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Abstract: Soil moisture maps are essential for hydrological, agricultural and risk assessment applica-
tions. To best meet these requirements, it is essential to develop soil moisture products at high spatial
resolution, which is now made possible using the free Sentinel-1 (S1) SAR (Synthetic Aperture Radar)
data. Some soil moisture retrieval techniques using S1 data relied on the use of a priori weather
information in order to increase the precision of soil moisture estimates, which required access to a
weather-forecasting framework. This paper presents an improved and fully autonomous solution for
high-resolution soil moisture mapping in bare agricultural areas. The proposed solution derives a
priori weather information directly from the original Sentinel images, thus bypassing the need for
a weather forecasting framework. For soil moisture estimation, the neural network technique was
implemented to ensure the optimum integration of radar information. The neural networks were
trained using synthetic data generated by the modified Integral Equation Model (IEM) model and
validated on real data from two study sites in France and Tunisia. The main findings showed that
the use of a radar signal averaged over grids of a few km2 in addition to radar signal at plot scale
instead of a priori weather information provides good soil moisture estimations. The accuracy is
even slightly better compared to the accuracy obtained using a priori weather information.

Keywords: soil moisture; bare agricultural areas; neural networks; satellite remote sensing; Sentinel-1

1. Introduction

Understanding the water cycle is crucial for various natural phenomena, such as
floods, landslides, and droughts, which pose significant risks to human lives [1]. Soil
surface characteristics, particularly moisture content and surface roughness, play a vital
role in water cycle monitoring [2–6]. While ground measurements can accurately estimate
these parameters, they are often time-consuming, labor-intensive, and limited in spatial
representation [7]. Observations collected through remote sensing from space provide
effective resources for tracking and mapping changes across vast regions both spatially and
over time, which is needed for reliable predictions of water cycle behaviors [8]. In the case
of plot-scale soil surface characteristics estimation, low spatial resolution measurements
provided by sensors like SMOS, SMAP, and ASCAT are unsuitable [9]. To overcome this
low spatial resolution limitation, the open source and free-of-charge Sentinel-1A and -1B
Synthetic Aperture Radar (SAR) sensors operating in the C-band have been introduced,
offering high spatial resolution soil surface characteristics mapping [10].
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In areas with sparse vegetation cover, Synthetic Aperture Radar (SAR) data operating
in the C-band have emerged as a valuable tool for estimating soil moisture. Among the
models employed to simulate the SAR signal, the Integral Equation Model (IEM), a physical
model developed by Fung [11], has gained considerable attention. Fung’s IEM possesses
the advantage of not requiring site-specific calibration, as it can consistently be used to
simulate backscattering coefficients based on radar configuration (frequency, polarization,
and incidence angle) and soil parameters (soil moisture and soil roughness). However,
Fung’s IEM has shown discrepancies between simulated and observed SAR data [12]. The
IEM accurately replicates radar scatter on smooth surfaces. However, it under-performs
on rough surfaces, where it predicts a more uniform response with incidence angle than
what is observed in C- and X-band signals. Baghdadi et al. [13,14] addressed this challenge
by proposing a semi-empirical calibration for the IEM. This calibration was designed to
enhance the precision of simulated backscattering values by accounting for the difficulties in
measuring the correlation length input parameter. Furthermore, it has been shown that for
bare soil fields and at high incidence angles, surface roughness has a more significant impact
on the radar signal in the C-band than soil surface moisture (SSM) [15]. Consequently,
estimating soil moisture from SAR data without considering the contribution of the root
mean surface height (HRMS) would lead to imprecise soil moisture estimations with
underestimation for low HRMS values and overestimation for higher values [16].

When comparing state-of-the-art soil moisture estimation approaches, we observe
notable differences among them. These variations are primarily attributed to the machine
learning approach used for each soil moisture estimation model. Exploring a different
approach, Nativel et al. [17] proposed a methodology that combines their improved change
detection index with an artificial neural network (ANN) trained on Sentinel-1 and Sentinel-
2 data and data from the International Soil Moisture Network (ISMN) to enhance soil
moisture retrieval accuracy at a 1 km scale. The findings indicate a marked enhancement
in soil moisture predictions employing the hybrid algorithms, specifically, the change
detection algorithm coupled with a neural network. Compared to utilizing either the
neural network or the change detection alone, the hybrid approach boosts the correlation
by 54% and 33%, respectively, highlighting its superior efficacy. Chung et al. [18] trained
an ANN model on Sentinel-1 SAR imagery to estimate soil moisture content Their model
was trained using a variety of hydrological components, including soil texture, topography,
and precipitation data using a leave-one-out approach. The ANN model that uses all
the previously cited hydrological components exhibited superior performance in terms of
accuracy compared to ANNs trained only on some components. In the testing phase, when
only topographical factors were added, the RMSE on soil moisture improved slightly to
7.39 vol.%. With the inclusion of soil attributes, the RMSE decreased further to 6.57 vol.%.
The best performance, however, was observed when all data features were used, resulting in
the lowest RMSE of 5.79 vol.%. Underlining the efficacy of their approach, Hamze et al. [7]
focused on integrating L-band derived soil roughness into C-band Synthetic Aperture
Radar (SAR) data to improve soil moisture retrieval. Their approach involved training
different categories of neural networks on synthetic data generated by the calibrated IEM to
estimate the soil roughness from PALSAR data (L-band) and the soil moisture from Sentinel-
1 data (C-band) using the estimated soil roughness. The introduction of L-band-derived
soil roughness into the inversion approach led to an important reduction in the RMSE
of the estimated soil moisture (approximately 2.0 vol.%). Lastly, Mirsoleimani et al. [19]
investigated the potential of Sentinel-1 SAR data for estimating bare soil surface moisture
over an agricultural area in Iran. Using radar backscattering models and an inversion
technique based on neural networks, they found that the calibrated IEM model yielded
slightly higher accuracy in estimating the soil moisture than the modified Dubois model,
with an RMSE on soil moisture of 3 vol.% with the calibrated IEM and 3.3 vol.% with the
modified Dubois.

One of the prevailing approaches being employed to estimate surface soil moisture
from SAR data involves the inversion of backscatter simulation models using machine
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learning algorithms, specifically neural networks [7,17–19]. The backscatter models are
used to build a synthetic database of simulated backscattering coefficients for various soil
conditions and sensor attributes; then, neural networks are trained to estimate soil moisture
on this synthetic database [14]. A key enhancement to this approach has been the use
of a priori weather information in order to partition the estimation domain into dry or
wet conditions, leading to the application of one of two distinct neural networks, each
specifically trained for either dry to wet (between 4 and 30 vol.%) or very wet (between
20 and 40 vol.%) soil conditions [16].

Our study builds upon the approach introduced by El Hajj et al. [16] and presents a
fully autonomous solution based on Sentinel-1 (S1) images (without external data such
as precipitation for example) to overcome the need for a priori weather information. In
previous versions of the algorithm, weather data like precipitation and temperature were
vital inputs used to guide the inversion algorithm in the estimation of soil moisture. The
improved algorithm, proposed in this study, now relies on the average S1 radar signal,
which is calculated on bare soil pixels and those with little vegetation within large areas
of a few km2 each (10 km × 10 km grid cells). The hypothesis is inspired by the research
of Bazzi et al. [20,21], establishing a strong correlation between the radar signal of bare
or lightly vegetated soils and precipitation, with an increase in radar signal following
heavy rainfall. Thus, a high signal corresponds to high soil moisture within the study area,
which is mainly due to heavy rains. By utilizing the backscattering coefficients at the grid
scale (a few km2), we can deduce the weather conditions used for the estimation domain
partitioning without the need for a priori weather information. The second main objective
is to study the potential of incorporating soil roughness estimates into the soil moisture
estimation procedure, thereby analyzing the accuracy of surface soil moisture estimation
when accounting for the influence of surface roughness on radar backscattering. The added
value of using grid data and soil roughness estimates was studied in comparison to the
previous models on the synthetic dataset generated by the calibrated IEM [13] and on a
real dataset taken from two study sites where in situ soil moisture and soil roughness
measurements are available.

