

Resolving mid- to upper-crustal exhumation through apatite petrochronology and thermochronology

Gilby Jepson, Barbara Carrapa, Sarah W.M. George, Antoine Triantafyllou,

Shana Egan, Kurt Constenius, George Gehrels, Mihai Ducea

To cite this version:

Gilby Jepson, Barbara Carrapa, Sarah W.M. George, Antoine Triantafyllou, Shana Egan, et al.. Resolving mid- to upper-crustal exhumation through apatite petrochronology and thermochronology. Chemical Geology, 2021, 565, pp.120071. 10.1016/j.chemgeo.2021.120071 . hal-04880662

HAL Id: hal-04880662 <https://hal.science/hal-04880662v1>

Submitted on 11 Jan 2025

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

[Distributed under a Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/)

November 25, 2020

Abstract

 Double-dating using the apatite U-Pb and fission-track systems is becoming an increasingly popular method for resolving mid- to upper- crustal cooling. However, these thermochronometers constrain dates that are often difficult to link through geological time due to the large difference in temperature window between the two systems (typically *>*250°C) . In this study, we apply apatite U-Pb, fission- track, and apatite and whole rock geochemistry to fourteen samples from four tectonic domains common in Cordilleran orogenic systems: (1) basement cored-uplifts, (2) plutons intruded through a thick crustal column, (3) metamorphic core complexes and associated detachment faults, and (4) rapid, extrusive volcanic cooling, in order to provide a link between *in situ* geochemical signatures and cooling mechanisms. Comparisons of trace element partitioning between apatite and whole rock geochemistry provide insights into initial apatite-forming processes and/or subsequent modification. Apatite trace 21 element geochemistry and the Th/U and La/Lu_N ratios provide tools to determine if an apatite is primary and representative of its parent melt or if it has undergone geochemical perturbation(s) after crystallization. Further, we demonstrate that by using a combined apatite U-Pb, FT, trace element, and whole rock geochemistry approach it is possible to determine if a rock has undergone monotonic cooling since crystallization, protracted residence in the middle crust, and provide unique structural

© 2021 published by Elsevier. This manuscript is made available under the Elsevier user license <https://www.elsevier.com/open-access/userlicense/1.0/>

[∗] corresponding author (gjepson@arizona.edu)

information such as the history of detachment faulting. Insights provided herein offer new applications

for apatite thermochronology.

1 Introduction

 Due to the low-solubility of phosphorous in silicate-rich melts and its incompatible behavior with many major rock-forming mineral phases, apatite is a common accessory mineral found in a wide range of crustal rocks (Chew & Spikings 2015). Apatite occurs as an accessory phase in many igneous and metamorphic rocks, and can be abundant in clastic sedimentary rocks (e.g., Henrichs et al. 2018, O'Sullivan et al. 2020, Chew et al. 2020). As well as being a readily available mineral phase, apatite incorporates trace amounts ³⁴ of radiogenic elements such as ²³⁸U, ²³⁵U, and ²³²Th, making it a useful geo- and thermo- chronometer (Carrapa et al. 2009, Cherniak et al. 1991). Apatite is used as a low-temperature thermochronometer through fission-track and (U-Th-Sm)/He) thermochronometric techniques, which constrains the thermal evolution of a sample through the upper crust thus providing insights in to erosional and tectonic processes (e.g., Fitzgerald et al. 1993, Ehlers 2005, Reiners & Brandon 2006, Braun et al. 2006)

 Improvement in Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) in- strumentation and standards have facilitated progress in the development and application of apatite uranium-lead thermochronology (AUPb, e.g., Carrapa et al. 2009, Thomson et al. 2012, Chew et al. 2014). The apatite U-Pb system is controlled by the thermally activated volume diffusion of radiogenic lead at temperatures between (~375 and 570°C; e.g., Cochrane et al. 2014), thus, AUPb acts as a medium- temperature thermochronometer (e.g., Cherniak et al. 1991, Watson & Cherniak 2013). However, apatite is also susceptible to recrystallization, emphasizing the need for thorough interpretation of apatite U-Pb ages (e.g., Spear & Pyle 2002, Kusebauch et al. 2015, Odlum & Stockli 2020). The ~375-570°C temper- ature window is valuable as it provides information on the cooling history of a rock through the middle crust making the apatite U-Pb system a useful chronometer to a variety of geological questions such as tectonic exhumation (e.g., Odlum & Stockli 2019, 2020), ore formation (e.g., Belousova et al. 2002*a*, Glorie et al. 2019), and metamorphism (e.g., Schneider et al. 2015). Through the application of LA-ICP-MS, $_{51}$ U-Pb and FT/(U-Th-Sm)/He (~60-120°C and ~80-45°C, respectively) apatite thermochronology can be integrated together in the form of double and triple-dating of a single mineral to constrain a rocks middle to upper crustal evolution (e.g., Jepson et al. 2018, Horne et al. 2019). Despite the use of the single-grain $_{54}$ double and triple-dating method, it remains difficult to connect the \sim 500-60 $^{\circ}$ C thermal and crustal history of a rock in complex tectonic settings due to substantial ambiguities in thermal pathways (i.e. monotonic cooling *versus* more complex pathways such as reheating, Figure 1).

 In addition to U-Pb dating, *in situ* trace and rare earth elements (REE) concentrations can also be ana- lyzed simultaneously on high resolution single collector ICP-MS. While similar to procedures have been ap- plied to zircons (Belousova et al. 2002*b*, Grimes et al. 2015, Chapman et al. 2016, Balica et al. 2020), . Trace elements in apatite are far more diagnostic of their host rock and a faithful recorder of the parent melt geo- chemistry (e.g. Prowatke & Klemme 2006, Jennings et al. 2011, Mark et al. 2016, O'Sullivan et al. 2018, Gillespie et al. 2018). . In particular, trace elements can be used in conjunction with apatite U-Pb thermochronology to under- stand magma formation and storage (Nathwani et al. 2020) and have even been shown to preserve com- plex diffusion profiles, demonstrating the application of apatite as a novel middle-crust petrochronometer (Seymour et al. 2016, Smye et al. 2018). The variety in radiometric dating and geochemical applications suggests that apatite can not only provide information on timing of cooling, but shed light on the mecha- nisms driving cooling and on the original whole rock chemistry (e.g., Bruand et al. 2016, 2017, O'Sullivan et al. 2020). Here, we apply U-Pb, FT, and trace element analyses to single apatite grains, along with whole rock

 geochemistry to samples taken from different tectonic domains within the North American Cordillera: (1) cratonic-basement from Laramide basement cored-uplifts (Stevens et al. 2016); (2) Laramide-aged plutons related to a thickened crust (DeCelles 2004); (3) metamorphic core complex (MCC) and associated detachment faults (Lister & Davis 1989), and (4) syn- to post- core-complex extrusive volcanism (Best et al. 2009); with the aim of exploring the relationships between apatite U-Pb, apatite fission-track thermochronology and their trace element signatures as related to different tectonic processes (Figure 1 and 2).

Figure 1: Schematic cross-section illustrating typical tectonic processes in a Cordilleran type margin and commonly associated thermal histories associated with each tectonic process. A) prolonged emplacement at mid-to-low temperatures in the shallow crust along basement-cored uplifts, B) steady monotonic cooling from mid-to-low temperatures via erosion of an intrusive pluton that has formed in thickened crust, C) multiple phases of mid-temperature reheating and cooling associated with tectonic exhumation along detachment faults, and D) extrusive volcanic rocks preserving rapid monotonic cooling.

⁷⁶ **2 Tectonic setting of the North American Cordillera**

 The North American Cordillera extends from Alaska in the north down to Mexico in the south and is part of the Circum-Pacific orogenic belt (e.g., DeCelles 2004, DeCelles et al. 2009). The North American Cordillera formed largely in response to continuous Late Paleozoic to Cenozoic subduction deforming thick $\frac{1}{80}$ passive margin strata atop cratonic basement (e.g., Coney et al. 1980, Dickinson 2004, Lawton 2008, Yonkee & Weil 2 The well-documented tectonic record of deformation, thickening, magmatism, and extensional collapse 82 preserved along the North American Cordillera (e.g. Price 1986, Coney 1987, Wernicke et al. 1987, Sonder & Jones 19 make it and ideal setting for fingerprinting cooling and geochemical changes characteristic of different tec-tonic settings.

2.1 Archean Craton

 The Wyoming craton is a segment of Archean crust which preserves predominately rocks of *ca.* 3.5-2.6 Ga and up to *ca.* 4.0 Ga(Hoffman 1988, Frost et al. 1998, Mueller & Frost 2006). The Wyoming craton collided with Laurentia in the Paleoproterozoic during the Trans-Hudson Orogeny to form the core of the North American continent (e.g., Mueller & Frost 2006, Whitmeyer & Karlstrom 2007). The western margin of Laurentia experienced Neoproterozoic and Paleozoic passive margin sedimentation prior to disruption by the Antler orogeny during the Late Devonian-Mississippian and the Sonoman orogeny in the Triassic (e.g., Burchfiel et al. 1992, Dickinson 2004, Gehrels & Pecha 2014). Following mid- Paleozoic orogenesis the western Laurentian margin underwent a mix of Triassic continental and marine sedimentation and Lower to Middle Jurassic terrane accretion consolidating the North American margin by the Late Jurassic (Dickinson & Lawton 2001, DeCelles 2004).

2.2 North American Cordilleran deformation and crustal thickening

 The onset of Farallon plate subduction along the western margin of North America occurred during the Late Jurassic (e.g., Burchfiel et al. 1992, Dickinson 2004, DeCelles 2004). Oblique, east-dipping subduction 99 increased from 5 cm/yr in the Jurassic to $\sim 10 \text{ cm/yr}$ in the Cretaceous (SW-NE, e.g., Engebretson et al. 1985, Weil & Yonkee 2012). The rapidly converging Farallon plate generated the Sevier fold-thrust belt, a region of thin-skinned deformation in the western North American Paleozoic-early Mesozoic sedimentary sequences (e.g., DeCelles 2004, Weil & Yonkee 2012, Yonkee & Weil 2015, Saylor et al. 2020, Figure 2). In the late Cretaceous, the Farallon slab shallowed resulting in flat slab subduction from California inboard (e.g., Coney & Reynolds 1977, Henderson et al. 1984, Bird 1998, Saleeby 2003, Humphreys 2009, Liu et al. 2010, Be Slab flattening has been variably attributed to interactions with the cratonic lithospheric keel or shal- lowing due to subduction of a Shatsky Rise conjugate (Liu et al. 2010, Jones et al. 2011, Carrapa et al. 2019). Regardless of the precise mechanism, flat-slab subduction during the late Cretaceous- early Paleogene caused deformation to propagate inboard, generating basement-involved uplifts known as the Laramide uplifts, which were exhumed and eroded during the late Cretaceous and early Cenozoic (e.g., Dickinson & Snyder 1978, Schmidt & Garihan 1978, Brown 1988, Erslev 1993, Peyton et al. 2012, Carrapa et al. 2019). In addition to the Laramide orogeny, flat slab subduction significantly thickened the North American crust leading to regionally widespread metamorphism and magmatism (e.g., Terrien 2012, Fornash et al. 2013, Whitney et al. 2013, Behr & Smith 2016). Thus, the Wyoming craton remained at shallow crustal depths prior to being exposed via reverse faults, whereas the precondition for for tectonic exhumation

 of metamorphic core complexes was thick-crust and extensive mid-crustal magmatism and associated metamorphism.

2.3 Slab rollback and magmatism

 Foundering and subsequent rollback of the Farallon slab initiated in the late Paleogene (Bird 1979, Conste- nius 1996, Smith et al. 2014, Cassel et al. 2018). Removal of the flat slab and the change from subduction to transform plate boundaries between the Pacific and North American plate caused crustal collapse of the thickened North American crust and induced regional-scale extension across North America exhum- ing Metamorphic Core Complexes (MCC) along large-wavelength detachment faults (e.g., Atwater 1970, Davis 1980, Dewey 1988, Lister & Davis 1989, Spencer & Reynolds 1990, Spencer et al. 2019). The thick- ened crust and elevated geothermal gradient in the lower to middle crust during the Laramide orogeny set the precondition for "flareup" magmatism, characterized by extensive extrusive silicic magmatism that is suggested to have swept westward from the Eocene to Miocene (*ca.* 49-18 Ma) tracking the rollback of the Farallon slab and associated asthenosphere mantle upwelling (e.g., Coney 1978, Constenius et al. 2003, Best et al. 2016).

3 Materials and methods

3.1 Sample sites

 Five samples (KC82317-1, KC82317-3, KC82816-1, KC82816-2 and KC82816-3) were collected from Archean to Paleoproterozoic rocks exposed along basement-cored uplifts in southwestern Montana (Table 1 and Figure 2, Carrapa et al. 2019). Zircon U-Pb dating on exposed Archean and Paleoproterozoic crystalline basement constrain ages ranging from 2.5-1.6 Ga with a prominent distribution at *ca.* 1.7-1.8 Ga (Foster et al. 2006).

 Two samples (KJJ09-7 and KJJ09-8) were collected from Laramide-aged plutons exposed in the Santa Catalina mountains, Arizona (Table 1 and Figure 2). Samples KJJ09-7 and KJJ09-8 were identified as Laramide intrusive rocks with Cretaceous zircon U-Pb ages of 69.1 and 73.0 Ma, respectively (Fornash et al. 2013).

 Three samples (MG1655, MG2465 and MG3150) were collected along a transect in the Pinaleño Mountain core complex, Arizona (Table 1 and Figure 2). Samples MG2465 and MG3150 were collected from an orthogneiss and a granodiorite, respectively, comprising the Proterozoic metamorphic core (Long et al. 1995, Johnson & Arca 2010). Sample MG1655 was collected from a Proterozoic-mapped granite which hosts a strong mylonitized fabric (Johnson & Arca 2010). In addition, sample KJJ09-3 is a sill of Laramide-age which hosts a mylonitic fabric related to the Catalina detachment fault and a Paleogene zircon U-Pb age of 56.6 Ma (Fornash et al. 2013).

