

THERMOPHYSICAL PROPERTIES OF AIR-PA66-CU PLASMAS FOR LOW-VOLTAGE DIRECT CURRENT SWITCHGEAR

Y Cressault, S Kimpeler, A Moser, Philippe Teulet

To cite this version:

Y Cressault, S Kimpeler, A Moser, Philippe Teulet. THERMOPHYSICAL PROPERTIES OF AIR-PA66-CU PLASMAS FOR LOW-VOLTAGE DIRECT CURRENT SWITCHGEAR. Symposium on Physics of Switching Arc (FSO 2023), Sep 2023, Brno (Rép. Tchèque), Czech Republic. 10.14311/ppt.2023.X.1 hal-04880320

HAL Id: hal-04880320 <https://hal.science/hal-04880320v1>

Submitted on 10 Jan 2025

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THERMOPHYSICAL PROPERTIES OF AIR-PA66-CU PLASMAS FOR LOW-VOLTAGE DIRECT CURRENT SWITCHGEAR

Y. CRESSAULT^{a,∗}, S. KIMPELER^b, A. MOSER^b, PH. TEULET^a

a LAPLACE, University Toulouse III Paul Sabatier, Toulouse, France

b IAEW at RWTH Aachen University, Aachen, Germany

∗ cressault@laplace.univ-tlse.fr

Abstract. This paper presents the thermophysical properties of an air-polyamide 66-copper mixture in thermal plasma. Equations based on mass action law, conservation of neutrality and perfect gas law are used to calculate particle number densities. Thermodynamic properties and transport coefficients were obtained from equilibrium compositions and computed using the Chapman-Enskog method. Radiative properties are described in terms of the total absorption coefficient and the net emission coefficient.

Keywords: Thermal plasmas properties, Transport coefficient, Net emission coefficient, Local thermodynamic equilibrium.

¹ **1. Introduction**

 Due to a wide range of applications, low-voltage direct current (LVDC) systems are attracting increasing at- tention from researchers and developers. A major chal- lenge in designing these systems is the interruption of both nominal and fault currents. Mechanical switches offer an inexpensive solution to this challenge. During switching operation in mechanical LVDC-switches, an electrical arc occurs upon contact separation. This arc has to be extinguished for a successful current in- terruption. Hence, fundamental understanding of arc behavior is necessary for developing efficient LVDC switchgear. With arc core temperatures of more than 10,000 K, experimental measurements of arcs are chal- lenging. Therefore, spatially and temporally resolved numerical arc models offer valuable insights in addition to experimental investigations. In order to develop realistic models, the thermophysical properties of the media involved are needed. This paper presents the

²⁰ properties of an air-polyamid 66-copper mixture.

²¹ **2. Composition and thermodynamic** ²² **properties**

 The plasma is supposed to be a gaseous medium in equilibrium. The number densities of particles are obtained by the resolution of a set of equations based on the mass action law, the conservation of the neu- trality and perfect gas law [1], using the energies for the various species given in JANAF tables and taking into account virial and Debye-Hückel corrections. For Air-PA66-Cu mixtures, we considered different species distributed in the following way:

 $32 - 58$ neutral species: C, H, O, N, Cu, C₂, O₂, H₂, ³³ N2, Cu2, NO, NH, OH, CH, CO, CN, CuH, CuO, $_{34}$ C₃, H₂O, C₂H, CO₂, CH₂, CN₂ (CNN and NCN), 35 C₂N, C₂O, HO₂, NH₂, NO₂, N₂O, O₃, N₃, HNO, 36 CHO, CHN, CNO, CH₃, CH₄, C₂H₂, C₂H₄, C₂N₂, $37 \text{ } C_4$, NH₃, C₃O₂, H₂N₂, H₂O₂, H₄N₂, NO₃, HCON,

Figure 1. Composition of [60]Air-[40]PA66 plasma at P=2 atm (mass proportion).

 $CH₂O$, $C₂H₄O$, $HNO₃$, $HNO₂C$ is, $HNO₂$ trans, $N₂O₃$, 38 $N_2O_4, N_2O_5.$ 39

 -38 charged species: electrons, H⁺, H⁻, C⁺, C²⁺, 40 C^{3+} , C^- , O^+ , O^{2+} , O^{3+} , O^- , N^+ , N^{2+} , N^{3+} , Cu^+ , \quad 41 Cu^{++} , Cu^{+++} , Cu^{-} , H_2^+ , H_2^- , N_2^+ , O_2^+ , NO^+ , NH^+ , 42 OH⁺, OH⁻, CH⁺, CH⁻, CO⁺, CN⁺, CN⁻, C₂⁺, C₂⁻, $O_2^-, C_3^-, CO_2^-, NO_2^-, N_2O^+, CHO^+.$

We present in Figure 1 the composition of [60]Air- ⁴⁵ [40]PA66 thermal plasma, showing the evolution of 46 the main species with temperature at $P = 2$ atm.