2. Dataset Description and Problem Statement

In this section, we provide a detailed description of the two datasets used in our study.
The first is the synthetic dataset obtained from the well-calibrated radar backscattering
model IEM (Integral Equation Model). The second dataset is a real dataset obtained
from field measurements conducted in Montpellier, France, and Kairouan, Tunisia. The
performances of four neural network configurations using these two datasets are then
compared in order to identify the strengths and limitations of each configuration.

2.1. Synthetic Dataset

The synthetic dataset is a collection of generated backscattering coefficients obtained
from the calibrated IEM. The primary goal is to utilize a part of this dataset for training
different machine learning configurations. The second part of this dataset will be used
in the evaluation phase of our radar signal inversion approaches, providing a reliable
benchmark for performance comparison.

2.1.1. Calibrated Radar Backscattering IEM

Recent studies showed that the calibrated IEM outperforms other well-known algo-
rithms like Dubois, IEM, and Oh in terms of accurately reproducing radar signals [19,22–24].
As a result, this model was chosen for implementation in our study. For bare agricultural
areas, the calibrated IEM calculates the backscattering coefficient (σ) by incorporating the
sensor’s attributes (incidence angle, polarization, and radar wavelength) along with the
soil’s parameters (soil moisture and soil roughness).
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The radar backscattering coefficient for bare agricultural soil can be formulated
as follows:

σ = IEM(θ, λ, Pol, MV, HRMS) (1)

where the sensor attributes are:

• σ is the radar backscatter coefficient (no unit);
• θ is the incidence angle (°);
• λ is the radar wavelength (cm);
• Pol is the polarization (VV or VH; Sentinel-1 configuration).

The soil parameters:

• MV is the soil moisture value (vol.%);
• HRMS is the height root mean square of soil roughness (cm).

In our study, we estimate the soil moisture from the radar backscattering coefficients
(single or dual polarization) and HRMS (measured or otherwise estimated). Thus, this
inverse problem can be formulated as follows:

MV = IEM−1(σ, θ, HRMS) (2)

In the case where the soil roughness is unknown, the inputs to the neural networks
are the SAR data:

MV = IEM−1(σ, θ) (3)

Thus, inversion of the radar signal to estimate soil moisture does not necessarily
require knowledge of the roughness. Inaccurate estimates of soil moisture would be
obtained, however, in the case where the roughness value is unknown.

2.1.2. Range of Input Parameters

The input parameter values needed to build a relevant synthetic dataset were chosen to
represent the same range of values as the parameters of real sensors and soils in agricultural
areas. These inputs were used to generate backscattering coefficients using the calibrated
IEM. The radar wavelength was set to 5.5 cm representing the Sentinel-1 radar wavelength.
The incidence angle (θ) ranged from 20° to 45° with a step size of 1°. For each incidence
angle, soil roughness (HRMS) was considered from a generated list of values, ranging from
0.5 to 3.8 cm with a step size of 0.1 (34 values). For each (θ, HRMS) combination, the soil
moisture spanned from 4 to 40 vol.% with a step size of 2 vol.%.

Given that the SAR signal can show a strong increase with changes in soil moisture,
especially after heavy rainfall [20], calculating the average radar signal over large areas
(watershed or a given grid of several km²) using bare agricultural soils is useful, as it
represents the general soil moisture conditions over the study area (very wet, wet to dry).
In this study, as input to our soil moisture estimation algorithm, we use information at the
plot level (marked with a “p”, VVp and VHp) and information at the grid level (marked
with a “g”, VVg and VHg). For grid synthetic data, we followed the following scheme:
We start by fixing the grid soil moisture MVg between 4 and 40 vol.%. Next, for a given
MVg value and each combination of incidence angle and soil roughness within the chosen
ranges, 100 samples of soil moisture at plot scale were generated using a bounded normal
distribution with a mean value equal to the soil moisture at grid scale and a standard
deviation of 10 vol.%. The generated MVp samples were constrained within the range
[MVg − 10, MVg + 10], and the soil moisture at the plot scale was filtered to retain only
those between 4 and 40 vol.%. Thus, in addition to MVp values, we can also have MVg
values as input in our inversion algorithm.

2.1.3. Synthetic Dataset Generation

Once the synthetic inputs are generated, we run the calibrated IEM to generate the
backscatter coefficients for the grid level using the grid soil moisture values (σVVg , σVHg ) or
for the plot level using the soil moisture at plot scale (σVVp , σVHp ). Then, an absolute error
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corresponding to the SAR observation accuracy was added to the simulated backscattering
coefficients to obtain a more realistic synthetic dataset. For Sentinel-1, this error is defined
by the absolute radiometric accuracy, which is equal to 0.70 dB and 1.0 dB for VV and
VH polarizations, respectively [10]. Accordingly, for each element of our dataset, five
noise samples were randomly selected from the zero-mean Gaussian noise distribution
with a standard deviation of 0.7 and 1.0 dB, respectively, for VV and VH. The randomly
selected noise values were then added to the IEM’s simulated σ at both scales (plot and
grid). Finally, our noisy synthetic dataset, in VV and VH polarizations, is composed of
about 8 million elements.

Table 1 shows an example of the possible combinations of our input parameters in
an eight-column data format. Each row represents a unique data combination defined by
a given radar incidence angle (θ), surface roughness, and soil moisture at plot and grid
scales. σVVp and σVHp were simulated using (θ, HRMS, MVp), while σVVg and σVHg were
simulated using (θ, HRMS, MVg).

Table 1. Example of synthetic data generated by the calibrated IEM using Sentinel-1 wavelength.

IEM Inputs IEM Outputs

θ HRMS MVg MVp σVVp σV Hp σVVg σV Hg

20.0 0.5 4.0 6.56 −12.16 −27.58 −9.30 −21.21

20.0 0.5 4.0 6.45 −10.72 −24.56 −9.06 −19.27

20.0 0.5 4.0 10.76 −10.21 −24.82 −8.77 −20.32

. . . . . . . . . . . . . . . . . . . . . . . .

45.0 3.8 40.0 36.98 −6.04 −15.49 −7.67 −17.01

45.0 3.8 40.0 32.38 −6.36 −17.66 −8.60 −17.55

45.0 3.8 40.0 38.40 −4.78 −15.53 −6.40 −17.39

In this study, half of the synthetic dataset is used for training the neural networks, and
the other half is used for their evaluation; the evaluation half is referred to as the validation
dataset.

2.2. Real Dataset

In this part, we introduce our real dataset from two distinct study areas in Montpellier,
France, and Kairouan, Tunisia. This dataset offers diverse environmental conditions with
associated satellite data and field measurements. The satellite data contain the backscatter
coefficients in VV and VH polarizations calculated from Sentinel-1 ascending orbit images.
In addition, field measurements provide measured soil moisture (MVp) and surface rough-
ness (HRMS) collected at reference fields. The proposed machine learning configurations
for soil moisture estimations are evaluated using the in situ measured soil moisture in the
two study sites.