 Samples GM-03, GM-05 and GM-08 were collected from the Galiuro Mountain, Arizona (Table 1). The Galiuro Mountains contain a section of late Oligocene volcanic rocks typical of the large ignimbrite flare-up of the southwestern US (Best et al. 2009); with predominantly dacitic ignimbrites reaching up to 2 km thick in thickness and are dated by zircon U-Pb as 29-24 Ma (Creasey & Krieger 1978). These ignimbrites overlay a Precambrian basement section dominated by mid Proterozoic metasedimentary rocks intruded by 1.1 Ga mafic dikes of suspected hot spot origin (Dickinson 1991, Arca et al. 2010).

Table 1: Samples collected from the North American cratonic basement, Laramide-aged plutons, Metamorphic Core Complexes/Detachment faults, and Paleogene volcanic rocks: Age is the published age of the rock, Lat is the north latitude and Long is the west longitude using the WSM 84 coordination system, Elev is elevation in meters above sea level. Lithology notation; *MA* is Middle Archean, *LA* is Late Archean, *PP* is Paleoproterozoic, *K* is Cretaceous, and P_{ϵ} is Paleogene. AFT is apatite fission-track, AUPb is apatite uranium-lead and trace and rare earth elements, and WR is whole rock geochemistry.

Sample	Formation	Region	Lithology	Age	Lat	Long	Elev	Method		
<i>Basement-Cored Uplifts</i>										
KC82317-1	Cratonic	Little Belt,	Gneissic	PP	46.942	-110.745	1733	AFT/AUPb		
	basement	Montana	granite							
KC82317-3	Intrusion	Belt, Little	Diorite	PP	46.958	-110.754	1742	AFT/AUPb		
		Montana								
KC82816-1	Cratonic	Gravelly Range,	Schist	LA	44.885	-111.694	2350	AFT/AUPb		
	basement	Montana								
KC82816-2	Cratonic	Gravelly Range,	Gneiss	МA	44.888	-111.643	2120	AFT/AUPb		
	basement	Montana								
KC82816-3	Cratonic	Gravelly Range,	Granite/	PP	45.318	-111.846	1929	AFT/AUPb		
	basement	Montana	Gneiss							
Thickened Crust/Laramide Plutons										

Metamorphic Core Complex/Detachment Fault

153

Figure 2: A schematic map of the western US Cordillera illustrating the key tectonic and magmatic processes: 1) Basement cored uplifts, 2) emplacement of Laramide-related plutons, 3) formation of metamorphic core complex and associated detachment faults, and 4) emplacement of Paleogene extrusive volcanic rocks. Map modified from Dilek & Moores (1999).

¹⁵⁴ **3.2 Apatite fission-track thermochronology**

¹⁵⁵ Apatite fission-track (AFT) analyses were performed using the external detector method (Tagami 1987). ¹⁵⁶ Apatite grains were mounted in epoxy and polished, and spontaneous fission tracks were revealed by ¹⁵⁷ etching with 5.5‐M nitric acid for 20 s at 21°C before irradiation (after Donelick et al. 2005). The

 neutron fluence was monitored using CN5 U-doped glass (Bellemans et al., 1995). The irradiation was performed at Oregon State University. After irradiation, mica external detectors were etched in 40% hydrofluoric acid for 45 min at 21°C (after Donelick et al. 2005). Analyses were conducted for optical identification of fission-tracks using an Olympus microscope at 1600X magnification with a drawing tube located above a digitizing tablet and a Kinetek computer‐controlled stage driven by the FT Stage program provided by Trevor Dumitru of Stanford University. The fission-track analyses were performed at the Arizona Fission Track Laboratory in the University of Arizona (Table 3 and 4, and Supplementary Table 2). Confined tracks were measured to provide information on the time spent in the 120-60°C apatite 166 partial annealing zone $(APAZ)$, with longer mean confined track lengths $(>13.5\mu m)$ defining rapid cooling through the APAZ and shorter mean confined track lengths indicating prolonged residence in the APAZ (e.g., Laslett et al. 1982, Gleadow et al. 1986, Donelick & Miller 1991, Tagami & O'Sullivan 2005).

 Samples KC82317-1, KC82317-3, KC82816-1, KC82816-2 and KC82816-3 were selected for apatite $_{170}$ U-Pb and FT single-grain double dating. The concentration of uranium $(^{238}$ U) in the counted areas of apatite was determined using LA-ICP-MS. Age calculation was carried out using in-house R script following equations as described in Hasebe et al. (2004) and Vermeesch (2017), using the Durango apatite (McDowell et al. 2005) to perform a session-zeta calibration (Vermeesch 2017). For details on trace element acquisition, see section 3.4.

3.3 Apatite U-Pb thermochronology

 The AUPb method relies on the thermally activated volume diffusion of Pb within the crystal lattice of an apatite grain to provide information about its thermal history cochrane 2014 high, seymour 2016 tectonics, glorie 2017 then Estimates of the closure temperature of the AUPb system are between *ca.* 550 and 370°C depending on cooling rates and apatite crystal sizes (Chew & Donelick 2012, Thomson et al. 2012, Cochrane et al. 2014, Gillespie et al. 2018), although temperatures of *ca.* 450-550°C are more typically reported (e.g., Schoene & Bowring 2007, Blackburn et al. 2011). Apatite grains that were selected for AFT analysis were also targeted for same-grain AUPb and *in situ* trace element analyses. The AUPb dates for this study were acquired using a Photon Machine Analyte G2 Excimer 193 nm laser ablation system connected to a Thermo Element2 single-collector High Resolution ICP-MS at the Arizona LaserChron Center. Spot 185 ablations were performed using a 30 μ m spot size and a 5 Hz laser repetition rate. Each analysis com- prised 20s background collection (laser off) and 40.2 s apatite ablation (laser on; see detailed operational conditions in Table 2). During apatite U-Pb analysis, the Madagascar (MAD2) apatite primary reference

 material (reference age 474.2*±*0.4 Ma, Thomson et al. 2012) was measured repeatedly throughout the session to correct for instrumental drift and down hole fractionation, and the Mt. McClure (523.98 *±* 0.12 Ma Schoene & Bowring 2006) reference material was analyzed as a secondary standard for accuracy checks (Mt. McClure = 514.6 *±* 2.0 Ma, Supplementary File 5). Data reduction was performed using the "*VizualAge_UcomPbine*" Data Reduction Scheme (DRS) in Iolite (Paton et al. 2011, Chew et al. 2014). More details on this DRS can be found in Chew et al. (2014). Isotopic data (238/206 and 207/206 ratios) were plotted and apatite U-Pb ages were obtained using a Tera-Wasserburg lower concordia inter-¹⁹⁵ cept based on a unique upper $(^{207}Pb/^{206}Pb)$ of a relevant non-radiogenic Pb regression line Figures 3-6. Tera-Wasserburg plots were calculated using the IsoplotR package v.2.3 (Vermeesch 2018) in R v.3.5.2.

3.4 Apatite trace element analysis

 A range of trace elements were measured simultaneously to the acquisition of U and Pb isotopes through LA-ICPMS (Table 2 Supplementary File 4, Chapman et al. (2016)). These elements were selected based on their potential to inform on source rock processes (e.g. Belousova et al. 2002*b*, Chapman et al. 2016, Bruand et al. 2017, Henrichs et al. 2018, Gillespie et al. 2018). Trace element data reduction were per- formed using the 'X_Trace_Elements_IS' DRS in Iolite (Paton et al. 2011) following Chew et al. (2016). Instrumental drift was corrected using NIST610 as the primary standard and elemental concentrations were calculated using 43 Ca for internal standardization using stoichiometric abundance of Ca at 39.74 $_{205}$ wt% (Chew et al. 2014). Individual element concentrations for standards NIST610 glass, MAD2 apatite, Durango apatite, and McClure Mountain apatite can be found in Supplementary File 3.

Table 2: Analytical parameters for apatite U-Pb and trace and rare earth element (REE) analyses using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). MFC is mass flow controller for He gas. Acquisition time and settling time are listed in order of isotopes measured. For a detailed list of LA-ICP-MS parameters, see Supplementary File 4.

²⁰⁷ **3.5 Whole rock geochemistry**

 Samples were cut and finely molded in agate jars. Approximately 50 mg of each rock powder was dissolved $_{209}$ by two successive acid attacks. Samples were firstly dissolved in a HF:HNO₃ concentrate mixture (2:1) in 6 mL Savillex® standard octagonal bodied PFA Teflon vials. These Teflon vials, generally referred as Teflon bombs, were sealed using a wrench top closure and Ultem® socket cap. Teflon vials were then set $_{212}$ into an oven at 130°C for 5 days (see similar approach described in Inglis et al. 2018). Solutions were then evaporated on hot plates, and residues were re-dissolved in a HCl concentrate (16M) solution and put on hot plate (120°C) for 24h. The solution was then re-evaporated, and residue dissolved in 2% nitric acid for chemical analysis. Samples were centrifuged to remove undissolved material from the solution. Samples run for trace element analysis were diluted to 10 mL with 2% nitric acid. Trace element analyses were conducted in solution on a ThermoFisher X-Series II Quadrupole Inductively Coupled Plasma Mass Spectrometer (Q-ICP-MS) at the Geosciences Department at the University of Arizona, following the procedures outlined in Rossel et al. (2013). Trace element results were standardized to the Columbia River Basalt (BCR-2) USGS rock standard (Schudel et al. 2015). Standard error for samples run in solution is expected to be less than 5% for major elements and less than 3% for REEs. A blank composed of the same 2% nitric acid that was used to dilute the samples and standards was run before and after each ²²³ sample and standard to account for any material added by our matrix. Detailed whole rock geochemistry ²²⁴ results can be found in Supplementary File 6.

²²⁵ **4 Results**

²²⁶ **4.1 Basement-cored uplifts**

²²⁷ **4.1.1 Apatite U-Pb dating**

 All five samples from basement-cored uplifts clearly define linear arrays in Tera-Wasserburg concordia space (Figure 3A, D, G, J, and K). Using the lower intercept discordia, samples KC82317-1, KC82317-2, $_{230}$ KC82816-2, and KC82816-3 yielded Paleoproterozoic ages of 1840 ± 14 Ma (MSWD = 0.42), 1858 \pm 13 231 Ma (MSWD = 0.42), 1811 \pm 31 Ma (MSWD = 8.0), and 1675 \pm 17 Ma(MSWD = 0.7), respectively. Sample KC82816-1 yielded an Archean age of 2417 *±* 32 Ma (MSWD = 3.3, Figure 3 and Supplementary Table 1).

²³⁴ **4.1.2 Apatite fission-track thermochronology**

²³⁵ Two samples (KC82317-1 and KC82317-3) from the Paleoproterozoic core of the Little Belt Laramide ²³⁶ uplift in central Montana yielded Cretaceous AFT ages of 85 ± 4 Ma and 64 ± 3 Ma, respectively (Table ²³⁷ 1 and Table 3). Confined fission-tracks from sample KC82317-3 provided a mean track length (MTL) of 238 14.2 \pm 1.0 μ m.

²³⁹ Three samples (KC82816-1, KC82816-2 and KC82816-3) from Archean and Paleoproterozoic rocks ²⁴⁰ exposed along the Gravelly Range Laramide uplift in southwest Montana yielded Cretaceous AFT ages 241 of 71 ± 7 Ma, 95 ± 12 Ma, and 74 ± 4 Ma, respectively (Table 1 and Table 3). Confined fission-tracks ²⁴² from samples KC82816-2 and KC82816-3 yielded relatively long MTLs of $14.2 \pm 1.2 \ \mu m$ and $14.0 \pm 0.9 \ \mu m$ 243 μ m, respectively.

Table 3: Summary of laser ablation apatite-fission track data from this: $n =$ number of grains dated, N_s = number of spontaneous tracks counted, ρs = average spontaneous track density (x10⁵cm⁻²), ²³⁸U = average uranium concentration of the analyzed grains, $P(\chi^2) = \chi^2$ probability after (Galbraith 1981), t is the central age (Ma), D_{par} = mean track etch pit diameter parallel to the crystallographic c-axis, P = pooled age, $\#$ is the number of confined tracks counted, MTL is the mean of measured confined tracks in μ m and $\pm 1\sigma$ is also in μ m.

\sim Sample	\sim -11	NT э٧ . 	ρs	238TT ◡	D(تم л. λ		$\pm 1\sigma$	ν_{par}	$\mathbf{\tau}$ -	$\pm 1\sigma$	- -	MTL	-- ᅩᅺ
				(ppm)		(Ma)		μ m	(Ma)			μ m)	

244

²⁴⁵ **4.1.3 Apatite trace elements**

²⁴⁶ Samples KC82317-1 and KC82317-3 both display REE patterns enriched in light REE (LREE) and $_{247}$ depleted in heavy REE (HREE), as well as high mean values of La/Lu_N (N is for chondrite normalized) ²⁴⁸ of 86.0 and 176.2 for KC82317-1 and KC82317-3, respectively (Figure 3. Sample KC82317-1 shows more 249 variation in its LREE content (Figure 3 and 8); La/Sm_N ranging from 0.4 to 2.4 (median 1.3); as well as a_{250} a distinctive negative Eu anomaly $(Eu/Eu^* = Eu_N/[Sm_N * Nd_N]^{1/2})$ ranging from 0.13 to 0.80 (median ²⁵¹ 0.27, compared to 0.78 for sample KC82317-3). Samples KC82816-1, KC82816-2, and KC82816-3 display $_{252}$ various REE patterns (Figure 3). KC82816-1 shows a relatively flat REE pattern (La/Lu_N ranging from ²⁵³ 0.9 to 18.2) with consistent concentrations of REE, 100 to more than 1000x chondritic values, along with ²⁵⁴ a moderate negative Eu anomaly (Eu/Eu* from 0.49 to 0.63). Sample KC82816-2 shows convex-upward 255 REE patterns (Figure 3), with depletion in L- and H-REE compared to Medium-REE (MREE; $\text{La}/\text{Sm}_\text{N}$: $_{256}$ 0.05-0.35 and Dy/Yb_N: 2.21-3.94). Negative Eu anomaly ranging between 0.15 to 0.31 (median of 0.18). ²⁵⁷ Sample KC82816-3 shows a similar pattern as KC82816-1 with a moderate Eu anomaly (Eu/Eu* median 258 value: 0.48; Figure 3). However, it shows a pronounced depletion in HREE compared to MREE (Dy/Yb_N) ²⁵⁹ ranging from 1.20 to 2.97, median 1.54), similar to KC82816-2.

