),
VETH (Vwe) = V, W weakly in L*(O x Z)*.
Moreover, we have
/YW(acg,y)dy =0 for a.e. xo € (—La, La). (A.7)

Proof. Step 1. We prove ({A.6);.

Using the operators £ and proceeding as in the proof of Lemma we obtain that there exist a
subsequence of {¢}, still denoted {e}, and w € H'(Q2), such that the convergence (A.6]); holds.

Step 2. We introduce W.
We set

We = we — Mg (we).
The Poincaré-Wirtinger inequality and give

N:—1 Ne—1 N.—1

WellZory oy = D IWVellTaqmy = D llwe = Me(we)l[Zapyny < C* Y [Vwelfayn,
p=—N; p=—N¢ p=—N; (AS)

= C€2vag||%2(Y€6) S 082.
Besides, we have

Ne—1 Ne—1

IVWellZaryy = Do IVWellizgny = D [IVweliagn = IVwelltary,,) < C. (A.9)
=—N¢ p=—N¢

Then, proceeding as in the proof of Lemma there exists W € L?(O; H'(Z)) such that

iz*(we) —~ W weakly in L*(O; L (2)),

\/g
) o o o ) (A.10)
VETX (Vw,) = ﬁ'ﬁ (eVuw,) = ﬁﬁ (eVW.) = V,W weakly in L*(O x Z)
and (A.6])3 holds.

Step 3. We prove ((A.6))2.
From estimates (4.1)), (A.8), (A.9)) we get the following estimates

e = MelwlZagor) = IWelZaory < C(IWA vy + 2 Gy ) <€

L2 (Yaé
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and

Lo
2
||ws\(9; —& (ws)|OHL2 —Lo,Ly) — Hw5|(9— - ws\oz—a||%2(,L2,L2) = /L }ws(*e,m) — ws(—25,x2)‘ dxo
— L2

Lo —& 2
= / ( 811)5 dacl) d.??g < 8/ 811)5
—Lo —92¢ 8%1 Yo

8331

2
dx < 5HVU’6”%2(Q55) < Ck¢,

where Y7 = (—2¢, —¢) x (—Lg, L2).
Then, we have

M) = £ (we) 30 < Ce.
From the convergence (A.6) we derive that
& (we)jo — wlo weakly in L2(0).

Therefore
M (we) = wlo weakly in L*(0),

which, together with the convergence (A.10)), leads
T (we) = T2 (We) + T2 (Me(we)) = T2 (We) + Me(w:) = 0+ wlo  weakly in L*(O; Li,,.(2)).

So convergence (|A.6))2 is proved.
Step 4. We show that W belongs to L?*(O; H(Z)).

Denote ) )
zZ, =(—a,—kK), Zt = (k,a),

OF = (=Ly, Ly) x Z,*
From - - we obtain the estimates of the traces of 7;*(W:) on O, '+ and O, E4ey

12OVl ooy S OVE IITEV)ll 2o 4ey) < CVE

a> 1.

Now, let 1 be in C}(O/F). For € small enough, we have

/O,i (T2 We) (@2, 91, 1) — T2 (We) (22, 91, 0)) ¥ (w2, y1 ) daradys

= f g (e e (Bl er v emer +eea) = e (s [Z] ex - emen) ) tan, mhand

:/’:t \[ ( [azg] e + 63/161) (¢($2 —&,Y1) — w(m,yl))dmdyl

/,i 77->c<( )<m27y170)w(m2 - Evylz - w(x%yl)dedyl.

Passing to the limit gives
/O/i (W(:L?a Y1, 1) - W(x27 Y1, 0))¢($2a yl) d.’EQ dyl =0.