2.2.1. Montpellier Dataset
Study Area

The first real dataset is collected in a study site located in the Occitanie region of France
as shown in Figure 1. Figure 1 illustrates the delineated parcels within the study area
following the application of a Normalized Difference Vegetation Index (NDVI) threshold
filter of less than 0.4. Utilizing Sentinel-2 (S2) images, NDVI values were calculated for
each individual parcel across the entire timeline of our research period. Subsequently,
Figure 1 shows only the parcels possessing for at least one date an NDVI value less than
0.4. With a relatively flat terrain topography, the study area is composed mainly of forest,
vineyards, grasslands, and agricultural fields (mainly wheat). The climate of the study site
is Mediterranean with a rainy season between mid-October and March and an average
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annual cumulative rainfall of approximately 750 mm. The average air temperature varies
between 2.9 and 29.3 °C. The topsoil texture of the agricultural fields is loam.

Figure 1. Locator map of the Montpellier study area in the Occitanie region of France. In green are
the bare reference fields on which soil moisture and roughness measurements were collected.

Sentinel-1 Images

Over the French study site, 28 Sentinel-1 images (S1) acquired between 15 April 2016
and 26 June 2018 were used. The Sentinel-1 (S1) images are downloadable from the Coperni-
cus website (https://scihub.copernicus.eu/dhus/#/home, accessed on 1 November 2022).
The 28 S1 ascending orbit images used were acquired in IW imaging mode with the VV and
VH polarizations. The S1 images were calibrated using the S1 toolbox developed by the
ESA (European Spatial Agency). The calibration aims to convert the digital number values
of S1 images into backscattering coefficients (σ) in a linear unit. Thus, for each polarization,
the average signal of all pixels in each plot is computed to obtain a single representative
value for each reference plot (σp). Then, to build real SAR signals at grid scale (σg), for each
S1 acquisition and polarization, the average backscatter coefficient is computed using all
agricultural pixels with low NDVI values (below 0.4).

Sentinel-2 Images

All available Sentinel-2 (S2) optical images over each study site/year were down-
loaded from the Theia website (https://www.theia-land.fr/, accessed on 1 November
2022). S2 images cover the same time span of the S1 acquisitions for each site/year. Cloud-
free optical images are available at a frequency of approximately two images per month.
The S2 images provided by Theia are corrected for atmospheric interference and thus are
called Level-2A products. S2 images were mainly used to calculate the NDVI time series
for each reference field.

In Situ Measurements

In situ measurements of soil moisture and surface roughness were collected during
28 field surveys between 15 April 2016 and 26 June 2018. These fields correspond to bare
or partially vegetated soils (NDVI lower than 0.4). Soil moisture at plot scale (MVp) was
measured within a window of 2 h with respect to the Sentinel-1 acquisition date. For each
reference plot, 20 to 30 measurements of volumetric soil moisture were conducted in the top
5 cm of soil by means of a calibrated TDR (Time Domain Reflectometry) probe. The study
utilizes ML2x model theta probes from ThetaProbe, dealing with the challenges associated
with TDR moisture measurement quality quantification. In line with the findings of
Walker et al. [25], it has been confirmed that TDR measurements, especially when facilitated
by 10 and 15 cm waveguides, align closely with gravimetric results, delivering an accuracy
of around ± 2.5 vol.%.

https://scihub.copernicus.eu/dhus/#/home
https://www.theia-land.fr/
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All soil moisture measurements within each plot were averaged to provide a mean
value for each plot. The range of the soil moisture value is between 4.5 and 32.5 vol.%. In
addition, the soil roughness parameter HRMS was determined using a needle profilometer
with a length of 1 m and a needle spacing of 1 cm. For each reference plot, five parallel
roughness profiles along the SAR line of sight were recorded, and another five were
perpendicular to the line. Thus, by processing the roughness profile, the HRMS was
derived. In our study, the recorded HRMS values of the reference plots varied between
0.5 and 4.0 cm. It is important to note that the parcels are not irrigated.

Finally, our French dataset is composed of 198 elements with radar backscattering
coefficients (in VV and VH) and in situ measurements of soil moisture (MVp) and surface
roughness (HRMS). Each element of this real dataset represents a reference plot with an
associated MVp value, incidence angle and mean backscattering coefficients in VV and
VH. The incidence angles of our reference plots vary from 39° to 41°. This dataset was only
used to validate our soil moisture estimates.

2.2.2. Kairouan Dataset
Study Area

The second real dataset was collected over a study area located in the Kairouan
Governorate of Tunisia, as shown in Figure 2, in central Tunisia. The climate in this region
is semi-arid, with an average annual rainfall of approximately 300 mm/year, characterized
by a rainy season lasting from October to May, with the two rainiest months being October
and March. The mean temperature in Kairouan City is 19.2 °C (minimum of 10.7 °C
in January and maximum of 38.6 °C in August). The landscape is mainly flat, and the
vegetation is dominated by agricultural production (cereals, olive groves, fruit trees, market
gardens, and bare soils).

Figure 2. Locator map of the Kairouan study area in the Kairouan Governorate of Tunisia. In green
are the bare reference fields on which soil moisture measurements are collected.

Sentinel-1 Images

A total of 17 Sentinel-1 images were acquired between 6 December 2015 and 30 March 2017
over this study area in ascending mode. The same processing of S1 images was performed
as that for the Montpellier study site.

Sentinel-2 Images

The same processing of S2 images was performed as that for the Montpellier study site.

In Situ Measurements

Ground campaigns were carried out at the same time as the 17 Sentinel-1 acquisitions.
The ground measurements made on the reference fields involved the characterization of the
soil moisture using a theta-probe instrument. On average, 35 bare soil reference fields were
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selected at each Sentinel-1 visit. For each reference field, approximately 20 handheld theta-
probe measurements were made at a depth of 5 cm. The samples were taken from various
locations in each reference field within a two-hour time frame between 15:40 and 17:40,
coinciding with the time of each S1 acquisition. The volumetric moisture ranged between
4.0 and 32.0 vol.%. Soil roughness measurements were not available for the Kairouan
dataset as opposed to the Montpellier dataset. It is important to note that the Kairouan
parcels are frequently irrigated. Finally, our Tunisian dataset is composed of 201 elements
with radar backscattering coefficients (in VV and VH) and in situ measurements of soil
moisture (MVp). The incidence angles of our reference plots vary from 39.5° to 39.9°. This
dataset was only used to validate our soil moisture estimates.

In summary, the synthetic dataset will serve as a benchmark for training and evaluating
various machine learning configurations through a wide range of backscattering coefficients
obtained from the calibrated IEM. Additionally, the real dataset offers a comprehensive and
diverse set of environmental conditions, satellite data, and field measurements from two
distinct study areas in Montpellier, France, and Kairouan, Tunisia. By comparing the soil
moisture estimated from the sensor attributes and the in situ soil moisture, our study can
evaluate the machine learning configurations on veritable data. The field measurements
obtained from both study areas provide us with real data on soil attributes, enabling us to
ensure that the satellite data analysis is grounded in reality and is providing an accurate
representation of the soil attributes being studied.

3. Methodology

In this section, we introduce our experimental setups for inverting Sentinel-1 signals
in order to estimate soil moisture. First, inversion models are described. Then, the model
architecture and the process of model training and optimization are presented. Finally,
the different input/output configurations of the inversion model as well as the precision
metrics used for the models evaluation are detailed.