The condensed phases probably play a major role at 48 low T , but they are not taken into account here. As $\frac{49}{49}$ consequences, properties of C_p , and thermal conductivities are probably imprecise at low $T (T < 3 \text{ kK})$. 51 With the equilibrium compositions, it is possible to $\frac{1}{2}$ calculate the thermodynamic properties (i.e. mass $\frac{1}{5}$ density ρ , specific enthalpy h , specific entropy s and σ specific heat at constant pressure C_p). As example, $\frac{55}{2}$ the specific heat at constant pressure C_p (J.kg⁻¹.K⁻¹) ⁵⁶ is given in Figure 2 at different pressures for the mix- ⁵⁷ ture $[40]$ Air- $[60]$ Cu. At low temperature and 1 atm, sately

Figure 2. Evolution of CP of [40]Air-[60]Cu at different pressures and low temperatures (mass proportions).

⁵⁹ there are several peaks which are due to dissociation ⁶⁰ of molecules and ionization of atomic species. For ⁶¹ a given Air-PA66-Cu mixture and depending *n* the ⁶² concentration of each gas, we can observe some peaks 63 at: 1.5 kK for C_2H_4 and CH₄ polyatomic molecules, 64 2.5 kK for Cu_2 , 3.7 kK and 5 kK for H_2 , C_2 , C_3 , CN 65 and C₂H, 4 kK for O_2 , and 7 kK for N_2 . Then we $\frac{66}{100}$ have first ionization of Cu (around 8 kK), and O, C. σ N, H (around 15 kK). Finally, we have the second 68 ionization of Cu (15 kK) , and O, N, C around 3 kK . ⁶⁹ The ionization energy of neutral oxygen and nitrogen ⁷⁰ are 13.61 eV and 14.53 eV respectively, 35.1 eV and $71\quad 29.60 \,\mathrm{eV}$ for O^+ and N^+ ions, ionization energy of r neutral copper is 7.72 eV and 20.29 eV for Cu^+ , ion- π ization energy of neutral C is 11.26 eV, neutral H is 13.59 eV , and 24.38 eV for C^+ . The pressure increase ⁷⁵ tends to shift the peaks to higher temperatures and ⁷⁶ to decrease their amplitude. See [2] for more details. ⁷⁷ The corrections to thermodynamic properties of ⁷⁸ ideal plasmas have been determined in the framework ⁷⁹ of the Debye-Hückel theory. Besides the Debye-Hückel ⁸⁰ correction, we also included the Virial correction even ⁸¹ if its influence is very low for the pressures considered ⁸² in this study.

⁸³ **3. Transport coefficients**

⁸⁴ In order to study theoretically the plasma's behaviour with numerical arc models, it is necessary to calcu- late the transport coefficients like viscosity, electrical conductivity and thermal conductivity. Their calcula- tion is based on the Chapman-Enskog method [3] and adapted to partially ionized gases. The expressions used to obtain the transport properties as functions of temperature, pressure and number densities are given in [2]. According to the method, the transport properties are governed by elastic collisions between all the species which are represented through effective collision integrals [3]. The choice of the potentials and the use of the collision integrals can strongly influence the transport coefficients. Consequently, the biblio-

Figure 3. Evolution of the electrical conductivity for different pressures and [90]Air-[10]Cu mixture (mass proportions).

graphical study of the interaction potentials and the 98 calculation of the corresponding integrals constitute 99 the most important and most complex part of the ¹⁰⁰ general calculation of transport coefficients.

Most of the collision integrals are issued from previous works done on pure air, CF_3 -Air, Ar-H₂-Cu or 103 Air-metal, Ar-H₂, Ar-O₂ and CO-H₂ [2, 4–9]. Other 104 neutral-neutral collisions were all treated using the ¹⁰⁵ Lennard-Jones potential and the associated parame- ¹⁰⁶ ters $[10]$, the other collisions neutrals-charged particle \Box 107 were derived from the polarization potential. The ¹⁰⁸ collision integrals for the electron-neutral interactions 109 e-H, e-C2, e-H2, e-CH, e-CO, e-CN, e-NH, e-OH, e- ¹¹⁰ $CO₂$, e-H₂O, e-N₂O, e-NH₃ and e-CH₄ were issued 111 from Andre And-2 and the missing integral collisions 112 have been estimated according the ion-neutral colli- 113 sions with a polarization potential and polarizabilities. $\frac{1}{14}$ All the charged-charged se interactions were described 115 by a screened Coulomb potential [3]. Concerning the ¹¹⁶ definition of the Debye length, more details are given $\frac{117}{20}$ in $[2]$. Here, we took both electrons and ions for the 118 Debye length calculation.

