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Abstract: Transplantation of mesenchymal stem cells (MSCs) in the setting of cardiovascular disease,
such as heart failure, cardiomyopathy and ischemic heart disease, has been associated with good
clinical outcomes in several trials. A reduction in left ventricular remodeling, myocardial fibrosis
and scar size, an improvement in endothelial dysfunction and prolonged cardiomyocytes survival
were reported. The regenerative capacity, in addition to the pro-angiogenic, anti-apoptotic and
anti-inflammatory effects represent the main target properties of these cells. Herein, we review the
different preconditioning methods of MSCs (hypoxia, chemical and pharmacological agents) and
the novel approaches (genetically modified MSCs, MSC-derived exosomes and engineered cardiac
patches) suggested to optimize the efficacy of MSC therapy.

Keywords: mesenchymal stem cells; preconditioning; exosome; engineered cardiac patches

1. Introduction

Several clinical trials have established the safety of mesenchymal stem cell (MSC)
therapy and have shown promising results in the setting of cardiovascular disease over
the past decades [1,2]. In ischemic heart disease, the role of existing conventional therapy,
including percutaneous coronary intervention, coronary artery bypass graft and medical
treatment, is limited to prevent future ischemic events and further expansion of myocardial
damage [3]. Unlike MSC transplantation, there are no effects on myocardial repair, lost
myocardial tissue and cardiomyocytes regeneration. Data from the literature showed a
reduction in scar burden, myocardial fibrosis and infarct size, a reversion of left ventricular
remodeling and an improvement in cardiac function after MSC therapy [1,4,5].

MSCs are undifferentiated, multipotent and self-renewable cells recognized for their
potential of differentiation [6,7] and paracrine activity [2,8–10]. MSCs secrete diverse
biological active cytokines, growth factors, chemokines and miRNA, resulting in anti-
fibrotic, anti-inflammatory, regenerative, proliferative, immunomodulatory and angiogenic
effects [11–14]. Neovascularization, angiogenesis, cardiomyocytes apoptosis inhibition, my-
ocardial repair enhancement and dead cardiomyocytes replacement are the major targets of
MSC therapy within the context of myocardial infarction [2]. MSCs are present in different
human organs, but usually isolated from the following three main sources: umbilical cord,
adipose tissue and bone marrow [2]. The latter is commonly used, despite the fact that
it provides a mixture of non-purified miscellaneous cells [15]. After injection, MSCs are
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able to home, accumulate and engraft with the adjacent cellular components of the injured
tissue and, subsequently, recruit additional progenitor cells [15,16]. However, hypoxia
and increased free radical concentration in the context of myocardial infarction generate a
detrimental microenvironment for transplanted MSCs [17]. Thus, preconditioning of MSCs
with hypoxia or pharmacological or chemical agents in addition to novel strategies, such
as exosome-mediated MSCs, genetically modified MSCs and engineered cardiac patches,
were performed for improving the overall efficacy of MSC transplantation (Figure 1). All
these techniques promote MSC survival and their capacity to form a regenerative and
proliferative environment. Herein, we review the different preconditioning methods and
novel approaches with MSCs in the setting of ischemic cardiac disease.
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2. Preconditioning Methods
2.1. Hypoxia-Preconditioned MSCs