3.1. Inversion Algorithm

This study focuses on estimating soil moisture content using radar backscattering
coefficients as input data (inverse Equations (2) and (3)). Therefore, the problem is formu-
lated as developing a model that can effectively estimate soil moisture levels based on the
provided radar backscattering coefficients, enabling a better understanding and monitoring
of soil moisture dynamics. In fact, the inversion model uses the neural network technique
trained on the synthetic dataset described in the previous section in order to inverse the
radar signal. The trained neural networks are then used to estimate soil moisture using the
real backscatter computed from Sentinel-1 images.

Given an input vector of S1 radar measurements, we want to learn the function
N that maps the radar measurements to soil moisture values MV. This problem can be
formulated as:

MV = N (σ, θ, HRMS; w) + ε (4)

where the the inputs are σ—the radar backscatter coefficient (dB) at VV and VH polariza-
tions (Sentinel-1 configuration) provided by the satellite images and spatially averaged at
plot (VVp and VHp) or grid scales (VVg and VHg), θ—the associated incidence angle (°),
and HRMS—the soil roughness value (if available). In the vector w = (w, b), w denotes
the weights and b denotes the bias of the neural network N . ε denotes the estimation
error. One of the objectives of this study is to find the best attribute configuration with the
minimum ε.

The adopted neural network architecture is composed of two hidden layers. The first
layer is associated with a linear activation function, while the second hidden layer uses a
tangent sigmoid activation function. Both hidden layers contain 20 neurons each [16]. In
fact, after comparing this neural network with other machine learning models (gradient-
boosted decision tree and multi-layer perceptron), we found that the added value of
changing the machine learning model can be ignored in relation to the added value of
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changing the machine learning model’s attributes. Let W1, W2, and W3 be the weight
matrices of dimensions 20× n, 20× 20, and 1× 20, respectively, and let b1, b2, and b3 be
the bias vectors of dimensions 20× 1, 20× 1, and 1× 1, respectively. For the first hidden
layer, we use a linear transfer function, which is denoted as g1(·). For the second hidden
layer, we use a tangent sigmoid transfer function, which is denoted as g2(·), and for the
last layer, we use the identity function, which is denoted as h(·). The forward pass can be
formulated as:

(a) First hidden layer (linear transfer function):

z1 = W1x + b1, a1 = g1(z1), a1 = z1 (5)

(b) Second hidden layer (tangent sigmoid transfer function):

z2 = W2a1 + b2, a2 = g2(z2), a2 = tanh(z2) (6)

(c) Output layer:
z3 = W3a2 + b3, ŷ = h(z3) (7)

where x is the input vector containing the sensor attributes values and ŷ is the esti-
mated output.

The optimization problem aims to minimize a loss function L(ŷ, y), where ŷ is the
estimated output and y is the observed output. We want to find the optimal weight matrices
(W1, W2, W3) and bias vectors (b1, b2, b3) that minimize the loss function:

w∗ = arg min
w

L(ŷ, y) (8)

with w = (W1, W2, W3, b1, b2, b3).
This is typically achieved through an iterative process such as gradient descent, which

updates the weights and biases based on the gradients of the loss function with respect to the
model parameters. In our case the optimization technique used is the Levenberg–Marquardt
(LM) algorithm [26] (see Appendix A). The Levenberg–Marquardt (LM) algorithm is a
popular optimization technique that combines the features of gradient descent and the
Gauss–Newton method, making it particularly suitable for solving nonlinear least-squares
problems (see Appendix A). The LM algorithm is applied to our neural networks (N ) for
training by minimizing the sum of squared errors (SSE) loss function. The Levenberg–
Marquardt algorithm is an optimization algorithm that does not require a learning step
but uses instead an adaptive damping factor, which has a default value of 1. This quasi-
Newton optimization approach assumes that the function being optimized can be locally
approximated by a second-order Taylor series. The process generally begins with an initial
guess, employs the Jacobian matrix to determine the steepest descent direction, and utilizes
the Hessian matrix to calculate the descent step to the next point. This process continues
until there is no improvement in the loss value by at least 10−4.

3.2. Evaluated Sentinel-1 Configurations

Various configurations aimed at optimizing soil moisture estimation accuracy were
evaluated. These configurations involve the integration of Sentinel-1 polarizations, par-
titioning the estimation domain into dry and wet conditions, incorporating a Sentinel-1
large-scale signal thanks to the grid backscatter coefficients, and training neural networks
with soil roughness estimates.

• Configuration 1: Analyze the effect of Sentinel-1 polarizations

Three inversion Sentinel-1 configurations were tested: (1) VV polarization alone;
(2) VH polarization alone; and (3) both VV and VH polarizations. In this configuration, the
soil roughness parameter HRMS is ignored. They can be formulated as:
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Con f ig_1_VV : MVp = N (σVVp , θ; w) + ε

Con f ig_1_VH : MVp = N (σVHp , θ; w) + ε

Con f ig_1_VV_VH : MVp = N (σVVp , σVHp , θ; w) + ε

(9)

• Configuration 2: Separate the MVp estimation domain into two separate domains:
one for dry to slightly wet and one for very wet

Using the same polarizations as in the previous configuration, we separate our MVp
solution search domain into two domains: one with a search for a solution for dry to
slightly wet soil conditions and one for a solution for wet to very wet soil conditions.
This configuration needs a priori information on MVp (a priori dry to slightly wet or
very wet). Partitioning the estimation domain into distinct dry and wet conditions and
training dedicated neural networks for each domain may significantly enhance soil moisture
estimation accuracy [16]. By focusing on domain-specific patterns and relationships, the
specialized neural networks can capture the complexities associated with soil moisture
variations more effectively. In the case of a priori dry to slightly wet soil, N will be built up
using the synthetic training dataset elements with MVp between 4 and 30 vol.%. Contrarily,
in the case of a priori very wet soil conditions, N will be developed using the synthetic
training dataset elements with MVp between 20 and 40 vol.%. An overlap of 10 vol.% on
MVp is considered between the dry to slightly wet and the very wet training datasets of
N . During the evaluation, the dry N is applied on attributes with MVp < 25, while the
wet N is applied on attributes with MVp ≥ 25. The 25 vol.% moisture threshold is the
midpoint between the two moisture ranges applied to the neural network for dry/wet and
very wet conditions. Both this midpoint value and the selected ranges are grounded in
field observations where soils are usually very wet following substantial rainfall, typically
recording humidity between 25 and 40 vol.%. The dry to wet conditions correspond to soil
after an absence of precipitation (dry for the summer following a prolonged lack of rain
and wet generally in the autumn or winter after a relatively short duration without rain).
In an operational context, the choice betweenNdry orNwet is determined by meteorological
data, primarily focusing on precipitation. For example, if there has been significant rainfall
one or two days before the S1 acquisition, the Nwet would be used; otherwise, the Ndry is
applied. In this configuration, the soil roughness parameter HRMS is ignored.

