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Abstract

This paper investigates Stokes flow through a filter composed of a rigid, thin, periodic, and closely
packed array of parallel long rods with a non-circular, anisotropic cross-section, having the shape of
a slot. The analysis is restricted to regions far from the top and bottom boundaries, where the flow
becomes effectively two-dimensional due to the invariance of the structure in the third dimension.
In 2D formulation, we will refer to the cross-section of the rods as obstacles. The obstacles are
much thinner than the distance between them, so the filter has wide channels. The form of the
obstacles is parametrized to enable detailed analysis. We explore the critical scaling of the filter
permeability and various regimes based on the relationships between the obstacle distance, length and
thickness. In addition, the paper presents three new tools: (1) estimates for small periodic obstacles
with unilateral constraints; (2) a rescaled version of the Nečas inequality for thin domains, analogous to
Korn’s inequalities; and (3) a demonstration of the invariance of estimates under local diffeomorphisms
(changes in obstacle shape), including the derivation of a sharp constant.

Keywords: Periodic unfolding method, Stokes flow, Neumann sieve, homogenization, Nečas inequality
Mathematics Subject Classification (2010): 35Q30, 35B27, 35J50, 47H05, 74K20, 76D07.

1 Introduction

This paper investigates Stokes flow through a filter composed of a rigid, thin, periodic, and closely
packed array of parallel long rods with a non-circular, anisotropic cross-section, having the shape of a
slot. The original three-dimensional region of the process is described as:

Ωεδ
.
= Ωεδ × (−L3, L3)

where L3 is a large positive real number defining the extent along the third coordinate x3. The analysis
focuses on regions sufficiently far from the top and bottom boundaries of the structure (x3 = ±L3),
where boundary effects become negligible and the flow behaves effectively as two-dimensional. Moreover,
due to the structural invariance with respect to translations along the third direction, the original three-
dimensional (3D) problem can be simplified to a two-dimensional (2D) formulation in domain Ωεδ. This
reduction significantly simplifies the analysis while retaining the essential physical characteristics of the
problem. In further discussion, we will refer to the cross-sections of the rods, which act as flow barriers,
as obstacles. This terminology helps to emphasize their role in modifying the fluid flow through the
filter. Obstacles, parametrized by smoothed diamonds, are considered thin in the direction orthogonal to
the flow, with their thickness much smaller than the distance between them, forming a plate structure

0This study was carried out with financial support from DFG, within the framework of the project OR 190/6-3.
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with anisotropic double porosity and large channels. We study the critical scale for the permeability of
the plate and different regimes with regard to the relation between distance, length and thickness of the
obstacles.

The motivation to study the filter efficiency arose from the analysis of limiting behavior in fluid-solid
interaction problems for Stokes flow through a porous thin plate. When pore size and plate thickness are
of the same order, the limiting 2D interface becomes impermeable, blocking the flow in the asymptotic
limit. As shown in [19, 27, 31], the velocity trace vanishes on the 2D interface separating the two fluid
domains in such cases. This observation prompted the exploration of filters with larger pores, specifically
a double-porosity structure, to ensure the permeability of the filter and derive a form of the interface
Darcy law.

Our motivation for the obstacle shape stems from fundamental principles discussed in boundary layer
theory (see [39]). In aero- and hydrodynamics, hole shapes such as Laval nozzles [18] and Venturi tubes
[38] are known to accelerate or decelerate the flow by smoothly decreasing or increasing the cross-sectional
area of the hole. These nozzles and tubes are widely used in industry. We expect the same effect when
selecting the appropriate shape of the obstacle for microstructures1.

There are numerous studies on Stokes flows or similar problems through Neumann-type sieves or
porous plates [1, 2, 6, 7, 8, 12, 15, 16, 17, 24, 25, 26, 30, 34, 37], as well as in volume domains [1, 10,
11, 12, 14, 34]. These works differentiate between two configurations: one with volumetric periodicity
of obstacles in all n directions (with n as the space dimension) and another involving an n − 1 periodic
boundary layer with obstacles separating two bulk domains. In the n-periodic case, imposing Dirichlet
conditions on small obstacles introduces an additional zero-order term in the second-order PDE governing
the domain without obstacles. For the n− 1 periodic configuration (a sieve), this results in a Robin-type
jump condition on the interface between the two bulk domains as the layer collapses to an n−1-dimensional

hyperplane. The coefficient in front of the ”strange term” differs by a factor of
1√
ε

(see e.g. [12]).

There are new tools, useful for some classes of problems, developed in this paper:
The first new tool, presented in Section 4, extends the methods from [13, 28, 34] for estimating bound-

ary layers under zero Dirichlet conditions on small periodic holes or obstacles to the case of unilateral
non-penetration constraints, where only the normal component of the velocity and the tangential trac-
tion vanish. It also demonstrates that the channels satisfy Korn-type inequalities and can be classified
as Korn-type domains.

One of the key auxiliary tools developed in this paper is the rescaling of the Nečas constant (see
Appendix B), used for pressure estimates with respect to domain topology. For the Nečas inequality, also
known as Lions’ lemma, we refer to [3, 4, 5, 9, 32, 33, 35, 40].

Finally, the last useful result, presented in Appendix C, is the invariance of the estimates under
local diffeomorphisms (obstacle shape changes) and the derivation of a sharp constant that can be used,
e.g., in multi-scale shape optimization problems. Similar results, demonstrating that the diffeomorphism
applied to the microstructure remains in the corrector and does not influence the estimates or limits,
were also shown in [23, 29, 31], while it was demonstrated in [22] that the diffeomorphism applied to the
macro-domain only affects the macro-problem in the limit.

The paper is organized as follows. Section 2 presents the geometric setting of the problem. Three
small geometric parameters are introduced to parametrically describe the obstacles in the 2D setting: ε
represents the distance between the filter wires, while δ1 and δ2 describe the cross-sectional shapes of the
wires.

In Section 3, the strong and weak formulations for the 2D Stokes flow through two bulk domains
separated by a rigid filter or porous plate are provided. At the left boundary of the channel, the initial inlet
pressure is specified, while at the right boundary, a free outlet condition is applied. The no-penetration
condition is imposed on the walls of the channel and the obstacles.

1 It is also interesting to note that the pillars of bridges built a few centuries ago have an elongated, pointed shape to
facilitate the flow of the river they span (you can see this when you visit Paris, for example).
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Section 4 provides important tools for obtaining estimates and was described above.
Section 5 is dedicated to obtaining a priori estimates for the velocity and pressure. The estimates

for pressure are derived using the tools developed in Section 4. To estimate the pressure, we apply the
Nečas inequality, the properties of which were discussed in detail in Sections B, C, providing a rigorous
foundation for the analysis in the context of the Stokes flow problem.

Section 6 is dedicated to the study of the asymptotic behavior of the solution and the derivation of

limit models. In this section, based on the previously derived estimates and the critical ratio
√
ε
δ1

δ2
, we

classify the limit models into three distinct regimes:
√
ε
δ1

δ2
→ 0,

√
ε
δ1

δ2
→ θ,

√
ε
δ1

δ2
→ ∞. The first two

regimes are analyzed in the present section. The third regime falls outside the scope of this work, as the
estimates suggest that fluid flow in this regime is not governed by the shape of the inclusions. This regime
may be investigated within the framework of an evolutionary problem, which would provide insights over
extended time scales.

The unfolding operator, discussed in Appendix A, addresses the boundary layer and the unfolding of
boundaries or interfaces, as demonstrated, for example, in [12, 20, 24, 25, 36].

2 The domain

We consider a viscous fluid occupying a two-dimensional domain. This domain is separated in two
parts by a thin porous periodic filter. It depends on three small parameters δ1, δ2 and ε, the first two
are related to the size of the obstacles and the last to the size of the periodicity cell (see Fig. 2). Our
goal is to study the asymptotic behavior and to obtain a limiting model when ε, δ1, δ2 → 0.

We denote
Ω
.
=
(
− L1, L1

)
×
(
− L2, L2

)
, O .

= {0} × (−L2, L2),

Ω−
.
=
(
− L1, 0

)
×
(
− L2, L2

)
, Ω+ .

=
(
0, L1

)
×
(
− L2, L2

)
Ω−r

.
=
(
− L1,−r

)
×
(
− L2, L2

)
, Ω+

r
.
=
(
r, L1

)
×
(
− L2, L2

)
,

O±r
.
= {±r} × (−L2, L2), r ∈ [0, L1],

Y
.
= (−2, 2)× (0, 1), Yr

.
= rY, r ∈ (0, ε].

In this paper, we consider obstacles defined by two strictly positive parameters δ1, δ2 satisfying

δ1 ≤
ε

2
, δ2 ≤

δ1

5
.

We denote Fδ the reference obstacle. Fδ is the open set whose boundary is given by the two curves
parameterized by

M(t) =

{
te1 − bu(t)e2,

te1 + bd(t)e2,
t ∈ [−δ1, δ1],

where bu(t) = δ2ψ
u
( t
δ1

)
, bd(t) = δ2ψ

d
( t
δ1

)
, t ∈ [−δ1, δ1], where ψu and ψd belong to the following set:

C .
=
{
ψ ∈W 2,∞(R) | ψ = 0 in R \ (−1, 1), ψ(t) ≥ 0, and |ψ′(t)| ≤ 2, ∀t ∈ [−1, 1], ‖ψ‖L∞(R) = 1,

there exist an interval I ⊂ [−1, 1] and cψ ∈ [−2, 2] such that ψ′(t) = cψ, ∀t ∈ I
}
.

Note that

‖bu‖L∞(R) = δ2, ‖(bu)′‖L∞(R) ≤ 2
δ2

δ1
, ‖(bu)

′′‖L∞(R) ≤ C
δ2

δ2
1

,

‖bd‖L∞(R) = δ2, ‖(bd)′‖L∞(R) ≤ 2
δ2

δ1
, ‖(bd)′′‖L∞(R) ≤ C

δ2

δ2
1

.

(2.1)
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The constant C depends on ψu and ψd.

Furthermore, we assume that the sum of the constants associated with the ψu and ψd functions (cψu and
cψd) is non-zero.

Let us denote by (see Fig. 1)

F 1
δ = Fδ ∩ Yε and F 2

δ = (εe2 + Fδ) ∩ Yε

the two portions of obstacles included in Yε.
Observe that νu is the unit normal vector to F 1

δ and νd is the unit normal vector to F 2
δ :

νu(t) =
(bu)′(t)e1 + e2√

1 + [(bu)′(t)]2
, νd(t) =

−(bd)′(t)e1 + e2√
1 + [(bd)′(t)]2

, t ∈ (−δ1, δ1). (2.2)

Then, we define
Yεδ = Yε \ F 1

δ ∪ F 2
δ

and the domain Yεδ

Yεδ
.
=

⋃
p∈{−Nε,...,Nε−1}

Y p
εδ, Y p

εδ
.
= pεe2 + Yεδ

where Nε =
[L2

ε

]
∈ N2and pε

.
=
{
−Nε, . . . , Nε

}
. The fluid-domain is

Ωεδ
.
= Ω \

⋃
p∈pε

(
pεe2 + Fδ

)
.

We denote parts of boundary ∂Ωεδ (see Fig. 2)

Γεδ
.
= ∂Yεδ ∩ ∂Ωεδ = ∂Ωεδ \ ∂Ω,

Γ1 = (−L1, L1)× {±L2},
Γin2 = {−L1} ×

(
− L2, L2

)
,

Γout2 = {L1} ×
(
− L2, L2

)
.

We introduce the space of admissible velocities as

Vad(Ωεδ)
.
=
{
φ ∈ H1(Ωεδ)

2 | φ · ν = 0 a.e. on Γεδ ∪ Γ1

}
,

the normal components of velocities of the fluid vanish on Γεδ ∪ Γ1, which corresponds to the non-
penetration condition, and its subspace of solenoidal fields as

Vad,div0
.
=
{
φ ∈ Vad(Ωεδ) | ∇ · φ = 0 a.e. in Ωεδ

}
.

2For simplicity we assume that ε is such that L2 = Nεε.
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x2

x1δ1

δ2

ε

ε

YεδF 2
δ

F 1
δ

Figure 1: The open set Yεδ

x1

x2

Ωεδ

L1

Γout2Γin2

−L1

L2 Γ1

ε

2δ1

2ε

Ω−ε Ω+
ε

Yεδ O

Figure 2: The fluid-domain Ωεδ with the set Yεδ

3 The microscopic problem

The function υεδ : Ωεδ → R2 will denote the fluid velocity, while pεδ : Ωεδ → R the fluid pressure. In
the fluid-domain Ωεδ we consider the following problem:

−2µ∇ ·D(υεδ) +∇pεδ = 0 in Ωεδ,

∇ · υεδ = 0 in Ωεδ,

υεδ · ν = 0 on Γεδ ∪ Γ1,

D(υεδ)ν · τ = 0 on Γεδ ∪ Γ1,(
− 2µD(υεδ) + pεδI

)
ν = Pν on Γin2 ,(

− 2µD(υεδ) + pεδI
)
ν = 0 on Γout2 ,

(3.1)
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where µ is a coefficient of viscosity of the fluid, P ∈ L2(Γin2 ) specifies the boundary pressure; ν is a unit
normal vector and τ is a unit tangential vector; D(v) is the symmetric gradient of v.

Hence, the variational formulation to problem (3.1) is
Find

(
υεδ, pεδ

)
∈ Vad,div0 × L2(Ωεδ) such that

2µ

∫
Ωεδ

D(υεδ) : D(φ) dx−
∫

Ωεδ

pεδ∇ · φdx =

∫
Γin2

Pφ1dx2, ∀φ ∈ Vad(Ωεδ),
(3.2)

Our aim is to study the asymptotic behavior of
(
υεδ, pεδ

)
as (ε, δ1, δ2)→ (0, 0, 0).