As a consequence, W belongs to L%(O; H;GT(Z ))ﬁfor every a > 1, which proves the claim.
Step 5. We show (A.7)).
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By definition of W., we have

We(xg + ey)dy =0 for a. e. xg € (pe,pe+¢), p€{—Ne...,N.—1}.
Y35

The characteristic function lyz:S strongly converges to 1oxy in L?(O x Y). Then, transforming the above
equality by unfolding, dividing by /¢ and passing to the limit, give (A.7)). O
As immediate consequence of Proposition we have

Lemma A.3. Let {p:}. be a sequence of functions belonging to L*(Qs) satisfying

[pell2(05) < C- (A11)
Then, there exist a subsequence of {e}, still denoted {e}, and p € L?*(2 x Z), such that
VETX (pe) — P weakly in L*(O x Z). (A.12)
Lemma A.4. Let {v:}e be a sequence of functions belonging to 'V 4q(Qes)(Qes) satisfying
1D z2(00) < C (A.13)

Then, there exist a subsequence of {e}, still denoted {}, v1 € HY(Q) and ¥ = (01,702) € L*(O; W(Z))
such that

EX(v1e) = U0+ weakly in H'(QF)2,
—vy0 weakly in L*(0;12,.(2)),

A4
— Ty weakly in L*(O; L} (Z ))27 ( )

('Ul,a
7T*(U2,5
NG
VETX (Vve) = V0 weakly in L*(O x Z)**2,

Moreover, if {v:}e € Vadadivo(Qes) then © € L2(O; W gi0(2)).

)
)
)
) =

To prove the above lemma, we first need to prove the lemma bellow.

Let Y¢ = (—k, k) x (0,1/2) and x be a function belonging to H'(F.5, N'Y?). We extend x as a function
defined in Y¢ by setting

x(y') for a.e. y' = (y1,y2) € Fo5, N Y,

5 o
X(yl, 2;21%!(%) — y2> for a.e. v = (y1,12) € Y¢ \ Fis, N Y7

X' =

Lemma A.5. s a continuous linear operator from H' (Fa;2 N Yd) into H'(Y?).
Moreover, for any ¥ € H* (F652 N Yd)2 satisfying ¥ - v% = 0 on the boundary of the obstacles, we have

~ d
192l 22 top) < OV 21l g, vy, (A.15)

where C' is independent of € and 3.

Proof. Step 1. In this step we show that there exists a constant C' independent of € and 2 such that

XUz vy < CliX a (mg, vy (A.16)

4Periodicity in direction es with respect to the microscopic variable ys.
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First, observe that a.e. in Fg5, we have

Dy X(Y1,y2) = 3y1X<y17252¢d(&> —y2) 20 (¢d) ( ) sz( 1,2%21#‘1(%) - yz),
ay2§€<ylvy2) = - y2X<y1725€£'¢d<%> - 92>-

1)
Besides, the Jacobian determinant of the change of variables (y1,y2) — (yl, Q—de(ﬂ) — y2> is equal
€ K

to —1. Then, a straightforward calculation yields (A.16]). So, the operator is a continuous linear map
from H'(F.5, N'Y?) into H'(Y?) (the linearity follows from its definition).

Step 2. We prove the estlma‘ce given in the lemma
Let ¥ be in H! (F552 N Yd) satisfying ¥ - v% = 0 on the boundary of the obstacles. First, observe that

2 Y1
;(wd)’<;)\111(y') +Ua(y) =0 ac. on OF%,
Hence
2
H\IJQHL?((?FE%Q) < C?”\I’1HL2(8FE‘%2)'
A trace theorem (see [I1]) gives

||‘I’1”L2(6F552) < Ol Wil g1 (puyymve)

and 5
~ 9 ~
|’\I/2”2L2((—n,n)><{0}) < C(H\IIQH%2(8F£162) + ?Hayz\p?H%Z(Fg%))'
Then, (A.15]) follows. O
Remark A.1. Let Y% = (—1,1) x (1/2,1), the estimate

~ 0
1WallL2((—rmx{1}) < C4/ ;QH\I/”Hl(FE(;ZﬂY“) (A.17)
s proved similarly.

Proof of Lemma[A] Step 1. We prove .
Lemma applied with the functions v. 1, v 2 gives
el 10y < C,
[ve2llr2cy.s) + ellveallar o) < Ce.
Then, thanks to the Lemmas we obtain the convergences with 0 € L2(O; H'(Z)).