The purpose of hypoxic preconditioning is to prolong the short survival time of
grafted MSCs in the ischemic area, a major limitation of the therapeutic potential of stem
cell therapy [18–20]. Indeed, hypoxic preconditioning increases the expression of protective
factors against future hypoxic insult (hypoxia inducible factor-1 α (HIF-1α)), angiogenic
factors (vascular epithelial growth factor, angiopoietin-1 and erythropoietin), pro-survival
proteins (P65, P50 and P105) and anti-apoptotic proteins (Bcl-xl et Bcl-2) [21]. Previous
study results showed that 24 h hypoxia exposure could dramatically amplify MSC prolifer-
ation and reduce their apoptosis by mainly activating the HIF-1α/Apelin/APJ axis [22].
First, HIF-1α modulates oxygen homeostasis and promotes cell function and tolerance in a
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hypoxic microenvironment [23]. It plays a crucial role in cardiomyocytes protection against
ischemia-reperfusion injury by regulating mitochondrial reactive oxygen species [24] and
heme oxgenase-1 [25]. Then, the inhibition of inflammatory reaction and apoptosis, up-
regulation of collagen matrix and glycolysis, stimulation of angiogenesis and improvement
of oxygen delivery are mediated by HIF-1α [26]. Second, the stimulation of Apelin/APJ
enhances MSC survival and differentiation [27]. Moreover, hypoxia preconditioning acti-
vates other pathways, such as SDF-1α/CXCR4 axis implicated in MSC migration, detention
and homing [28,29], PI3K/Akt signaling pathway that blocks cell death [30] and GRP78
that interferes in angiogenic cytokine secretion and cell migration [31]. A recent study
revealed that extracellular vesicles from hypoxia-preconditioned MSCs may partly alleviate
myocardial injury by targeting the thioredoxin-interacting protein-mediated HIF-1α path-
way [32]. The evidence suggests that transplantation of hypoxia-preconditioned MSCs in
the setting of myocardial infarction results in better cardiovascular outcomes by enhancing
MSC engraftment, proliferation, differentiation, survival and paracrine activity [33,34].
Furthermore, it has shown that hypoxic preconditioning enhances survival and proan-
giogenic capacity of human first trimester chorionic villus-derived MSCs for fetal tissue
engineering [35]. Lastly, we spotlight that different percentages of hypoxia have different
outcomes. For example, 1% hypoxia extends MSC lifespan and maintains their proliferation
rate [36,37]. In addition, 2% and 5 % hypoxia increased MSC number and viability [34].
Upregulation of stemness-related genes was observed with 3% hypoxia [38,39]. In other
words, severe hypoxia (<1%) activates glycolytic metabolism and induces MSC quiescence,
whereas moderate hypoxia (3–5%) stimulates MSC proliferation [40–42]. Although, short
duration exposure to hypoxia (24 h) yields a better result than that of longer duration (72 h).