This is formulated as:

Con f ig_2_VV : MVpdry = Ndry(σVVp , θ; w) + εdry

MVpwet = Nwet(σVVp , θ; w) + εwet

Con f ig_2_VH : MVpdry = Ndry(σVHp , θ; w) + εdry

MVpwet = Nwet(σVHp , θ; w) + εwet

Con f ig_2_VV_VH : MVpdry = Ndry(σVVp , σVHp , θ; w) + εdry

MVpwet = Nwet(σVVp , σVHp , θ; w) + εwet

(10)

• Configuration 3: Assess the added value of using the grid information in addition to
plot scale

In this configuration, we hypothesize that incorporating backscatter coefficients at the
grid scale into the soil moisture estimation process, in addition to backscatter coefficients
at the plot scale, can improve the accuracy of MVp estimation, potentially offering an
alternative to the domain-separated approach which necessitates weather data for selecting
the appropriate neural network (dry to slightly wet or very wet). This hypothesis assumes
that integrating grid coefficients can inform N about the soil moisture status in the study
area, enabling the inversion model to adapt to both dry and wet soil characteristics. We



Remote Sens. 2023, 15, 3502 11 of 24

also chose to use both polarizations as its the most precise configurations. There are two
subcases of configuration 3, which are formulated as:

Con f ig_3_grid : MVp = NMVp(σVVp , σVHp , σVVg , σVHg , θ; w) + εMVp

Con f ig_3_grid_MVg : MVg = NMVg(σVVg , σVHg , θ; w) + εMVg

MVpdry = Ndry(σVVp , σVHp , σVVg , σVHg , θ; w) + εdry

MVpwet = Nwet(σVVp , σVHp , σVVg , σVHg , θ; w) + εwet

(11)

Equation (11) gives a detailed presentation of the neural networks and their inputs
used in configuration 3. In Con f ig_3_grid only NMVp was used; this network was trained
using the backscatter coefficients for VV and VH polarizations on the grid and plot scales.
In Con f ig_3_grid_MVg, three N were used: NMVg is trained to estimate MVg using the
backscatter coefficients for VV and VH on the grid scale, and the MVg value estimated from
NMVg will serve as a dry/wet domain separator. If the estimated MVg < 25 vol.%, the
config will use Ndry in order to estimate MVp; otherwise, it will use Nwet. The second and
third N values were trained using the backscatter coefficients for VV and VH polarizations
on the grid and plot scales: Ndry uses backscatter coefficients on MVp < 30 vol.% andNwet
uses backscatter coefficients on MVp > 20 vol.%. In this configuration, the soil roughness
parameter HRMS is ignored.

• Configuration 4: Analyze the added value of using soil roughness estimates

In this last configuration, we hypothesize that training neural networks with soil
roughness estimates, in conjunction with incorporating grid backscatter coefficients and
partitioning estimation domains, can potentially improve soil moisture estimation accuracy.
This hypothesis suggests that by accounting for the complex relationships between soil
moisture, surface roughness, and backscatter signals, neural networks can better capture
the intricacies of soil moisture variations across various surface conditions. There are two
subcases of configuration 4, which are formulated as:

Con f ig_4_grid : HRMS = NHRMS(σVVp , σVHp , σVVg , σVHg , θ; w) + εHRMS

MVp = NMVp(σVVp , σVHp , σVVg , σVHg , HRMS, θ; w) + εMVp

Con f ig_4_grid_MVg : MVg = NMVg(σVVg , σVHg , θ; w) + εMVg

HRMSdry = NHRMSdry(σVVp , σVHp , σVVg , σVHg , θ; w) + εHRMSdry

HRMSwet = NHRMSwet(σVVp , σVHp , σVVg , σVHg , θ; w) + εHRMSwet

MVpdry = Ndry(σVVp , σVHp , σVVg , σVHg , HRMSdry, θ; w) + εdry

MVpwet = Nwet(σVVp , σVHp , σVVg , σVHg , HRMSwet, θ; w) + εwet

(12)

In Con f ig_4_grid two N values were used. NHRMS was trained to estimate the soil
roughness using the backscatter coefficients for VV and VH polarizations on the grid and
plot scales, while NMVp was trained to estimate the soil moisture using the backscatter
coefficients for VV and VH polarizations on the grid and plot scales in addition to soil
roughness. Furthermore, to account for the uncertainties on HRMS estimated from SAR
images [7] in the training phase, a zero-mean Gaussian noise was added to HRMS with a
standard deviation of 0.5. The estimated HRMS value from NHRMS is used to estimates
MVp.

In Con f ig_4_grid_MVg, fiveN were used; like in Con f ig_3_grid_MVg,NMVg is used
to separate the estimation domain of HRMS and MVp into two domains: dry–wet/very
wet using the same thresholds on MVg as Con f ig_3. Then, HRMS is estimated according
to dry or wet conditions (NHRMSdry or NHRMSwet ), and then, this estimate of HRMS is used
in the network to estimate MVp (Ndry or Nwet).

Note that configurations 1 and 2 have already been tested by El Hajj et al. [16] and that
in our study, they serve as benchmarks for configurations 3 and 4.
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3.3. Evaluation Metrics

The first evaluation metric used is the root mean squared error (RMSE). RMSE is
a valuable metric in soil moisture estimation due to its comprehensive assessment of
accuracy, emphasis on larger errors, and clear interpretability. Its consideration of larger
discrepancies ensures significant errors are addressed. It can be formulated as:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2 (13)

with N representing the number of data, yi denoting the observed value for the i-th data
point, and ŷi denoting the estimated value for the i-th data point.

The second evaluation metric used is bias. The bias metric serves as an important
evaluation tool due to its interpretability and ability to quantify systematic error. By
measuring the average difference between estimated and observed values, the bias metric
offers valuable insights into the model’s overall performance. This metric enables us
to identify and understand the extent to which a model consistently overestimates or
underestimates the target variable:

Bias =
1
N

N

∑
i=1

(ŷi − yi) (14)

The third evaluation metric used is the mean absolute percentage error (MAPE). MAPE
is an essential evaluation metric that provides a clear understanding of a model’s prediction
accuracy in terms of relative error. It computes the average percentage differences between
estimated and observed values:

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (15)

4. Result Analysis

In this section, the effectiveness of the configurations described in the Methodology
section will be compared on both the synthetic validation set (half the dataset that was not
used for training) and the real dataset. This comprehensive evaluation will allow us to
assess the performance of each configuration under controlled and real-world conditions,
thereby providing a better understanding of their applicability and potential limitations.
By examining the outcomes of these configurations, we aim to determine the most effective
configurations for optimizing soil moisture estimation accuracy.

4.1. Using Synthetic Validation Set

All the configurations previously discussed are ranked using the three mentioned
metrics and displayed as a bar plot leaderboard in Figure 3. For configuration 1, which fo-
cused on the effect of Sentinel-1 polarization, the combined use of VV and VH polarizations
yielded a more accurate estimation compared to using either polarization individually with
an RMSE decrease of about 0.7 vol.% for VH and 0.35 vol.% for VV, as shown in Figure 3.
In configuration 2 (with a priori information on MVp), which involved separating the
estimation domain into dry and wet conditions using a weather forecasting framework,
improved accuracy was observed in comparison to configuration 1, particularly when
both VV and VH polarizations were utilized, with an RMSE decrease of 0.4 vol.%. For
configuration 3, which assessed the added value of using the radar signal computed at the
grid scale, the two subcases (Config_3_grid and Config_3_grid_MVg) show that directly
estimating MVp with grid information produces the same performance as estimating MVg
and then partitioning the MVp to dry and wet using the estimated MVg. However, the
three precision metrics show a clear improvement in MVp accuracy using the grid-scale
information compared to configurations 1 and 2 except for configuration 2 when both polar-
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izations are used, where we obtain an RMSE that improves only of about 0.2 vol.%. Lastly,
in configuration 4, which analyzed the added value of using soil roughness estimates, the
integration of soil roughness estimates did not improve the MVp estimation accuracy in
comparison to configuration 3. Figure 3 shows that we obtain the same order of magnitude
on all three precision metrics between configurations 3 and 4: about 3.5 vol.% on RMSE
and 14% on MAPE.