Step 2. Let {v:}e be in Vq(Qe5)(Qes). Since we also have
1

N
Thanks to Lemma and Remark we obtain
Uy =0 a.e. on (—k,k) x {0,1}.
As a consequence U € L?(O; W(Z)).

Step 3. Let {ve}e C Vad,divo(Qes)-
By virtue of the linearity of T* and div v, = 0, we have 7 (divzv.) =0 a.e. in O x Z.
On the other side, due to (A.14)4, we obtain

To(U2e) = Uy weakly in LQ(O LlOC(Z)).

1
VETZ (divue) = %divy’];*(vg) — div, 0 weakly in L*(O x Z).
Hence, div,0 =0 a.e. in O x Z and then U € L?(O; W gi0(Z)). O
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B About the Necas inequality

Below, we recall some definitions and a classical result.

Proposition B.1 (The Necas inequality). Let w be a bounded domain with Lipschitz boundary. There
exists a constant C'(w) depending on w, such that

Vo € L*(w) ¢ — Mu(®)|lL2w) < CW)IVOI F-1(u)- (B.1)

1. The norm of HV¢||H—1(w)

/(ﬁdiv(\lf) dx
IVollg-1(w) = sup W (B.2)
VeH} (w)?, U#£0 V|2 (0)
Let U € H} (w)2 be the solution to the following variational problem:
/ VU : VVdx = / odiv(V)de, VYV e Hiw). (B.3)
Then, we have
IVéllz-1(w) = IVU|| L2(w)- (B.4)
2. We define Necas constant as 14l
C(w) = o (B:5)
per,@nfo} IVOllr-1()
where Li(w) = {d) € L*(w) | / pdr = 0}.
Proposition B.2. The Necas constant has the following property:
1. Y =(0,1)? and Ya = (0,a1) x (0,a2), a = (a1, a2), a1, az >0
. ap az ayp as
2 e < < kit
min { o }C(Y) < O(Ya) < max { e }C(Y). (B.6)

2. Let w be a bounded domain in R? with Lipschitz boundary. We have C(sw) = C(w) for all € > 0.
3. Let a€ R? and R € SO(2). We have C(a+ Rw) = C(w).

4. Let w and Q2 in R? with Lipschitz boundary such that w C Q. We have

Q
6~ Mo(6)l20) < 2&9)%\\%\11{1(9), ¥6 € L7(9). (B.7)

5. Let w1 and wy be two bounded domains in R? with Lipschitz boundary, such that w; Nws # 0. We
have

Clewr Uwa) < 29U VI () 4 0y (B.8)

\/\wl ﬂL«JQ’
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Proof. Property 1. First, we introduce the change of variables

1 2
v=2 m=" () eYa (zm)eY
al a2

and functions
(1, 72) = alara1, a2w2), e € Hy(Ya), € Hy(Y).

Then, for every ¥ € H}(Y)? we define ¥, € H}(Ya)? by
1 1
U(x1,x2) = a*l‘l’a,l(alﬂfl,aﬁz)el + ;Zwa,Q(alxl,a2$2)62-

Now, let V be in Hg(Y)?. We have

aj
V.,V = (f%vl az1v2> = aaylva’l ay Va2
8;,;2‘/1 a:cQVQ ;jayg Va,l 8242 Va»2

divyV = 05, Vi + 05, Vo = 0y, Va1 + Oy, Va2 = divy Va.

Thus

2 2
a a
0102|[VaV[E2i) = 100 Varll ) + 5100 Vailliewa) + 31100 Varl Tz + 100 Vasllize,)
2

1

and

alag/y(bdivz(V)dx:/Y ¢a divy(Va) dy.

Now, let U be the solution to the variational problem (B.3)) with w and ¢.
Taking into account the above equalities, we have

IVeollr—1vy = [IVaUll 2y

and
. [a} a3 @2 a
mm{aé,a%}uszaH%qYG) SalagHVmUH%Q( <max{ 2 g}”v U. HL2
Thus
1 .
/¢d1Vz was )y ¢a divy(Ua) dy
IVadll -1y < a
V.U . a1 a2 1
IVaUllzey) mm{@,al} S IVl
ayp ag
< .
- mmax{m }”Vﬂa”H 1(va)
H
ence ) .
||Vx¢HH_1(Y)§ m X{;Qva}|lvy¢a||H—l(Ya).