2.2. Preconditioning with Pharmacological and Chemical Agents

Numerous growth factors, drugs and pharmacological and chemical substances have
been used for MSC preconditioning (Table 1). For example, the treatment of MSCs with
IGF-1 showed a positive impact on survival, detrimental infarct consequences (infarct size,
ventricular remodeling and fibrosis) and pro-inflammatory cytokines [43]. HGF promotes
MSC differentiation into cardiomyocytes, whereas the effect of IGF-1 on MSC potential
of differentiation remains uncertain [44,45]. On the other hand, pretreatment with bFGF
improves stem cells’ homing ability to the infarct zone and angiogenesis [46]. The pretreat-
ment of MSCs with growth factor combinations (FGF-2, IGF-1 and BMP-2) leads to stronger
engraftment, better viability in hypoxic situations, enhanced cell to cell communication
and greater cytoprotective effects [47]. The results of a recent study showed superior
cardiac function recovery and vasculogenesis in the infarcted myocardium 6 weeks after an
injection of treated MSCs with SDF-1α in a rat model [48]. Beyond growth factors, variant
biological active substances have been tested to improve the therapeutic efficacy of MSC
therapy. Indeed, MSC pretreatment with angiotensin II potentiates the paracrine activity,
angiogenesis, gap junction formation and global clinical outcome, by up-regulating the ex-
pression of VEGF, Cx43 with no effects on the differentiation mechanisms [49]. In addition,
the left ventricular cardiac function and cardiomyogenic transdifferentiation have been
significantly improved after transplantation of pioglitazone pretreated MSCs [50]. Thus,
it seems a promising preconditioning method to predict cardiomyogenesis. Furthermore,
pretreatment of MSCs with atorvastatin significantly improved cardiac function, reduced
infarct size, decreased serum marker level of inflammation and fibrosis, inhibited apoptosis
and enhanced survival of implanted MSCs, via activating the subtype eNOS of nitric oxide
synthase [51]. Atorvastatin also improved the migration capacity of MSCs by increasing the
expression of CXCR4 [52]. Benefits on MSC survival and differentiation have been observed
with simvastatin pretreated MSCs [53]. Statin pretreatment positive outcomes have been
also observed after transplantation of sevoflurane-preconditioned MSCs, which increase
the expression of HIF-1α, HIF-2α, VEGF and p/Akt/Akt [54]. Transplantation of LPS-
(lipopolysaccharide) preconditioned MSCs in the setting of myocardial infarction improves
their biological and functional characteristics by up-regulating VEGF, phosphorylated Akt
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and TLR4 pathway [55]. Thereby, longer survival of transplanted cells, intense neovascular-
ization and greater amelioration of left ventricular ejection fraction have been reported [55].
Vitamine E decreases oxidative stress and H2O2-related senescence by up-regulating the
expression of VEGF, TGF-β and LDH [56]. The proliferation ability of MSCs has been pro-
moted with astragaloside IV by inhibiting the translocation of NF-kBp65 [57], apple ethanol
extract by inducing the phosphorylation of eIF4E, p44, p70S6K, MAPK, eIF48, p44/42,
mTOR and S6RP [58], oxytocin by activating the Akt/ERK1/2 axis [59], LL-37 by activating
the MAPK pathway [60] and migration inhibitory factor by releasing VEGF, BFGF, HGF
and IGF [61]. Although, the migration and homing abilities of MSCs have been improved
with deferoxamine by expressing HIF-1α, CXCR4, CCR2, MMP-2 and MMP-9 [62], IL-1β
by producing different cytokines, chemokines and adhesions molecules [63] and TGF-β1 by
triggering the canonical SMADs [64]. In addition, the improvement of cardiovascular stem
cell therapeutic outcomes has been associated with transplantation of 2,4-dinitrophenol [65],
oxytocin [66] and dimethyloxalyglycine [67] pretreated MSCs. Finally, our group has shown
that melatonin (pineal hormone to protect tissue from oxidative damage) pretreated MSCs
modulate survival, differentiation and antifibrotic activity of cardiac fibroblasts [68]. Our
results showed that MSCs significantly improved morphological and functional cardiac
parameters two weeks after injection. However, the partial recovery of ventricular ejection
fraction was maintained up to two months only when MSC survival was increased by mela-
tonin treatment. These data indicate that the increased number of viable cells is critical for
the amplification of the beneficial effects of MSCs on injured myocardium and ventricular
function recovery. These properties of MSCs opened new perspective for understanding
the mechanisms of action of MSCs and anticipated their potential therapeutic effects.

Table 1. MSC preconditioning with pharmacological and chemical agents.

Agents Effects on References

IGF-1 survival, infarct consequences, pro-inflammatory cytokines [43]

HGF differentiation into cardiomyocytes [44,45]

bFGF stem cells homing and angiogenesis [46]

FGF-2, IGF-1 and BMP-2 combination engraftment, viability, cell to cell communication,
cytoprotective effect [47]

SDF-1α cardiac function recovery and vasculogenesis [48]

Angiotensin II paracrine activity, angiogenesis and gap junction formation [49]

Pioglitazone cardiac function and cardiomyogenic trans differentiation [50]

Atorvastatin
cardiac function, infarct size, serum markers level of

inflammation and fibrosis, apoptosis, migration capacity
and survival of implanted MSCs

[51,52]

Simvastatin MSC survival and differentiation [53]

Sevoflurane homing, survival and differentiation [54]

LPS (lipopolysaccharide) biological and functional characteristics of MSCs [55]

Vitamine E decreases oxidative stress and H2O2-related senescence [56]

Astragaloside proliferation ability of MSCs [57]

Apple ethanol proliferation ability of MSCs [58]

Oxytocin proliferation ability of MSCs [59]

LL-37 proliferation ability of MSCs [60]

Deferoxamine migration and homing abilities of MSC [62]
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Table 1. Cont.