4 Preliminary results

4.1 Some inequalities to obtain the estimates of the elements of Vad(Ωεδ)

Let us denote Td,r the trapezoid whose two edges are (see Fig.3)

{0} × (−d, d) and {r} × (−r, r), d ∈ (0, r/2).

We remind that for every Ψ ∈ H1(Yr), we have‖Ψ‖2L2({±r}×(0,r)) ≤ 2
(1

r
‖Ψ‖2L2(Yr)

+ r‖∂x1Ψ‖2L2(Yr)

)
,

‖Ψ‖2L2(Yr)
≤ 4r

(
‖Ψ‖2L2({±r}×(0,r)) + r‖∂x1Ψ‖2L2(Yr)

)
.

(4.1)

Below, we recall a classical result (see [13], [28]).

x2

r
d Td,r

x1

Figure 3: Illustration for Lemma 4.1

Lemma 4.1. Let φ be in H1(Td,r), such that φ = 0 a.e. on {0} × (−d, d). Then, we have

‖φ‖L2(Td,r) ≤ Cr
√

ln
(r
d

)
‖∇φ‖L2(Td,r). (4.2)

The constant does not depend on r and d.

4.2 Estimates of the elements of Vad(Ωεδ)

Lemma 4.2. For any φ ∈ Vad(Ωεδ) there exists a1 which depends on φ1 such that

‖φ− a1e1‖H1(Ω−δ1
) ≤ C‖D(φ)‖L2(Ωεδ),

‖φ− a1e1‖H1(Ω+
δ1

) ≤ C‖D(φ)‖L2(Ωεδ).
(4.3)

The constants are independent of ε, δ1 and δ2.
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Proof. Step 1. We prove that there exists a−1 , a
+
1 ∈ R, such that

‖φ− a−1 e1‖H1(Ω−δ1
) ≤ C‖D(φ)‖L2(Ω−δ1

),

‖φ− a+
1 e1‖H1(Ω+

δ1
) ≤ C‖D(φ)‖L2(Ω+

δ1
).

(4.4)

The constants are independent of δ1.

We only show (4.4)1, the proof of (4.4)2 is similar. In Ω−δ1 the 2D-Korn inequality gives a rigid displace-

ment rδ1(x) = (a−1 − b−x2)e1 + (a−2 + b−x1)e2, such that (see [21, Theorem 2.3])

‖φ− rδ1‖H1(Ω−δ1
) ≤ C‖D(φ)‖L2(Ω−δ1

). (4.5)

The constant does not depend on δ1.

From the estimate (4.5) we derive the following trace inequality:

‖φ− rδ1‖L2(Γ1∩Ω−δ1
) ≤ C‖φ− rδ1‖H1(Ω−δ1

) ≤ C‖D(φ)‖L2(Ω−δ1
).

Remind, that φ2 = 0 a.e. on Γ1 ∩ Ω−δ1 . Thus, we have

‖rδ1,2‖L2(Γ1∩Ω−δ1
) ≤ C‖D(φ)‖L2(Ω−δ1

)

and then
|a−2 |+ |b

−| ≤ C‖rδ1,2‖L2(Γ1∩Ω−δ1
) ≤ C‖D(φ)‖L2(Ω−δ1

).

Hence (4.4)1 is proved.

Step 2. We prove the estimates (4.3).

First, we estimate |a−1 − a
+
1 |. From (4.1), we derive

Nε−1∑
p=−Nε

‖φ1 − a−1 ‖
2
L2(Ωpεδ2

) ≤ C
( Nε−1∑
p=−Nε

‖φ1 − a−1 ‖
2
L2(Ωpεδ2

∩Ω−δ1
)

+

Nε−1∑
p=−Nε

∥∥∥∂φ1

∂x1

∥∥∥2

L2(Ωpεδ2
)

)
≤ C‖D(φ)‖2L2(Ωεδ)

,

Nε−1∑
p=−Nε

‖φ1 − a+
1 ‖

2
L2(Ωpεδ2

) ≤ C
( Nε−1∑
p=−Nε

‖φ1 − a+
1 ‖

2
L2(Ωpεδ2

∩Ω+
δ1

)
+

Nε−1∑
p=−Nε

∥∥∥∂φ1

∂x1

∥∥∥2

L2(Ωpεδ2
)

)
≤ C‖D(φ)‖2L2(Ωεδ)

,

where Ωp
εδ2

= (−L1, L1)× (pε+ δ2, (p+ 1)ε− δ2). The constants do not depend on ε, δ1 and δ2.

Hence

2L1(ε− 2δ2)Nε|a−1 − a
+
1 |

2 =

Nε−1∑
p=−Nε

‖a−1 − a
+
1 ‖

2
L2(Ωpεδ2

) ≤ 2

Nε−1∑
p=−Nε

(
‖φ1− a−1 ‖

2
L2(Ωpεδ2

) + ‖φ1− a+
1 ‖

2
L2(Ωpεδ2

)

)
≤ C‖D(φ)‖2

L2(Ω+
ε )
.

Therefore |a−1 − a
+
1 | ≤ C‖D(φ)‖L2(Ω+

ε ). This and (4.4) gives (4.3), setting a1 = a−1 .

Lemma 4.3. Assume δ2 > 0. For any φ ∈ Vad(Ωεδ) we have

‖∇φ‖L2(Ωεδ) + ‖φ1 − a1‖L2(Ωεδ) + ‖φ2‖L2(Ωεδ) ≤ C‖D(φ)‖L2(Ωεδ),

‖φ1 − a1‖L2(O±ε ) + ‖φ2‖L2(O±ε ) ≤ C‖D(φ)‖L2(Ωεδ)

(4.6)

7



F 1
δ

F 2
δ

C1

C2

Yε

x2

x1

D1
εD2

ε

Figure 4: Illustration for Lemmas 4.3

and

‖φ1‖L2(Yεδ) ≤ Cε
δ1

δ2

√
ln
( ε
δ1

)
‖D(φ)‖L2(Ωεδ), ‖φ2‖L2(Yεδ) ≤ Cε

√
ln
( ε
δ1

)
‖D(φ)‖L2(Ωεδ),

‖φ1‖L2(O±ε ) ≤ C
√
ε
δ1

δ2

√
ln
( ε
δ1

)
‖D(φ)‖L2(Ωεδ), ‖φ2‖L2(O±ε ) ≤ C

√
ε

√
ln
( ε
δ1

)
‖D(φ)‖L2(Ωεδ).

(4.7)

Moreover, we have

‖φ1‖L2(Ωεδ) ≤ C
(

1 +
√
ε
δ1

δ2

√
ln
( ε
δ1

))
‖D(φ)‖L2(Ωεδ). (4.8)

The constants do not depend on ε, δ1 and δ2.

Proof. Step 1. Preliminary constructions and definition.

We start with a few constructions (see Fig.4)

• D1
ε is the disc of radius

1

16
ε centered in (0, ε/2),

• D2
ε is the disc of radius

1

3
ε centered in (−ε, ε/2).

Step 2. We show that Yεδ is star-shaped with respect to the disc D1
ε .

Let P (t) = (t,bu(t)) (t ∈ [−δ1, δ1]) be an arbitrary point belonging to the boundary ∂F 1
δ and M = (x1, x2)

be a point in the disc D1
ε . The interval (P (t),M ] is included in Yεδ, otherwise the segment [P (t),M ]

would contain another point P (t′) 6= P (t) of the boundary ∂F 1
δ . Thus

x2 − bu(t)

x1 − t
=

bu(t)− bu(t′)

t− t′
.

We have

2
δ2

δ1
≥
∣∣∣bu(t)− bu(t′)

t− t′
∣∣∣ =

∣∣∣x2 − bu(t)

x1 − t

∣∣∣ ≥ 7ε/16− δ2

ε/16 + δ1
≥ 7ε/16− ε/10

ε/16 + ε/2
=

3

5
.

This contradicts the fact that
δ2

δ1
≤ 1

5
and proves that the interval (P (t),M ] is included in Yεδ for all

t ∈ [−δ1, δ1].
Similarly, we prove that the interval (P (t),M ], where P (t) ∈ ∂F 2

δ and M ∈ D1
ε , is included in Yεδ. Hence,

the domain Yεδ is star-shaped with respect to the disc D1
ε .

8



Step 3. In this step we prove

‖∇φ‖L2(Yεδ) + ‖φ1 − a1‖L2(Yεδ) + ‖φ2‖L2(Yεδ) ≤ C‖D(φ)‖L2(Ωεδ). (4.9)

Since the domain Y p
εδ is star-shaped with respect to the disc pε+D1

ε and has a diameter less than 3ε, by
the 2D Korn’s inequality (see [21, Theorem 2.3]), there exists a rigid displacement

rp(x) =

(
ap,1 + bp(x2 − pε)

ap,2 − bpx1

)
, x ∈ Y p

εδ, (4.10)

such that

‖φ− rp‖L2(Y pεδ)
≤ Cε‖D(φ)‖L2(Y pεδ)

, ‖∇(φ− rp)‖L2(Y pεδ)
≤ C‖D(φ)‖L2(Y pεδ)

, (4.11)

where the constants do not depend on ε, δ1 and δ2.

Now, we consider D2,p
ε

.
= pε+D2

ε ∈
(
Ω−δ1 ∪ Y

p
εδ

)
. We have

ε|bp| ≤ C‖∇rp‖L2(D2,p
ε )
≤ C

(
‖∇φ‖

L2(D2,p
ε )

+ ‖∇(φ− rp)‖L2(Y pεδ)

)
,

ε(|ap,2|+ ε|bp|) ≤ C‖rp,2‖L2(D2,p
ε )
≤ C

(
‖φ2‖L2(D2,p

ε )
+ ‖φ2 − rp,2‖L2(Y pεδ)

)
,

ε(|ap,1 − a1|+ ε|bp|) ≤ C‖rp,1 − a1‖L2(D2,p
ε )
≤ C

(
‖φ1 − a1‖L2(D2,p

ε )
+ ‖φ1 − rp,1‖L2(Y pεδ)

)
.

Since the discs D2,p
ε (p ∈ Ξε) are included in Ω−δ1 , the above estimates, those (4.11) and (4.3)1 lead to∑
p∈Ξε

ε2|bp|2 ≤ C‖D(φ)‖2L2(Ωεδ)

∑
p∈Ξε

ε2|ap,2|2 ≤ C‖D(φ)‖2L2(Ωεδ)
,

∑
p∈Ξε

ε2|ap,1 − a1|2 ≤ C‖D(φ)‖2L2(Ωεδ)
.

(4.12)

As a consequence of (4.12) and again (4.11), we have

‖∇φ‖2L2(Yεδ)
=
∑
p∈Ξε

‖∇φ‖2L2(Y pεδ)
≤ C

∑
p∈Ξε

(
ε2|bp|2 + ‖∇(φ− rp)‖2L2(Y pεδ)

)
≤ C‖D(φ)‖2L2(Ωεδ)

,

‖φ2‖2L2(Yεδ)
=
∑
p∈Ξε

‖φ2‖2L2(Y pεδ)

≤ C
∑
p∈Ξε

(
ε2|ap,2|2 + ε4|bp|2 + ‖φ2 − rp,2‖2L2(Y pεδ)

)
≤ C‖D(φ)‖2L2(Ωεδ)

.

(4.13)

and

‖φ1 − a1‖2L2(Yεδ)
=
∑
p∈Ξε

‖φ1 − a1‖2L2(Y pεδ)
≤ C

( ∑
p∈Ξε

ε2|ap,1 − a1|2 +
∑
p∈Ξε

‖φ1 − ap,1‖2L2(Y pεδ)

)
≤ C

∑
p∈Ξε

(
ε2|ap,1 − a1|2 + ε4|bp|2 + ‖φ1 − rp,1‖2L2(Y pεδ)

)
≤ C‖D(φ)‖2L2(Ωεδ)

.
(4.14)

The constants do not depend on ε and δ1, δ2. This ends the proof of (4.9).

Then, (4.1)1, (4.3) together with (4.9) yield the estimates (4.6).

Step 4. In this step we show that for every φ ∈ H1(Yεδ)
2

satisfying φ · νu = 0 and φ · νd = 0 a.e. on the
boundary of the obstacles, we have

‖φ1‖L2(Yεδ) ≤ Cε
δ1

δ2

√
ln
( ε
δ1

)
‖∇φ‖L2(Yεδ), ‖φ2‖L2(Yεδ) ≤ Cε

√
ln
( ε
δ1

)
‖∇φ‖L2(Yεδ). (4.15)
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By definition of the set C there exist two intervals I1 and I2 included in [−1, 1], such that

νu(t) = ν1 =
c1δ2e1 + δ1e2√

δ2
1 + c2

1δ
2
2

, t ∈ δ1I1,

νd(t) = ν2 =
−c2δ2e1 + δ1e2√

δ2
1 + c2

2δ
2
2

, t ∈ δ1I2.

(4.16)

We remind that c1 + c2 6= 0.

If t ∈ δ1I1 (resp. δ1I2) the part of the boundary of F 1
δ (resp. F 2

δ ) is flat and as a length of order δ1.
Now, consider the cone C1 (resp. C2) whose edges pass through the ends of the flat segment of F 1

δ (resp.
F 2
δ ) and which contains the disc D1

ε .

Since φ · ν1 (resp. φ · ν2) vanishes on the flat part of the boundary of F 1
δ (resp. F 2

δ ), we extend φ · ν1

(resp. φ · ν2) by 0 in the part of the cone C1 (resp. C2) containing a small part of F 1
δ (resp. F 2

δ ).
Now, we apply the result of Lemma 4.1. Using simple geometric considerations, we can show that d is of
order δ1 and r of order ε. That gives

‖φ · ν1‖L2(D1
ε) + ‖φ · ν2‖L2(D1

ε) ≤ Cε
√

ln
( ε
δ1

)
‖∇φ‖L2(Yεδ).