²⁶⁰ **4.2 Laramide-aged plutons**

²⁶¹ **4.2.1 Apatite U-Pb dating**

²⁶² Both samples from Laramide plutons clearly show linear arrays in Tera-Wasserburg concordia space ²⁶³ (Figure 4A and D). Samples KJJ09-07 and KJJ09-08 yield lower intercept discordia ages of 40 *±* 2 Ma $_{264}$ (MSWD = 1.3), and 62 ± 21 Ma (MSWD = 2.3), respectively (Figure 4 and Supplementary Table 1).

Figure 3: Tera-Wasserburg (T-W) concordia diagrams (A, D, G, J, and M), chondrite normalized REE profile plots $(B, E, H, K, and N)$, and apatite fission-track radialplots $(C, F, I, L, and O)$ for samples KC82317-1, KC82317-2, KC82816-1, KC82816-2, and KC82816-3. Apatite U-Pb analyses are plotted using IsoplotR (Vermeesch 2018) and colored according to their La/Lu_N ratio. On the T-W, Ellipses are plotted at 2σ , solid lines represent discordia projections used to obtain an estimate of the initial $^{207}Pb/^{206}Pb$ ratio. Chondrite values from Pourmand et al. (2012) and analyses are colored according to their ²⁰⁷Pb corrected apatite U-Pb age based on the sample's unique discordia. Circles in the radial plots (Vermeesch 2009) are colored according to their La/Lu_N ratio, with blank circles representing grains that no geochemical data was obtained.

Figure 3: Continued.

4.2.2 Apatite fission-track thermochronology

 Two samples (KJJ09-7, and KJJ09-8) from Laramide-aged plutons within the Santa Catalina Meta- morphic Core Complex, Arizona yielded Paleogene-Neogene AFT ages of 24 *±* 2 Ma and 41 *±* 6 Ma, respectively (Table 1 and Table 4). Confined fission-tracks from sample KJJ09-07 yielded a long MTL of $13.7 \pm 1.2 \ \mu \text{m}$.

4.2.3 Apatite and whole rock trace elements

 $_{271}$ Samples KJJ09-07 and KJJ09-08 display similar REE patterns, with MREE content \sim 200x chondritic $_{272}$ values. Apatites from both samples display positive LREE/HREE ratios (La/Lu_N ranging between 18.8- 280.4 and 160.3-307.6, respectively) and moderately negative Eu anomaly (Eu/Eu* median values of 0.54 and 0.67, respectively). Whole rock REE for sample KJJ09-07 displays a REE profile enriched in LREE and depleted in HREE (La/Lu^N of 11.84) similar to *in situ* chemical analyses on constitutive apatites (Figure 3)

Figure 4: Tera-Wasserburg (T-W) concordia diagrams (A, D, and G), chondrite normalized REE spiderplots (B, E, and H), and apatite fission-track radialplots (C, F, and I) for samples KJJ09-03, KJJ09-07, and KJJ09-08. Apatite U-Pb analyses are plotted using IsoplotR (Vermeesch 2018) and colored according to their chondrite normalized La/Lu ratio. On the T-W, Ellipses are plotted at 2σ , solid lines represent discordia projections used to obtain an estimate of the initial ²⁰⁷Pb/²⁰⁶Pb ratio. Chondrite values from Pourmand et al. (2012) and analyses are colored according to their ²⁰⁷Pb corrected apatite U-Pb age based on the sample's unique discordia. Solid black lines in the spiderplots are whole rock REE patterns. Circles in the radial plots (Vermeesch 2009) are colored according to their La/Lu_N ratio, with blank circles representing grains that no geochemical data was obtained.

4.3 Metamorphic Core Complex and detachment fault

4.3.1 Apatite U-Pb dating

 Of the three MCC and detachment fault samples, two samples, MG3150 and MG2465 displayed scattered ellipses through Tera-Wasserburg concordia space (Figure 5A, D, and G). Sample MG3150 displays oscil- latory zoning in cathodoluminescence (CL) images, whereas sample MG2465 preserves recrystallization textures (Supplementary File 8). Thus, we define two and one clear discordia arrays, respectively. Sam- ple MG3150 yields a prominent Mesoproterozoic lower intercept discordia age (n = 17) of 1087 *±* 13 Ma $_{284}$ (MSWD = 2.0), with a secondary Devonian discordia age (n = 9) of 373 \pm 18 Ma (MSWD = 3.9, Figure 5). Additionally, sample MG3150 preserves two ellipses that yield a *ca.* 700 Ma age, however two ellipses were deemed too few for a robust discordia age calculation (Supplementary Table 1). Sample MG2465 ²⁸⁷ yields a prominent Neoproterozoic lower intercept discordia (n = 14) of 734 \pm 23 Ma (MSWD = 1.6) with younger ellipses indicative subsequent of recrystallization. The two detachment faults MG1655 and KJJ09-03 both preserve homogeneous CL textures, a clear, linear array in Tera-Wasserburg concordia 290 space and yield a lower intercept discordia ages of 22 ± 5 (MSWD = 0.5) and 39 ± 7 Ma (MSWD = 2.9), respectively (Figure 5G and J).

4.3.2 Apatite fission-track

 Three samples (MG1655, MG2465, and MG3150) from Paleoproterozoic rocks exposed within the Pinaleño Mountain core complex, Arizona yielded Paleogene-Neogene AFT ages of 20 *±* 2 Ma, 25 *±* 3 Ma, and 29 *±* 3 Ma, respectively (Table 1 and Table 4). Confined fission-tracks from samples GM3150 and MG2465 296 yielded MTLs of $13.8 \pm 1.6 \ \mu \text{m}$ and $13.0 \pm 1.7 \ \mu \text{m}$, respectively. Sample KJJ09-3 from the detachment mylonitized granite along the Santa Catalina Metamorphic Core Complex, Arizona yielded Paleogene-298 Neogene AFT age of 21 ± 3 Ma (Table 4).

4.3.3 Apatite and whole rock trace elements

 Sample MG3150 displays a variably fractionated REE profile (Figure 5), marked by minor to moderate LREE/HREE ratios (La/Lu_N ranging from 5.88 to 341.84, median of 94.84); and a minor depletion in Eu (Eu/Eu^{*} median at 0.80). Fractionation of HREE compared to MREE is distinct in this sample (Dy/Yb_N) range: 0.65-2.37). Sample MG2465 displays relatively flat REE patterns (in particular for HREE), with minor depletion in LREE (La/Sm_N ranging from 0.15 to 1.90, median of 1.12) and a noticeable depletion

Figure 5: Tera-Wasserburg (T-W) concordia diagrams (A, D, G, and J), chondrite normalized REE spiderplots $(B, E, H, and K)$, and apatite fission-track radial plots $(C, F, I, and L)$ for samples MG3150, MG2465, MG1655, and KJJ09-03. Apatite U-Pb analyses are plotted using IsoplotR (Vermeesch 2018) and colored according to their La/Lu ratio. On the T-W, Ellipses are plotted at 2σ , solid lines represent discordia projections used to obtain an estimate of the initial $^{207}Pb/^{206}Pb$ ratio. Dashed lines represent a more uncertain discordia projection used to obtain an estimate of the initial $^{207}Pb/^{206}Pb$ ratio, dashed ellipses represent grains that were corrected using the more uncertain discordia. Chondrite values from Pourmand et al. (2012) and analyses are colored according to their ^{207}Pb corrected apatite U-Pb age based on the sample's unique discordia, mixed ages were calculated using an assumed initial $\frac{207 \text{Pb}}{206 \text{Pb}}$ ratio based on (Stacey & Kramers 1975). Solid black lines in the spiderplots are whole rock REE patterns. Circles in the radial plots (Vermeesch 2009) are colored according to their La/Lu_N ratio, with blank circles representing grains that no geochemical data was obtained.

Figure 5: Continued.

 in Eu (Eu/Eu* median value of 0.25). Whole rock REE composition for sample MG2465 mimics the REE pattern of constitutive apatites, with a flat trend and a distinctive Eu anomaly (Eu/Eu* of 0.43, Figure 5). In contrast, sample MG1655 shows variable fractionation trend of LREE in comparison to MREE $308 \text{ (La/Sm}_\text{N}$ from 0.10 to 1.35, median of 0.25) and relatively flat HREE distribution (Dy/Yb_N median value of 1.04; Figure 7). Eu anomaly is negative and moderate ranging from 0.10 to 0.69. In comparison, whole rock REE composition for sample MG1655 shows a similar trend (M- and HREE and Eu anomaly) except for LREE that appears enriched for the bulk rock composition (La/Sm_N of 3.11). All three samples display a large degree of variance between individual grain REE concentrations (Figure 5 and Figure 7).

 Sample KJJ09-03 displays a flat to slightly convex-upward REE pattern (Figure 5K), with a moderate $_{314}$ depletion in LREE (La/Sm_N range: 0.16-0.67) and in HREE (Dy/Yb_N range: 0.85-2.07, median of 2.04). Patterns are marked by a minor negative Eu anomaly (Eu/Eu^{*} median at 0.36). In contrast, the whole 316 rock REE composition for sample KJJ09-03 shows a high LREE/HREE ratio (La/Lu_N of 37.85) and no Eu anomaly (Eu/Eu^{*} of 1.30).

³¹⁸ **4.4 Volcanic rocks**

³¹⁹ **4.4.1 Apatite U-Pb dating**

³²⁰ All three samples from the volcanic rocks clearly define linear arrays in Tera-Wasserburg concordia space

³²¹ (Figure 6A, D, and G). Samples GM-03, GM-05, and GM-08 yield Eo-Oligocene lower intercept discordia

 322 ages of 41 ± 12 Ma (MSWD = 1.6), 28 ± 31 Ma (MSWD = 1.2), and 29 ± 12 Ma(MSWD = 1.1),

³²³ respectively (Figure 6 and Supplementary Table 1).

³²⁴ **4.4.2 Apatite fission-track thermochronology**

³²⁵ Three samples (GM-03, GM-05, and GM-08) from Paleogene volcanic rocks along the Galiuro Mountains

 326 in Arizona yielded AFT ages of 31 ± 4 Ma, 31 ± 6 Ma, and 29 ± 5 Ma, respectively (Table 1 and Table

 $327 \quad 4$).

Table 4: Summary of external detector apatite fission track data from the North American Cordillera: $n =$ number of grains dated, $N_s =$ number of spontaneous tracks counted, $\rho s =$ average spontaneous track density ($x10^5$ cm⁻²), N_i = number of induced tracks counted, ρi = average induced track density $(x10^5cm^{-2})$, $P(\chi^2) = \chi^2$ probability after (Galbraith 1981), N_d = number of dosimeter tracks counted, $\rho i = \text{average dosimeter track density } (x10^5 \text{cm}^{-2})$, t is the central age (Ma), $D_{\text{par}} = \text{mean track}$ etch pit diameter parallel to the crystallographic c-axis, # is the number of confined tracks counted, MTL is the mean of measured confined tracks in μ m and $\pm 1\sigma$ is also in μ m. G. Jepson Zeta: 341.7 \pm 8.

Sample	$\mathbf n$	$N_{\rm s}$	ρs	N_i	ρ i	$P(\chi^2)$	t (Ma)	$\pm 1\sigma$	ρ d	N_d	D_{par}	#	MTL	$\pm 1\sigma$
											(μm)		(μm)	
Laramide Plutons														
KJJ 09-7	20	144	2.1	1249	18.1	0.50	24.1	2.24	12.3	5533	2.0	50	13.7	1.2
KJJ 09-8	20	79	1.1	364	$5.2\,$	0.66	40.6	5.66	12.1	5533	2.0	$\overline{}$	$\overline{}$	
Metamorphic Core Complex														
MG1655	20	78	1.5	939	18.3	0.54	19.6	2.38	13.8	5533	2.1	\blacksquare	$\overline{}$	$\overline{}$
MG2465	20	106	1.4	970	13.0	0.60	25.0	2.65	13.4	5533	2.4	14	13.0	1.7
MG3150	20	156	3.0	1193	23.2	$0.25\,$	29.2	2.97	13.0	5533	2.0	38	13.8	1.6
KJJ 09-3	20	80	$1.0\,$	770	10.0	0.47	21.4	2.58	12.1	5533	2.0	$\overline{}$		
Extrusive Volcanic Rocks														
$GM-03$	20	77	1.2	697	11.2	0.84	30.8	3.8	16.4	5533	2.2	$\overline{}$		
$GM-05$	20	32	1.0	287	8.9	0.96	$30.5\,$	5.7	16.0	5533	2.4	$\overline{}$	۰	
$GM-08$	20	38	1.0	345	9.4	0.92	28.6	5.0	15.2	5533	2.2			

Figure 6: Tera-Wasserburg (T-W) concordia diagrams (A, D, and G), chondrite normalized REE spiderplots (B, E, and H), and apatite fission-track radialplots (C, F, and I) for samples GM-03, GM-05, and GM-08. Apatite U-Pb analyses are plotted using IsoplotR (Vermeesch 2018) and colored according to their La/Lu ratio. On the T-W, ellipses are plotted at 2*σ*, solid lines represent discordia projections used to obtain an estimate of the initial $207Pb/206Pb$ ratio. Chondrite values from Pourmand et al. (2012) and analyses are colored according to their ²⁰⁷Pb corrected apatite U-Pb age based on the sample's unique discordia. Solid black lines in the spiderplots are whole rock REE patterns. Circles in the radial plots (Vermeesch 2009) are colored according to their La/Lu_N ratio, with blank circles representing grains that no geochemical data was obtained.