Agents Effects on References

IL-1β migration and homing abilities of MSCs [63]

TGF-β1 migration and homing abilities of MSCs [64]

2,4-dinitrophenol cardiovascular stem cell therapeutic outcomes [65]

Oxytocin cardiovascular stem cell therapeutic outcomes [66]

Dimethyloxalyglycine cardiovascular stem cell therapeutic outcomes [67]

Melatonin survival, differentiation and antifibrotic activity [68]

3. Novel Approaches
3.1. Genetic Modification of MSCs

Genetic modification of MSCs up-regulates the expression of specific genes implicated
in MSC migration, adhesion, survival and premature senescence (Table 2). To begin, the
migratory ability of MSCs has been promoted by overexpressing nuclear receptors (Nur1,
Nur77) [69,70], integrin subunit-α4 [71], aquaporin-1 [72] and CXCR4/CXCR7 that serve
as receptors for major cellular migratory process chemokine (SDF-1) [73,74]. Then, the
overexpression of α(1,3)fucosyltransferase [75], focal adhesion kinase [76], integrin-linked
kinase [77] and miR-9-5p [78] have been linked to stronger MSC adhesion and engraft-
ment. However prolonged survival of transplanted MSCs has been demonstrated with
overexpression of integrin-linked kinase that activates AKT, mTOR, JAK2/STAT3 signaling
pathways [79,80], protein kinase Cε [81], Trkβ [82] and Gremlin1 [83]. The up-regulation
of Sox2 and Oct4 genes accelerates cell transition from phase G1 into phase S, enhancing
MSC proliferation, differentiation and anti-inflammatory effect [84,85]. EphB2 overex-
pression reduced premature senescence by suppressing mitochondrial reactive oxygen
species accumulation, which triggers MSC senescence [86]. Transplantation of Kallikrein-1
genetically modified MSCs attenuates cardiac inflammation, cardiomyocytes apoptosis
and myocardial fibrosis via VEGF, GSK-3β and NO signaling pathways activation [87–91].
Thus, pleiotropic, angiogenic proteolytic and cardioprotective effects have been attributed
to Kallikrein-1 [91]. In the context of acute myocardial infarction, several clinical trials have
demonstrated the therapeutic benefits of transplantation of genetically modified MSCs in
animal models. For example, the target outcomes of MSC therapy were maintained for
longer durations with transplanted Akt or angiopoietin1-MSCs [92]. Although, an injection
of Bcl-2 or SDF-1α-or TNFR gene modified MSCs or miR-377 depleted MSCs potentiates
the required efficacy of vascular density, cardiac function, infarct size and myocardial fibro-
sis [93–98]. Genetic modification of MSCs is applied using viral vectors, such as adenoviral,
lentiviral and retroviral vectors for nucleic acid delivery [99], non-viral delivery systems,
such as plasmid DNA, polymers, nanoplasmids, liposomes and DNA minicircles [100–102]
and the novel gene-editing technology, clustered regularly interspaced short palindromic
repeats (CRISPR/Cas9) [103]. This last technique allows one to insert a new sequence in
the genome via homology-directed repair, which could rectify an acquired gene mutation
or provoke a knock-in or knock-out mutation or suppress a specific gene expression [103].
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Table 2. Outcomes of genetic modifications of MSCs.

Function Up-Regulating Genes References

Improved MSC migration

Nur1, Nur7 [69,70]

Integrin subunit- α4 [71]

Aquaporin-1 [72]

CXCR4/VXCR7 [73,74]

Improved MSC adhesion and engraftment

α(1,3)fucosyltransferase [75]

Focal adhesin kinase 76]

Integrin-linked kinase [77]

miR-9-5-p [78]

Prolonged MSC survival

Integrin-linked kinase [79,80]

Protein kinase Cε [81]

Trkβ [82]

Gremlin 1 [83]

Enhanced MSC proliferation and
differentiation Sox2 and Oct4 [84,85]

Reduced premature senescence EphB2 [86]

Sustained therapeutic efficacy AktAngiopoietin 1 [92]

Better outcomes in setting of acute
myocardial infarction

Bcl-2 [93]

SDF-1α [95]

TNFR [97]

miR-377 [98]