Figure 3. Accuracy metrics (bias, RMSE and MAPE) on soil moisture estimates of the 4 configurations
using the synthetic validation set.

Thus, the evaluation of these configurations suggests that the combined use of VV and
VH polarizations, separating the MVp estimation domain into dry and wet conditions yields
better results than the configuration without a priori information on MVp (configuration 1).
The incorporation of a radar signal computed at grid scale using the bare agricultural soils
included in each grid cell replaces the priori information on the soil moisture conditions,
which were extracted in general using expert knowledge from meteorological data [16].
The added value of soil roughness estimates is negligible compared to other configurations
without the use of roughness information.

4.1.1. Performance of Used N as a Function of the Soil Moisture

In this part, model sensitivities to soil moisture are analyzed on the synthetic validation
set. Figure 4 shows the three precision metrics (Bias, RMSE and MAPE) calculated for
intervals of soil moisture values as boxplots. In configurations 1 and 2, the percentile
values reveal a general increase in RMSE values as the MVp level increases. The RMSE
passes of about 2 vol.% for MVp in the range 4 to 7.5 vol.% to about 5 vol.% for MVp in
the range 37.5 to 40 vol.%, indicating a decline in soil moisture estimation accuracy as
the soil moisture levels increase, as shown in Figure 4. Many studies have shown that
the radar signal increases with soil moisture for SM values ranging between 5 vol.% and
approximately 30 vol.% (e.g., [5]). In Baghdadi et al. [27], the behavior of radar signals
as a function of SM under very wet soil conditions (SM > 30 vol.%) was analyzed. The
results showed that under conditions of high moisture (SM between 27 and 41 vol.%),
the radar signal is stable when SM ranges between 27 and 32 vol.%, and that it decreases
beyond this threshold. The latter declines by about 4 dB, when SM increases from 32 to
41 vol.%. As the radar signal begins to decrease with soil moisture when the moisture is
above approximately 30 vol.%, an accurate estimation of moisture becomes impossible. For
instance, the radar signal for a soil at about 40 vol.% is of the same order of magnitude
as that for a soil with a moisture of 25 vol.%. However, the MAPE shows that despite
the increase in the RMSE, the performance of the soil moisture estimations is improved
as the soil moisture level increases. For example, the MAPE for the level [32.5, 37.5[ was
about 10% less than that for low soil moisture values between 4 vol% and 7.5 vol%. This
suggests that the soil moisture estimation accuracy is influenced by the soil moisture levels.
In configurations 3 and 4, without a priori information on MVp in order to estimate the soil
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moisture, the percentile values demonstrate an improvement in soil moisture estimation
accuracy compared to configurations 1 and 2. In fact, for seven of the eight MVp ranges,
the difference between the 25% and 75% percentiles is smaller for configurations 3 and 4
than for configurations 1 and 2 on all metrics, showing that not only configurations 3 and
4 are more precise but also more stable. Finally, in configuration 4, where the estimated
HRMS is used to optimize the MVp estimates, the percentile values reveal a very slight
improvement in soil moisture estimation accuracy compared with the other configurations.
The bias metric shows that all configurations tend to overestimate soil moisture for MVp
under 32.5 vol.% and start to underestimate soil moisture values above 32.5 vol.%.

Figure 4. N sensitivities on soil moisture ranges for the synthetic validation set. Only the best
subcase of each configuration is plotted, conf_3_grid and conf_4_grid were plotted without a priori
information on MVp.

4.1.2. Performance of Used N as a Function of the Soil Roughness Value

In this section, we evaluate how the best subcase of each configuration reacts to soil
roughness variations on the synthetic validation dataset. The precision metrics computed
over diverse soil roughness ranges are presented as boxplots in Figure 5. For all configura-
tions, the percentile values show high RMSE and MAPE values for low (HRMS < 1.5 cm)
and high soil roughnesses (HRMS ≥ 2.5 cm); they also show the lowest scores for HRMS
range between 1.5 and 2.5 cm Figure 5. The bias shows that all configurations tend to
underestimate MVp for low roughnesses (HRMS < 1.5 cm) and overestimate MVp for
high roughnesses (HRMS ≥ 2.5); this suggests that the soil moisture estimation accuracy is
influenced by soil roughness and that the best HRMS range for estimating MVp is between
1.5 and 2.5 cm, as shown in Figure 5. In configurations 3 and 4 without a priori information
on MVp, the percentile values demonstrate an improvement in soil moisture estimation
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accuracy compared to configurations 1 and 2, especially for HRMS ≥ 1.5. Finally, in con-
figuration 4, the percentile values reveal a slightly greater improvement in soil moisture
estimation accuracy than in other configurations, thus affirming that N might benefit from
training using soil roughness estimates.

Figure 5. N sensitivities on soil roughness (HRMS) for the synthetic validation set. Only the best
subcase of each configuration is plotted, conf_3_grid and conf_4_grid were plotted without a priori
information on MVp.

4.2. Using Real Dataset

In this section, we present the results of our evaluation on the real dataset, which origi-
nates from the Kairouan region in Tunisia and the Occitanie region in France. The bar chart,
referenced in Figure 6, displays the rankings for the previously discussed configurations,
using data from the real dataset. The results of configurations 1 and 2 align with our find-
ings from the synthetic dataset, where the combination of both polarizations significantly
improves estimation accuracy compared to using each polarization individually (Figure 6).
The use of both polarization reduces the RMSE on MVp estimates of about 0.5 vol.% in
the case of configuration 1 and of about 0.35 vol.% for configuration 2. In addition, the
use of two polarizations considerably reduces bias, as shown in Figure 6. The results
of configuration 3 suggest that incorporating grid information optimizes soil moisture
estimation accuracy compared to the first configuration. Also, the accuracy analysis on the
MVp estimates obtained by configuration 3 shows slightly better accuracy gain compared
to configuration 2, confirming that we can achieve higher accuracy using grid information
without the need for a priori weather. The integration of roughness estimates (configu-
ration 4) shows a relatively minor improvement in soil moisture estimates compared to
configurations 2 and 3. These results are consistent with the synthetic dataset results.

4.2.1. Performance of Used N as a Function of the Soil Moisture

In this part, model sensitivities to soil moisture are analyzed on real data. Figure 7
presents bias, RMSE and MAPE scores as percentile values for our better configurations
(conf_1_VV_VH, conf_2_VV_VH, conf_3_grid_MVg, and conf_4_grid) across various soil
moisture levels ranging from very dry to very wet conditions. For all configurations, the
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percentile values reveal a general decrease in RMSE and MAPE values as the MVp increases
in the MVp range lower than 17.5 vol.% (from very dry to slightly wet soils). Then, we
observe a change in trend as the MVp level increases from 17.5 vol.% (slightly wet) to
32.5 (wet), as shown in Figure 7. Furthermore, the bias percentile values show that our
model is prone to a slight overestimation in dry soil conditions and high underestimation
in wet soil conditions (bias reaches 10 vol.% for MVp higher than 32.5 vol.%). Separately,
Figure 7 shows that configurations 3 and 4 give better scores from very dry to wet conditions
(best overall percentiles on all scores) and that configuration 1 gives the best scores on very
wet conditions.

Figure 6. Accuracy metrics (Bias, RMSE and MAPE) on soil moisture estimates of the 4 configurations
using the real dataset.