As a consequence form above inequality and (4.16), we obtain

‖φ1‖L2(D1
ε) ≤ Cε

δ1

δ2

√
ln
( ε
δ1

)
‖∇φ‖L2(Yεδ), ‖φ2‖L2(D1

ε) ≤ Cε
√

ln
( ε
δ1

)
‖∇φ‖L2(Yεδ).

The constants do not depend on ε, δ1 and δ2.

Since Yεδ is star-shaped with respect to the disc D1
ε , [21, Lemma 2.1] gives

‖φi‖L2(Yεδ) ≤ C
(
‖φi‖L2(D1

ε) + ε‖∇φi‖L2(Yεδ)

)
.

Then, the above inequalities yield (4.15).

Step 5. Due to the estimates (4.15), for Yεδ =
⋃
p∈Ξε

Y p
εδ we have

‖φ1‖L2(Yεδ) ≤ Cε
δ1

δ2

√
ln
( ε
δ1

)
‖D(φ)‖L2(Ωεδ), ‖φ2‖L2(Yεδ) ≤ Cε

√
ln
( ε
δ1

)
‖D(φ)‖L2(Ωεδ). (4.17)

Then, from (4.1)1 and the above inequalities, we derive an estimate of the traces on O±ε

‖φ1‖L2(O±ε ) ≤ C
√
ε
δ1

δ2

√
ln
( ε
δ1

)
‖D(φ)‖L2(Ωεδ), ‖φ2‖L2(O±ε ) ≤ C

√
ε

√
ln
( ε
δ1

)
‖D(φ)‖L2(Ωεδ). (4.18)

So, the estimates (4.7) are proved.

Finally, (4.7)3 and (4.6)1 lead to (4.8).

5 A priori estimates

For every open set A, we denote

MA(φ) =
1

|A|

∫
A
φdx, ∀φ ∈ L1(A).
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5.1 Estimates of υεδ

Set

c(ε, δ1, δ2)
.
= 1 +

√
ε
δ1

δ2

√
ln
( ε
δ1

)
.

Lemma 5.1. The following estimate holds:

‖D(υεδ)‖L2(Ωεδ) ≤ Cc(ε, δ1, δ2)‖P‖L2(Γin2 ). (5.1)

Moreover, we have
‖∇υεδ‖L2(Ωεδ) ≤ Cc(ε, δ1, δ2)‖P‖L2(Γin2 ),

‖υ1,εδ‖L2(Ωεδ) ≤ Cc(ε, δ1, δ2)2‖P‖L2(Γin2 ),

‖υ1,εδ‖L2(O±ε ) ≤ C
√
ε
δ1

δ2

√
ln
( ε
δ1

)
c(ε, δ1, δ2)‖P‖L2(Γin2 ),

‖υ2,εδ‖L2(Ωεδ) ≤ Cc(ε, δ1, δ2)‖P‖L2(Γin2 ),

‖υ2,εδ‖L2(O±ε ) ≤ C
√
ε

√
ln
( ε
δ1

)
c(ε, δ1, δ2)‖P‖L2(Γin2 ).

(5.2)

The constants C do not depend on ε, δ1 and δ2.

Proof. We choose φ = υεδ as test function in (3.2), this gives

2µ

∫
Ωεδ

D(υεδ) : D(υεδ) dx =

∫
Γin2

Pυεδ,1 dx2

Then, by virtue of Cauchy-Schwarz inequality, we obtain

‖D(υεδ)‖2L2(Ωεδ)
≤ C‖P‖L2(Γin2 )‖υεδ,1‖L2(Γin2 ). (5.3)

Constant C depends on L1, L2, µ and does not depend on ε, δ1, δ2.
We recall that for any ψ ∈ H1(Ω−δ1) we have

‖ψ‖L2(Γin2 ) ≤ C
(
‖ψ‖L2(Ω−δ1

) + ‖ψ‖H1(Ω−δ1
)

)
.

The constant does not depend on δ1. Then, due to (4.6)1 and (4.8) we obtain

‖υεδ,1‖L2(Γin2 ) ≤ Cc(ε, δ1, δ2)‖D(υεδ)‖L2(Ωεδ). (5.4)

From above inequality (5.4) and (5.3) we get (5.1). Then, the estimates of Lemma 4.3 lead us to the
estimates (5.2).

5.2 Estimates of pεδ

Lemma 5.2. We have the following estimate of the pressure in Ωεδ:

‖pεδ‖L2(Ωεδ) ≤ Cc(ε, δ1, δ2)‖P‖L2(Γin2 ). (5.5)

The constant is independent of ε, δ1 and δ2.

Proof. Step 1. We prove

‖pεδ‖L2(Ω−ε ) + ‖pεδ‖L2(Ω+
ε ) ≤ Cc(ε, δ1, δ2)‖P‖L2(Γin2 ). (5.6)
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First, the Nečas inequality (see the recalls in Section B) and (5.1) give

‖pεδ −MΩ±ε
(pεδ)‖L2(Ω±ε ) ≤ CΩ±ε

‖∇pεδ‖H−1(Ω±ε ) ≤ C‖D(υεδ)‖L2(Ω±ε ) ≤ Cc(ε, δ1, δ2)‖P‖L2(Γin2 ).

The constants CΩ±ε
do not depend on ε, δ1, δ2 since from Proposition B.2, we have

CΩ±ε
≤ max

{L1 − ε/2
2L2

,
2L2

L1 − ε/2

}
C(Y ) ≤ max

{ L1

2L2
,

2L2

L1/2

}
C(Y ).

Now, in (3.2) we choose a test function φ0 ∈ H1(Ω)
2

vanishing in (−ε, ε)× (−L2, L2) and such that∫
Ω±ε

∇ · φ0 dx = −
∫

Γin2

φ0 · e1dx2 +

∫
Γout2

φ0 · e1dx2 = 1.

Choosing φ0 as test function in (3.2) leads to∫
Ω±ε

pεδ∇ · φ0 dx = 2µ

∫
Ω±ε

D(υεδ) : D(φ0) dx−
∫

Γin2

Pφ0 · e1dx2.

Thus∣∣∣ ∫
Ω±ε

pεδ∇ · φ0 dx
∣∣∣ ≤ 2µ

∫
Ω±ε

∣∣D(υεδ) : D(φ0)
∣∣ dx+

∫
Γin2

|P||φ0 · e1|dx2

≤ C
(
‖D(υεδ)‖L2(Ω±ε ) + ‖P‖L2(Γin2 )

)
‖D(φ0)‖L2(Ω±ε ) ≤ Cc(ε, δ1, δ2)‖P‖L2(Γin2 ).

Observe that since φ0 = 0 a.e. on O−ε and φ0 ∈ H1(Ω)
2

we have ‖φ0 · e1‖L2(Γin2 ) ≤ C‖D(φ0)‖L2(Ω−ε ) and

‖D(φ0)‖L2(Ω±ε ) ≤ C, the constant does not depend on ε. So, we get

MΩ±ε
(pεδ) =

∫
Ω±ε

MΩ±ε
(pεδ)∇ · φ0 dx =

∫
Ω±ε

(
MΩ±ε

(pεδ)− pεδ
)
∇ · φ0 dx+

∫
Ω±ε

pεδ∇ · φ0 dx

≤ ‖MΩ±ε
(pεδ)− pεδ‖L2(Ω±ε )‖D(φ0)‖L2(Ω±ε ) +

∣∣∣ ∫
Ω±ε

pεδ∇ · φ0 dx
∣∣∣ ≤ Cc(ε, δ1, δ2)‖P‖L2(Γin2 ).

Similarly, we show that
−MΩ±ε

(pεδ) ≤ Cc(ε, δ1, δ2)‖P‖L2(Γin2 ).

Hence
∣∣MΩ±ε

(pεδ)
∣∣ ≤ Cc(ε, δ1, δ2)‖P‖L2(Γin2 ). This completes the proof of (5.6).

Step 2. We prove ∥∥pεδ∥∥L2(Yεδ)
≤ Cc(ε, δ1, δ2)‖P‖L2(Γin2 ). (5.7)

Proposition B.2 (Property 2) and Lemma C.2 yield∑
p∈Ξε

∥∥pεδ −MY pεδ
(pεδ)

∥∥2

L2(Y pεδ)
≤ C

∥∥D(υεδ)
∥∥2

L2(Ωεδ)
. (5.8)

The constant does not depend on ε, δ1 and δ2.
From (5.6) and (5.8) we obtain∑
p∈Ξε

∥∥MY pεδ
(pεδ)

∥∥2

L2(Y pεδ∩Ω−ε )
≤ 2

∑
p∈Ξε

∥∥pεδ−MY pεδ
(pεδ)

∥∥2

L2(Y pεδ)
+2

∑
p∈Ξε

∥∥pεδ∥∥2

L2(Y pεδ∩Ω−ε )
≤ C

∥∥D(υεδ)
∥∥2

L2(Ωεδ)
.

Hence ∥∥pεδ∥∥L2(Yεδ)
≤ C

∥∥D(υεδ)
∥∥
L2(Ωεδ)

.

This leads to (5.7) from which and (5.6) the estimate (5.5) follows.
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6 Asymptotic behavior

Based on the a priori estimates in Lemma 4.3, we can distinguish three different classes.

•
√
ε
δ1

δ2
→ 0.

•
√
ε
δ1

δ2
→ θ ∈ (0,+∞).

•
√
ε
δ1

δ2
→∞ and δ2 = 0.

This work will be devoted to examining the first two classes of obstacles, for which we will consider two
distinct cases.

Case 1:
√
ε
δ1

δ2
→ 0.

Case 2: δ1 = κε, κ ∈ (0, 1/2] and
√
ε
δ1

δ2
→ θ ∈ (0,+∞).

Remark 6.1. In Case 3, all estimates blow up.

In each case, fluid movement within the Ωεδ domain is influenced by the shape of the inclusions. In cases
1 and 2, fluid motion is strongly or partially slowed by the inclusions (inclusions control fluid motion). In
the third case, fluid movement within the Ωεδ domain is no longer controlled by the inclusions. The third
case should be studied again in the context of an evolutionary problem, which would provide information
over long time scales.

Lemmas 5.1-5.2 give us the following estimates for the cases1 and 2:

Lemma 6.1. Let parameters ε, δ1, δ2 satisfy cases 1 or 2, we have

‖D(υεδ)‖L2(Ωεδ) ≤ C‖P‖L2(Γin2 ) ‖υεδ‖H1(Ωεδ) ≤ C‖P‖L2(Γin2 ),

‖υ1,εδ‖L2(O±ε ) ≤ C
√
ε
δ1

δ2

√
ln
( ε
δ1

)
‖P‖L2(Γin2 ), ‖υ2,εδ‖L2(O±ε ) ≤ C

√
ε

√
ln
( ε
δ1

)
‖P‖L2(Γin2 )

(6.1)

and
‖pεδ‖L2(Ωεδ) ≤ C‖P‖L2(Γin2 ). (6.2)

The constants do not depend on ε, δ1 and δ2.

From now on, since the pressure pεδ is uniformly bounded in L2(Ωεδ) we extend it by 0 in Ω \ Ωεδ.
The extension is still denoted pεδ. So, we have

‖pεδ‖L2(Ω) ≤ C‖P‖L2(Γin2 ). (6.3)

The constant does not depend on ε, δ1 and δ2.

6.1 Auxiliary tools

Before looking at the different cases, let us consider some auxiliary tools: an extension operator, which
will facilitate the convergences in the domains Ω±ε , and the function Θε, used to construct test functions.

Let φ be in H1(Ω−ε ) (resp. ψ ∈ H+(Ωε)), we define the operators E−ε and E+
ε by

E−ε (φ)(x) =

{
φ(x) for a.e. x ∈ Ω−ε ,

φ(−2ε− x1, x2) for a.e. x ∈ Ω− \ Ω−ε ,

E+
ε (φ)(x) =

{
φ(x) for a.e. x ∈ Ω+

ε ,

φ(2ε− x1, x2) for a.e. x ∈ Ω+ \ Ω+
ε ,

13



Lemma 6.2. The extension operators E±ε from H1(Ω±ε ) into H1(Ω±) satisfy

∀φ ∈ H1(Ω−ε ), ‖E−ε (φ)‖H1(Ω−) ≤ C‖φ‖H1(Ω−ε ), ‖E−ε (φ)‖L2(O) ≤ C(‖φ‖L2(O−ε ) + ε‖∇φ‖L2(Ω−ε )),

∀φ ∈ H1(Ω+
ε ), ‖E+

ε (φ)‖H1(Ω+) ≤ C‖φ‖H1(Ω+
ε ), ‖E+

ε (φ)‖L2(O) ≤ C(‖φ‖L2(O+
ε ) + ε‖∇φ‖L2(Ω+

ε )).

Moreover, for every φ ∈ H1(Ωεδ) we have

‖E+
ε (φ)− E−ε (φ)‖L2(O) ≤ C

√
ε‖∇φ‖L2(Ωεδ). (6.4)

The constants do not depend on ε, δ1 and δ2.

Proof. The estimates of E±ε (φ), for φ ∈ H1(Ω±ε ), are the immediate consequences of the definitions of
these operators.

Now, let φ be in H1(Ωεδ), to obtain (6.4), we have to estimate∫ L2

−L2

∣∣φ(2ε, x2)− φ(−2ε, x2)
∣∣2dx2.

Since the small domains Y p
εδ, p ∈ Ξε, are star-shaped with respect to a ball of radius ε/16 and have a

diameter less than 3ε, the Poincaré-Wirtinger inequality gives

‖φ−Mε(φ)‖L2(Y pεδ)
≤ Cε‖∇φ‖L2(Y pεδ)

.