3.2. MSCs Derived-Exosomes

Exosomes are classified as extracellular vesicles that are continuously produced and
released by various hematopoietic and non-hematopoietic cells [104–106]. Exosomes in-
terfere in variant cell to cell interaction pathways that are implicated in different physi-
ological and pathological patterns [107]. Endocytosis, membrane fusion and membrane
receptors represent the three exosomal mechanisms to regulate cell to cell communica-
tion [108]. Exosomes are mainly isolated for therapeutic application, either by ultrafiltration
or ultracentrifugation-based methods [107]. Preclinical experimental animal models have
demonstrated the therapeutic benefits of MSC-derived exosomes in the setting of myocar-
dial infarction. An injection of MSC- derived miRNA-enriched exosomes have showed
remarkable outcomes, such as reduction in infarct size and myocardial fibrosis with miR-22
via acting on MECP2 [109], enhancement of anti-apoptotic and cardioprotective effects
with miR-221 by inhibiting PUMA expression [110], promotion of cardiac function recovery
with miR-19a by suppressing PTEN and activating ERK pathways, respectively [111], and
improvement in angiogenesis with miR-210 [112]. Overall, the transplantation of exosomes-
derived MSCs leads to stronger cardioprotective effects [113] and reduction in the risk of
tumorigenicity [114] than MSC-based therapies.

3.3. Engineered Cardiac Patches

Cell sheets and cell containing scaffolds represent the two forms of engineered cardiac
patches [115]. Multiple cell types, such as endothelial cells, cardiac fibroblasts, pluripotent
stem cells, cardiomyocytes, progenitor cells and smooth muscle cells have been incorpo-
rated into engineered cardiac patches [116–119]. Consequently, the replacement of damaged
cardiomyocytes with functional cardiac cells is the ultimate target of engineered cardiac
tissue transplantation. Promising results with evidence of remuscularization of the fibrotic
myocardium have been demonstrated in numerous pre-clinical studies [120–125]. Indeed,
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cardiac function recovery has been observed in rats and minipigs after 4 weeks of trans-
plantation of cell-free patches in the setting of acute anterior myocardial infarction [126].
Furthermore, the implantation of a bioengineered cardiac patch has shown superior thera-
peutic efficacy compared to that of decellularized placenta and human-induced pluripotent
stem cells for myocardial repair, mediated by growth and pro-angiogenic factors that pro-
mote engraftment, neovascularization and paracrine function [127]. However, the need
for a huge quantity of exogenous cardiac cells to refill the injured myocardium and sta-
ble electromechanical coupling between the transplanted cardiac patches and host tissue
for long-term engraftment are the main challenges for this novel cardiac approach [128].
Thereby, larger and thicker vascularized cardiac patches that are synchronized with the cir-
culatory and electromechanical systems of the native myocardium are required to overcome
these limitations. The safety concern of cardiac patch therapy was limited to arrhythmias,
which were generally transient and non-fatal [129–131]. It is noteworthy that a recently
published study has revealed the efficacy of upscaled engineered heart tissue to improve
left ventricular function and reduce the infarct size in the context of ischemic myocardial
disease without documenting a significant difference in arrhythmogenicity, compared to a
cell-free patch group in a rabbit model [132].