The expression of the transport coefficients can be 120 found in $[2]$. As example, the Figure 3 shows typical $_{121}$ evolutions of electrical conductivity for different pres- ¹²² sures. At low temperature, this coefficient increases as 123 the pressure decreases whereas the opposite effect is $_{124}$ observed at high temperature. This behaviour can be ¹²⁵ explained by analysing the evolutions of the electron 126 number density and the electron mobility. Despite the 127 fact that the electron density is continuously growing $_{128}$ with pressure for a given temperature, the curves of $_{129}$ electrical conductivity crossed around 14.5 kK since for 130 this temperature the main elastic collisions involving ¹³¹ electrons (responsible for their mobility) change: at $_{132}$ low temperature they are mainly electron-neutral col- ¹³³ lisions whereas at high temperature electron-charged 134 particles collisions are predominant. See $[2]$ for more 135 details on the influence of pressure and/or mixtures 136 on this coefficient.

¹³⁸ **4. Radiative properties**

 The detailed description of the elementary processes responsible for emission and absorption were described $_{141}$ in [11]). A rigorous calculation would consist in re- solving the RTE equation for all wavelengths of the spectrum and for all directions. For a practical prob- lem, the calculation time would be extremely long. Some methods have therefore been developed in order to simplify the spectral or geometrical dependencies of the radiation while keeping a good accuracy. For a detailed description of the different existing methods, the reader will find references into the general work of Cressault [12]. One of the frequently applied methods in the numerical models destined to thermal plasmas is the NEC [11] which takes into account emission and absorption of radiation in isothermal conditions. ¹⁵⁴ At the center of the sphere of radius R_p , the NEC is ¹⁵⁵ written:

$$
\varepsilon_N(R_p, T, P) = \int_0^\infty L_\lambda^0(T) K_\lambda'(T, P) \exp(-K_\lambda'R_p) d\lambda
$$
\n(1)

¹⁵⁶ where K'_{λ} (m⁻¹) is the monochromatic absorption ¹⁵⁷ coefficient K_{λ} (m⁻¹) corrected by the induced emis- sion and correlated with the local emission coefficient by Kirchhoff's law. In this expression the variations with frequency/wavelength of the corrected absorp- $_{161}$ tion coefficient K' can be very complicated and due to the exponential term, self-absorption of radiation in the emitting regions is rather well estimated. We know that a strong absorption takes place within the first mm of plasma which is a very general prop- erty of thermal plasma radiation. In spite of the strong approximation of isothermal plasma, this NEC gives acceptable values for the radiative balance in the hottest regions of thermal plasmas [11]. Indeed, the local emission depends on the local temperature, whereas the main self-absorption occurs in the very near surroundings of the emission point as it will be pointed in the results. The main difficulty of this method consists not only of the calculation of the spectral absorption coefficient which strongly varies according to the wavelength and temperature, but also of the calculation of the radiation lines including their absorption. Therefore, various physical phenom- ena must be considered: the radiation of the atomic continuum (radiative recombination, Bremsstrahlung and radiative attachment), the radiation of molecular continuum (photo-dissociation, photo-ionization and photo-attachment) and the radiation of the atomic lines (by taking into account the absorption phenom- ena), and the radiation of molecular lines. An example of total absorption coefficient for [50]Air-[50]Cu mix- ture at 3 atm is given in Figure 4 at 10 kK and 15 kK. For the calculation of the NEC, we used the "line- by-line"method. See works from [12] for more details. It is well-known that NEC increases with the temper-ature and with the pressure, and decreases with the

Figure 4. Total absorption coefficient [50]Air-[50]Cu mixture at 3 atm, 10 kK and 15 kK.

Figure 5. Influence of the pressure on the NEC for $[50] Air- [50] Cu mixture and R_p = 5 mm.$

plasma thickness. In this paper, we proposed Figure $5 \quad$ 192 to show the influence of the pressure for $[50]$ Air- $[50]$ Cu 193 mixture and $R_p = 5$ mm.