Then, due to the above inequality and the fact that ||¢a||z2(v,) = Vall¢llL2(y), We obtain

lelogs g1 21 V6l
19, alli) Vel

az ai
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This easily leads to C(Ya) < max {ﬂ, %}C (Y). This gives the right-hand side of (B.6). Then, we swap
as aq

Y and Y, to obtain the left-hand side of .

Property 2. Set w. = ew. Consider the change of variables and functions
y1=ex1, yp=cry and V(y,yo) = V(zy,z0) forae. (z1,20) €w, V€ Hi(w)? Ve H(w.)?
We have ! 1
V,V = gvxv, div,V = R div, V.
Let U be the solution to the variational problem (B.3]). We have
~ - 1 ~ ~ ~
VU :V,Vdy = / V.U :V,Vdr = / o divy (V) dx = 8/ ¢ divy, (V) dy, YV e H&(w€)2.

So, the function U is the solution to

~ ~ 1 ~ ~ ~

/ v,U:V,Vdy= 5/ ddiv,(V)dy, ¥V € Hi(w.)’.

Hence 1
IVadllm-1w) = IVaUllzzw) = IVyUllr2 (o) = ZIVyll-1(w.)- (B.9)

Now, (B.5) leads to

Clwo) = sup 1ol 2 sup 191 22w — Cw),

geL?, (we)\{0} IVl -1(w0) per @\ oy IVadlla-11)

due to and the fact that |[¢[|12(,) = aHgHLz(ws).

Property 3. Since the transformation y = a + R from w into @ = a + Rw, a € R? and R € SO(2), does
not change either the shape or size of the domain w, then we obtain the same Necas constant for both
domains.

Property 4. Any function y in L?(w) is extended by 0 in €\ @. The extension of y is denoted Y.
Let ¢ be in L?(2) and

e U € H}(w)? the solution to the variational problem (B.3) with w and ¢ replaced by its restriction
to w,

e U € H}(€Q)? the solution to the variational problem (B.3]) with w replaced by € and the function
o.

We have

/VU:Vdez/qsdiv(V) dr, YV eH}w)® and  [Vélg-1i) = IVU 120,
/QVU:Vde:/qudiv(V)dx, VVeHNQ)  and  [[Vellgi = VU] 20
We extend U by 0 outside of w. The extension of U is U. So
/QVﬁ:Vﬁdx:/VU:Vde:/qbdiv(U)d:c:/qudiv(ﬁ)dm:/QVU:Vﬁd:c.

AS a consequence "
VUl 20y = VU2 + V(U = U)ll2(q)-
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Hence

IVoll -1y < IVl r-1(0)- (B.10)
Now, we have
16 = Mu(@)llz2w) < CWIIVR - CW)IVellg-
and ¢ — Ma(®)|12@) < C(2 )HWﬁHHﬂ(n-

The second above inequality yields

VIwl [Mu(9) — Ma(9)] < C(Q)|Ve g

Therefore

16~ Mul@)l1200) < 16~ Mul@ll 2 < 16~ Ma(@) 12 + [Mo(6) ~ Ma(@)12(a
Q
<o@(1+ Y2 16410

Vil
This proves (B.7]).
Property 5. Thanks to (B.10)), for any ¢ € L?(w; Uws), we have

¢ = M, (D)l £2(01) < CW)IVOE-1(0) < Cw) VOl -1 (01 0w5)5
16 = Mun (D)l 12(w5) < C@2)IVOl 1r-1(p) < Clw2) IVl 101 02)
||¢ - MW1UUJ2 (¢)|’L2(w1UUJ2) S C(W]_ U w2)Hv¢||H_l(w1UoJ2)‘