4.4.3 Apatite and whole rock trace element results

 All three volcanic samples (GM-03, GM-05, and GM-08) display comparable REE patterns with MREE showing 200 to 2000 the chondritic values (Figure 7). All three samples show an enrichment in LREE compared to MREE (La/Sm_N median values at 10.71, 2.78 and 2.38, respectively) and a moderate negative Eu anomaly (Eu/Eu* median values at 0.55, 0.40 and 0.48, respectively). Sample GM-03 shows a relatively flat HREE trend $(Dy/Yb_N$ ranging from 1.00 to 1.58) compared to samples GM-05 and GM-08 335 that are marked by more fractionated trends, with Dy/Yb_N ranges of 2.21-3.11 and 1.71-3.23, respectively. The whole rock REE profiles for each sample mirrors the apatite REE profile with an enrichment in LREE (GM-03, GM-05, and GM-08 La/Sm_N values of 4.57, 4.11, and 3.58, respectively) and depletion in HREE (GM-03, GM-05, and GM-08 Dy/Yb_N values of 1.23, 1.30, and 1.30, respectively), but with a more modest depletion in Eu (GM-03, GM-05, and GM-08 Eu/Eu* values of 0.77, 0.73, and 0.74, respectively, Figure 6-7). All three samples show very little variation between individual grain REE concentrations (Figure $341 \quad 6-7$).

5 Discussion

 The combination of apatite U-Pb dating, fission-track thermochronology, and apatite and whole rock trace element analysis, applied to well constrained tectonic environments across the North American Cordillera make it possible to distinguish thermal pathways and trace element patterns indicative of various crustal histories. Such discriminant chemical ratios for primary (geochemically representative of whole rock) *versus* secondary apatite (geochemically altered) are crucial for single-grain LA-ICP-MS U-Pb and FT analysis, as it is important to minimize the amount of material ablated as collecting the full range of REEs is material intensive. Finally, our results encourage the usage of apatite geochemistry to elucidate middle to upper crustal thermal histories across a range of cordilleran tectonic processes.

5.1 Primary *versus* **secondary thermal history**

 By using apatite trace element chemistry it is possible to determine the nature of its host rock and to discuss their potential chemical reequilibration (e.g. Gillespie et al. 2018, O'Sullivan et al. 2020). Through trace element and REE composition; secondary (metamorphic or metasomatic) apatites can be distinguished from their primary (magmatic) counterparts based on their depletion in LREE and/or HREE. These depleted trends are generally attributed to the growth of cogenetic mineral phases, with epidote and monazite sequestering LREE, and garnet sequestering HREE (Janots et al. 2008, El Korh et al. 2009, Henrichs et al. 2018, Glorie et al. 2019, Henrichs et al. 2019). Such metamorphic apatite composition is illustrated in samples KC82816-1, KC82816-2, and KC82816-3, marked by a larger spread of their ∑ REE content but above all, showing concave downward REE pattern with unaffected MREE content, a large depletion of LREE and variable depletion of HREE (Figure 3). The apatite host-rock samples consist of an intermediate to granitic orthogneisses and a micaschist composition forming the cratonic basement which underwent medium- to high-grade metamorphic conditions (2-10 kbar and 400- 800°C, Table 1 and Figure 3, e.g. Harms et al. 2004, Mueller et al. 2005). Additionally, apatites extracted from mylonitized granitic samples KJJ09-03 and MG1655 both display similar REE patterns, marked by moderate to major depletion in LREE. Depleting L- or H-REE alters the sum of an apatite's REE content, which is used as a sensitive proxy for distinction between igneous and metamorphic apatite; with the sum of REE in apatite decreasing with increasing metamorphic gradient (Figure 7A, e.g. Belousova et al. 2002*a*, El Korh et al. 2009, Henrichs et al. 2018).

 Low LREE/MREE ratios (samples MG1655 and KJJ09-03) are interpreted as subsequent chemical re- $_{371}$ equilibration during deformation and recrystallization at medium temperature conditions (\sim 400-300°C); likely alongside the formation of LREE rich phases (Table 1 and Figure 5). More specifically, apatite recrystallization occurs simulatenously with monazite (LREE- and Th-rich) and/or epidote group miner- als (LREE-rich and Sr-rich) in medium- to low-grade metamorphic felsic and mafic rocks (e.g. Grapes & Hoskin 2004, Glorie et al. 2019). These two reactions are a possible controls on the apatite geochemistry, with syn-crystallization of monazite influencing sample KC082816-2. Whereas epidote growth controls the apatite geochemistry observed in the mylonitic samples (MG1655 and KJJ09-03, Figure 7B). The Sr/Y ratio in apatite is variably used to distinguish igneous and metamorphic host rock or interpreted to indicate of increased fluid involvement (Nishizawa et al. 2005, Prowatke & Klemme 2006, Henrichs et al. 2018, Odlum & Stoc 1_{380} Igneous apatites show strong negative correlation between Sr/Y and ∑REE due to the similar compata- $_{381}$ bility of REE and Y in apatite (Figure 7A) as well as lower Σ REE and Sr/Y ratio values. These trends agree with the co-recrystallization of Ca-rich (and thus Sr-rich) phases like epidote during metamorphism.

383 The Th/U ratio in zircon is a reliable proxy to distinguish metamorphic and magmatic zircon (e.g. Rubatto 2002)an here we apply it to apatite. Cordilleran apatites from metamorphic samples displaying a decreasing trend in Th/U coeval with decreasing La/Sm_N (Figure 7B) attributed to the co-recrystallization of

 Th-rich phases like monazite. Uranium depletion has been observed in many metamorphic apatites (O'Sullivan et al. 2018, Henrichs et al. 2018, 2019), however, apatites in these studies were sourced from coarse-grained rocks. Large diffusion domains in coarse grained rocks can obscure precise metamorphic processes. There was no noticeable difference between U concentrations of metamorphic (e.g. sample KC82816-1 yielded 3-66 ppm) and igneous apatite (e.g. sample GM-03 yielded 3-15 ppm, Supplementary Table 1) in this study. Rather, U abundances are thought to be controlled by the nature and composition of the host whole rock U concentration. As this study largely focuses on felsic crustal rocks, little variation between samples is expected (O'Sullivan et al. 2020).

 The apatites extracted from mylonitized granitic samples (KJJ09-03 and MG1655) show a notable enrichment in HREE uncorrelated to the whole rock composition (Figure 5J). A possible source of these HREE could be the retrogression of garnet, destabilized during low-grade metamorphism (Rubatto 2002, Rubatto & Hermann 2007, Odlum & Stockli 2020). Here we suggest that the retrogression of garnet during low-grade metamorphism is losing HREE for which apatite is providing a sink whilst undergoing 399 diffusion between \sim 450-375°C (Figure 7A and Supplementary File 8).

 Several authors use the Eu anomaly as a proxy to track oxygen fugacity in igneous systems (e.g. Bau 1991, Trail et al. 2012). In our study, the variability in Eu anomaly is likely related to preexisting Eu anomaly in the whole rock composition (e.g. Figure 5E and H). This is supported by single sample inter-grain variability in the Eu anomaly, Sr/Y, and sumREE for either magmatic or metamorphic host rocks (Figure 7A and C). Thus, the Eu anomaly for a given apatite is likely inherited from the source composition of the parental magma of its respective rock and associated pre- or cogenetic crystallization of plagioclase during apatite crystallization (Figure 7D, e.g. Lu et al. 2016, O'Sullivan et al. 2020). This, further emphasizes the applicability of Eu anomaly in individual apatite grains to decipher its host rock composition, degree of crustal reworking, and depth of magmatic source (e.g. Henrichs et al. 2018, Nathwani et al. 2020).

 Samples MG3150 and MG2465 both display low LREE/HREE ratios and flat REE patterns that are typical of metamorphic apatite, despite both rocks coming from weakly metamorphosed and non- metamorphosed rocks, an orthogneiss and granodiorite, respectively (Figure 5 and Table 1). This suggests that it is possible to have some degree of diffusion of REEs in apatite at temperatures sufficient for thermally-activated volume diffusion, but without causing the rock and apatites to undergo metamorphic recrystallisation, demonstrating the applicability of apatite as a useful tool for tracking petrochronological

Figure 7: Apatite geochemistry diagrams plotting A) Sr/Y against sum of rare earth elements (REE), B) Th/U against sum of light REEs (La-Nd), C) Eu/Eu* against sum of light REEs (La-Nd) and D) Eu/Eu* whole rock against Eu/Eu* apatite. Plotted for comparison are igneous and metamorphic apatite from O'Sullivan et al. (2020)'s apatite geochemistry database.

processes (Smye et al. 2018).

 The ratio of light to heavy REE can be used to distinguish between primary, igneous apatite which is reflective of its original melt conditions and metamorphic apatite or apatite which has experienced subse- quent geochemical alteration. For detailed discrimination of apatite geochemistry, the reader is referred $_{420}$ to O'Sullivan et al. (2020) and references therein. High La/Lu_N ratios (>50) correlate with apatite of igneous origin (i.e. samples KC82317-1, KC82317-3, KJJ09-07, KJJ09-08, GM-03, GM-05, and GM-08) $_{422}$ and low La/Lu_N ratios ($<$ 10) define apatite which has undergone either metamorphic recrystallization or mid-crustal fluid alteration (i.e. samples KC82816-1, KC82816-2, KC82816-3, KJJ09-03, MG3150, MG2465, and MG1655, Table 1 and Figures 3-5). Among primary igneous apatite, the samples for which whole rock were obtained (KJJ09-08, GM-03, GM-05, and GM-08) show that primary igneous apatite REE patterns are in good agreement with associated whole rock REE patterns but with far greater Σ REE values (Figure 4 and 6). Thus, apatite with high La/Lu_N ratio can be used to investigate the composi- tion of the primary melt from which it equilibrates. Finally, the range of magmatic and metamorphic processes observable in apatite indicates that apatite geochemistry has the potential to provide comple- mentary information on melt-forming conditions in conjunction with commonly used accessory minerals such as monazite, titanite and zircon (e.g., Kylander-Clark et al. 2013, Chapman et al. 2016, Kirkland et al. 2020).

5.2 Link between *in situ* **geochemical signature and cooling mechanisms**

 Apatite trace and REE geochemistry reflects crystallization processes as well as medium-temperature crustal processes such as exhumation, hydrothermal alteration, and magma-storage (e.g., Glorie et al. 2019, Odlum & Stockli 2020, Nathwani et al. 2020). However, apatite trace and REE geochemistry can also provide insight into low-temperature exhumation mechanisms. Specifically, the intra-sample variation in single grain trace elements suggests that REEs are undergoing modification via hydrothermal activity at temperatures that are not resetting the apatite U-Pb system. Here we integrate AUPb, AFT, and trace and REE geochemistry from well constrained tectonic settings in order to define the thermo-tectonic pathway of apatite from the mid- to upper crust (Figure 8 and 9)

5.2.1 Volcanic cooling

 The combined U-Pb, FT, and trace element approach was applied to three volcanic rock samples in the Galiuro Mountains ignimbrite complex (Table 1). The Galiuro Mountains ignimbrite complex is dated at

 its base as Oligocene (27.3 Ma, Dickinson 1991), which within error of the Eocene-Oligocene apatite U-Pb 446 and FT dates obtained in this study $(41 \pm 12 \text{ Ma}, 28 \pm 31 \text{ Ma}, \text{ and } 29 \pm 12 \text{ Ma}, \text{ Table 4 and Figure 6}).$ All three volcanic samples display high uncertainty which is likely a product of their rapid crystallization, cooling, and geochemical homogeneity making it difficult to fit a non-radiogenic Pb discordia, however, as they are within error of published constraints we view their ages as representative. The REE patterns obtained for the Galiuro Mountain samples (GM-03, GM-05, and GM-08) all display little intra-sample single-grain variation and give profiles which mirror their respective whole rock geochemistry (Figure 7 and Figure 8). In addition, elevated Th/U and La/Sm_N ratios with low intragrain variability are characteristic of the volcanic rock samples (Figure 7C). The Galiuro Mountains ignimbrite complex is interpreted to be rapidly cooled from the melt during several Oligocene eruptions and has remained undisturbed at surface temperature until present day (e.g., Dickinson 1991, Arca et al. 2010). Thus, we suggest that the consistency between apatite U-Pb and FT ages, combined with elevated Th/U and a homogeneous trace and REEs across single-grain analyses is indicative of a thermal history characterized by rapid cooling from ~575°C to upper crustal temperatures of ~60°C without any secondary thermal or fluid alteration (Figure 9).

5.2.2 Laramide intrusions

 A relationship between medium to low temperature cooling and trace elements is also observed in Laramide-aged intrustions from the Catalina Mountain. Sample KJJ09-08 was collected from granite which yields a zircon U-Pb age of 73 *±* 2 Ma which is in close agreement with the apatite U-Pb age of 62 $_{464}$ \pm 21 Ma and is consistent with the apatite fission-track age of 41 \pm 6 Ma, suggesting a single, monotonic cooling history (Table 4 and Figure 4, Terrien 2012, Fornash et al. 2013). The close agreement of these high to low temperature thermochronometric systems is complimented by a homogeneous trace and REE distribution and consistently high Th/U and La/Lu ratios Figure 7B-8. This further emphasizes that $\frac{468}{468}$ homogeneous, elevated Th/U and La/Lu_N ratios is indicative of a monotonic cooling pathway to the upper crust (Figure 9).