5. Conclusion **195**

This paper presents the thermophysical properties 196 of an Air-PA66-Cu mixture in thermal plasma. The ¹⁹⁷ number densities of the particles were calculated us- ¹⁹⁸ ing a set of equations based on the mass action law, ¹⁹⁹ conservation of neutrality and perfect gas law. The ²⁰⁰ thermodynamic properties, including mass density, ²⁰¹ specific enthalpy, specific entropy and specific heat at 202 constant pressure, were obtained from the equilibrium 203 compositions, while the transport coefficients, namely ²⁰⁴ the viscosity, electrical conductivity and thermal con- ²⁰⁵ ductivity, were computed using the Chapman-Enskog 206 method adapted to partially ionized gases. Further- ²⁰⁷ more, radiative properties in terms of the total absorption coefficient and the NEC were calculated as 209 well. Overall, this paper provides valuable insight into 210 the behaviour and properties of thermal Air-PA66-Cu ²¹¹ plasmas. The calculated data set will serve as a basis ²¹² for numerical arc simulations of LVDC switchgear in ²¹³ future publications.

References

- [1] D. Godin and J. Y. Trépanier. An Effecient Method for the Computation of Equilibrium Composition in
- Gaseous Mixture. In *14th International Symposium on*
- *Plasma Chemistry*, page 1239. 1999.
- [2] Y. Cressault, V. Connord, H. Hingana, P. Teulet, and G. A. Transport properties of CF3I thermal plasmas
- 222 mixed with CO_2 , air or N_2 as an alternative to SF_6
- plasmas in high-voltage circuit breakers. *J. Phys. D: App. Phys.*, 44(49), 2011.
- [doi:10.1088/0022-3727/44/49/495202](http://dx.doi.org/10.1088/0022-3727/44/49/495202).
- [3] J. O. Hirschfelder, C. F. Curtis, and R. B. Bird.
- *Molecular theory of gases and liquids*. 2*nd* Edition. John Wiley and Sons, New York, 1964.
- [4] Y. Cressault and A. Gleizes. Thermodynamic properties and transport coefficients in Ar-H2-Cu plasmas. *J. Phys. D: App. Phys.*, 37(21):560–572, 2004. [doi:10.1088/0022-3727/37/4/008](http://dx.doi.org/10.1088/0022-3727/37/4/008).
-
- [5] Y. Cressault, A. Gleizes, and G. Riquel. Properties of air-aluminum thermal plasmas. *J. Phys. D: App. Phys.*, $235 \qquad 45(26), 2012, \text{ doi: } 10.1088/0022 - 3727/45/26/265202.$
- [6] J. Aubreton. *Etude des propriétés thermodynamiques et de transport dans des plasmas thermiques à l'équilibre*
- *et hors d'équilibre thermodynamique: application aux*
- *plasmas de mélange Ar-H*² *et Ar-O*2. PhD Thesis.
- University of Limoge, 1985.
- [7] J. Aubreton and P. Fauchais. Influence des potentiels d'intéraction sur les propriétés de transport des plasmas
- thermiques: exemple d'application le plasma argon
- hydrogéne a la pression atmosphérique. *Rev. Phys. Appl.*, 18(1):51–66, 1983.
- [doi:10.1051/rphysap:0198300180105100](http://dx.doi.org/10.1051/rphysap:0198300180105100).
- [8] J. Aubreton, M. F. Elchinger, and J. M. Vinson.
- Transport Coefficients in Water Plasma: Part I: Equilibrium Plasma. *Plasma Chem Plasma Proc*,
- $250 \quad 29(2):149-171, 2009.$
- [doi:10.1007/s11090-008-9165-8](http://dx.doi.org/10.1007/s11090-008-9165-8).
- [9] J. Aubreton, M. F. Elchinger, A. Hacala, and
- U. Michon. Transport coefficients of typical biomass
- equimolar CO-H² plasma. *Journal of Physics D:*
- *Applied Physics*, 42(9), 2009.
- [doi:10.1088/0022-3727/42/9/095206](http://dx.doi.org/10.1088/0022-3727/42/9/095206).
- [10] D. R. Lide. *CRC Handbook of chemistry and physics: A Ready reference book of chemical and physical Data*. 82*nd* edn. Boca Raton, FL: CRC Press, 2001.
- [11] A. Gleizes, Y. Cressault, and P. Teulet. Mixing rules for thermal plasma properties in mixture of argon, air
- and metallic vapours. *Plasma Sources Sci. Technol.*,
- 19(5), 2010. [doi:10.1088/0963-0252/19/5/055013](http://dx.doi.org/10.1088/0963-0252/19/5/055013).
- [12] Y. Cressault. Basic knowledge on radiative and
- transport properties to begin in thermal plasmas
- modelling. *AIP Advances*, 5(5), 2015.
- [doi:10.1063/1.4920939](http://dx.doi.org/10.1063/1.4920939).