Figure 7. Model sensitivity on soil moisture for the real dataset. Only the best subcase of each
configuration is plotted, case_3_grid_MVg and conf_4_grid were plotted without a priori information
on MVp .
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4.2.2. Performance of Used N as a Function of the Soil Roughness

This part focuses on examining the sensitivities of the model to soil roughness using
real data. Figure 8 displays percentile values of bias, RMSE, and MAPE scores for the best
four configurations across different soil moisture levels. Soil moisture estimates appear to
be unaffected by variations in soil roughness, since the bias metric demonstrates relatively
balanced bias scores across all soil roughness ranges, as shown in Figure 8. This observation
holds true for every configuration tested. Consequently, soil roughness does not introduce
any significant bias into soil moisture assessment. The dependence between the accuracy
on the estimation of MVp and the soil roughness is less well marked with the real data
because only a few measurements have roughnesses lower than 1 cm or higher than 3 cm.
Indeed, it is only on the small and strong roughnesses that we could observe a strong
dependence on the radar signal in the C-band [28].

Figure 8. Model sensitivity across different soil roughness ranges for the real dataset. Only the best
subcase of each configuration is plotted; case_3_grid_MVg and conf_4_grid were plotted without a
priori information on MVp.

5. Discussion

In this part, we discuss the limitations of our S1 signal inversion procedures. The first
limitation concerns the accuracy of our model results, which may be due to an incorrect
choice to use a dry network instead of a wet network (configurations 2, 3, and 4). This issue
arises in cases where some fields are irrigated, such as in the Kairouan study site. Indeed,
for an irrigated site, the moisture of a plot can be very low (if not irrigated) or very high (if
the plot is irrigated), while the radar signal at the grid scale is probably low if only a few
plots are irrigated or very high if most of the plots are irrigated at a very close time (this
is unlikely). Thus, the soil moisture of recently irrigated plots could be underestimated
during the summer. The dry NN will be used during this time of year even if some plots
are irrigated because most of the other plots are not irrigated (MVg is generally lower than
20 vol.%). This underestimation will occur since the dry NN will have difficulty estimating
moisture above 20 vol.%. Figure 9 shows this underestimation of soil moisture for recently
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irrigated plots in the Kairouan study site, while the dry NN performs well for plots with
moisture lower than 20 vol.%.

Figure 9. Difference between estimated and measured soil moisture on recently irrigated plots
(green points) and non-irrigated plots (red points) in Kairouan site. The Config_3_grid_MVg neural
networks were used to estimate the soil moisture.

For agricultural soil, the backscattered radar signal is heavily influenced by factors
such as soil roughness, dielectric properties (including moisture content and soil composi-
tion), and characteristics of the vegetation (such as biomass, vegetation water content, and
geometry of vegetation elements). Following a rainfall or irrigation event, the soil moisture
eventually increases, which corresponds to an increase in the radar signal. Irrigation not
only alters soil moisture but also the surface roughness, as it generally leads to a slight
decrease in soil roughness. However, the effect of irrigation on roughness is typically not
taken into account because (1) this slight decrease in roughness is challenging to measure,
and (2) this minor decrease in roughness will have a significantly smaller effect on the radar
signal compared to the effect caused by the substantial increase in soil moisture. Hence,
for a given S1 date where the soils are mostly dry (lack of rainfall for a long time), the dry
network will be used in configurations 2, 3 and 4 in order to estimate the soil moisture even
if some fields are very wet after a recent irrigation event. Similarly, for configurations 3 and
4 with the use of MVg estimates in input to N for estimating MVp, the low and medium
values of estimated MVg corresponding to dry to slightly wet soil conditions even with
some irrigated fields in each grid cell will inform the network that will estimate MVp that
overall, we are in dry to moderately wet soil conditions (at grid scale), while for some fields,
the moisture content can be very high because they have been irrigated very recently. Thus,
the presence of irrigated fields could lead to a strong underestimation of MVp for irrigated
fields. The bias values in Figures 10 and 11 are stronger for Kairouan (irrigated site). For
example, MVP is underestimated by about 10 vol.% in very wet conditions (MVP between
27.5 and 32.5 vol.%) for Kairouan against 7 vol.% for Montpellier (non-irrigated site). In
addition, Figure 11 shows that configurations 2, 3 and 4 demonstrate better performance
on non-irrigated parcels (lower bias and RMSE with respect to the median value).
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Figure 10. Model sensitivity on soil moisture for the Montpellier dataset. Only the best subcase
of each configuration is plotted, case_3_grid_MVg and conf_4_grid were plotted without a priori
information on MVp.

Figure 11. Model sensitivity on soil moisture for the Kairouan dataset. Only the best subcase of
each configuration is plotted, case_3_grid and conf_4_grid were plotted without a priori information
on MVp.

The second limitation pertains to the generation of our dataset. The data generation
process involves fixing grid soil moisture (MVg) values between 4 and 40 vol.% and then
generating 100 samples of soil moisture at the plot scale (MVp) for each combination of
incidence angle and soil roughness. These samples are created using a bounded normal
distribution with a mean value equal to the grid soil moisture and a standard deviation
of 10 vol.%. The generated MVp samples are constrained within the range [MVg − 10,
MVg + 10], and soil moisture at the plot scale is filtered to retain only values between
4 and 40 vol.%. Capping the values in this manner can lead to an unbalanced dataset, as
MVg values below 14 and above 30 do not have MVp samples centered on MVg with a
standard deviation of 10. This constraint results in a limited representation of soil moisture
variability for these particular MVg ranges. Consequently, the dataset becomes skewed,
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with certain soil moisture ranges being underrepresented. This imbalance negatively
impacts the model’s performance, particularly in scenarios where soil moisture values fall
within the underrepresented ranges, potentially leading to biased or inaccurate results.

The results obtained with configuration 4 which uses an estimation of the roughness
in input to N to estimate the soil moisture are not very conclusive because of the limiting
Sentinel-1 sensor’s instrumental characteristics for mapping the soil roughness (C-band,
VV and VH polarizations, incidence angles between 25° and 45°). Numerous results show
that the radar signal in the C-band is strongly dependent on surface roughness mainly
for low levels of roughness [11,13]. The studies showed that the sensitivity of the radar
signal to surface roughness increases with the incidence angle. Baghdadi et al. [13] have
shown that high incidence angles (45°) are best suited to the discrimination between smooth
and rough areas. Furthermore, when the incidence angle is low (between 20° and 35°),
the backscattering coefficient rapidly attains its maximum value for roughness values
around 1 cm (HRMS values of less than 1 cm are rare in agricultural areas). Therefore,
for agricultural applications, soil-roughness mapping is not feasible using C-band SAR
data at a low incidence angles due to the rapid saturation of the radar signal. Concerning
the polarization effect, we observe theoretically and from experimental studies a higher
dynamic to soil roughness for HH and VH than with VV polarization [5,11,12]. This
literature review shows that Sentinel-1 data are not optimal for a good estimation of
soil roughness. Thus, an unreliable estimate of roughness in N does not provide an
improvement in moisture estimation compared to the case where soil roughness is not
considered a parameter of N .