 Sample KJJ09-07 was collected from a granodiorite which yielded a zircon U-Pb age of 69 *±* 3 Ma, a $_{471}$ relatively precise apatite U-Pb age of 40 ± 4 Ma, and younger 24 ± 2 Ma apatite-fission track cooling age (Table 4 and Figure 4, Terrien 2012, Fornash et al. 2013). These ages are in relatively close agreement and could be interpreted as a single cooling history with discrete cooling pulses, however, the single-grain spread in apatite trace and REE (Th/U and La/Lu_N, Figure 7-8) suggests that this sample underwent

Figure 8: Plots showing A) Log-log of apatite U-Pb age minus apatite fission-track age against La/Lu_N ratio, and B) Log-log of apatite U-Pb age minus apatite fission-track age against the median La/Lu_N ratio divided by the standard deviation. Samples which have experienced protracted residence in the middlecrust correlate with an increased spread of La/Lu_N ratios and higher La/Lu_N coefficient of variance.

 an additional period of mid-crust alteration. Expanding on this, previous studies in the Catalina Core Complex have found a distinctive phase of Eocene-aged dikes throughout the range and Eocene zircon rim growth in the Laramide-aged intrusions (Fornash et al. 2013, Ducea et al. 2020). These samples contain moderate to high Th/U and La/Sm_N ratios (Figure 7C). Increased magmatic activity in the Eocene would have elevated the geothermal gradient and resulted in hydrothermal fluids which percolated and cooled through the middle-to-upper crust resulting in a varying degree of alteration across single-grain REE geochemistry, but insufficient to deviate the apatite chemistry from the whole rock REE pattern (Figures 482 A and 8). Thus, the variance in single-grain REE geochemistry, and Th/U, La/Sm_N, the La/Lu_N ratios, can be indicative of fluid alteration, medium-temperature thermal perturbation or prolonged residence (Figure 9).

5.2.3 Metamorphic core complex and detachment faulting

 Apatite U-Pb dating has been shown to constrain the timing of faulting along major detachment fault systems as the apatite U-Pb temperature window (350-550°C) is ideally suited to constraining crustal evolution through the brittle-ductile transition zone (~10 km depth, e.g., Odlum & Stockli 2020). Samples KJJ09-03 and MG1655 were both collected from mylonitized basement exposed along the base of the Catalina and Pinaleño Core Complexes, respectively (Table 1). Zircon U-Pb dates from sample KJJ09- 03 constrain crystallization to 56.6 *±* 3 Ma (Fornash et al. 2013) whereas sample MG1655 is mapped as Paleoproterozoic in age (Johnson & Arca 2010). Apatite U-Pb ages from those same samples define 493 a discordia age of 21 \pm 5 Ma for sample KJJ09-03 and 39 \pm 7 Ma for sample MG1655. Albeit with relatively large uncertainty (Figure 5), the AUPb age for sample KJJ09-03 is within error of the age for the onset of detachment extension of *ca.* 26.4 Ma along the Catalina detachment and sample MG1655 is slightly older than the *ca.* 29 Ma constraint placed along the Pinaleño detachment (Long et al. 1995, Peters et al. 2003, Terrien 2012). The close match between AUPb age and the hypothesized timing of mylonitization emphasizes the applicability of the apatite U-Pb to constrain timing of detachment faulting (Odlum & Stockli 2020). The REE geochemistry for both mylonitized samples display significantly altered profiles (depleted in LREE and enriched in HREE) when compared to their respective whole rock REE patterns (Henrichs et al. 2018), suggesting that the AUPb ages are reflective of apatite recrystallization during mylonitization. Zircons from sample KJJ09-3 displayed disturbed Hf isotopic values, which were attributed to mobilization of REEs during mylonitization (Fornash et al. 2013) demonstrating the distinct $_{504}$ AUPb age and associated geochemistry are indicative of detachment faulting. Further, the La/Lu_N ratio

Figure 9: A summary diagram illustrating the relationship between apatite U-Pb (AUPb), apatite (ap) and whole rock (wr) trace and rare earth element (REE) geochemistry, and apatite fission-track (AFT) across four Cordilleran tectonic terranes.

 is far more consistent across single-grains for sample KJJ09-03 than MG1655 (Figure 8), suggesting a prolonged residence time in the middle crust leads to increased variation in apatite geochemistry.

 Research from a Metamorphic Core Complex in the Pyrenees found that AUPb ages and geochemistry were able to constrain multiple phases of hydrothermal fluid involvement associated with fault movement (Odlum & Stockli 2020). In their study, the upper and lower limits of the discordia spread dated the crystallization and exhumation ages, respectively (Odlum & Stockli 2020). In contrast, the two samples from beneath the detachment in the Pinaleño Mountains MCC (MG3150 and MG2465) preserved two distinctive discordia ages of *ca.* 1100 Ma, and *ca.* 400 Ma (Figure 5). These ages considerably pre- date the onset of the Oligocene Pinaleño detachment (29 Ma) and are temporally unrelated to Paleogene phase of exhumation along a detachment fault (Long et al. 1995). However, the *ca.* 1.1 Ga apatite U-Pb age is within error of Rb-Sr whole rock and baddeleyite U-Pb of dikes within the Pinaleño Mountains MCC (Swan 1976, Bright et al. 2014). Thus, we suggest that the younger discordia age relate to a subsequent period of magmatism or hydrothermal flux in the region (Odlum & Stockli 2020). Further, the preservation of multiple apatite U-Pb discordia within a single sample expands the range of potential petrochronology applications for apatite (Figure 9, Garber et al. 2017, Smye et al. 2018). Finally, both $_{520}$ MG3150 and MG2465 demonstrate a broad range of Th/U, La/Sm_N, and La/Lu_N ratios, which could be indicative of either protracted residence in the middle crust or due to multiple emplacement stages during associated magmatic activity (Figure 7 and 8).

5.2.4 Basement cored uplifts

 Previous studies have attempted to elucidate long-term cooling and exhumation from cratonic environ- ments, finding that cratonic settings preserve distinct, stable low-temperature thermal histories (e.g., Flowers et al. 2006, Hall et al. 2018, Kohn & Gleadow 2019, McDannell et al. 2019). Cratonic basement exhumed along basement cored uplifts (KC82317-1, KC82317-3, KC82816-1, KC82816-2, and KC82816-3) all record Cretaceous AFT ages, suggesting that unlike cratonic environments in the Canadian Shield, South Australia and Baffin Island, the western Wyoming Craton experienced sufficient burial to reset the AFT low-temperature thermochronometer prior to the onset of the Laramide orogeny (Orme et al. 2016). Apatite U-Pb ages from the western Wyoming craton yield three discordant ages at*ca.* 2.4, *ca.* 1.8, and *ca.* 1.6 Ga (Figure 3).

 Samples KC82317-1 and KC82317-3 display REE patterns that are indicative of primary igneous apatite (O'Sullivan et al. 2018, Gillespie et al. 2018) and their AUPb ages of *ca.* 1.8 Ga are within error of

 z_{35} zircon U-Pb and hornblende and biotite ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ ages obtained from the Little Belt Mountains (Mueller et al. 2002, Holm & Schneider 2002, Foster et al. 2006). Therefore, we interpret these rocks (KC82317-1 and KC82317-3) to have remained at middle-to-upper crustal temperature from the Paleoproterozoic. This protracted thermo-tectonic history is reflected in the apatite REE composition (Figure 7), with high single-grain REE variability, low Th/U concentrations and a high La/Lu coefficient of variance $(CV = (\sigma/\mu) * 100$, Figures 3, 7C and 8).

 Similar to the two Little Belt samples, sample KC82816-2 (Gravelly Range, Montana, Table 1) pre- serves an AUPb age of *ca.* 1.8 Ga (Figure 3). However, the concave REE pattern suggests that sample KC82816-2 underwent metamorphism during the Little Belt arc accretion at *ca.* 2.0-1.8 Ga (e.g., Fos- ter et al. 2006, Whitmeyer & Karlstrom 2007). In contrast, the nearby sample KC82816-1 preserves an Archean age of *ca.* 2.4 Ga and an apatite REE pattern indicative of meta-pelitic rocks (Henrichs et al. 2018), suggesting that the apatite U-Pb age records evidence of cratonic assembly along the western boundary of the Wyoming Craton (Kellogg et al. 2003, Mueller & Frost 2006). Sample KC82816-3 records the youngest cratonic age of *ca.* 1.6 Ga, these form a single discordia and a low La/Lu ratio (Figure 8). The 1.6 Ga discordia age likely reflects a widespread tectono-thermal event along southwestern Montana between *ca.* 1.65-1.63 Ga (Mueller et al. 2005, Foster et al. 2006), which would have reset the apatite U- Pb chronometer. However, sample KC82816-3 preserves both an igneous and metamorphic REE pattern (Henrichs et al. 2018), suggesting that thermal conditions were not sufficient to completely re-equilibrate the apatite and the sample underwent selective alteration in response to hydrothermal fluid interaction (Figure 3 and Supplementary File 9).

 Finally, samples KC82816-1, KC82816-2, and KC82816-3 (Gravelly Range, Montana, Table 1) all display low La/Lu and Th/U ratios, relatively high La/Lu coefficient of variance, and high variability along single-grain apatite REE patterns (Figure 3 and 7). Considering that this region of the Wyoming Craton is interpreted to have undergone very little exhumation since the Proterozoic (Foster et al. 2006, Whitmeyer & Karlstrom 2007), and the low-temperature thermochronometric systems are completely reset in the Cretaceous (Table 3), we suggest that the high La/Lu coefficient of variance and variable apatite REE patterns are evidence for protracted residence in the middle crust (Figure 9).

6 Conclusions

 Through the combined application of apatite U-Pb and FT thermochronology with *in situ* and whole rock trace elemental geochemistry this study shows the viability of this petrochronological and thermochrono- logical approach on a range of high to low temperature crustal settings. We demonstrate that the REE $_{566}$ patterns and the La/Lu_N ratio can be interpreted as indicators to whether an apatite grain preserves a $_{567}$ primary (whole rock representative; typically La/Lu_N >50) or secondary (geochemically modified; typ-₅₆₈ ically La/Lu_N \lt 50)) thermal history. If the apatite geochemistry preserves a primary thermal history, then apatite geochemistry acts as a representative record of whole rock geochemistry similar to other com- monly used accessory minerals. Apatite geochemistry applied to extrusive volcanic rocks demonstrates that consistent single-grain REE patterns reflect monotonic cooling. In contrast, samples which have undergone medium temperature (*>*250°C) thermal perturbation or samples that experience protracted residence in the middle crust host considerable single-grain REE variation. Thus, in absence of double $_{574}$ dating, homogeneous intergrain REEs and elevated Th/U and La/Lu_N ratios are indicative of a monotonic cooling pathway through the upper crust. We further show the utility of apatite U-Pb thermochronol- ogy in constraining the timing of detachment faulting (sensu Odlum & Stockli 2020). Finally, apatite geochemistry has the potential to be an important complementary indicator of melt-forming conditions. Applied in conjunction with other commonly used accessory minerals (monazite, titanite, and zircon), the complex relationship between apatite thermochronology and geochemistry expands the applicability of apatite as a middle-crust thermochronometer.

7 Acknowledgements

 Daniel Alberts is thanked for his work in establishing the apatite U-Pb and trace element method at the University of Arizona. James Worthington is thanked for his assistance with thin-section mineral identification. Reviewers Margret Odlum and David Chew, and editor Catherine Chauval are thanked for their insightful comments which improved the manuscript. Barbara Carrapa acknowledges US Na- tional Science Foundation grant EAR Tectonics 1919179. Mihai N. Ducea acknowledges US National Science Foundation grant EAR 1725002 and the Romanian Executive Agency for Higher Education, Re- search, Development and Innovation Funding project PN-III-P4-ID-PCCF-2016-0014. George E. Gehrels acknowledges US National Science Foundation EAR 1649254 for support of the Arizona LaserChron Cen-ter. Antoine Triantafyllou is a FRS-FNRS post-doctoral research fellow for the PROBARC project (Grant

 CR n°1. B. 414.20F). Antoine Triantafyllou thanks the Rotary Club de Mons and the University of Mons for providing their financial support via the Pierre Jacobs post-doctoral grant (2018).

References

- Arca, M. S., Kapp, P. & Johnson, R. A. (2010), 'Cenozoic crustal extension in southeastern Arizona and
- implications for models of core-complex development', *Tectonophysics* **488**(1), 174 190. Extensional

Tectonics in the Basin and Range, the Aegean, and Western Anatolia.

- **URL:** *http://www.sciencedirect.com/science/article/pii/S0040195110001435*
- Atwater, T. (1970), 'Implications of Plate Tectonics for the Cenozoic Tectonic Evolution of Western North
- America', *GSA Bulletin* **81**(12), 3513–3536.

