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WaveConViT: Wavelet-Based Convolutional
Vision Transformer for Cross-Manipulation
Deepfake Video Detection

Mehdi Atamna, Tuliia Tkachenko, and Serge Miguet

Univ Lyon, Univ Lyon 2, CNRS, INSA Lyon, UCBL, Centrale Lyon,
LIRIS, UMR5205, F-69676 Bron, France

Abstract. The ease of use and wide availability of high-quality deep-
fake creation tools raises significant concerns about the reliability and
trustworthiness of online content, and makes the task of detecting fa-
cial tampering more complicated. As such, the development of effective
deepfake detection methods is of utmost importance. In recent years, the
facial deepfake detection task took a leap thanks to the development of
deep learning-based methods as well as the availability of large datasets
of high-quality deepfake videos. Despite the aforementioned methods
achieving excellent results when tasked with detecting deepfakes gen-
erated using methods seen during training, the cross-manipulation, or
generalization, task—where a trained model is exposed to unseen ma-
nipulation techniques—is a major challenge which is attracting the at-
tention of the research community. In this paper, we introduce WaveCon-
ViT, a novel spatio-temporal architecture for deepfake detection based on
Vision Transformers and a two-dimensional discrete wavelet transform.
Additionally, we introduce and evaluate a temporal sampling strategy
based on frame skipping. We extensively test and benchmark this archi-
tecture in the challenging cross-manipulation scenario on the FaceForen-
sics+-+, Celeb-DF, and DeeperForensics-1.0 datasets, comparing it to a
selection of modern, representative Vision Transformer (ViT) and con-
volutional neural network (CNN) architectures and demonstrating the
value of high-frequency features as well as our frame skipping strategy
for deepfake detection.

Keywords: Deepfake detection - Video manipulation detection - Dis-
crete wavelet transform - Spatio-temporal features.

1 Introduction

The rapid pace of progress in face swapping and facial reenactment technology
has democratized high-visual-quality facial deepfakes, enabling easy access to
deepfake creation tools [1,2]. Although useful in many applications, actors with
malicious intent can exploit this technology to spread harmful information, for
example by impersonating other people.

In recent years, various methods and datasets [10,15,18,27] have been pro-
posed for deepfake detection. The most effective methods leverage the power of
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deep learning for the best possible results [27]. Although many such architectures
perform well when evaluated on data derived from the same distribution as the
training set, their performance drops dramatically when tasked with detecting
deepfakes generated using methods unseen during training (i.e., when exposed
to out-of-distribution data).

In this paper, we propose a novel architecture for the detection of deepfake
videos consisting of a hybrid backbone leveraging recent advances in convolu-
tional neural network (CNN) and Vision Transformers (ViT) [12], which we have
adapted to extract spatio-temporal features. Furthermore, high-frequency fea-
ture extraction through a two-dimensional discrete wavelet transform (DWT)
block is used, and a cross-attention block for feature enrichment and sharing
between the color and high-frequency branches completes the design.

We focus on the cross-manipulation—i.e., generalization—task, where archi-
tectures are trained on one dataset and tested on another. This is a more real-
istic scenario as a trained detector used in the real world is likely to encounter
a deepfake generated by a new, unseen tampering method compared to what it
was trained on. Specifically, we use three popular, high-quality deepfake video
datasets in our experiments: FaceForensics++ [27], DeeperForensics-1.0 [15], and
Celeb-DF [18]. These datasets can be broken down into three generations [10] ac-
cording to factors such as age, scale, and visual quality: first (FaceForensics+),
second (Celeb-DF), and third (DeeperForensics-1.0).

A series of experiments using a proposed frame sampling strategy based
on frame skipping and comparisons with state-of-the-art CNN- and ViT-based
architectures confirm the superior performance of our approach, demonstrating
the value of high-frequency and spatio-temporal feature extraction in tackling the
generalization task in facial deepfake detection. An ablation study demonstrates
the soundness of our approach and validates the usefulness of each component
of our architecture.

The rest of the paper is organized as follows. In Section 2, we provide an
overview of the state of the art in deepfake detection methods and approaches.
In Section 3, we explain our proposed architecture, detailing all of its constituent
blocks. In Section 4, we detail our experimental setup including datasets, base-
line architectures, data pre-processing, and the training procedure. In Section 5,
we present and discuss the results of our proposed architecture and compare
its performance with the baseline architectures in both cases—known manipula-
tion techniques and generalization. The ablation study is also discussed in this
section. Finally, Section 6 concludes this article.