So, we get
Vwr Nwal [Muynw, (@) = M, (9)] < Clw) VOl a1y < CwDlIVOll r-1(wuws)»
Vwr 0wl Mo nw, (0) = Mun (9)] < C(w2)[[Voll m-1(w,) < Clw2) VOl 1wy 0m)-
Hence

w
16 = Marrn (@ 2200y < Ce1) (14 A4 19611y
|W1 ﬂ(.L)Q|

w
16— Maosrioa(@ 20y < C2) (14 2L 196011 0
|w1 ﬂw2|

As a consequence, we obtain

H¢ - MW1ﬁw2(¢)||L2(w1UWQ) < H‘b - MW1ﬁw2( )HLQ(M + ”¢ - w1ﬂw2 ((ZS)HLZ(UJQ)

lwi] + v/ |we|
2)) S ——

< (C((.Ul) +C HV¢HH71(W1U(U2)7

w1 N wsl
and then

) lw1| + v/ |we|

w1 N w2

Vw1 Uwa| M uw, (9) — Muynw, ()] < ( (w1) + C(w HVQZ)HH—l(wlLsz)‘

The above inequalities lead to

lwi| + v/ |we]
2)) S ———

w1 Nwsl

Thus, estimate (B.8]) is proved. O

||¢ - MUJIUW2 (¢)||L2(W1UUJ2) S 2(0(0')1) + C ||V¢HH_1(LU1U0J2)'
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C Two lemmas

Denote
Y=(-1,1) x (0,3/4)
and 5
Vo = {(@rr) € (-1,1) xR ¥(er) <2 < 5 +vlen)}.
Note, that ), is an open set with a Lipschitz boundary.

Lemma C.1. Let ¥ be an element of C*([—1,1]) satisfying

, 1 1
¢(i1> =0, H¢ ||L°°(—1,1) < éma (C-l)
where
The Necas constant C(Yy) satisfies the following inequality:
8
C(Yy) < ;C(y). (C.2)

Proof. The map ¥ defined by

Ty=(y,y) €Vr— o= (21,22) =%(y) = (y1,92 + V(1)) € Yy

is a C!-diffeomorphism from ) onto V.

Now, let p be in Li()@) \ {0} and ¥ € H{ (V)% Observe that the Jacobian of the change of variables
is equal to 1. Hence, the function p o ¥ belongs to L?(Y) \ {0}. We have

R BN T AV ow | 0w,
/ywp div . (¥)dx = /y¢ p(m)(axl + 8x2)(x)dx = /ypo‘f(y)<8xl + 8m2> o T(y)dy

and
ov oVi0% oWy 0%
L) = () + ————— ()¢ (),
O O Dyo for a.e. y €y
8\1/2(96)7811120%) - :
8952 - 8y2 v
Hence OV, 0% OUy0%F
divxllldx—/ 0% 10~ 9720 d
‘/ywp (V) P (y)< i s )(y) y‘ ©3)
<2 @) IVy® o il 219 Lo (—1,1)-
We have

IV, @ 0 %23y < Va2, (1 + 19| Lo (<1,1))

P2y = o T2y and
. v 1920223y < 190 0 T2y (1 -+ 6/l (1)
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As a consequence, if / poTdivy (Vo T)dy > 0, then we have
Y

/ poTdivy (Vo T)dy
Yy
IVy W oS L2(y)
/ p div . (¥)dz
Yy
Va2,

/ poTdivy (Vo T)dy
<?Y
Ve ¥ oLy

(1= 119" llzoe(=1,1)) = NPl L2y 19 1 zoe (=1,2) (1 + (19| oo (~1,1))

(1 + H@bIHLw(fl,l)) + HPHLQ()&/,)HwIHLOO(fl,l)(1 + ||7/’/HL°°(71,1))-

So,
IVy (o D)1y (1 = ¥ lzoo-11)) = P2 ) 19 oo (—1,0) (L + 9 | 2o (-11))

<IVeplla-1(3,)
<INV o Dm0 (1 + 191 Loo(=1,1)) + 1Pl L2 19 | Loo (—1,1) (1 + 19| oo (=1,1)) -

Finally, we obtain

1 1
(1= 1] oo 1,1))0(3,) 19" || Lo (= 1,1y (1 + 119" | oo (=1,1) <CO0)
]‘ / /
(e 1) (0 19 o).