URL: *https://doi.org/10.1130/0016-7606(1970)81[3513:IOPTFT]2.0.CO;2*

- Balica, C., Ducea, M., Gehrels, G., Kirk, J., Roban, R., Luffi, P., Chapman, J., Triantafyllou, A.,
- Guo, J., Stoica, A., Ruiz, J., Balintoni, I., Profeta, L., Hoffman, D. & Petrescu, L. (2020), 'A zircon
- petrochronologic view on granitoids and continental evolution', *Earth and Planetary Science Letters*
- **531**, 116005.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0012821X19306971*
- Bau, M. (1991), 'Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction
- and the significance of the oxidation state of europium', *Chemical Geology* **93**(3), 219 230.
- **URL:** *http://www.sciencedirect.com/science/article/pii/0009254191901158*
- Behr, W. M. & Smith, D. (2016), 'Deformation in the mantle wedge associated with Laramide flat-slab
- subduction', *Geochemistry, Geophysics, Geosystems* **17**(7), 2643–2660.
- **URL:** *https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016GC006361*
- Belousova, E. A., Griffin, W. L., O'Reilly, S. Y. & Fisher, N. I. (2002*a*), 'Apatite as an indicator mineral
- for mineral exploration: trace-element compositions and their relationship to host rock type', *Journal*
- 614 *of Geochemical Exploration* **76**(1), $45 69$.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0375674202002042*
- Belousova, E. K., Griffin, W. L., O'Reilly, S. Y. & Fisher, N. L. (2002*b*), 'Igneous zircon: trace element
- composition as an indicator of source rock type', *Contributions to mineralogy and petrology* **143**(5), 602–
- 622.
- Best, M. G., Barr, D. L., Christiansen, E. H., Gromme, S., Deino, A. L. & Tingey, D. G. (2009), 'The
- Great Basin Altiplano during the middle Cenozoic ignimbrite flareup: insights from volcanic rocks',
- *International Geology Review* **51**(7-8), 589–633.
- **URL:** *https://doi.org/10.1080/00206810902867690*
- Best, M. G., Christiansen, E. H., de Silva, S. & Lipman, P. W. (2016), 'Slab-rollback ignimbrite flareups
- in the southern Great Basin and other Cenozoic American arcs: A distinct style of arc volcanism',
- *Geosphere* **12**(4), 1097–1135.
- **URL:** *https://doi.org/10.1130/GES01285.1*
- Bird, P. (1979), 'Continental delamination and the Colorado Plateau', *Journal of Geophysical Research: Solid Earth* **84**(B13), 7561–7571.
- **URL:** *https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB084iB13p07561*
- Bird, P. (1998), 'Kinematic history of the Laramide orogeny in latitudes 35°–49°N, western United States', *Tectonics* **17**(5), 780–801.
- **URL:** *https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/98TC02698*
- Blackburn, T., Bowring, S. A., Schoene, B., Mahan, K. & Dudas, F. (2011), 'U-Pb thermochronology:
- creating a temporal record of lithosphere thermal evolution', *Contributions to Mineralogy and Petrology* **162**(3), 479–500.
- **URL:** *https://doi.org/10.1007/s00410-011-0607-6*
- Braun, J., Van Der Beek, P. & Batt, G. (2006), *Quantitative thermochronology: numerical methods for the interpretation of thermochronological data*, Cambridge University Press.
- Bright, R. M., Amato, J. M., Denyszyn, S. W. & Ernst, R. E. (2014), 'U-Pb geochronology of 1.1 Ga
- diabase in the southwestern United States: Testing models for the origin of a post-Grenville large igneous province', *Lithosphere* **6**(3), 135–156.
- **URL:** *https://doi.org/10.1130/L335.1*
- Brown, W. G. (1988), Deformational style of Laramide uplifts in the Wyoming foreland, *in* 'Interaction
- of the Rocky Mountain Foreland and the Cordilleran Thrust Belt', Geological Society of America.
- **URL:** *https://doi.org/10.1130/MEM171-p1*
- Bruand, E., Fowler, M., Storey, C. & Darling, J. (2017), 'Apatite trace element and isotope applications to petrogenesis and provenance', *American Mineralogist* **102**(1), 75 – 84.
- Bruand, E., Storey, C. & Fowler, M. (2016), 'An apatite for progress: Inclusions in zircon and titanite constrain petrogenesis and provenance', *Geology* **44**(2), 91–94.
- **URL:** *https://doi.org/10.1130/G37301.1*
- Burchfiel, B. C., Cowan, D. S. & Davis, G. A. (1992), Tectonic overview of the Cordilleran orogen in the
- western United States, *in* 'The Cordilleran Orogen', Geological Society of America, pp. 407 480.
- **URL:** *https://doi.org/10.1130/DNAG-GNA-G3.407*
- Carrapa, B., DeCelles, P. G. & Romero, M. (2019), 'Early Inception of the Laramide Orogeny in South-
- western Montana and Northern Wyoming: Implications for Models of Flat-Slab Subduction', *Journal of Geophysical Research: Solid Earth* **124**(2), 2102–2123.
- **URL:** *https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JB016888*
- Carrapa, B., DeCelles, P., Reiners, P., Gehrels, G. & Sudo, M. (2009), 'Apatite triple dating and white mica 40Ar/39Ar thermochronology of syntectonic detritus in the Central Andes: A multiphase tectonothermal history', *Geology* **37**(5), 407–410.
- **URL:** *https://doi.org/10.1130/G25698A.1*
- Cassel, E. J., Smith, M. E. & Jicha, B. R. (2018), 'The Impact of Slab Rollback on Earth's Surface:
- Uplift and Extension in the Hinterland of the North American Cordillera', *Geophysical Research Letters* **45**(20), 10,996–11,004.
- **URL:** *https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL079887*
- Chapman, J. B., Gehrels, G. E., Ducea, M. N., Giesler, N. & Pullen, A. (2016), 'A new method for
- estimating parent rock trace element concentrations from zircon', *Chemical Geology* **439**, 59 70.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0009254116303060*
- Cherniak, D., Lanford, W. & Ryerson, F. (1991), 'Lead diffusion in apatite and zircon using ion implanta-
- tion and Rutherford Backscattering techniques', *Geochimica et Cosmochimica Acta* **55**(6), 1663 1673.
- **URL:** *http://www.sciencedirect.com/science/article/pii/001670379190137T*
- Chew, D. M., Babechuk, M. G., Cogné, N., Mark, C., O'Sullivan, G. J., Henrichs, I. A., Doepke, D. &
- McKenna, C. A. (2016), '(LA,Q)-ICPMS trace-element analyses of Durango and McClure Mountain
- apatite and implications for making natural LA-ICPMS mineral standards', *Chemical Geology* **435**, 35
- $675 48.$
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0009254116301590*
- Chew, D. M. & Donelick, R. A. (2012), 'Combined apatite fission track and U-Pb dating by LA-ICP-
- MS and its application in apatite provenance analysis', *Quantitative mineralogy and microanalysis of*
- *sediments and sedimentary rocks: Mineralogical Association of Canada Short Course* **42**, 219–247.
- Chew, D. M. & Spikings, R. A. (2015), 'Geochronology and Thermochronology Using Apatite: Time and
- Temperature, Lower Crust to Surface', *Elements* **11**(3), 189–194.

URL: *https://doi.org/10.2113/gselements.11.3.189*

- Chew, D., O'Sullivan, G., Caracciolo, L., Mark, C. & Tyrrell, S. (2020), 'Sourcing the sand: Accessory
- mineral fertility, analytical and other biases in detrital U-Pb provenance analysis', *Earth-Science Re-views* **202**, 103093.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0012825219305835*
- Chew, D., Petrus, J. & Kamber, B. (2014), 'U–Pb LA–ICPMS dating using accessory mineral standards with variable common Pb', *Chemical Geology* **363**, 185 – 199.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S000925411300510X*
-
- Cochrane, R., Spikings, R. A., Chew, D., Wotzlaw, J.-F., Chiaradia, M., Tyrrell, S., Schaltegger, U. &
- der Lelij, R. V. (2014), 'High temperature (>350°C) thermochronology and mechanisms of Pb loss in
- apatite', *Geochimica et Cosmochimica Acta* **127**, 39 56.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0016703713006674*
- Coney, P. J. (1978), Mesozoic-Cenozoic Cordilleran plate tectonics, *in* 'Cenozoic Tectonics and Regional
- Geophysics of the Western Cordillera', Geological Society of America, pp. 33–50.
- **URL:** *https://doi.org/10.1130/MEM152-p33*
- Coney, P. J. (1987), 'The regional tectonic setting and possible causes of cenozoic extension in the north
- american cordillera', *Geological Society, London, Special Publications* **28**(1), 177–186.
- **URL:** *https://sp.lyellcollection.org/content/28/1/177*
- Coney, P. J., Jones, D. L., Monger, J. W. H. et al. (1980), 'Cordilleran suspect terranes', *Nature* **288**(5789), 329–333.
- Coney, P. J. & Reynolds, S. J. (1977), 'Cordilleran benioff zones', *Nature* **270**(5636), 403–406.
- Constenius, K. N. (1996), 'Late Paleogene extensional collapse of the Cordilleran foreland fold and thrust belt', *GSA Bulletin* **108**(1), 20–39.

URL: *https://doi.org/10.1130/0016-7606(1996)108<0020:LPECOT>2.3.CO;2*

- Constenius, K. N., Esser, R. P. & Layer, P. W. (2003), Extensional collapse of the charleston-nebo salient and its relationship to space-time variations in cordilleran orogenic belt tectonism and continental stratigraphy, *in* 'Cenozoic Systems of the Rocky Mountain Region', Rocky Mountain Section (SEPM),.
- Coutand, I., Carrapa, B., Deeken, A., Schmitt, A. K., Sobel, E. R. & Strecker, M. R. (2006), 'Propagation

of orographic barriers along an active range front: insights from sandstone petrography and detrital

- apatite fission-track thermochronology in the intramontane Angastaco basin, NW Argentina', *Basin*
- *Research* **18**(1), 1–26.
- **URL:** *https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2117.2006.00283.x*
- Creasey, S. C. & Krieger, M. H. (1978), 'Galiuro Volcanics, Pinal, Graham and Cochise counties, Arizona', *Journal of Research of the U.S. Geological Survey* **6**, 115–31.
- Davis, G. H. (1980), Structural characteristics of metamorphic core complexes, southern Arizona, *in* 'Cordilleran Metamorphic Core Complexes', Geological Society of America, pp. 35–78.
- **URL:** *https://doi.org/10.1130/MEM153-p35*
- DeCelles, P. G. (2004), 'Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland
- basin system, western USA', *American Journal of Science* **304**(2), 105–168.
- DeCelles, P. G., Ducea, M. N., Kapp, P. & Zandt, G. (2009), 'Cyclicity in Cordilleran orogenic systems', *Nature Geoscience* **2**(4), 251–257.
- Dewey, J. F. (1988), 'Extensional collapse of orogens', *Tectonics* **7**(6), 1123–1139.
- **URL:** *https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/TC007i006p01123*
- Dickinson, W. R. (1991), Tectonic setting of faulted Tertiary strata associated with the Catalina core
- complex in southern Arizona, *in* 'Tectonic setting of faulted Tertiary strata associated with the Catalina
- core complex in southern Arizona', Geological Society of America.
- **URL:** *https://doi.org/10.1130/SPE264-p1*
- Dickinson, W. R. (2004), 'Evolution of the North American Cordillera', *Annual Review of Earth and*
- *Planetary Sciences* **32**(1), 13–45.
- **URL:** *https://doi.org/10.1146/annurev.earth.32.101802.120257*
- Dickinson, W. R. & Lawton, T. F. (2001), 'Carboniferous to Cretaceous assembly and fragmentation of Mexico', *GSA Bulletin* **113**(9), 1142–1160.
- **URL:** *https://doi.org/10.1130/0016-7606(2001)113<1142:CTCAAF>2.0.CO;2*
- Dickinson, W. R. & Snyder, W. S. (1978), Plate tectonics of the Laramide orogeny, *in* 'Laramide Folding
- Associated with Basement Block Faulting in the Western United States', Geological Society of America.

URL: *https://doi.org/10.1130/MEM151-p355*

- Dilek, Y. & Moores, E. M. (1999), 'A Tibetan model for the early Tertiary western United States', *Journal of the Geological Society* **156**(5), 929–941.
- **URL:** *https://jgs.lyellcollection.org/content/156/5/929*
- Donelick, R. A. & Miller, D. S. (1991), 'Enhanced tint fission track densities in low spontaneous track
- density apatites using 252Cf-derived fission fragment tracks: A model and experimental observations',
- *International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and*
- *Radiation Measurements* **18**(3), 301 307.
- **URL:** *http://www.sciencedirect.com/science/article/pii/135901899190022A*
- Donelick, R. A., O'Sullivan, P. B. & Ketcham, R. A. (2005), 'Apatite Fission-Track Analysis', *Reviews in*
- *Mineralogy and Geochemistry* **58**(1), 49.
- **URL:** *http://dx.doi.org/10.2138/rmg.2005.58.3*
- Ducea, M. N. & Chapman, A. D. (2018), 'Sub-magmatic arc underplating by trench and forearc materials
- in shallow subduction systems; a geologic perspective and implications', *Earth-Science Reviews* **185**, 763
- $751 779.$
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0012825218302666*
- Ducea, M. N., Paterson, S. R. & DeCelles, P. G. (2015), 'High-Volume Magmatic Events in Subduction
- Systems', *Elements* **11**(2), 99–104.
- **URL:** *https://doi.org/10.2113/gselements.11.2.99*
- Ducea, M. N., Triantafyllou, A. & Krcmaric, J. (2020), 'New Timing and Depth Constraints for the Catalina Metamorphic Core Complex, Southeast Arizona', *Tectonics* **39**(8), e2020TC006383. e2020TC006383 2020TC006383.
- **URL:** *https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020TC006383*
- Ehlers, T. A. (2005), 'Crustal Thermal Processes and the Interpretation of Thermochronometer Data',
- *Reviews in Mineralogy and Geochemistry* **58**(1), 315–350.
- **URL:** *https://doi.org/10.2138/rmg.2005.58.12*
- El Korh, A., Schmidt, S. T., Ulianov, A. & Potel, S. (2009), 'Trace Element Partitioning in HP–LT
- Metamorphic Assemblages during Subduction-related Metamorphism, Ile de Groix, France: a Detailed

LA-ICPMS Study', *Journal of Petrology* **50**(6), 1107–1148.