2 Related Works

Image and video tampering detection has evolved substantially over the years.
The earliest detection methods looked at the inconsistency of artifact patterns
related to the acquisition chain such as double compression artifacts [5] or irreg-
ularities in the sensor-based photo-response non-uniformity [21]. Then, methods
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based on handcrafted features for facial deepfake detection appeared, such as
methods looking at facial landmark locations [33].

Nowadays, deep learning-based methods achieve excellent performance on
modern facial deepfake datasets [14, 22, 26,27, 32]. Extensive overviews of the
different techniques in the field of deepfake detection are provided in [4,30].

When it comes to deep learning-based methods, various approaches are ex-
plored in the literature. For the extraction of visual features from images, CNN
architectures have been extensively used and benchmarked for binary image
classification [27]. More recently, ViT-based architectures have been proposed
for image classification. In [11], the authors propose Identity Consistency Trans-
former (ICT), a ViT-based architecture that focuses on the consistency of the
identity of the subject and achieves promising results, although it is limited
mainly to the detection of face swapping. In [31], the authors propose CViT, an
architecture which increases the inductive bias of a Transformer by combining
it with a convolution-based feature extraction block. In [7], a similar philosophy
is pursued, with two CNN feature extractors covering small and large receptive
fields being combined with a ViT to form the proposed Convolutional Cross ViT.

Some architectures leverage the temporal dimension in order to classify im-
age sequences. In [14,32], CNNs are combined with a long short-term memory
(LSTM) network for the extraction of spatio-temporal features for deepfake de-
tection. In [26], various 3D CNN architectures combined with attention mecha-
nisms are benchmarked in various scenarios. The intuition with these approaches
is to exploit the temporal inconsistencies between successive frames in a deepfake
video since these are typically generated on a frame-by-frame basis.

In addition to learning features from RGB images, some works exploit fre-
quency-based features to further enrich the learning process. In [25], an archi-
tecture is proposed which aims at learning frequency-aware forgery patterns by
decomposing the input image into frequency-based features maps. This is ac-
complished by applying a two-dimensional discrete cosine transform, masking
the output with a number of masks (where each mask filters out certain fre-
quency bands), and finally applying the inverse transform to reconstruct the
input image in the spatial domain while targeting a specific frequency band for
each obtained map. A second stream aims to detect local abnormal frequency
distributions by computing image statistics. Other works instead focus on using
spatial rich model (SRM) [13] high-frequency filter blocks to extract frequency-
based features. In [22], the authors use these filters at multiple levels in their
proposed architecture, while in [3], these filters are shown to be efficient and
effective at improving results on the generalization task. In [24], the authors
propose a Transformer-like network for deepfake image detection which uses a
discrete wavelet transform for high-frequency feature extraction.

In [16], the authors approach the deepfake detection problem from a metric-
learning perspective, proposing a loss function that aims to minimize the distance
between representations of natural faces and the center point without restricting
the intra-class compactness of manipulated faces. The intuition is that since
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different manipulation techniques are grouped into one class, not imposing a
compactness constraint leads to more discriminative features.

Other works focus more on the data side of the pipeline. In [17], the authors
use randomly deformable soft facial masks to swap faces between subjects in
real videos, thus generating their own fake faces and augmenting the training
set. In [28], a method for generating extra training data from a single base
image is introduced. To generate new images, a mask generator module uses
facial landmarks to produce a geometrically deformed mask. This mask, along
with its inverse, is then used to blend the source and target images, which are
themselves augmented versions of the base image.

3 Method

Our proposed architecture relies on three fundamental building blocks: two
spatio-temporal processing streams (one for RGB features, the other for high-
frequency features) and a cross-attention module to allow feature fusion and
sharing by linking the two branches. Fig. 1 illustrates the full proposed architec-
ture.

e LT e
ninput images

ConvNeXt-T nRGB §
feature S
vectors | “T0SS- ) ificati Real/
attention| || Concatenation CIaS:g:’;“O" ™ Fake
Pl block ]
Discrete &-
wavelet
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. h (DWT)
ninput images .
9 block ConvNeXt-T| nhigh-
frequency
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vectors

Fig. 1: The proposed WaveConViT architecture. @ indicates element-wise addi-
tion and ® indicates matrix multiplication.