Therefore 1

‘C(yq/;) B C(ly)’ < |WHLOO(M)<C(13}) + %),

which implies

c)
9
L= e (1 5C0)

and then the estimate given in the lemma.

C(y) <

Lemma C.2. Let 11, 12 be two elements of C*([—1,1]) satisfying (i € {1,2})

1 1

Gi(x1) =0,  P(t) >0, Vte[-11],  [|[¥llrern < SA+CO))

Denote

y¢17¢2 = {(xl,xg) c (—1, 1) x R ’ ’Lﬁ1<$1) <z <1-— ¢2(x1)}

Yy s 15 an open set with a Lipschitz boundary. The Necas constant C(Yy, ,) satisfies
C(ywmliz) < 16C(y)'

Proof. The inequality on C(Vy, 4,) is an immediate consequence of Lemmas and O
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y =1(t)
Y%l
Y@lrwy%2
Y%z
y = Pa(t) 13

Figure 5: Illustration for Lemma

References

1]

2]

=

Allaire G.: One-Phase Newtonian Flow. In Hornung U. (ed) Homogenization and Porous Media,
45-68. Springer, New-York (1997) https://doi.org/10.1007/978-1-4612-1920-0_3

Amirata Y., Bodarta O., Chechkin G., Piatnitskiy A.: Asymptotic of a spectral-sieve problem. J.
Math. Anal. Appl., 435, 1652-1671 (2016) http://dx.doi.org/10.1016/j.jmaa.2015.11.014

Amrouche C., Ciarlet P.G., Mardane C.: Remarks on a lemma by Jacques-Louis Lions. C. R. Acad.
Sci. Paris, Ser I, 352, 691-695 (2014)

Amrouche C., Ciarlet P.G., Mardane C.: On a lemma of Jacques-Louis Lions and its relation to other
fundamental results. J. Math. Pures. Appl., 104, 207-226 (2015) http://dx.doi.org/10.1016/j.
matpur.2014.11.007

Babugka I.: Error bounds for finite element method. Num. Math., 16, 322-333 (1971)

Bourgeat A., Gipouloux O., Marusic-Paloka E.: Mathematical Modeling and numerical simulation
of non-Newtonian flow through a thin filter. SIAM J. of Appl. Mathematics, 62(2), 597-626 (2001)
http://dx.doi.org/10.1137/S0036139999354741

Bourgeat A., Gipouloux O., Marusic-Paloka E.: Mathematical Modeling of an array of underground
waste containers. Comptes Rendus des Seances de I’ Academie des Sciences Paris, Mecanique, 330,
371-376 (2002) https://doi.org/10.1016/S1631-0721(02)01472-9

Bourgeat A., Gipouloux O., Marusic-Paloka E.: Modeling of an underground waste disposal site by
upscaling. Math. Meth. Appl. Sci., 27, 381-403 (2004) https://doi.org/10.1002/mma.459

Brezzi F.: On the existence, uniqueness and approximation of saddle-point problems arising from
lagrangian multipliers. Esaim Math. Model Numer. Anal., 8, 129-151 (1974) https://doi.org/10.
1051/m2an/197408R201291

[10] Cioranescu D., Damlamian A, Griso G.: The Stokes problem in perforated domains by the periodic

unfolding method. New trends in continuum mechanics, 3, 3, 67-80 (2005)

[11] Cioranescu D., Damlamian A., Griso G.: The Periodic Unfolding Method: Theory and Applications

to Partial Differential Problems. Springer (2018)

[12] Cioranescu D., Damlamian A., Griso G., Onofrei D.: The periodic unfolding method for perforated

domains and Neumann sieve models. J. Math. Pures Appl., 89, 248-277 (2008) https://doi.org/
10.1016/j .matpur.2007.12.008