- **URL:** *https://doi.org/10.1093/petrology/egp034*
- Engebretson, D. C., Cox, A. & Gordon, R. G. (1985), Relative Motions Between Oceanic and Continental
- Plates in the Pacific Basin, *in* 'Relative Motions Between Oceanic and Continental Plates in the Pacific Basin', Geological Society of America.
- **URL:** *https://doi.org/10.1130/SPE206-p1*
- Erslev, E. A. (1993), Thrusts, back-thrusts and detachment of Rocky Mountain foreland arches, *in* C. J.
- Schmidt, R. B. Chase & E. A. Erslev, eds, 'Laramide basement deformation in the Rocky Mountain foreland of the western United States', Vol. 280, Geological Society America, p. 339–358.
- Fitzgerald, P. G., Stump, E. & Redfield, T. F. (1993), 'Late Cenozoic Uplift of Denali and Its Relation
- to Relative Plate Motion and Fault Morphology', *Science* **259**(5094), 497–499.
- **URL:** *https://science.sciencemag.org/content/259/5094/497*
- Flowers, R., Bowring, S. & Reiners, P. (2006), 'Low long-term erosion rates and extreme continental
- stability documented by ancient (U-Th)/He dates', *Geology* **34**(11), 925–928.
- **URL:** *https://doi.org/10.1130/G22670A.1*
- Fornash, K. F., Patchett, P. J., Gehrels, G. E. & Spencer, J. E. (2013), 'Evolution of granitoids in the
- Catalina metamorphic core complex, southeastern Arizona: U–Pb, Nd, and Hf isotopic constraints',
- *Contributions to Mineralogy and Petrology* **165**(6), 1295–1310.
- Foster, D. A., Mueller, P. A., Mogk, D. W., Wooden, J. L. & Vogl, J. J. (2006), 'Proterozoic evolution of the western margin of the Wyoming craton: implications for the tectonic and magmatic evolution of the northern Rocky Mountains', *Canadian Journal of Earth Sciences* **43**(10), 1601–1619.
-
- **URL:** *https://doi.org/10.1139/e06-052*
- Frost, C. D., Frost, B., Chamberlain, K. R. & Hulsebosch, T. P. (1998), 'The late archean history of the
- wyoming province as recorded by granitic magmatism in the wind river range, wyoming', *Precambrian*
- *Research* **89**(3), 145 173.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S030192689700082X*
- Galbraith, R. F. (1981), 'On statistical models for fission track counts', *Journal of the International Association for Mathematical Geology* **13**(6), 471–478.
- **URL:** *https://doi.org/10.1007/BF01034498*
- Garber, J. M., Hacker, B. R., Kylander-Clark, A. R. C., Stearns, M. & Seward, G. (2017), 'Controls
- on Trace Element Uptake in Metamorphic Titanite: Implications for Petrochronology', *Journal of Petrology* **58**(6), 1031–1057.
- **URL:** *https://doi.org/10.1093/petrology/egx046*
- Gehrels, G. & Pecha, M. (2014), 'Detrital zircon U-Pb geochronology and Hf isotope geochemistry of
- Paleozoic and Triassic passive margin strata of western North America', *Geosphere* **10**(1), 49–65.
- **URL:** *https://doi.org/10.1130/GES00889.1*
- Gillespie, J., Glorie, S., Khudoley, A. K. & Collins, A. S. (2018), 'Detrital apatite U-Pb and trace element
- analysis as a provenance tool: Insights from the Yenisey Ridge (Siberia)', *Lithos* **314-315**, 140 155.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0024493718301890*
- Gleadow, A. J., Belton, D. X., Kohn, B. P. & Brown, R. W. (2002), 'Fission Track Dating of Phosphate
- Minerals and the Thermochronology of Apatite', *Reviews in Mineralogy and Geochemistry* **48**(1), 579.
- **URL:** *+ http://dx.doi.org/10.2138/rmg.2002.48.16*
- Gleadow, A. J. W., Duddy, I. R., Green, P. F. & Lovering, J. F. (1986), 'Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis', *Contributions to Mineralogy and Petrology* **94**(4), 405–415.
- **URL:** *https://doi.org/10.1007/BF00376334*
- Glorie, S., Jepson, G., Konopelko, D., Mirkamalov, R., Meeuws, F., Gilbert, S., Gillespie, J., Collins, A. S.,
- Xiao, W. J., Dewaele, S. & De Grave, J. (2019), 'Thermochronological and geochemical footprints of
- post-orogenic fluid alteration recorded in apatite: Implications for mineralisation in the Uzbek Tian
- Shan', *Gondwana Research* **71**, 1 15.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S1342937X19300498*
- Grapes, R. H. & Hoskin, P. W. O. (2004), 'Epidote Group Minerals in Low–Medium Pressure Metamorphic
- Terranes', *Reviews in Mineralogy and Geochemistry* **56**(1), 301–345.
- **URL:** *https://doi.org/10.2138/gsrmg.56.1.301*
- Grimes, C. B., Wooden, J. L., Cheadle, M. J. & John, B. E. (2015), '"Fingerprinting" tectono-magmatic provenance using trace elements in igneous zircon', *Contributions to Mineralogy and Petrology* **170**(5- 6), 46.
- Hall, J. W., Glorie, S., Reid, A. J., Collins, A. S., Jourdan, F., Danišík, M. & Evans, N. (2018), 'Thermal history of the northern Olympic Domain, Gawler Craton; correlations between thermochronometric data and mineralising systems', *Gondwana Research* **56**, 90 – 104.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S1342937X18300030*
- Harms, T. A., Brady, J. B., Burger, H. R. & Cheney, J. T. (2004), Advances in the geology of the Tobacco
- Root Mountains, Montana, and their implications for the history of the northern Wyoming province,
- *in* 'Precambrian Geology of the Tobacco Root Mountains, Montana', Geological Society of America.
- **URL:** *https://doi.org/10.1130/0-8137-2377-9.227*
- Hasebe, N., Barbarand, J., Jarvis, K., Carter, A. & Hurford, A. J. (2004), 'Apatite fission-track chronom-
- etry using laser ablation ICP-MS', *Chemical Geology* **207**(3), 135 145.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0009254104000427*
- Henderson, L. J., Gordon, R. G. & Engebretson, D. C. (1984), 'Mesozoic aseismic ridges on the farallon plate and southward migration of shallow subduction during the laramide orogeny', *Tectonics* **3**(2), 121– 132.
- **URL:** *https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/TC003i002p00121*
- Henrichs, I. A., Chew, D. M., O'Sullivan, G. J., Mark, C., McKenna, C. & Guyett, P. (2019), 'Trace
- Element (Mn-Sr-Y-Th-REE) and U-Pb Isotope Systematics of Metapelitic Apatite During Progressive
- Greenschist- to Amphibolite-Facies Barrovian Metamorphism', *Geochemistry, Geophysics, Geosystems* **20**(8), 4103–4129.
- **URL:** *https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008359*
- Henrichs, I. A., O'Sullivan, G., Chew, D. M., Mark, C., Babechuk, M. G., McKenna, C. & Emo, R. (2018), 'The trace element and U-Pb systematics of metamorphic apatite', *Chemical Geology* **483**, 218 $844 - 238.$
- **URL:** *http://www.sciencedirect.com/science/article/pii/S000925411730712X*
- Hoffman, P. F. (1988), 'United plates of america, the birth of a craton: Early proterozoic assembly and growth of laurentia', *Annual Review of Earth and Planetary Sciences* **16**(1), 543–603.
- Holm, D. & Schneider, D. (2002), '40Ar/39Ar evidence for ca. 1800 Ma tectonothermal activity along the
- Great Falls tectonic zone, central Montana', *Canadian Journal of Earth Sciences* **39**(12), 1719–1728.
- **URL:** *https://doi.org/10.1139/e02-069*
- Horne, A. M., van Soest, M. C. & Hodges, K. V. (2019), 'U/Pb and (U-Th-Sm)/He "double" dating of detrital apatite by laser ablation: A critical evaluation', *Chemical Geology* **506**, 40 – 50.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0009254118305898*
- Humphreys, E. (2009), Relation of flat subduction to magmatism and deformation in the western United
- States, *in* 'Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane
- Collision', Geological Society of America.
- **URL:** *https://doi.org/10.1130/2009.1204(04)*
- Inglis, E. C., Creech, J. B., Deng, Z. & Moynier, F. (2018), 'High-precision zirconium stable isotope measurements of geological reference materials as measured by double-spike MC-ICPMS', *Chemical Geology* **493**, 544 – 552.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0009254118303395*
- Janots, E., Engi, M., Berger, A., Allaz, J., Schwarz, J.-O. & Spandler, C. (2008), 'Prograde metamorphic
- sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite–monazite–
- xenotime phase relations from 250 to 610°C', *Journal of Metamorphic Geology* **26**(5), 509–526.
- **URL:** *https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1525-1314.2008.00774.x*
- Jennings, E., Marschall, H., Hawkesworth, C. & Storey, C. (2011), 'Characterization of magma from
- inclusions in zircon: Apatite and biotite work well, feldspar less so', *Geology* **39**(9), 863–866.
- **URL:** *https://doi.org/10.1130/G32037.1*
- Jepson, G., Glorie, S., Konopelko, D., Gillespie, J., Danišík, M., Evans, N. J., Mamadjanov, Y. & Collins,
- A. S. (2018), 'Thermochronological insights into the structural contact between the Tian Shan and
- Pamirs, Tajikistan', *Terra Nova* **30**(2), 95–104.
- **URL:** *https://onlinelibrary.wiley.com/doi/abs/10.1111/ter.12313*
- Johnson, R. A. & Arca, M. S. (2010), 'Compilation Geologic Map from the Baboquivari Mountains to the Transition Zone of the Colorado Plateau'.
- Jones, C. H., Lang Farmer, G., Sageman, B. & Zhong, S. (2011), 'Hydrodynamic mechanism for the Laramide orogeny', *Geosphere* **7**(1), 183–201.
- **URL:** *https://doi.org/10.1130/GES00575.1*
- Kellogg, K. S., Snee, L. W. & Unruh, D. M. (2003), 'The mesoproterozoic beaverhead impact structure and its tectonic setting, montana‐idaho: 40ar/39ar and u‐pb isotopic constraints', *The Journal of Geology* **111**(6), 639–652.
- **URL:** *https://doi.org/10.1086/378339*
- Kirkland, C., Yakymchuk, C., Gardiner, N., Szilas, K., Hollis, J., Olierook, H. & Steenfelt, A. (2020),
- 'Titanite petrochronology linked to phase equilibrium modelling constrains tectono-thermal events in
- the Akia Terrane, West Greenland', *Chemical Geology* **536**, 119467.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0009254120300061*
- Kohn, B. P. & Gleadow, A. J. W. (2019), Application of low-temperature thermochronology to craton evo-
- lution, *in* M. G. Malusà & P. G. Fitzgerald, eds, 'Fission-Track Thermochronology and its Application
- to Geology', Springer International Publishing, pp. 373–393.
- Kusebauch, C., John, T., Whitehouse, M. J., Klemme, S. & Putnis, A. (2015), 'Distribution of halogens
- between fluid and apatite during fluid-mediated replacement processes', *Geochimica et Cosmochimica*
- *Acta* **170**, 225 246.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0016703715005268*
- Kylander-Clark, A. R., Hacker, B. R. & Cottle, J. M. (2013), 'Laser-ablation split-stream ICP
- petrochronology', *Chemical Geology* **345**, 99 112.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0009254113000788*
- Laslett, G. M., Kendall, W. S., Gleadow, A. J. W. & Duddy, I. R. (1982), 'Bias in measurement of
- fission-track length distributions', *Nuclear Tracks and Radiation Measurements* **6**(2), 79 85.
- **URL:** *http://www.sciencedirect.com/science/article/pii/0735245X8290031X*
- Lawton, T. F. (2008), Laramide Sedimentary Basins, *in* A. D. Miall, ed., 'The Sedimentary Basins of the
- United States and Canada', Vol. 5 of *Sedimentary Basins of the World*, Elsevier, pp. 429 450.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S1874599708000129*
- Lister, G. S. & Davis, G. A. (1989), 'The origin of metamorphic core complexes and detachment faults
- formed during Tertiary continental extension in the northern Colorado River region, U.S.A.', *Journal*
- *of Structural Geology* **11**(1), 65 94.
- **URL:** *http://www.sciencedirect.com/science/article/pii/0191814189900369*
- Liu, L., Gurnis, M., Seton, M., Saleeby, J., Müller, D. R. & Jackson, J. M. (2010), 'The role of oceanic plateau subduction in the Laramide orogeny', *Nature Geoscience* **3**(5), 353–357.
- Long, K. B., Gehrels, G. E. & Baldwin, S. L. (1995), 'Tectonothermal evolution of the Pinaleño-Jackson
- Mountain core complex, southeast Arizona', *GSA Bulletin* **107**(10), 1231–1240.
- **URL:** *https://doi.org/10.1130/0016-7606(1995)107<1231:TEOTPO>2.3.CO;2*
- Lu, Y. J., Loucks, R. R., Fiorentini, M., McCuaig, T. C., Evans, N. J., Yang, Z. M., Hou, Z. Q., Kirkland,
- C. L., Parra-Avila, L. A. & Kobussen, A. (2016), Zircon Compositions as a Pathfinder for Porphyry
- Cu ± Mo ± Au Deposits, *in* 'Tectonics and Metallogeny of the Tethyan Orogenic Belt', Society of
- Economic Geologists.
- **URL:** *https://doi.org/10.5382/SP.19.13*
- Mark, C., Cogné, N. & Chew, D. (2016), 'Tracking exhumation and drainage divide migration of the
- Western Alps: A test of the apatite U-Pb thermochronometer as a detrital provenance tool', *GSA*
- *Bulletin* **128**(9-10), 1439–1460.
- **URL:** *https://doi.org/10.1130/B31351.1*
- McDannell, K. T., Schneider, D. A., Zeitler, P. K., O'Sullivan, P. B. & Issler, D. R. (2019), 'Reconstruct-
- ing deep-time histories from integrated thermochronology: An example from southern Baffin Island,
- Canada', *Terra Nova* **31**(3), 189–204.
- **URL:** *https://onlinelibrary.wiley.com/doi/abs/10.1111/ter.12386*
- McDowell, F. W., McIntosh, W. C. & Farley, K. A. (2005), 'A precise 40Ar–39Ar reference age for the
- Durango apatite (U–Th)/He and fission-track dating standard', *Chemical Geology* **214**(3), 249 263.