The constant does not depend on ε and δ2. Then, we get the following estimates of the traces

‖φ−Mε(φ)‖2
L2(O+

2ε)
≤ C

(1

ε
‖φ−Mε(φ)‖2L2(Y pεδ)

+ ε
∥∥∥ ∂φ
∂x1

∥∥∥2

L2((ε,2ε)×(−L2,L2))

)
,

‖φ−Mε(φ)‖2
L2(O−2ε)

≤ C
(1

ε
‖φ−Mε(φ)‖2L2(Y pεδ)

+ ε
∥∥∥ ∂φ
∂x1

∥∥∥2

L2((−2ε,−ε)×(−L2,L2))

)
.

As a consequence of the above estimates and a trace result (see e.g. (4.1)1) we obtain∫ L2

−L2

∣∣φ(2ε, x2)− φ(−2ε, x2)
∣∣2dx2 ≤ Cε‖∇φ‖2L2(Ωεδ)

.

The constant does not depend on ε. This leads to (6.4).

Now, we define the ε-periodic function ψεδ ∈W 1,∞(0, 1) by

ψεδ(t) =


1 if t ∈

[
0,
δ1

ε

]
,

ε

δ1

(
2
δ1

ε
− t
)

if t ∈
[δ1

ε
, 2
δ1

ε

]
,

0 if t ∈
[
2
δ1

ε
, 1
]

and Θε ∈W 1,∞(Ωεδ) by

Θε(x) =
δ2

δ1

[dψd
dy1

(x1

δ1

)
ψεδ

({x2

ε

})
− dψu

dy1

(x1

δ1

)
ψεδ

(
1−

{x2

ε

})]
for a.e. (x1, x2) ∈ Ωεδ,

where for a.e. t ∈ R, {t} is the fractional part of t, it belongs to [0, 1).

Observe that the support of Θε is included in
⋃
ξ∈Ξε

(−δ1, δ1)× (−2δ1 + ξε, 2δ1 + ξε).
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Lemma 6.3. We have

‖Θε‖L2(Ωεδ) ≤ C
δ2

ε1/2
, ‖∇Θε‖L2(Ωεδ) ≤ C

δ2

δ1ε1/2
.

The constants do not depend on ε, δ1 and δ2.

Proof. We have

‖Θε‖L∞(Ωεδ) = 2
δ2

δ1
,

∥∥∇Θε

∥∥
L∞(Ωεδ)

≤ C δ2

δ2
1

. (6.5)

Since the measure of the support of Θε is bounded by C
δ2

1

ε
. where the constants do not depend on ε, δ1

and δ2. These lead to the estimates of the lemma.

6.2 Case 1:
√
ε
δ1

δ2

→ 0

We introduce the following spaces:

V(1)(Ω−)
.
=
{
φ ∈ H1(Ω−)2 | φ2 = 0 a.e. on Γ1 ∩ Ω−, φ = 0 a.e. on O

}
,

V
(1)
div0(Ω−)

.
=
{
φ ∈ V(1)(Ω−) | ∇ · φ = 0 a.e. on Ω−

}
,

V(1)(Ω+)
.
=
{
φ ∈ H1(Ω+)2 | φ2 = 0 a.e. on Γ1 ∩ Ω+, φ = 0 a.e. on O

}
,

V
(1)
div0(Ω+)

.
=
{
φ ∈ V(1)(Ω+) | ∇ · φ = 0 a.e. on Ω+

}
.

Lemma 6.4. Let (υεδ, pεδ) be the solution of the problem (3.2) and
√
ε
δ1

δ2
→ 0.

Then there exist υ− ∈ V
(1)
div0(Ω−), p− ∈ L2(Ω−) such that

υεδ1Ω−ε
⇀ υ− weakly in L2(Ω−)2,

∇υεδ1Ω−ε
⇀ ∇υ− weakly in L2(Ω−)2×2,

pεδ1Ω− ⇀ p− weakly in L2(Ω−)2.

(6.6)

The pairs (υ−, p−) ∈ V
(1)
div0(Ω−)× L2(Ω−) is the solution to

2µ

∫
Ω−

D(υ−) : D(φ) dx−
∫

Ω−
p−∇ · φdx =

∫
Γin2

Pφ1 dx2, ∀φ ∈ V(1)(Ω−). (6.7)

In Ω+
ε we have

υεδ1Ω+
ε
⇀ 0 weakly in L2(Ω+)2,

∇υεδ1Ω+
ε
⇀ 0 weakly in L2(Ω+)2×2,

pεδ1Ω+ ⇀ 0 weakly in L2(Ω+)2.

(6.8)

Moreover, we have
D(υεδ)1Ω−∩Ωεδ → D(υ−) strongly in L2(Ω−)2×2,

D(υεδ)1Ω+∩Ωεδ → 0 strongly in L2(Ω+)2×2,

and υεδ1Ω−ε
→ υ− strongly in L2(Ω−)2,

uεδ1Ω+
ε
→ 0 strongly in L2(Ω+)2.

(6.9)
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Proof. Step 1. From the estimates in (6.1)1,2, we obtain, up to a subsequence of {ε, δ1, δ2}, that there
exist υ± ∈ H1(Ω±)2, p± ∈ L2(Ω±) such that

υεδ1Ω±ε
⇀ υ± weakly in L2(Ω±)2,

∇ · υεδ1Ω±ε
⇀ 0 weakly in L2(Ω±),

∇υεδ1Ω±ε
⇀ ∇υ± weakly in L2(Ω±)2×2,

pεδ1Ω± ⇀ p± weakly in L2(Ω±)2.

(6.10)

The estimates (6.1)3,4 yield
υ± = 0 a.e. on O ∪

(
Γ1 ∩ ∂Ω±

)
.

As a first consequence, υ− belongs to V
(1)
div0(Ω−) and υ+ ∈ V

(1)
div0(Ω+).

Step 2. We prove (6.6), (6.7).

Let φ be in V(1)(Ω−) vanishing in a neighborhood of O. We choose φ as test function in (3.2).
For ε sufficiently small, one has

2µ

∫
Ω−ε

D(υεδ) : D(φ) dx−
∫

Ω−ε

pεδ∇ · φdx =

∫
Γin2

Pφ1 dx2.

Passing to the limit and taking into account the above convergences yield (6.7). Then, a density argument
gives (6.7) for any φ ∈ V(1)(Ω−). The uniqueness of the solution to problem (6.7) implies that the whole
sequences go to their limits.

Step 3. We prove (6.8).

Now, in (3.2) we choose a test function φ ∈ H1(Ω)
2

vanishing in (−ε, ε)× (−L2, L2). Choosing φ as test
function in (3.2) leads to

2µ

∫
Ω−ε

D(υεδ) : D(φ) dx+ 2µ

∫
Ω+
ε

D(υεδ) : D(φ) dx−
∫

Ω−ε

pεδ∇ · φdx−
∫

Ω+
ε

pεδ∇ · φdx =

∫
Γin2

Pφ1 dx2.

Passing to the limit and taking into account convergence (6.10), we get

2µ

∫
Ω−

D(υ−) : D(φ) dx+ 2µ

∫
Ω+

D(υ+) : D(φ) dx−
∫

Ω−
p−∇ · φdx−

∫
Ω+

p+∇ · φdx =

∫
Γin2

Pφ1 dx2.

So, the pair (υ+, p+) ∈ V
(1)
div0(Ω+)× L2(Ω+) is the solution to

2µ

∫
Ω+

D(υ+) : D(φ) dx−
∫

Ω+

p+∇ · φdx = 0.

A density argument gives the above equality for any φ ∈ V(1)(Ω+). As a consequence, we obtain
(u+, p+) = (0, 0) and then the convergences (6.8) for the whole sequences.

Step 4. We prove (6.9).

First, observe that from the estimate (6.1)2 and convergences (6.10) we have

D(υεδ)1Ω−∩Ωεδ ⇀ D(υ−) weakly in L2(Ω−)2×2,

D(υεδ)1Ω+∩Ωεδ ⇀ 0 weakly in L2(Ω+)2×2.
(6.11)

Now, in (3.2) we choose as a test function vεδ

2µ

∫
Ωεδ

D(υεδ) : D(υεδ) dx =

∫
Γin2

Pυεδ,1 dx2.
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Hence

2µ

∫
Ω

(
D(υεδ)1Ωεδ

)
:
(
D(υεδ)1Ωεδ

)
dx =

∫
Γin2

Pυεδ,1 dx2.

Then, by the convergences (6.11), (6.10) and the weak lower semicontinuity of the LHS we obtain

2µ

∫
Ω−

D(υ−) : D(υ−) dx+ 2µ

∫
Ω+

D(υ+) : D(υ+) dx ≤ lim inf
(

2µ

∫
Ω

(
D(υεδ)1Ωεδ

)
:
(
D(υεδ)1Ωεδ

)
dx
)

≤ lim sup
(

2µ

∫
Ω

(
D(υεδ)1Ωεδ

)
:
(
D(υεδ)1Ωεδ

)
dx
)

= lim sup
(∫

Γin2

Pυεδ,1 dx2

)
= lim

(∫
Γin2

Pυεδ,1 dx2

)
=

∫
Γin2

Pυ−1 dx2 = 2µ

∫
Ω−

D(υ−) : D(υ−) dx.

So, the above inequalities are equalities and therefore the convergences in (6.9) are proved.

6.3 Case 2: δ1 = κε, κ ∈ (0, 1/2] and
√
ε
δ1

δ2

→ θ ∈ (0,+∞)

Denote
Z = R× (0, 1), Za = (−a, a)× (0, 1), a > 0, Y = Z1.

We introduce the following spaces:

V(Ω)
.
=
{
φ ∈ H1(Ω)2 | φ2 = 0 a.e. on Γ1 ∪ O

}
,

Vdiv0(Ω)
.
=
{
φ ∈ V(Ω) | ∇ · φ = 0 a.e. in Ω

}
,

H1(Z)
.
=
{

Φ ∈ H1
loc(Z) | ∇yΦ ∈ L2(Z)2, Φ(0, ·) ∈ L2(0, 1)

}
,

H1(Z)
.
=
{

Φ ∈ H1(Z) | Φ(y1, 1) = Φ(y1, 0) for a.e. y1 ∈ R \ [−κ, κ]
}
,

H1
0(Z)

.
=
{

Φ ∈H1(Z) | Φ(y1, 1) = Φ(y1, 0) = 0 for a.e. y1 ∈ (−κ, κ)
}
,

W(Z)
.
=
{

(Φ1,Φ2) ∈H1(Z)×H1
0(Z) | MY (Φ1) = 0

}
,

Wdiv0(Z)
.
=
{

(Φ1,Φ2) ∈W(Z) | ∇y · Φ = 0 a.e. in Z
}
.

We endow H1(Z) with the norm

‖φ‖H1(Z) =
√
‖∇φ‖2

L2(Z)
+ ‖φ(0, ·)‖L2(0,1).

Lemma 6.5. Let (υεδ, pεδ) be the solution to the problem (3.2).

Then, there exists (υ, p) ∈ Vdiv0(Ω)× L2(Ω) such that

D(υεδ)1Ωεδ → D(υ) strongly in L2(Ω)2×2,

υεδ1Ωεδ → υ strongly in L2(Ω)2,

pεδ1Ω±ε
→ p strongly in L2(Ω).

(6.12)

The pair (υ, p) ∈ Vdiv0(Ω)× L2(Ω) is the unique solution to

2µ

∫
Ω
D(υ) : D(φ) dx−

∫
Ω
p∇ · φdx =

∫
Γin2

Pφ1 dx2, ∀φ ∈ V(Ω). (6.13)
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Proof. Step 1. We show the convergences

E±ε (υεδ) ⇀ υ|Ω± weakly in H1(Ω±)2,

pεδ ⇀ p weakly in L2(Ω).
(6.14)

Using the operators E±ε (see Lemma 6.2) we extend the restrictions υεδ|Ω±ε to obtain functions belonging

to H1(Ω±)2. Estimates of Lemmas 6.1 and 6.2 lead to

‖E±ε (υεδ)‖H1(Ω±) ≤ C‖P‖L2(Γin2 ), ‖E+
ε (υεδ,1)− E−ε (υεδ,1)‖L2(O) ≤ C

√
ε‖P‖L2(Γin2 ),

‖E±ε (υεδ,2)‖L2(O) ≤ C
√
ε‖P‖L2(Γin2 ).

(6.15)

The constants do not depend on ε, δ1 and δ2.
Hence, there exist a subsequence of {ε}, still denoted {ε}, and (υ, p) ∈ Vdiv0(Ω)× L2(Ω), such that the
convergences (6.14) hold.

Step 2. Let φ be in V(Ω) such that φ = 0 in Ω+ and in a neighborhood of O. We choose φ as test
function in (3.2). Passing to the limit gives

2µ

∫
Ω−

D(υ) : D(φ) dx−
∫

Ω−
p∇ · φdx =

∫
Γin2

Pφ1 dx2. (6.16)

Then, we choose φ ∈ V(Ω) such that φ = 0 in Ω− and in a neighborhood of O. Passing to the limit gives

2µ

∫
Ω+

D(υ) : D(φ) dx−
∫

Ω+

p∇ · φdx = 0 (6.17)

A density argument gives (6.13) for all test functions in V(Ω) such that φ = 0 a.e. on O.

Step 3. In this step we show that there exists û ∈ L2(O; Wdiv0(Z)) and p̂ ∈ L2(O × Z) such that

2µ

∫
Ω
D(υ) : D(φ) dx−

∫
Ω
p∇ · φdx+

2µ

θ

∫
O×Z

Dy(υ̂) : Dy

(
Θe2

)
φ1 dx2 dy

−1

θ

∫
O×Z

p̂ ∂y2Θφ1 dx2 dy =

∫
Γin2

Pφ1 dx2, ∀φ ∈ V(Ω),
(6.18)

Let φ1 be in C1(Ω). We set

φε(x1, x2) = φ1(x1, x2)
(
e1 + Θε(x1, x2)e2

)
, (x1, x2) ∈ Ω. (6.19)

The function φε ∈ V(Ω).