36


https://doi.org/10.1007/978-1-4612-1920-0_3
http://dx.doi.org/10.1016/j.jmaa.2015.11.014
http://dx.doi.org/10.1016/j.matpur.2014.11.007
http://dx.doi.org/10.1016/j.matpur.2014.11.007
http://dx.doi.org/10.1137/S0036139999354741
https://doi.org/10.1016/S1631-0721(02)01472-9
https://doi.org/10.1002/mma.459
https://doi.org/10.1051/m2an/197408R201291
https://doi.org/10.1051/m2an/197408R201291
https://doi.org/10.1016/j.matpur.2007.12.008
https://doi.org/10.1016/j.matpur.2007.12.008

[13] Cioranescu D., Murat F.: A Strange Term Coming from Nowhere. In: Cherkaev, A., Kohn, R. (eds)
Topics in the Mathematical Modelling of Composite Materials. Progress in Nonlinear Differential
Equations and Their Applications, vol 31. Birkh&user, Boston, 45-93 (1987) https://doi.org/10.
1007/978-1-4612-2032-9_4

[14] Cioranescu D., Saint Jean Paulin J.: Homogenization in open sets with holes. J. of Math. Anal. and
Appl., 71, 590-607 (1979) https://doi.org/10.1016/0022-247X(79)90211-7

[15] Conca C.: Etude d’un fluide traversant une paroi perforee, I, II. J. Math. Pures et Appl., 66, 1-69
(1987)

[16] Conca C.: The Stokes sieve problem. Communications in applied numerical methods, 4(1), 113-121
(1988) https://doi.org/10.1002/cnm. 1630040115

[17] Del Vecchio T.: The thick Neumann’s sieve. Annali di Matematica Pura et Applicata, 4 (147),
363-402 (1987) https://doi.org/10.1007/BF01762424

[18] De Laval C.G.P.: Steam turbine. Archived 2018-01-11 at the Wayback Machine U.S. Patent 522,
066 (filed: 1889 May 1; issued: 1894 June 26)

[19] Gahn M., Jager W., Neuss-Radu M.: Derivation of Stokes-plate-equations modeling fluid flow in-
teraction with thin porous elastic layers. Applicable Analysis, 101 (12), 4319-4348 (2022) https:
//doi.org/10.1080/00036811.2022.2080673

[20] Gahn M., Neuss-Radu M., Knabner P.: Effective interface conditions for processes through thin
heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface. Networks
and Heterogeneous Media, 13 (4), 609-640 (2018) https://doi.org/10.3934/nhm.2018028

[21] Griso G.: Decomposition of displacements of thin structures. J. Math. Pures Appl., 89, 199-233
(2008) https://doi.org/10.1016/3 .matpur.2007.12.007

[22] Griso G., Hauck M., Orlik J.: Asymptotic analysis for periodic perforated shells. ESAIM: Mathemati-
cal Modelling and Numerical Analysis, 55 (1), 1-36 (2021) https://doi.org/10.1051/m2an/2020067

[23] Griso G., Orlik J., Wackerle S.: Asymptotic behavior for textiles. STAM J. on Math. Anal., 52 (2),
1639-1689 (2020) https://doi.org/10.1137/19M1288693

[24] Griso G., Migunova A., Orlik J.: Homogenization via unfolding in periodic layer with contact. J.
Asym. Anal, 99, 23-52 (2016) https://doi.org/10.3233/ASY-161374

[25] Griso G., Migunova A., Orlik J.: Asymptotic Analysis for Domains Separated by a Thin Layer
Made of Periodic Vertical Beams. J. Elast., 128(2), 291-331 (2017) https://doi.org/10.1007/
s10659-017-9628-3

[26] Krier M., Orlik J.: Solvability of a fluid-structure interaction problem with semigroup theory. AIMS
Mathematics, 8 (12), 29490-29516 (2023) https://doi.org/10.3934/math.20231510

[27] Krier M., Orlik J., Panasenko G., Steiner K.: Asymptotically proved numerical coupling of a 2D
flexural porous plate with the 3D Stokes fluid. arXiv preprint arXiv:2401.00331 (2023)