The radar signal, which depends on various radar parameters (polarization, incidence
angle, and frequency), is also correlated, for bare soils, with soil surface roughness and
moisture content [11]. In an inversion approach, we are led to estimate the two soil
parameters MV and HRMS or only one of the two parameters if we have information on
the second parameter. Estimating both soil parameters requires two input channels. The
ideal way would be to have at least two decorrelated channels: for example, two different
incidence angles (one low 25° and one high 45°) or two different radar frequencies (C and L
for example). This is not possible because the available SAR sensors are mono-wavelength
and acquire, on a given date, a backscattered signal at a single incidence angle. However,
on a given date, Sentinel-1 acquires data at the C-band and at only one incidence (the
incidence angle value depends on the position of the pixel in the image) but with two
polarizations VV and VH. As VV and VH are not completely decorrelated for the estimation
of soil parameters, the use of both VV and VH in the inversion approach of SAR images
does not always allow a good optimization of the estimated values of MVp and HRMS.
This ambiguity in the estimation of the couple (MVp, HRMS) can sometimes occur mainly
in the case of soils with a low HRMS value and high MVp value or vice versa.

In this study, as in previous studies before it, the incorporation of coarse soil moisture
information over a given site is of great interest to improve the estimation of soil moisture.
In [16,29], the introduction of expert knowledge on the soil moisture (dry to wet soils or
very wet soils) using meteorological data (e.g., precipitations, temperature) reduced the
errors on the soil moisture estimates by one-third. By adding a priori information on the
humidity, the inversion of the radar signal is performed on half of the space (MVp, HRMS),
thus reducing the ambiguity in the retrieval problem. This paper has successfully tested
the use of a feature computed from Sentinel-1 input data instead of using meteorological
data which are not always free, open access, and available in real time, thus making the
inversion chain completely independent. This feature is highly correlated with rainfall and
corresponds to the average of the Sentinel-1 signal at large scale (grid cells of 5 km × 5 km).
In fact, Bazzi et al. [20,30]) showed that the S1 backscattering signal averaged over a few
km2 (using the bare agricultural pixels) is strongly correlated with rainfall and can be used
as an indicator for the soil moisture content at the date of passage of S1.
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6. Conclusions

This study aimed to develop a fully autonomous solution (without external data such
as precipitation, for example) for high-resolution soil moisture mapping in bare agricultural
areas using Sentinel-1 data, while eliminating the need for a priori weather information,
which is sometimes required for better accuracy on soil moisture estimates. Algorithms
based on neural networks were trained on a synthetic dataset generated by the radar
backscattering model IEM and validated using real data from two study sites in Montpellier
(France) and Kairouan (Tunisia). The results showed that our proposed algorithms were
able to estimate soil moisture with high accuracy. The use of the backscattering coefficients
at plot scale as well as those at grid scale defined by the average of all bare soil pixel
values within each grid cell allowed for the inference of global soil moisture conditions at a
large scale.

Combining VV and VH polarizations (configuration 1) consistently improves accuracy
compared to using either polarizations individually. Separating the estimation domain
into dry and wet conditions (configuration 2) highlights the importance of using a priori
information on the global soil moisture state in the study site, yielding even better results
when both VV and VH polarizations are used, with about 14% gain using the synthetic
dataset and 5% gain on the real dataset in RMSE compared to the best configuration
without domain separation. Incorporating grid information (configuration 3) optimizes
accuracy without the need for weather information with about an 18% gain on the synthetic
dataset (slightly better than the configuration that separates the estimation domain using
weather information) and a 5% gain on the real dataset in RMSE compared to the first
configuration. Finally, while integrating soil roughness estimates (configuration 4) does
slightly enhance estimation accuracy, the improvements are negligible as to the complexity
of the architecture (five NNs compared to just one). Overall, the combined use of VV
and VH polarizations and incorporating grid information offers the best soil moisture
estimation accuracy. This approach led to an RMSE on soil moisture of 3.5 vol.% on the
synthetic dataset and 5.9 vol.% using the real dataset. These performances are similar to
accuracies obtained with the top-performing configuration that leverages a priori weather
information. The use of soil roughness estimates provides a marginal contribution to the
inversion process.

Our Sentinel-1 signal inversion procedures have revealed limitations. Firstly, the
accuracy of the inversion model based on the use of grid information or incorporating a
priori information on soil moisture (dry to slightly wet condition or very wet condition)
can be compromised due to the inappropriate choice of a dry or wet network for estimating
soil moisture, especially in areas with irrigation practices. Secondly, the results from
configuration 4, which estimates soil roughness, are inconclusive due to the instrumental
characteristics of the Sentinel-1 sensor. Indeed, the C-band of Sentinel-1 is not the optimum
wavelength for soil roughness mapping as well as the incidence angles which are lower
than 40–45° for a wide part of Sentinel-1 images. Lastly, the high dependence of the radar
signal on both soil roughness and moisture content leads to an ambiguity in the estimation
of soil moisture when the inversion model estimates only the soil moisture without taking
into account roughness or when the inversion model cannot estimate correctly both soil
roughness and moisture content (SAR layers in the input are insufficient). Despite these
limitations, integrating coarse soil moisture information (average moisture over large areas)
has been demonstrated to improve soil moisture estimation at the plot scale.

The scope of this study was purposefully limited to bare soil to ensure a streamlined
analysis by eliminating the effect of vegetation on the signal radar over agricultural plots.
Having successfully conducted an analysis with bare soil, the methodology could be
improved by utilizing the Water Cloud Model (WCM), which incorporates not only bare
soil conditions but also vegetated soil. This model efficiently caters to scenarios involving
both bare and vegetated soils. With this expansion, we could potentially apply our method
broadly to estimate soil moisture on agricultural plots regardless of whether they are bare
or vegetated. This constitutes a promising avenue for future research and applications.
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Appendix A

Levenberg–Marquardt Algorithm

The Levenberg–Marquardt algorithm [26] is used to optimize the parameters of our
neural network and is written as follows:

1. Initialize the parameters: Set the weight matrices (W1, W2, W3) and bias vectors
(b1, b2, b3) to initial values and choose an initial damping factor λ.

2. Compute the Jacobian matrix J: For each input–output pair (xi, yi), compute the
Jacobian matrix Ji, which contains the partial derivatives of the loss function with
respect to the model parameters (W1, W2, W3, b1, b2, b3) for that specific input–output
pair. Then, compute the combined Jacobian matrix J by stacking Ji vertically for all
input–output pairs in the dataset.

3. Compute the gradient vector g: Calculate the gradient vector g by multiplying the
transpose of the Jacobian matrix J with the error vector e (the difference between the
predicted output and the true output) for all input–output pairs in the dataset.

4. Update the parameters: Solve the following linear equation for the parameter update
vector ∆p:

(JT J + λ · diag(JT J))∆p = −g (A1)

where diag(JT J) represents a diagonal matrix with the diagonal elements of the matrix
JT J, and λ is the damping factor.

5. Update the parameters by adding the parameter update vector ∆p: (W1, W2, W3, b1,
b2, b3) = (W1, W2, W3, b1, b2, b3) + ∆p

6. Evaluate the new parameters: Calculate the new loss function value Lnew using the
updated parameters. If Lnew is smaller than the current loss function value L, accept
the updated parameters, decrease the damping factor λ (e.g., by multiplying it by a
factor between 0.1 and 0.5), and proceed to the next iteration. If Lnew is not smaller
than the current loss function value L, reject the updated parameters, increase the
damping factor λ (e.g., by multiplying it by a factor between 2 and 10), and repeat the
parameter update step.

7. Convergence check: Repeat steps 2–6 until a stopping criterion is met, such as reach-
ing a maximum number of iterations, a minimum change in the loss function, or a
minimum change in the model parameters.

The Levenberg–Marquardt algorithm adjusts the damping factor λ to balance be-
tween gradient descent and Gauss–Newton method behavior, resulting in a more efficient
convergence to the optimal solution.

https://scihub.copernicus.eu/dhus/#/home
https://www.theia-land.fr/
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