From the definition of φε and estimates (6.5), we have

‖φε,2‖H1(Ω) ≤ C
(
‖∇φ1‖L∞(Ω)

δ2√
ε

+ ‖φ1‖L∞(Ω)
δ2

δ1
√
ε

)
≤ C δ2

δ1
√
ε
‖φ‖W 1,∞(Ω) (6.20)

and then
φε ⇀ φ1e1 weakly in H1(Ω)

2
(6.21)

since the support of Θε is included in
⋃
ξ∈Ξε

(−δ1, δ1)× (−2δ1 + ξε, 2δ1 + ξε) (its measure is of order ε).

We choose φε as test function in (3.2). This gives

2µ

∫
Ωεδ

D(υεδ) : D(φε) dx−
∫

Ωεδ

pεδ∇ · φε dx =

∫
Γin2

Pφε,1 dx2. (6.22)
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First, we have∫
Ω±ε

D(υεδ) : D(φε) dx =

∫
Ω±ε

D(υεδ) : D(φ1e1) dx→
∫

Ω
D(υ) : D(φ1e1) dx,∫

Γin2

Pφε,1 dx2 =

∫
Γin2

Pφ1 dx2.
(6.23)

It remains to obtain the limits of the quantities below in in Yεδ∫
Yεδ

D(υεδ) : D(φ1Θεe2) dx =

∫
Yεδ

ΘεD(υεδ) : D(φ1e2) dx+

∫
Yεδ

φ1D(υεδ) : D(Θεe2) dx,∫
Yεδ

pεδ ∂2(φ1Θε) dx =

∫
Yεδ

Θε pεδ ∂2φ1 dx+

∫
Yεδ

φ1 pεδ ∂2Θε dx.

Due to the estimate (6.5)1 the first terms in the right-hand sides tend to 0.

Now, we consider the second terms in the RHS.

Using the unfolding operator T ∗ε , we obtain∫
Yεδ

φ1 pεδ ∂2Θε dx = ε

∫
O×Z

T ∗ε (φ1)T ∗ε (pεδ)T ∗ε (∂2Θε) dx2 dy

=

∫
O×Z

T ∗ε (φ1)
√
ε T ∗ε (pεδ)

√
ε T ∗ε (∂2Θε) dx2 dy

and

∫
Yεδ

φ1D(υεδ) : D(Θεe2) dx = ε

∫
O×Z

T ∗ε (φ1)T ∗ε (D(υεδ)) : T ∗ε (D(Θεe2)) dx2 dy

=

∫
O×Z

T ∗ε (φ1)
√
ε T ∗ε (D(υεδ)) :

√
ε T ∗ε (D(Θεe2)) dx2 dy.

From Lemmas A.2, A.3, there exist a subsequence of ε, still denoted {ε}, υ̂ ∈ L2(O; Wdiv0(Z)) and
p̂ ∈ L2(O × Z) such that

√
εT ∗ε (∇υεδ) ⇀ ∇yυ̂ weakly in L2(O × Z)2,
√
εT ∗ε (pεδ) ⇀ p̂ weakly in L2(O × Z),

√
εT ∗ε (∇Θε)→

1

θ
∇yΘ strongly in L2(O × Z)2.

(6.24)

The third convergence in (6.24) holds since

√
εT ∗ε (∇Θε) =

1√
ε
∇yT ∗ε (Θε) =

δ2

δ1
√
ε
∇yΘ

and
δ2

δ1
√
ε
→ 1

θ
.

Passing to the limit gives∫
Yεδ

φ1 pεδ ∂2Θε dx→
1

θ

∫
O×Z

φ1(0, x2)p̂(x2, y)∂y2Θ(y) dx2 dy

and ∫
Yεδ

φ1D(υεδ) : D(Θεe2) dx→ 1

θ

∫
O×Z

φ1(0, x2)Dy(û) : Dy

(
Θe2

)
dx2 dy.
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Hence, we obtain

2µ

∫
Ω
D(υ) : D(φ1e1) dx−

∫
Ω
p∇ · (φ1e1) dx+

2µ

θ

∫
O×Z

φ1Dy(υ̂) : Dy

(
Θe2

)
dx2 dy

−1

θ

∫
O×Z

φ1p̂ ∂y2Θ dx2 dy =

∫
Γin2

Pφ1 dx2.
(6.25)

A density of argument gives (6.24) for all functions φ = (φ1, 0) ∈ V(Ω). Equalities (6.16), (6.17) and
(6.24) lead to (6.18) for every φ ∈ V(Ω).

Step 4. We show that

2µ

∫
O×Z

Dy(υ̂) : Dy(ψ̂) dx2 dy −
∫
O×Z

p̂∇y · ψ̂ dx2 dy = 0, ∀ψ̂ ∈ L2(O; W(Z)). (6.26)

Let Φ be in C1
c (O) and φ̂ in W(Z)∩C1(Z)2 such that φ̂2 vanishes in the neighborhood of [−κ, κ]×{0, 1}.

Now, consider the test function

φε(x) =
√
εΦ(x2)

(
φ̂1

(x
ε

)(
e1 + Θε(x)e2

)
+ φ̂2

(x
ε

)
e2

)
for a.e. x ∈ Ωεδ.

For ε small enough, φε is an admissible test function belonging to Vad(Ωεδ). We take it as a test function
in (3.2) and apply T ∗ε (see Proposition A.1 for the properties of this operator)

2µ

∫
O×Z

√
εT ∗ε (D(υεδ)) :

√
εT ∗ε (D(φε)) dx2 dy −

∫
O×Z

√
εT ∗ε (pεδ)

√
εT ∗ε (∇ · φε) dx2 dy

=

∫
Γin2

P(x2)Φ(x2)
√
εφ̂1

(
− L1

ε
,
x2

ε

)
dx2.

(6.27)

By definition of the function Θε we have for a.e. (x2, y1, y2) ∈ O × Z

T ∗ε (φε)(x2, y1, y2) =
√
εT ∗ε (Φ)(x2, y2)

(
φ̂1(y1, y2)

(
e1 +

δ2

δ1
Θ(y1, y2)e2

)
+ φ̂2(y1, y2)e2

)
and thus

1√
ε
T ∗ε (φε)→ Φ

(
φ̂1e1 + φ̂2e2

)
strongly in L2(O × Z)2.

Consider now the gradient of the function φε

√
εT ∗ε (∇φε)(x2, y1, y2) =

1√
ε
∇yT ∗ε (φε)(x2, y1, y2)

=∇y
(
T ∗ε (Φ)(x2, y2)

(
φ̂1(y1, y2)

(
e1 +

δ2

δ1
Θ(y1, y2)e2

)
+ φ̂2(y1, y2)e2

))
=εΦ

′
(
ε
[x2

ε

]
+ εy2

)(
φ̂1(y1, y2)

(
e1 +

δ2

δ1
Θ(y1, y2)e2

)
+ φ̂2(y1, y2)e2

)
+T ∗ε (Φ)(x2, y2)∇y

(
φ̂1(y1, y2)e1 + φ̂2(y1, y2)e2

)
+
δ2

δ1
T ∗ε (Φ)(x2, y2)∇y

(
φ̂1(y1, y2)Θ(y1, y2)e2

)
for a.e. (x2, y1, y2) ∈ O × Z.

Thus √
εT ∗ε (∇φε)→ Φ∇y

(
φ̂1e1 + φ̂2e2

)
= Φ∇yφ̂ strongly in L2(O × Z)2. (6.28)

Passing to the limit in the LHS of (6.27), we obtain

2µ

∫
O×Z

√
εT ∗ε (D(υεδ)) :

√
εT ∗ε (D(φε)) dx2 dy −

∫
O×Z

√
εT ∗ε (pεδ)

√
εT ∗ε (∇ · φε) dx2 dy

→ 2µ

∫
O×Z

ΦDy(û) : Dy(φ̂) dx2 dy −
∫
O×Z

Φp̂∇y · φ̂ dx2 dy.

(6.29)
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Now, we consider the RHS of (6.27).

Applying the 1D unfolding operator Tε with the macroscopic domain O and the reference cell (0, 1), we
obtain ∫

Γin2

P(x2)Φ(x2)
√
εφ̂1

(
− L1

ε
,
x2

ε

)
dx2

=

∫
O

∫ 1

0
Tε(PΦ)(x2, y2)

√
εφ̂1

(
− L1

ε
, y2

)
dx2dy2.

We have
Tε(PΦ) −→ PΦ strongly in L2

(
O × (0, 1)

)
.

Besides, Lemma 6.6 gives
√
εφ̂1

(
− L1

ε
, ·
)
⇀ 0 weakly in L2(0, 1).

Thus, the RHS of (6.27) goes to 0.
As a result, passing to the limit in (6.27) give

2µ

∫
O×Z

ΦDy(û) : Dy(φ̂) dx2 dy −
∫
O×Z

Φp̂∇y · φ̂ dx2 dy = 0,

∀Φ ∈ C1
c (O) and ∀φ̂ ∈W(Z) ∩ C1(Z).

(6.30)

Due to the density of the set of test functions in L2(O; W(Z)), we get (6.26) for all ψ̂ ∈ L2(O; W(Z)).

Step 5. Existence and uniqueness of the solution.

Problem (6.26) admits the trivial solution (û, p̂) = (0, 0). Therefore, (6.27) reduces to (6.13). Clearly,
(6.13) admits a unique solution, so the whole sequences converge to their limits.

Step 6. We prove (6.12).

First, observe that from the estimate (6.1)2 and convergence (6.14)1 we have

D(υεδ)1Ω−∩Ωεδ ⇀ D(υ) weakly in L2(Ω−)2×2,

D(υεδ)1Ω+∩Ωεδ ⇀ D(v) weakly in L2(Ω+)2×2.
(6.31)

In (3.2) and (6.13) choosing as tests function υεδ and υ respectively, we obtain

2µ

∫
Ω

(
D(υεδ)1Ωεδ

)
:
(
D(υεδ)1Ωεδ

)
dx =

∫
Γin2

Pυεδ,1 dx2.

and

2µ

∫
Ω
D(υ) : D(υ) dx =

∫
Γin2

Pυ1 dx2.

The weak lower semicontinuity of the LHS and the above convergences (6.31) give

2µ

∫
Ω
D(υ) : D(υ) dx ≤ 2µ lim inf

(∫
Ω

(
D(υεδ)1Ωεδ

)
:
(
D(υεδ)1Ωεδ

)
dx
)

≤2µ lim sup
(∫

Ω

(
D(υεδ)1Ωεδ

)
:
(
D(υεδ)1Ωεδ

)
dx
)

= lim sup
(∫

Γin2

Pυεδ,1 dx2

)
= lim

(∫
Γin2

Pυεδ,1 dx2

)
=

∫
Γin2

Pυ1 dx2 = 2µ

∫
Ω
D(υ) : D(υ) dx,

and the convergences in (6.12)1,2 are proved.

We prove the strong convergence (6.12)3.
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To do that, first in (3.2) and (6.13) we choose a test function φ ∈ H1
0 (Ω)

2
vanishing in (−ε, ε)×(−L2, L2).

This leads to ∫
Ω±ε

pεδ∇ · φdx = 2µ

∫
Ω±ε

D(υεδ) : D(φ) dx,∫
Ω±ε

p∇ · φdx = 2µ

∫
Ω±ε

D(υ) : D(φ) dx.

Subtracting the second from the first gives∫
Ω±ε

(
pεδ − p

)
∇ · φdx = 2µ

∫
Ω±ε

(
D(υεδ)−D(υ)

)
: D(φ) dx. (6.32)

Below, we show that ‖∇(pεδ − p)‖H−1(Ω±ε ) → 0.

Indeed, using the definition (B.2), (6.32) and Cauchy-Schwarz inequality, we obtain

‖∇(pεδ − p)‖H−1(Ω±ε ) = sup
φ∈H1

0 (Ω±ε )
2
, ‖∇φ‖

L2(Ω±ε )
6=0

∫
Ω±ε

(
pεδ − p

)
∇ · φdx

‖∇φ‖L2(Ω±ε )

= sup
φ∈H1

0 (Ω±ε )
2
, ‖∇φ‖

L2(Ω±ε )
6=0

2µ

∫
Ω±ε

D(υεδ − υ) : D(φ) dx

‖∇φ‖L2(Ω±ε )

≤ C‖D(υεδ − υ)‖L2(Ω±ε )

(6.33)

since
‖D(φ)‖L2(Ω±ε ) ≤ C‖∇φ‖L2(Ω±ε ), ∀φ ∈ H1

0 (Ω±ε )2.

The constant does not depend on ε. Now, we have

‖pεδ − p‖L2(Ω±ε ) ≤ ‖(pεδ − p)−MΩ±ε
(pεδ − p)‖L2(Ω±ε ) + 4L1L2

∣∣MΩ±ε
(pεδ − p)

∣∣. (6.34)

The Nečas inequality (see (B.1)) gives

‖(pεδ − p)−MΩ±ε
(pεδ − p)‖L2(Ω±ε ) ≤ C(Ω±ε )‖∇(pεδ − p)‖H−1(Ω±ε ). (6.35)

Let ω1 and ω2 be the following open subset of Ω−ε :

ω1 =
(
− L1,−

1

3
L1

)
× (−L2, L2), ω2 =

(
− 2

3
L1 − ε,−ε

)
× (−L2, L2).