[28] Oleinik O., Shaposhnikova T.: On homogenization problems for the Laplace operator in partially
perforated domains with Neumann’s condition on the boundary of cavities. Rendiconti Lincei. Matem-
atica e Applicazioni, Serie 9, 6(3), 133-142, (1995)

[29] Orlik J., Falconi R., Griso G., Wackerle S.: Asymptotic behavior for textiles with loose contact.
Math. Methods in Appl. Sci., 46(16), 17082-17127 (2023) https://doi.org/10.1002/mma. 9490

37


https://doi.org/10.1007/978-1-4612-2032-9_4
https://doi.org/10.1007/978-1-4612-2032-9_4
https://doi.org/10.1016/0022-247X(79)90211-7
https://doi.org/10.1002/cnm.1630040115
https://doi.org/10.1007/BF01762424
https://doi.org/10.1080/00036811.2022.2080673
https://doi.org/10.1080/00036811.2022.2080673
https://doi.org/10.3934/nhm.2018028
https://doi.org/10.1016/j.matpur.2007.12.007
https://doi.org/10.1051/m2an/2020067
https://doi.org/10.1137/19M1288693
https://doi.org/10.3233/ASY-161374
https://doi.org/10.1007/s10659-017-9628-3
https://doi.org/10.1007/s10659-017-9628-3
https://doi.org/10.3934/math.20231510
https://doi.org/10.1002/mma.9490

[30] Orlik J., Panasenko G., Shiryaev V.: Optimization of textile-like materials via homogenization and
beam approximations. Multiscale Modeling & Simulation, 14 (2), 637-667 (2016) https://doi.org/
10.1137/15M1017193

[31] Orlik J., Panasenko G., Stavre R.: Asymptotic analysis of a viscous fluid layer separated by a
thin stiff stratified elastic plate. Applicable Analysis, , 100(3), 589-629. https://doi.org/10.1080/
00036811.2019.1612051

[32] Lions J. L.: Quelques méthodes de résolution des problémes aux limites non linéaires [Some methods
for solving nonlinear boundary value problems|. Paris: Dunod et Gauthier-Villars (1969)

[33] Lions J. L.: Some Methods in Mathematical Analysis of Systems and their Control. Science Press
Bejing: Gordon and Breach, New York (1981)

[34] Marchenko V.A., Khruslov E.Ya.: Boundary Value Problems in Domains with Fine-Grained Bound-
ary. Naukova Dumka, Kiev (1974) (in Russian)

[35] Necas J.: 1967: Les Methodes Directes en Theorie des Equations Elliptiques. Masson, Paris (1967)

[36] Neuss-Radu M.: A result on the decay of the boundary layers in the homogenization theory. Asym.
Anal., 23 (3-4), 313-328 (2000)

[37] Sanchez-Palencia E.: Boundary value problems in domains containing perforated walls. Seminaire
College de France, Research Notes in Mathematics, 70 Pitman: London, 309-325 (1981)

[38] Scaife G.: From Galaxies to Turbines: Science, Technology, and the Parsons Family. Taylor Francis
Group, 197 (2000)

[39] Schlichting H.: Grenzschicht-theorie. Technische Hochschule Braunschweig, Verlag und Druck G.
Braun, Karlsruhe (1951)

[40] Temam R.: Navier—Stokes equations: theory and numerical analysis. Amsterdam: North Holland
(1977)

38


https://doi.org/10.1137/15M1017193
https://doi.org/10.1137/15M1017193
https://doi.org/10.1080/00036811.2019.1612051
https://doi.org/10.1080/00036811.2019.1612051

	Introduction
	The domain
	The microscopic problem
	Preliminary results
	Some inequalities to obtain the estimates of the elements of  Vad()
	Estimates of the elements of Vad()

	A priori estimates
	Estimates of 
	Estimates of p

	Asymptotic behavior
	Auxiliary tools
	Case 1: 120
	Case 2: 1=, (0,1/2] and 12 (0,+)

	The unfolding operators T and T*
	About the Nečas inequality
	Two lemmas