URL: *http://www.sciencedirect.com/science/article/pii/S0009254104004218*

- Mueller, P. A., Burger, H. R., Wooden, J. L., Brady, J. B., Cheney, J. T., Harms, T. A., Heatherington,
- A. L. & Mogk, D. W. (2005), 'Paleoproterozoic Metamorphism in the Northern Wyoming Province:
- Implications for the Assembly of Laurentia', *The Journal of Geology* **113**(2), 169–179.
- **URL:** *https://doi.org/10.1086/427667*
- Mueller, P. A. & Frost, C. D. (2006), 'The Wyoming Province: a distinctive Archean craton in Laurentian
- North America', *Canadian Journal of Earth Sciences* **43**(10), 1391–1397.
- **URL:** *https://doi.org/10.1139/e06-075*
- Mueller, P. A., Heatherington, A. L., Kelly, D. M., Wooden, J. L. & Mogk, D. W. (2002), 'Paleoproterozoic
- crust within the Great Falls tectonic zone: Implications for the assembly of southern Laurentia', *Geology* **30**(2), 127–130.
- **URL:** *https://doi.org/10.1130/0091-7613(2002)030<0127:PCWTGF>2.0.CO;2*
- Nathwani, C. L., Loader, M. A., Wilkinson, J. J., Buret, Y., Sievwright, R. H. & Hollings, P. (2020),
- 'Multi-stage arc magma evolution recorded by apatite in volcanic rocks', *Geology* **48**(4), 323–327.
- **URL:** *https://doi.org/10.1130/G46998.1*
- Nishizawa, M., Takahata, N., Terada, K., Komiya, T., Ueno, Y. & Sano, Y. (2005), 'Rare-earth ele-
- ment, lead, carbon, and nitrogen geochemistry of apatite-bearing metasediments from the ff3.8 ga isua
- supracrustal belt, west greenland', *International Geology Review* **47**(9), 952–970.
- **URL:** *https://doi.org/10.2747/0020-6814.47.9.952*
- Odlum, M. L. & Stockli, D. F. (2019), 'Thermotectonic evolution of the north pyrenean agly massif during early cretaceous hyperextension using multi-mineral u-pb thermochronometry', *Tectonics* **38**(5), 1509– 1531.
- **URL:** *https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018TC005298*
- Odlum, M. L. & Stockli, D. F. (2020), 'Geochronologic constraints on deformation and metasomatism along an exhumed mylonitic shear zone using apatite U-Pb, geochemistry, and microtextural analysis',
- *Earth and Planetary Science Letters* **538**, 116177.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0012821X20301205*
- Orme, D. A., Guenthner, W. R., Laskowski, A. K. & Reiners, P. W. (2016), 'Long-term tectonothermal
- history of laramide basement from zircon–he age-eu correlations', *Earth and Planetary Science Letters*
- **453**, 119 130.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0012821X16304022*
- O'Sullivan, G., Chew, D., Kenny, G., Henrichs, I. & Mulligan, D. (2020), 'The trace element composition
- of apatite and its application to detrital provenance studies', *Earth-Science Reviews* **201**, 103044.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0012825219304180*
- O'Sullivan, G. J., Chew, D. M., Morton, A. C., Mark, C. & Henrichs, I. A. (2018), 'An Integrated Apatite Geochronology and Geochemistry Tool for Sedimentary Provenance Analysis', *Geochemistry, Geophysics, Geosystems* **19**(4), 1309–1326.
- **URL:** *https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GC007343*
- Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. (2011), 'Iolite: Freeware for the visualisation and processing of mass spectrometric data', *Journal of Analytical Atomic Spectrometry* **26**(12), 2508– 2518.
- 967 Peters, L., Ferguson, C. A., Spencer, J. E., Orr, T. R. & Dickinson, W. R. (2003), 'Sixteen $^{40}\text{Ar}/^{39}\text{Ar}$ geochronology analyses from southeastern Arizona', *Arizona Geological Survey Open File Report* p. 46.
- Peyton, S. L., Reiners, P. W., Carrapa, B. & DeCelles, P. G. (2012), 'Low-temperature thermochronology
- of the northern Rocky Mountains, western U.S.A.', *American Journal of Science* **312**(2), 145–212.
- **URL:** *http://www.ajsonline.org/content/312/2/145.abstract*
- Pourmand, A., Dauphas, N. & Ireland, T. J. (2012), 'A novel extraction chromatography and MC-ICP-
- MS technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and Post-Archean Australian
- Shale (PAAS) abundances', *Chemical Geology* **291**, 38 54.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0009254111003457*
- Price, R. A. (1986), 'The southeastern canadian cordillera: Thrust faulting, tectonic wedging, and delam-
- ination of the lithosphere', *Journal of Structural Geology* **8**(3), 239 254. International conference on trusting and deformation.
- **URL:** *http://www.sciencedirect.com/science/article/pii/0191814186900465*
- Prowatke, S. & Klemme, S. (2006), 'Trace element partitioning between apatite and silicate melts',
- *Geochimica et Cosmochimica Acta* **70**(17), 4513 4527.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0016703706006120*
- Reiners, P. W. & Brandon, M. T. (2006), 'Using thermochronology to understand orogenic erosion', *Annual Review of Earth and Planetary Sciences* **34**(1), 419–466.
- **URL:** *https://doi.org/10.1146/annurev.earth.34.031405.125202*
- Rossel, P., Oliveros, V., Ducea, M. N., Charrier, R., Scaillet, S., Retamal, L. & Figueroa, O. (2013), 'The
- Early Andean subduction system as an analog to island arcs: Evidence from across-arc geochemical variations in northern Chile', *Lithos* **179**, 211 – 230.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0024493713002776*
- Rubatto, D. (2002), 'Zircon trace element geochemistry: partitioning with garnet and the link between
- U–Pb ages and metamorphism', *Chemical Geology* **184**(1), 123 138.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0009254101003552*
- Rubatto, D. & Hermann, J. (2007), 'Experimental zircon/melt and zircon/garnet trace element partition-
- ing and implications for the geochronology of crustal rocks', *Chemical Geology* **241**(1), 38 61. Crustal
- Dynamics; links between geochronology and petrology.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0009254107000782*
- Saleeby, J. (2003), 'Segmentation of the Laramide Slab—evidence from the southern Sierra Nevada region',
- *GSA Bulletin* **115**(6), 655–668.
- **URL:** *https://doi.org/10.1130/0016-7606(2003)115<0655:SOTLSF>2.0.CO;2*
- Saylor, J. E., Rudolph, K. W., Sundell, K. E. & van Wijk, J. (2020), 'Laramide orogenesis driven by late
- cretaceous weakening of the north american lithosphere', *Journal of Geophysical Research: Solid Earth*
- **125**(8), e2020JB019570. e2020JB019570 2020JB019570.
- **URL:** *https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JB019570*

 Schildgen, T. F., Hodges, K. V., Whipple, K. X., Reiners, P. W. & Pringle, M. S. (2007), 'Uplift of the western margin of the Andean plateau revealed from canyon incision history, southern Peru', *Geology* **35**(6), 523–526.

URL: *https://doi.org/10.1130/G23532A.1*

 Schmidt, C. J. & Garihan, J. M. (1978), Laramide tectonic development of the rocky mouintain foreland of southwestern Montana, *in* 'Rocky Mountain foreland basins and uplifts', Rocky Mountain Association of Geologists, pp. 271–294.

 Schneider, S., Hammerschmidt, K., Rosenberg, C. L., Gerdes, A., Frei, D. & Bertrand, A. (2015), 'U–Pb ages of apatite in the western Tauern Window (Eastern Alps): Tracing the onset of collision-related exhumation in the European plate', *Earth and Planetary Science Letters* **418**, 53 – 65.

URL: *http://www.sciencedirect.com/science/article/pii/S0012821X15000989*

- Schoene, B. & Bowring, S. A. (2006), 'U–Pb systematics of the McClure Mountain syenite: thermochrono-
- $l_{0.16}$ logical constraints on the age of the ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ standard MMhb', *Contributions to Mineralogy and Petrology* **151**(5), 615.
- **URL:** *https://doi.org/10.1007/s00410-006-0077-4*
- Schoene, B. & Bowring, S. A. (2007), 'Determining accurate temperature–time paths from U–Pb ther- mochronology: An example from the Kaapvaal craton, southern Africa', *Geochimica et Cosmochimica* 1021 *Acta* **71**(1), $165 - 185$.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0016703706020187*
- Schudel, G., Lai, V., Gordon, K. & Weis, D. (2015), 'Trace element characterization of USGS reference
- materials by HR-ICP-MS and Q-ICP-MS', *Chemical Geology* **410**, 223 236.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0009254115002934*
- Seymour, N. M., Stockli, D. F., Beltrando, M. & Smye, A. J. (2016), 'Tracing the thermal evolution of
- the corsican lower crust during tethyan rifting', *Tectonics* **35**(10), 2439–2466.
- **URL:** *https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016TC004178*
- Smith, M. E., Carroll, A. R., Jicha, B. R., Cassel, E. J. & Scott, J. J. (2014), 'Paleogeographic record of
- Eocene Farallon slab rollback beneath western North America', *Geology* **42**(12), 1039–1042.
- **URL:** *https://doi.org/10.1130/G36025.1*
- Smye, A., Marsh, J., Vermeesch, P., Garber, J. & Stockli, D. (2018), 'Applications and limitations of
- U-Pb thermochronology to middle and lower crustal thermal histories', *Chemical Geology* **494**, 1 18.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0009254118303346*
- Sonder, L. J. & Jones, C. H. (1999), 'Western united states extension: How the west was widened', *Annual Review of Earth and Planetary Sciences* **27**(1), 417–462.
- **URL:** *https://doi.org/10.1146/annurev.earth.27.1.417*
- Spear, F. S. & Pyle, J. M. (2002), 'Apatite, Monazite, and Xenotime in Metamorphic Rocks', *Reviews in Mineralogy and Geochemistry* **48**(1), 293–335.
- **URL:** *https://doi.org/10.2138/rmg.2002.48.7*
- Spencer, J. E. & Reynolds, S. J. (1990), 'Relationship between mesozoic and cenozoic tectonic features
- in west central arizona and adjacent southeastern california', *Journal of Geophysical Research: Solid Earth* **95**(B1), 539–555.
- **URL:** *https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB095iB01p00539*
- Spencer, J. E., Richard, S. M., Lingrey, S. H., Johnson, B. J., Johnson, R. A. & Gehrels, G. E. (2019),
- 'Reconstruction of Mid-Cenozoic Extension in the Rincon Mountains Area, Southeastern Arizona, USA,
- and Geodynamic Implications', *Tectonics* **38**(7), 2338–2357.
- **URL:** *https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019TC005565*
- Stacey, J. & Kramers, J. (1975), 'Approximation of terrestrial lead isotope evolution by a two-stage model', *Earth and Planetary Science Letters* **26**(2), 207 – 221.
- **URL:** *http://www.sciencedirect.com/science/article/pii/0012821X75900886*
- Stevens, A. L., Balgord, E. A. & Carrapa, B. (2016), 'Revised exhumation history of the Wind River
- Range, WY, and implications for Laramide tectonics', *Tectonics* **35**(5), 1121–1136.
- **URL:** *https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016TC004126*
- Swan, M. M. (1976), 'The Stockton Pass fault: An element of the Texas lineament'.
- Tagami, T. (1987), 'Determination of zeta calibration constant for fission track dating', *International*
- *Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Mea-*
- *surements* **13**(2), 127 130.
- **URL:** *http://www.sciencedirect.com/science/article/pii/1359018987900239*
- Tagami, T. & O'Sullivan, P. B. (2005), 'Fundamentals of Fission-Track Thermochronology', *Reviews in*
- *Mineralogy and Geochemistry* **58**(1), 19–47.
- **URL:** *https://doi.org/10.2138/rmg.2005.58.2*
- Terrien, J. J. (2012), The role of magmatism in the Catalina metamorphic core complex, Arizona: insights from integrated thermochronology, gravity and aeromagnetic data, PhD thesis, Syracuse University.
- Thomson, S. N., Gehrels, G., Joaquin, R. & Robert, B. (2012), 'Routine low‐damage apatite U‐Pb dating
- using laser ablation–multicollector–ICPMS', *Geochemistry, Geophysics, Geosystems* **13**(2).
- **URL:** *https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011GC003928*
- Trail, D., Watson, E. B. & Tailby, N. D. (2012), 'Ce and Eu anomalies in zircon as proxies for the oxidation
- state of magmas', *Geochimica et Cosmochimica Acta* **97**, 70 87.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0016703712004905*
- Vermeesch, P. (2009), 'RadialPlotter: A Java application for fission track, luminescence and other radial plots', *Radiation Measurements* **44**(4), 409–410.
- Vermeesch, P. (2017), 'Statistics for LA-ICP-MS based fission track dating', *Chemical Geology* **456**, 19 27.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0009254117301158*
- Vermeesch, P. (2018), 'Isoplotr: A free and open toolbox for geochronology', *Geoscience Frontiers*
- **9**(5), 1479 1493. SPECIAL ISSUE: Frontiers in geoscience:A tribute to Prof. Xuanxue Mo.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S1674987118300835*
- Watson, E. & Cherniak, D. (2013), 'Simple equations for diffusion in response to heating', *Chemical Geology* **335**, 93 – 104.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0009254112005645*
- Weil, A. B. & Yonkee, W. A. (2012), 'Layer-parallel shortening across the Sevier fold-thrust belt and
- Laramide foreland of Wyoming: spatial and temporal evolution of a complex geodynamic system',
- *Earth and Planetary Science Letters* **357-358**, 405 420.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0012821X12005171*
- Wernicke, B. P., England, P. C., Sonder, L. J. & Christiansen, R. L. (1987), 'Tectonomagmatic evolution
- of cenozoic extension in the north american cordillera', *Geological Society, London, Special Publications*
- **28**(1), 203–221.
- **URL:** *https://sp.lyellcollection.org/content/28/1/203*
- Whitmeyer, S. J. & Karlstrom, K. E. (2007), 'Tectonic model for the Proterozoic growth of North Amer-ica', *Geosphere* **3**(4), 220–259.
- **URL:** *https://doi.org/10.1130/GES00055.1*
- Whitney, D. L., Teyssier, C., Rey, P. & Buck, W. R. (2013), 'Continental and oceanic core complexes',
- *GSA Bulletin* **125**(3-4), 273–298.
- **URL:** *https://doi.org/10.1130/B30754.1*
- Yonkee, W. A. & Weil, A. B. (2015), 'Tectonic evolution of the Sevier and Laramide belts within the
- North American Cordillera orogenic system', *Earth-Science Reviews* **150**, 531 593.
- **URL:** *http://www.sciencedirect.com/science/article/pii/S0012825215300258*