Since the dimensions of these open sets do not depend on ε and these domains are isomorphic, their
Nečas constants are equal and do not depend on ε. So, from (B.8) the Nečas constant C(Ω−ε ) does not
depend on ε, similarly we show that the Nečas constant C(Ω+

ε ) does not depend on ε.
Hence, from (6.33)-(6.35) we obtain

‖(pεδ − p)−MΩ±ε
(pεδ − p)‖L2(Ω±ε ) ≤ C‖∇(pεδ − p)‖H−1(Ω±ε ) ≤ C‖D(υεδ − υ)‖L2(Ω±ε ).

Then, the above together with (6.34) lead to

‖pεδ − p‖L2(Ω±ε ) ≤ C‖D(υεδ − υ)‖L2(Ω±ε ) + 4L1L2

∣∣MΩ±ε
(pεδ − p)

∣∣.
Besides, since

pεδ1Ωεδ ⇀ p weakly in L2(Ω)

we have
∣∣MΩ±ε

(pεδ − p)
∣∣→ 0. Finally, the strong convergence (6.12)1 and the above imply (6.12)3.
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Lemma 6.6. For any function Ψ ∈ H1(Z) we have

∀a > 0,
√
εΨ
(a
ε
, ·
)
→ 0 strongly in L2(0, 1). (6.36)

Proof. First, for any a > 0, we have∥∥∥Ψ
(a
ε
, ·
)∥∥∥2

L2(0,1)
≤ 2
∥∥Ψ(0, ·)

∥∥2

L2(0,1)
+
a

ε

∥∥∥ ∂Ψ

∂y1

∥∥∥2

L2(Z)
. (6.37)

So, the sequence
{√

εΨ
(a
ε
, ·
)}

ε
is uniformly bounded in L2(0, 1).

Consider now, the following subspace of H1(Z):

V(Z)
.
=
{

Ψ ∈ H1(Z) | ∃b > 0 such that Ψ is a constant function in (b,+∞)× (0, 1)
}
.

We know that V(Z) is dense in H1(Z). Consequently, if Ψ belongs to this space, then we have

√
εΨ
(a
ε
, ·
)
→ 0 strongly in L2(0, 1).

Now, let Ψ be in H1(Z). For any η > 0 there exists Ψb ∈ V(Z), Ψb being a constant function in
(b,+∞)× (0, 1), such that

‖Ψ−Ψb‖H1(Z) ≤ η.

Then, from (6.37) we obtain

√
ε
∥∥∥Ψ
(a
ε
, ·
)
−Ψb

(a
ε
, ·
)∥∥∥

L2(0,1)
≤ 2
√
ε
∥∥(Ψ−Ψb)(0, ·)

∥∥
L2(0,1)

+
√
a
∥∥∇(Ψ−Ψb)

∥∥
L2(Z)

≤ C‖Ψ−Ψb‖H1(Z) ≤ Cη.

The constant does not depend on ε. Thus

√
ε
∥∥∥Ψ
(a
ε
, ·
)∥∥∥

L2(0,1)
≤
√
ε
∥∥∥Ψb

(a
ε
, ·
)∥∥∥

L2(0,1)
+ Cη.

For ε sufficiently small, this gives

√
ε
∥∥∥Ψ
(a
ε
, ·
)∥∥∥

L2(0,1)
≤ (C + 1)η.

This ends the proof of (6.36).

A The unfolding operators Tε and T ∗ε

In this section we assume that δ1 = κε, κ ∈ (0, 1/2],
δ2

δ1ε1/2
→ θ ∈ [0,+∞)

For a.e. t ∈ R, we have the following decomposition:

t = ε

[
t

ε

]
+ ε

{
t

ε

}
,

where [·] is the integer part and {·} the fractional part.

Now, we introduce a specific unfolding operator which mixed the periodic unfolding operator in x2

direction and a scaling in the direction x1.
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Definition A.1 (The unfolding operator Tε). For every Lebesgue-measurable function φ on Ω, the un-
folding operator Tε : Ω→ O× Z is defined as follows:

Tε(φ)(x2, y)
.
=

φ
(
ε
[x2

ε

]
e2 + εy

)
for a.e. (x2, y) = (x2, y1, y2) ∈ O × ZL1/ε,

0 otherwise.
(A.1)

If a function φ is defined in Ωεδ we extend it by 0 in the obstacles and denote with ˜ its extension. So,
for every Lebesgue-measurable function φ on Ωεδ, the unfolding operators T ∗ε : Ωεδ → O × Z is defined
as follows:

T ∗ε (φ) = Tε(φ̃). (A.2)

Denote

Fεδ2

.
=
{
y ∈ Z | δ2

ε
ψd(y1) < y2 < 1− δ2

ε
ψu(y1)

}
and

∂F uεδ2

.
=
{
y1 ∈ (−κ, κ) | y2 = 1− δ2

ε
ψu(y1)

}
, ∂F dεδ2

.
=
{
y1 ∈ (−κ, κ) | y2 =

δ2

ε
ψd(y1)

}
are parts of the boundary of the domain Fεδ2 .

Proposition A.1 (Properties of operators Tε and T ∗ε ). The linear operator Tε (resp. T ∗ε ) defined by
(A.1) (resp. (A.2)) satisfies:

(i) for all functions ψ1, ψ2 ∈ L1(Ω) (resp. φ1, φ2 ∈ L1(Ωεδ))

Tε(ψ1 ψ2) = Tε(ψ1) Tε(ψ2), (resp. T ∗ε (φ1 φ2) = T ∗ε (φ1) T ∗ε (φ2)),

(ii) for every function ψ ∈ L1(Ω) (resp. φ ∈ L1(Ωεδ))∫
O×Z

Tε(ψ)(x2, y) dx2 dy =
1

ε

∫
Ω
ψ(x) dx,

(resp.

∫
O×Z

T ∗ε (φ)(x2, y) dx2 dX =
1

ε

∫
Ωεδ

φ(x) dx),

(iii) for every function ψ ∈ L2(Ω) (resp. φ ∈ L2(Ωεδ))

‖Tε(ψ)‖L2(O×Z) =
1√
ε
‖ψ‖L2(Ω),

(resp. ‖T ∗ε (φ)‖L2(O×Z) =
1√
ε
‖ψ‖L2(Ωεδ)),

(iv) for every function ψ ∈ H1(Ω) (resp. φ ∈ H1(Ωεδ))

Tε
(
∇ψ
)

=
1

ε
∇yTε(ψ) a.e. in O × ZL1/ε,

(resp. T ∗ε
(
∇φ
)

=
1

ε
∇yTε(ψ) a.e. in O ×

(
Fεδ2 ∩ ZL1/ε

)
).

Proof. The properties of the Tε are omitted here as they are similar to those obtained in [11][S.9.3].
The property (ii) for the operator T ∗ε follows from the fact that

∀φ ∈ L1(Ωεδ)

∫
O×Z

T ∗ε (φ)(x2, y) dx2 dy =

∫
O×Z

Tε(φ̃)(x2, y) dx2 dy

= ε

∫
Ω
φ̃(x) dx = ε

∫
Ωεδ

φ(x) dx.
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The property (iii) for the operator T ∗ε follows from the fact that for any function φ ∈ H1(Ωεδ)

T ∗ε
(
∇φ
)

=
1

ε
∇yT ∗ε (φ) a.e. in O ×

(
Fεδ2 ∩ ZL1/ε

)
.

Lemma A.1. Let {wε}ε be a sequence of functions belonging to H1(Ωεδ) satisfying

‖wε‖L2(Yεδ) + ε‖wε‖H1(Ωεδ) ≤ Cε. (A.3)

Then, there exist a subsequence of {ε}, still denoted {ε}, and W ∈ L2(O;H1(Z)) such that

1√
ε
T ∗ε (wε) ⇀W weakly in L2(O;L2

loc(Z)),

1√
ε
T ∗ε (ε∇wε) ⇀ ∇yW weakly in L2(O × Z)2.

(A.4)

Proof. From the estimates (A.3), the definition of the operator T ∗ε and its properties (iii)-(iv), we have

‖T ∗ε (wε)‖L2(O×Z1) ≤ C
√
ε, ‖T ∗ε (wε)‖L2(O×Z) ≤

C√
ε
, ‖T ∗ε (ε∇wε)‖L2(O×Z) ≤ C

√
ε.

Then, there exist a subsequence of {ε}, still denoted {ε}, W ∈ L2(O;L2
loc(Z)) and F ∈ L2(O×Z)2, such

that
1√
ε
T ∗ε (wε) ⇀W weakly in L2(O;L2

loc(Z))3,

1√
ε
T ∗ε (ε∇wε) ⇀ F weakly in L2(O × Y )2.

Now, for any a > 1 and any test function φ ∈ C1
c (O × Za)2 (function with compact support in O × Za)

we have for ε small enough∫
O×Za

T ∗ε (∇wε) · φdx2 dy =
1

ε

∫
O×Za

∇yT ∗ε (wε) · φdx2 dy.

Then, from the above convergences

lim
ε→0

1√
ε

∫
O×Za

T ∗ε (ε∇wε) · φdx2 dy =

∫
O×Za

F · φdx2 dy.

Besides
√
ε

∫
O×Za

∇yT ∗ε (wε) · φdx2 dy = −
√
ε

∫
O×Za

T ∗ε (wε) div y(φ) dx2 dy,

and lim
ε→0

√
ε

∫
O×Za

T ∗ε (wε) div y(φ) dx2 dy =

∫
O×Za

W div y(φ) dx2 dy.

Therefore, we have ∫
O×Y

F · φdx2 dy = −
∫
O×Y

W · div y(φ) dx2 dy.

Since C1
c (O × Za)2 is dense in L2(O, H1

0 (Za))
2, the above equality is satisfied for any φ ∈ L2(O, H1

0 (Za))
2.

Hence, for any a > 1 we have ∇yW = F a.e. in O × Za. Therefore ∇yW = F a.e. in O × Z. So (A.4)2

is proved.

To prove the periodicity, in the direction e2, of the restriction of W to the domains (−∞,−κ) × (0, 1)
and (κ,+∞)× (0, 1), we proceed as in [11, Theorem 1.36].

3Here, for every a ≥ 1 we have ‖T ∗ε (wε)‖L2(O×Za) ≤ Ca
√
ε. The constant does not depend on ε, it depends on a.

25



We define the operator Mε from L1(Yεδ) into L1(O) by

Mε(Φ)(pε) =
1

|Y p
εδ|

∫
Y pεδ

Φ(pεe2 + x) dx, ∀Φ ∈ L1(Yεδ),

Mε(Φ)(x2) =Mε(Φ)(pε) ∀x2 ∈ [pε, (p+ 1)ε), p ∈ {−Nε, . . . , Nε − 1}.

Lemma A.2. Let {wε}ε be a sequence of functions belonging to H1(Ωεδ) satisfying

‖wε‖H1(Ωεδ) ≤ C. (A.5)

Then, there exist a subsequence of {ε}, still denoted {ε}, and w ∈ H1(Ω) and W ∈ L2(O;H1(Z)) such
that

E±ε (wε) ⇀ w|Ω± weakly in H1(Ω±)2,

T ∗ε (wε) ⇀ w|O weakly in L2(O;L2
loc(Z)),

1√
ε
T ∗ε (wε −Wε) ⇀W weakly in L2(O;L2

loc(Z)),

√
εT ∗ε (∇wε) ⇀ ∇yW weakly in L2(O × Z)2.

(A.6)

Moreover, we have ∫
Y
W (x2, y)dy = 0 for a.e. x2 ∈ (−L2, L2). (A.7)

Proof. Step 1. We prove (A.6)1.

Using the operators E±ε and proceeding as in the proof of Lemma 6.2, we obtain that there exist a
subsequence of {ε}, still denoted {ε}, and w ∈ H1(Ω), such that the convergence (A.6)1 holds.

Step 2. We introduce W .

We set
Wε = wε −Mε(wε).

The Poincaré-Wirtinger inequality and (A.5) give

‖Wε‖2L2(Yεδ)
=

Nε−1∑
p=−Nε

‖Wε‖2L2(Y pεδ)
=

Nε−1∑
p=−Nε

‖wε −Mε(wε)‖2L2(Y pεδ)
≤ Cε2

Nε−1∑
p=−Nε

‖∇wε‖2L2(Y pεδ)

= Cε2‖∇wε‖2L2(Yεδ)
≤ Cε2.

(A.8)

Besides, we have

‖∇Wε‖2L2(Yεδ)
=

Nε−1∑
p=−Nε

‖∇Wε‖2L2(Y pεδ)
=

Nε−1∑
p=−Nε

‖∇wε‖2L2(Y pεδ)
= ‖∇wε‖2L2(Yεδ)

≤ C. (A.9)

Then, proceeding as in the proof of Lemma A.1, there exists W ∈ L2(O;H1(Z)) such that

1√
ε
T ∗ε (Wε) ⇀W weakly in L2(O;L2

loc(Z)),

√
εT ∗ε (∇wε) =

1√
ε
T ∗ε (ε∇wε) =

1√
ε
T ∗ε (ε∇Wε) ⇀ ∇yW weakly in L2(O × Z)2

(A.10)

and (A.6)3 holds.

Step 3. We prove (A.6)2.

From estimates (4.1), (A.8), (A.9) we get the following estimates

‖wε −Mε(wε)‖2L2(O−ε )
= ‖Wε‖2L2(O−ε )

≤ C
(1

ε
‖Wε‖2L2(Yεδ)

+ ε
∥∥∥∂Wε

∂x1

∥∥∥2

L2(Yεδ)

)
≤ Cε
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and

‖wε|O−ε − E
−
ε (wε)|O‖2L2(−L2,L2) = ‖wε|O−ε − wε|O−2ε‖

2
L2(−L2,L2) =

∫ L2

−L2

∣∣wε(−ε, x2)− wε(−2ε, x2)
∣∣2dx2

=

∫ L2

−L2

(∫ −ε
−2ε

∂wε
∂x1

dx1

)2

dx2 ≤ ε
∫
Y −ε

∣∣∣∣∂wε∂x1

∣∣∣∣2 dx ≤ ε‖∇wε‖2L2(Ωεδ)
≤ Cε,

where Y −ε = (−2ε,−ε)× (−L2, L2).
Then, we have

‖Mε(wε)− E−ε (wε)‖2L2(O) ≤ Cε.