Overall, the therapeutic benefits of MSCs have been demonstrated in the treatment
of ischemic cardiomyopathies [133]; however, the limited engraftment and poor survival
of MSCs injected into an ischemic heart hindered the efficacy of the treatment. The use of
scaffolds and polymeric supports to provide transplanted cells anchorage, a straightforward
approach to circumvent this limitation, has already been tested [134]. Indeed, a robust
therapeutic benefit of ADSCs when transplanted with a collagen scaffold in a preclinical
porcine model of myocardial infarction, compared with cells without a collagen scaffold,
has been successfully demonstrated. The functional improvement in cardiac function
and myocardial remodeling after ADSC-collagen scaffold transplantation was associated
with increased cell engraftment [135]. The positive preclinical results obtained using
different biomaterials and cell types invited researchers to test whether these experimental
procedures could be translated into the clinical setting. Thus, the phase I MAGNUM
clinical trial was designed with the purpose of comparing the effects exerted by bone-
marrow mononucleated cells-seeded cellularized collagen matrices with those exerted by
cells alone, in patients presenting left ventricular post-ischemic myocardial scars. The
results were promising because no treatment-related serious adverse events were reported
during the follow-up period and heart functionality and mechanical parameters improved
significantly in patients who received the cellularized patches. In other words, clinically,
this procedure seems to be safe, feasible, and effective [136]. We mention that one of the first
clinical trials on engineered heart muscle in patients with terminal heart failure is ongoing,
BioVAT-HF (ClinicalTrials.gov: NCT04396899). However, a recent report of in-human
transplantation of an allogenic-induced pluripotent stem cell-derived cardiomyocytes
patch into the epicardium of the anterior and lateral walls via the fourth intercostal space
in a patient with ischemic cardiomyopathy has been currently published [137]. This report
signals the safety and efficacy of these patches on NYHA class, left ventricular end systolic
volume and Vo2 peak at the 1-year follow-up after transplantation [137]. Moreover, the
ESCORT trial on six patients referred to cardiac surgery has also demonstrated the technical
feasibility of producing clinical-grade human embryonic stem cell-derived cardiovascular
progenitors delivered in a fibrin epicardial patch, and supported their short- and medium-
term safety, thereby, setting the grounds for adequately powered efficacy studies [138].
Finally, the translation of preclinical findings to the first clinical results requires the creation
of cardiac scaffolds following all the GMP regulatory and quality requirements in order
to test their safety as potential therapeutic products. The CARDIOPATCH Interreg Sudoe
program aims to create a 2.0 version patch (v2.0) with growth factors and genetically
improved mesenchymal cells and iPS-derived cardiac cells that improve cell survival of both
the implanted cells and the ischemic cardiac tissue, as well as their pro-angiogenic capacity.



Cells 2022, 11, 1620 8 of 14

4. MSCs Perspectives

As is known for most new therapies, the progression of MSC therapy has been hard,
slow and punctuated by difficulties. The available evidence proves the safety of MSC
transplantation, which represents a new, hopeful strategy for the management of cardio-
vascular disease, particularly ischemic and non-ischemic heart failure [139–141]. Up to
date, numerous Phase I and Phase II trials have demonstrated promising results with
regenerative medicine in the setting of heart failure and myocardial infarction [2]. The
findings from these trials are divergent. However, several important points have not yet
been defined, such as the preferred cell source, preparation method, appropriate dose
and recommended manner of administration. Defining these parameters constitutes an
important step towards establishing a standard approach with MSC therapy and ensuring
result reproducibility. The results from pivotal phase III trials are required to support the
clinical application of MSC therapy in the cardiovascular field. Recently, stem cell therapy
was approved for the management of complex perianal fistulas in Crohn’s disease [142].
We emphasize that pre-conditioning methods have contributed to overcome numerous
hurdles, such as injected cell migration, engraftment, proliferation, differentiation and
survival, resulting in stronger efficacy and better outcomes. Furthermore, recent studies
have proved the benefits of mechanical stimulation on MSCs and the surrounding microen-
vironment and showed the interest of its application for bone regeneration therapy [143].
Lastly, engineered cardiac patch technology represents a revolution in stem cell therapy for
cardiovascular disease, but manufacturing larger and thicker constructs that are suitably
vascularized and incorporated with the electromechanical and circulatory systems of the
vernacular myocardium is necessary for the clinical translation step.

5. Conclusions

To conclude, transplantation of pre-conditioned MSCs results in better therapeutic
efficacy in the setting of cardiovascular disease, especially with moderate hypoxia pre-
conditioning. In parallel, the available novel techniques are able to overcome the limitations
(MSCs homing ability, engraftment and survival) of this regenerative medicine, promoting
stronger cardiovascular outcomes. Starting translational engineered cardiac patch prac-
tice from pre-clinical trials in animal models to in-human trials may change our future
management of heart failure.
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