From the convergence (A.6) we derive that

E−ε (wε)|O ⇀ w|O weakly in L2(O).

Therefore
Mε(wε) ⇀ w|O weakly in L2(O),

which, together with the convergence (A.10)1, leads

T ∗ε (wε) = T ∗ε (Wε) + T ∗ε
(
Mε(wε)

)
= T ∗ε (Wε) +Mε(wε) ⇀ 0 + w|O weakly in L2(O;L2

loc(Z)).

So convergence (A.6)2 is proved.

Step 4. We show that W belongs to L2(O;H1(Z)).

Denote
Z
′−
a

.
= (−a,−κ), Z

′+
a

.
= (κ, a),

O′±a
.
= (−L2, L2)× Z ′±a

a > 1.

From (A.8)-(A.9) we obtain the estimates of the traces of T ∗ε (Wε) on O′±a and O′±a + e2

‖T ∗ε (Wε)‖L2(O′±a )
≤ C
√
ε, ‖T ∗ε (Wε)‖L2(O′±a +e2)

≤ C
√
ε.

Now, let ψ be in C1
c (O′±a ). For ε small enough, we have∫

O′±a

1√
ε

(
T ∗ε (Wε)(x2, y1, 1)− T ∗ε (Wε)(x2, y1, 0)

)
ψ(x2, y1)dx2dy1

=

∫
O′±a

1√
ε

(
wε

(
ε
[x2

ε

]
e2 + εy1e1 + εe2

)
− wε

(
ε
[x2

ε

]
e2 + εy1e1

))
ψ(x2, y1)dx2dy1

=

∫
O′±a

1√
ε
wε

(
ε
[x2

ε

]
e2 + εy1e1

)(
ψ(x2 − ε, y1)− ψ(x2, y1)

)
dx2dy1

=ε

∫
O′±a

1√
ε
T ∗ε (Wε)(x2, y1, 0)

ψ(x2 − ε, y1)− ψ(x2, y1)

ε
dx2dy1.

Passing to the limit gives∫
O′±a

(
W (x2, y1, 1)−W (x2, y1, 0)

)
ψ(x2, y1) dx2 dy1 = 0.

As a consequence, W belongs to L2(O;H1
per(Za))

4for every a > 1, which proves the claim.

Step 5. We show (A.7).
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By definition of Wε, we have∫
Y pεδ

Wε(x2 + εy)dy = 0 for a. e. x2 ∈ (pε, pε+ ε), p ∈ {−Nε, . . . , Nε − 1}.

The characteristic function 1Y pεδ
strongly converges to 1O×Y in L2(O×Y ). Then, transforming the above

equality by unfolding, dividing by
√
ε and passing to the limit, give (A.7).

As immediate consequence of Proposition A.1 we have

Lemma A.3. Let {ρε}ε be a sequence of functions belonging to L2(Ωεδ) satisfying

‖ρε‖L2(Ωεδ) ≤ C. (A.11)

Then, there exist a subsequence of {ε}, still denoted {ε}, and ρ̂ ∈ L2(Ω× Z), such that

√
εT ∗ε (ρε) ⇀ ρ̂ weakly in L2(O × Z). (A.12)

Lemma A.4. Let {υε}ε be a sequence of functions belonging to Vad(Ωεδ)(Ωεδ) satisfying

‖D(υε)‖L2(Ωεδ) ≤ C. (A.13)

Then, there exist a subsequence of {ε}, still denoted {ε}, υ1 ∈ H1(Ω) and υ̂ = (υ̂1, υ̂2) ∈ L2(O; W(Z))
such that

E±ε (υ1,ε) ⇀ υ1|Ω± weakly in H1(Ω±)2,

T ∗ε (υ1,ε) ⇀ υ1|O weakly in L2(O;L2
loc(Z)),

1√
ε
T ∗ε (υ2,ε) ⇀ υ̂2 weakly in L2(O;L2

loc(Z))
2
,

√
εT ∗ε (∇υε) ⇀ ∇yυ̂ weakly in L2(O × Z)2×2.

(A.14)

Moreover, if {υε}ε ∈ Vad,div0(Ωεδ) then υ̂ ∈ L2(O; Wdiv0(Z)).

To prove the above lemma, we first need to prove the lemma bellow.

Let Yd = (−κ, κ)× (0, 1/2) and χ be a function belonging to H1
(
Fεδ2 ∩Yd

)
. We extend χ as a function

defined in Yd by setting

χ̃(y′) =

χ(y′) for a.e. y′ = (y1, y2) ∈ Fεδ2 ∩Yd,

χ
(
y1, 2

δ2

ε
ψd
(y1

κ

)
− y2

)
for a.e. y′ = (y1, y2) ∈ Yd \ Fεδ2 ∩Yd.

Lemma A.5. ˜ is a continuous linear operator from H1
(
Fεδ2 ∩Yd

)
into H1(Yd).

Moreover, for any Ψ ∈ H1
(
Fεδ2 ∩Yd

)2
satisfying Ψ · νd = 0 on the boundary of the obstacles, we have

‖Ψ̃2‖L2((−κ,κ)×{0}) ≤ C
√
δ2

ε
‖Ψ‖H1(Fεδ2∩Yd), (A.15)

where C is independent of ε and δ2.

Proof. Step 1. In this step we show that there exists a constant C independent of ε and δ2 such that

‖χ̃‖H1(Yd) ≤ C‖χ‖H1(Fεδ2∩Yd). (A.16)

4Periodicity in direction e2 with respect to the microscopic variable y2.
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First, observe that a.e. in Fεδ2 we have

∂y1χ̃(y1, y2) = ∂y1χ
(
y1, 2

δ2

ε
ψd
(y1

κ

)
− y2

)
+

2

κ

δ2

ε

(
ψd
)′(y1

κ

)
∂y2χ

(
y1, 2

δ2

ε
ψd
(y1

κ

)
− y2

)
,

∂y2χ̃(y1, y2) = −∂y2χ
(
y1, 2

δ2

ε
ψd
(y1

κ

)
− y2

)
.

Besides, the Jacobian determinant of the change of variables (y1, y2) 7−→
(
y1, 2

δ2

ε
ψd
(y1

κ

)
− y2

)
is equal

to −1. Then, a straightforward calculation yields (A.16). So, the operator ˜ is a continuous linear map
from H1

(
Fεδ2 ∩Yd

)
into H1(Yd) (the linearity follows from its definition).

Step 2. We prove the estimate given in the lemma.
Let Ψ be in H1

(
Fεδ2 ∩Yd

)2
satisfying Ψ · νd = 0 on the boundary of the obstacles. First, observe that

−δ2

ε
(ψd)′

(y1

κ

)
Ψ1(y′) + Ψ2(y′) = 0 a.e. on ∂F dεδ2

.

Hence

‖Ψ2‖L2(∂F dεδ2
) ≤ C

δ2

ε
‖Ψ1‖L2(∂F dεδ2

).

A trace theorem (see [11]) gives

‖Ψ1‖L2(∂F dεδ2
) ≤ C‖Ψ1‖H1(Fεδ2∩Yd)

and

‖Ψ̃2‖2L2((−κ,κ)×{0}) ≤ C
(
‖Ψ2‖2L2(∂F dεδ2

)
+
δ2

ε
‖∂y2Ψ̃2‖2L2(F dεδ2

)

)
.

Then, (A.15) follows.

Remark A.1. Let Yu = (−1, 1)× (1/2, 1), the estimate

‖Ψ̃2‖L2((−κ,κ)×{1}) ≤ C
√
δ2

ε
‖Ψ‖H1(Fεδ2∩Yu) (A.17)

is proved similarly.

Proof of Lemma A.4. Step 1. We prove (A.14).

Lemma 4.3 applied with the functions υε,1, υε,2 gives

‖υε,1‖H1(Ωεδ) ≤ C,
‖υε,2‖L2(Yεδ) + ε‖υε,2‖H1(Ωεδ) ≤ Cε.

Then, thanks to the Lemmas A.1, A.2 we obtain the convergences (A.14) with v̂ ∈ L2(O;H1(Z)).

Step 2. Let {υε}ε be in Vad(Ωεδ)(Ωεδ). Since we also have

1√
ε
Tε(υ̃2,ε) ⇀ υ̂2 weakly in L2(O;L2

loc(Z)).

Thanks to Lemma A.5 and Remark A.1, we obtain

υ̂2 = 0 a.e. on (−κ, κ)× {0, 1}.

As a consequence υ̂ ∈ L2(O; W(Z)).

Step 3. Let {υε}ε ⊂ Vad,div0(Ωεδ).
By virtue of the linearity of T ∗ε and div xυε = 0, we have T ∗ε ( div xυε) = 0 a.e. in O × Z.
On the other side, due to (A.14)4, we obtain

√
εT ∗ε ( div xυε) =

1√
ε

div yT ∗ε (υε) ⇀ div yυ̂ weakly in L2(O × Z).

Hence, div yυ̂ = 0 a.e. in O × Z and then υ̂ ∈ L2(O; Wdiv0(Z)).
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B About the Nečas inequality

Below, we recall some definitions and a classical result.

Proposition B.1 (The Nečas inequality). Let ω be a bounded domain with Lipschitz boundary. There
exists a constant C(ω) depending on ω, such that

∀φ ∈ L2(ω) ‖φ−Mω(φ)‖L2(ω) ≤ C(ω)‖∇φ‖H−1(ω). (B.1)

1. The norm of ‖∇φ‖H−1(ω)

‖∇φ‖H−1(ω) = sup
Ψ∈H1

0 (ω)
2
, Ψ 6=0

∫
ω
φ div(Ψ) dx

‖∇Ψ‖L2(ω)
. (B.2)

Let U ∈ H1
0 (ω)

2
be the solution to the following variational problem:∫

ω
∇U : ∇V dx =

∫
ω
φ div(V ) dx, ∀V ∈ H1

0 (ω)
2
. (B.3)

Then, we have
‖∇φ‖H−1(ω) = ‖∇U‖L2(ω). (B.4)

2. We define Nečas constant as

C(ω) = sup
φ∈L2

#(ω)\{0}

‖φ‖L2(ω)

‖∇φ‖H−1(ω)
, (B.5)

where L2
#(ω) =

{
φ ∈ L2(ω) |

∫
ω
φdx = 0

}
.

Proposition B.2. The Nečas constant has the following property:

1. Y = (0, 1)2 and Ya = (0, a1)× (0, a2), a = (a1, a2), a1, a2 > 0

min
{a1

a2
,
a2

a1

}
C(Y ) ≤ C(Ya) ≤ max

{a1

a2
,
a2

a1

}
C(Y ). (B.6)

2. Let ω be a bounded domain in R2 with Lipschitz boundary. We have C(εω) = C(ω) for all ε > 0.

3. Let a ∈ R2 and R ∈ SO(2). We have C(a + Rω) = C(ω).

4. Let ω and Ω in R2 with Lipschitz boundary such that ω ⊂ Ω. We have

‖φ−Mω(φ)‖L2(ω) ≤ 2C(Ω)

√
|Ω|√
|ω|
‖∇φ‖H−1(Ω), ∀φ ∈ L2(Ω). (B.7)

5. Let ω1 and ω2 be two bounded domains in R2 with Lipschitz boundary, such that ω1 ∩ ω2 6= ∅. We
have

C(ω1 ∪ ω2) ≤ 2

√
|ω1|+

√
|ω2|√

|ω1 ∩ ω2|
(
C(ω1) + C(ω2)

)
. (B.8)
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Proof. Property 1. First, we introduce the change of variables

x1 =
y1

a1
, x2 =

y2

a2
(y1, y2) ∈ Ya, (x1, x2) ∈ Y

and functions
ψ(x1, x2) = ψa(a1x1, a2x2), ψa ∈ H1

0 (Ya), ψ ∈ H1
0 (Y ).

Then, for every Ψ ∈ H1
0 (Y )2 we define Ψa ∈ H1

0 (Ya)2 by

Ψ(x1, x2) =
1

a1
Ψa,1(a1x1, a2x2)e1 +

1

a2
Ψa,2(a1x1, a2x2)e2.

Now, let V be in H1
0 (Y )2. We have

∇xV =

(
∂x1V1 ∂x1V2

∂x2V1 ∂x2V2

)
=

 ∂y1Va,1
a1

a2
∂y1Va,2

a2

a1
∂y2Va,1 ∂y2Va,2

 ,

divxV = ∂x1V1 + ∂x2V2 = ∂y1Va,1 + ∂y2Va,2 = divyVa.

Thus

a1a2‖∇xV ‖2L2(Y ) = ‖∂y1Va,1‖2L2(Ya) +
a2

2

a2
1

‖∂y2Va,1‖2L2(Ya) +
a2

1

a2
2

‖∂y1Va,2‖2L2(Ya) + ‖∂y2Va,2‖2L2(Ya)

and

a1a2

∫
Y
φ divx(V ) dx =

∫
Ya

φa divy(Va) dy.

Now, let U be the solution to the variational problem (B.3) with ω and φ.
Taking into account the above equalities, we have

‖∇xφ‖H−1(Y ) = ‖∇xU‖L2(Y )

and

min
{a2

1

a2
2

,
a2

2

a2
1

}
‖∇zUa‖2L2(Ya) ≤ a1a2‖∇xU‖2L2(Y ) ≤ max

{a2
1

a2
2

,
a2

2

a2
1

}
‖∇zUa‖2L2(Ya).

Thus

‖∇xφ‖H−1(Y ) =

∫
Y
φ divx(U) dx

‖∇xU‖L(Y )
≤

1

a1a2

∫
Ya

φa divy(Ua) dy

min
{a1

a2
,
a2

a1

} 1
√
a1a2

‖∇yUa‖L(Ya)

≤ 1
√
a1a2

max
{a1

a2
,
a2

a1

}
‖∇yφa‖H−1(Ya).

Hence

‖∇xφ‖H−1(Y ) ≤
1

√
a1a2

max
{a1

a2
,
a2

a1

}
‖∇yφa‖H−1(Ya).

Then, due to the above inequality and the fact that ‖φa‖L2(Ya) =
√
a‖φ‖L2(Y ), we obtain

‖φa‖L(Ya)

‖∇yφa‖H−1(Ya)
≤ max

{a1

a2
,
a2

a1

} ‖φ‖L(Y )

‖∇xφ‖H−1(Y )
.
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This easily leads to C(Ya) ≤ max
{a1

a2
,
a2

a1

}
C(Y ). This gives the right-hand side of (B.6). Then, we swap

Y and Ya to obtain the left-hand side of (B.6).

Property 2. Set ωε = εω. Consider the change of variables and functions

y1 = εx1, y2 = εx2 and Ṽ (y1, y2) = V (x1, x2) for a.e. (x1, x2) ∈ ω, V ∈ H1
0 (ω)2, Ṽ ∈ H1

0 (ωε)
2.

We have

∇yṼ =
1

ε
∇xV, divyṼ =

1

ε
divxV.

Let U be the solution to the variational problem (B.3). We have∫
ωε

∇yŨ : ∇yṼ dy =

∫
ω
∇xU : ∇xV dx =

∫
ω
φ divx(V ) dx =

1

ε

∫
ωε

φ̃ divy(Ṽ ) dy, ∀Ṽ ∈ H1
0 (ωε)

2
.

So, the function Ũ is the solution to∫
ωε

∇yŨ : ∇yṼ dy =
1

ε

∫
ωε

φ̃ divy(Ṽ ) dy, ∀Ṽ ∈ H1
0 (ωε)

2
.

Hence

‖∇xφ‖H−1(ω) = ‖∇xU‖L2(ω) = ‖∇yŨ‖L2(ωε) =
1

ε
‖∇yφ̃‖H−1(ωε). (B.9)

Now, (B.5) leads to

C(ωε) = sup
φ̃∈L2

#(ωε)\{0}

‖φ̃‖L2(ωε)

‖∇yφ̃‖H−1(ωε)

= sup
φ∈L2

#(ω)\{0}

‖φ‖L2(ω)

‖∇xφ‖H−1(ω)
= C(ω),

due to (B.9) and the fact that ‖φ‖L2(ω) = ε‖φ̃‖L2(ωε).

Property 3. Since the transformation y = a + Rx from ω into ω̃ = a + Rω, a ∈ R2 and R ∈ SO(2), does
not change either the shape or size of the domain ω, then we obtain the same Nečas constant for both
domains.

Property 4. Any function χ in L2(ω) is extended by 0 in Ω \ ω. The extension of χ is denoted χ̃.

Let φ be in L2(Ω) and

• U ∈ H1
0 (ω)2 the solution to the variational problem (B.3) with ω and φ replaced by its restriction

to ω,

• U ∈ H1
0 (Ω)2 the solution to the variational problem (B.3) with ω replaced by Ω and the function

φ.

We have∫
ω
∇U : ∇V dx =

∫
ω
φ div(V ) dx, ∀V ∈ H1

0 (ω)
2

and ‖∇φ‖H−1(ω) = ‖∇U‖L2(ω),∫
Ω
∇U : ∇V dx =

∫
Ω
φ div(V) dx, ∀V ∈ H1

0 (Ω)
2

and ‖∇φ‖H−1(Ω) = ‖∇U‖L2(Ω).

We extend U by 0 outside of ω. The extension of U is Ũ . So∫
Ω
∇Ũ : ∇Ũ dx =

∫
ω
∇U : ∇U dx =

∫
ω
φ div(U) dx =

∫
Ω
φ div(Ũ) dx =

∫
Ω
∇U : ∇Ũ dx.

As a consequence
‖∇U‖2L2(Ω) = ‖∇U‖2L2(ω) + ‖∇(U− Ũ)‖2L2(Ω).
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Hence
‖∇φ‖H−1(ω) ≤ ‖∇φ‖H−1(Ω). (B.10)

Now, we have
‖φ−Mω(φ)‖L2(ω) ≤ C(ω)‖∇φ‖H−1(ω) ≤ C(ω)‖∇φ‖H−1(Ω)

and ‖φ−MΩ(φ)‖L2(Ω) ≤ C(Ω)‖∇φ‖H−1(Ω).

The second above inequality yields√
|ω| |Mω(φ)−MΩ(φ)| ≤ C(Ω)‖∇φ‖H−1(Ω).

Therefore

‖φ−Mω(φ)‖L2(ω) ≤ ‖φ−Mω(φ)‖L2(Ω) ≤ ‖φ−MΩ(φ)‖L2(Ω) + ‖Mω(φ)−MΩ(φ)‖L2(Ω)

≤ C(Ω)
(

1 +

√
|Ω|√
|ω|

)
‖∇φ‖H−1(Ω).

This proves (B.7).

Property 5. Thanks to (B.10), for any φ ∈ L2(ω1 ∪ ω2), we have

‖φ−Mω1(φ)‖L2(ω1) ≤ C(ω1)‖∇φ‖H−1(ω1) ≤ C(ω1)‖∇φ‖H−1(ω1∪ω2),

‖φ−Mω2(φ)‖L2(ω2) ≤ C(ω2)‖∇φ‖H−1(ω2) ≤ C(ω2)‖∇φ‖H−1(ω1∪ω2),

‖φ−Mω1∪ω2(φ)‖L2(ω1∪ω2) ≤ C(ω1 ∪ ω2)‖∇φ‖H−1(ω1∪ω2).

So, we get √
|ω1 ∩ ω2| |Mω1∩ω2(φ)−Mω1(φ)| ≤ C(ω1)‖∇φ‖H−1(ω1) ≤ C(ω1)‖∇φ‖H−1(ω1∪ω2),√
|ω1 ∩ ω2| |Mω1∩ω2(φ)−Mω2(φ)| ≤ C(ω2)‖∇φ‖H−1(ω2) ≤ C(ω2)‖∇φ‖H−1(ω1∪ω2).

Hence

‖φ−Mω1∩ω2(φ)‖L2(ω1) ≤ C(ω1)
(

1 +

√
|ω1|√

|ω1 ∩ ω2|

)
‖∇φ‖H−1(ω1∪ω2),

‖φ−Mω1∩ω2(φ)‖L2(ω2) ≤ C(ω2)
(

1 +

√
|ω2|√

|ω1 ∩ ω2|

)
‖∇φ‖H−1(ω1∪ω2).

As a consequence, we obtain

‖φ−Mω1∩ω2(φ)‖L2(ω1∪ω2) ≤ ‖φ−Mω1∩ω2(φ)‖L2(ω1) + ‖φ−Mω1∩ω2(φ)‖L2(ω2)

≤
(
C(ω1) + C(ω2)

)√|ω1|+
√
|ω2|√

|ω1 ∩ ω2|
‖∇φ‖H−1(ω1∪ω2),

and then√
|ω1 ∪ ω2| |Mω1∪ω2(φ)−Mω1∩ω2(φ)| ≤

(
C(ω1) + C(ω2)

)√|ω1|+
√
|ω2|√

|ω1 ∩ ω2|
‖∇φ‖H−1(ω1∪ω2).

The above inequalities lead to

‖φ−Mω1∪ω2(φ)‖L2(ω1∪ω2) ≤ 2
(
C(ω1) + C(ω2)

)√|ω1|+
√
|ω2|√

|ω1 ∩ ω2|
‖∇φ‖H−1(ω1∪ω2).

Thus, estimate (B.8) is proved.
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C Two lemmas

Denote
Y = (−1, 1)× (0, 3/4)

and

Yψ =
{

(x1, x2) ∈ (−1, 1)× R | ψ(x1) < x2 <
3

4
+ ψ(x1)

}
.

Note, that Yψ is an open set with a Lipschitz boundary.

Lemma C.1. Let ψ be an element of C1([−1, 1]) satisfying

ψ(±1) = 0, ‖ψ′‖L∞(−1,1) ≤
1

8

1

(1 + C(Y))
, (C.1)

where
Y = (−1, 1)× (0, 3/4).

The Nečas constant C(Yψ) satisfies the following inequality:

C(Yψ) ≤ 8

7
C(Y). (C.2)

Proof. The map T defined by

T : y = (y1, y2) ∈ Y 7−→ x = (x1, x2) = T(y) =
(
y1, y2 + ψ(y1)

)
∈ Yψ

is a C1-diffeomorphism from Y onto Yψ.

Now, let p be in L2
#(Yψ) \ {0} and Ψ ∈ H1

0 (Yψ)2. Observe that the Jacobian of the change of variables

is equal to 1. Hence, the function p ◦ T belongs to L2(Y) \ {0}. We have∫
Yψ
p div x(Ψ)dx =

∫
Yψ
p(x)

(∂Ψ1

∂x1
+
∂Ψ2

∂x2

)
(x)dx =

∫
Y
p ◦ T(y)

(∂Ψ1

∂x1
+
∂Ψ2

∂x2

)
◦ T(y) dy

and
∂Ψ1

∂x1
(x) =

∂Ψ1 ◦ T
∂y1

(y) +
∂Ψ2 ◦ T
∂y2

(y)ψ′(y1),

∂Ψ2

∂x2
(x) =

∂Ψ2 ◦ T
∂y2

(y),

for a.e. y ∈ Y.

Hence ∣∣∣ ∫
Yψ
p div x(Ψ)dx−

∫
Y
p ◦ T(y)

(∂Ψ1 ◦ T
∂y1

+
∂Ψ2 ◦ T
∂y2

)
(y)dy

∣∣∣
≤ ‖p‖L2(Yψ)‖∇yΨ ◦ T‖L2(Y)‖ψ′‖L∞(−1,1).

(C.3)

We have

‖p‖L2(Yψ) = ‖p ◦ T‖L2(Y) and

{
‖∇yΨ ◦ T‖L2(Y) ≤ ‖∇xΨ‖L2(Yψ)

(
1 + ‖ψ′‖L∞(−1,1)

)
,

‖∇xΨ‖L2(Yψ) ≤ ‖∇yΨ ◦ T‖L2(Y)

(
1 + ‖ψ′‖L∞(−1,1)

)
.
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As a consequence, if

∫
Y
p ◦ Tdiv y(Ψ ◦ T)dy ≥ 0, then we have

∫
Y
p ◦ Tdiv y(Ψ ◦ T)dy

‖∇yΨ ◦ T‖L2(Y)

(
1− ‖ψ′‖L∞(−1,1)

)
− ‖p‖L2(Yψ)‖ψ′‖L∞(−1,1)

(
1 + ‖ψ′‖L∞(−1,1)

)

≤

∫
Yψ
p div x(Ψ)dx

‖∇xΨ‖L2(Yψ)

≤

∫
Y
p ◦ Tdiv y(Ψ ◦ T)dy

‖∇yΨ ◦ T‖L2(Y)

(
1 + ‖ψ′‖L∞(−1,1)

)
+ ‖p‖L2(Yψ)‖ψ′‖L∞(−1,1)

(
1 + ‖ψ′‖L∞(−1,1)

)
.

So,
‖∇y(p ◦ T)‖H−1(Y)

(
1− ‖ψ′‖L∞(−1,1)

)
− ‖p‖L2(Yψ)‖ψ′‖L∞(−1,1)

(
1 + ‖ψ′‖L∞(−1,1)

)
≤‖∇xp‖H−1(Yψ)

≤‖∇y(p ◦ T)‖H−1(Y)

(
1 + ‖ψ′‖L∞(−1,1)

)
+ ‖p‖L2(Yψ)‖ψ′‖L∞(−1,1)

(
1 + ‖ψ′‖L∞(−1,1)

)
.

Finally, we obtain(
1− ‖ψ′‖L∞(−1,1)

) 1

C(Y)
− ‖ψ′‖L∞(−1,1)

(
1 + ‖ψ′‖L∞(−1,1)

)
≤ 1

C(Yψ)

≤
( 1

C(Y)
+ ‖ψ′‖L∞(−1,1)

)(
1 + ‖ψ′‖L∞(−1,1)

)
.

Therefore ∣∣∣ 1

C(Yψ)
− 1

C(Y)

∣∣∣ ≤ ‖ψ′‖L∞(−1,1)

( 1

C(Y)
+

9

8

)
,

which implies

C(Yψ) ≤ C(Y)

1− ‖ψ′‖L∞(−1,1)

(
1 +

9

8
C(Y)

)
and then the estimate given in the lemma.

Lemma C.2. Let ψ1, ψ2 be two elements of C1([−1, 1]) satisfying (i ∈ {1, 2})

ψi(±1) = 0, ψi(t) ≥ 0, ∀t ∈ [−1, 1], ‖ψ′i‖L∞(−1,1) ≤
1

8

1

(1 + C(Y))
.

Denote
Yψ1,ψ2 =

{
(x1, x2) ∈ (−1, 1)× R | ψ1(x1) < x2 < 1− ψ2(x1)

}
.

Yψ1,ψ2 is an open set with a Lipschitz boundary. The Nečas constant C(Yψ1,ψ2) satisfies

C(Yψ1,ψ2) ≤ 16C(Y).

Proof. The inequality on C(Yψ1,ψ2) is an immediate consequence of Lemmas B.2 and C.1.
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y = ψ2(t)

y = ψ1(t)

Yψ2

Yψ1

Yψ1 ∩ Yψ2

y

t

Figure 5: Illustration for Lemma C.2
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