3.1 Spatio-Temporal RGB Feature Extraction

Spatio-temporal feature extraction is accomplished using a hybrid architecture
consisting of an ImageNet-1K-initialized ConvNeXt-T [19] convolutional back-
bone combined with a standard ViT [12]. First, the linear classification layer of
ConvNeXt-T is removed. This allows us to obtain, for a temporal sequence of n
input images, n feature vectors, the spatial features of each image being summa-
rized in a single vector. These n feature vectors are then fed as input to a ViT



WaveConViT for Cross-Manipulation Deepfake Video Detection 5

with two layers, four attention heads, and no classification head. In the original
ViT, which was used for image classification, the input image was partitioned
into patches, each of which was projected and made into a vector-shaped token.
In our architecture, however, each input token to the ViT corresponds to a whole
image from the input sequence (instead of an image patch). This modification
allows our CNN-ViT hybrid architecture to process sequences of input images
in a spatio-temporal manner. The final feature vector output by the ViT thus
summarizes all of the information from our input image sequence. The upper
branch in Fig. 1 illustrates this RGB feature extraction stream.

3.2 High-Frequency Feature Extraction

The synthetic manipulation of a region in an image (i.e., the face) leads to the
appearance of local inconsistencies in the modified image, such as improperly
masked blending boundaries in face-swapped images. As such, to better highlight
these subtle manipulation artifacts and supplement the RGB data, we make use
of a high-frequency feature extraction stream which relies on a two-dimensional
DWT block. This block is inserted at the beginning of the stream, which is
otherwise identical to the RGB feature extraction stream (see the lower branch
in Fig. 1).

The DWT block used relies on a single-level two-dimensional transform which
uses the discrete Haar wavelet. Two of the simpler wavelets from the Daubechies
family of wavelets [8], dbl and db2, were also evaluated in the early stages of
experimentation; however, we settled on the Haar wavelet as no appreciable
difference in performance was observed. The high-frequency filter f; and low-
frequency filter f; components of this wavelet are given in Eq. 1 and Eq. 2,
respectively:

1
fh = ﬁ{_lvlh (1)

1
fl = E{lal}' (2>

First, the input color image is convolved using a stride of two with f;, and fj,
which generate respectively H and L, halving the number of columns. Second,
these two maps are convolved with the transposes of f;, and f, yielding a total
of four frequency-based decomposition maps of the input image with half its
spatial resolution:

« LL (L convolved with f),
« HL (H convolved with f),
« LH (L convolved with fl),
« HH (H convolved with f).

To avoid further weakening the already-subtle manipulation traces, we do
not double the spatial dimensions of the input images through interpolation
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before applying the wavelet transform. The first convolution layer of ConvNeXt-
T in this branch is also modified to accommodate the fourfold increase in the
number of channels resulting from the stacking of the decomposition maps. In
our implementation, the L L low-frequency component is preserved as we did not
observe any improvement in performance from discarding it. Fig. 2 illustrates
how this approach can highlight facial tampering artifacts. In this example, a
strong response can be observed on the high-frequency maps on the edges of the
cheeks/chin (Face2Face) and the eyes (FaceSwap).

Face2Face e

FaceSwap E 2
I -

Fig. 2: Comparison of the resulting frequency maps from applying the 2D DWT.

3.3 Cross-Attention Module

In order to enhance interaction between the two main branches, a cross-attention
module similar to the one proposed in [25] is applied after the first stage of the
feature extraction process (i.e., to the output of the two ConvNeXt-T extractors).
The incoming feature vectors are first passed through a dimension-preserving
linear layer before the cross-attention scores are computed. Finally, the weighted
feature vectors from each branch are added element-wise to the opposite branch
to complete the feature enrichment process.

3.4 Classification Head

The output vectors of the two ViTs are concatenated into a single vector of
dimension d = 2048 x 2 which is then passed into a classification head. This head
consists of two fully connected layers separated by a ReLU nonlinear function.
The first linear layer reduces the feature size to 2048 and the second produces
the scores for binary classification.
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4 Experimental Setup

4.1 Datasets

In our experiments, we use three state-of-the-art facial deepfake video datasets:

(i) FaceForensics++ (FF++) [27]: Contains 1,000 real videos and 5,000
fake videos made by editing the real videos using five different manipulation
techniques. These manipulation techniques perform face swapping (DeepFakes
(DF), FaceShifter (FSh), FaceSwap (FS)) and facial reenactment (Face2Face
(F2F), NeuralTextures (NT)). We use the H.264, lightly compressed (HQ) version
of the dataset.

(ii) Celeb-DF [18]: Contains 5,639 fake and 590 real videos of various
celebrities, the type of tampering implemented being face swapping. Videos are
compressed to the MPEG4.0 format.

(iii) DeeperForensics-1.0 (DF-1.0) [15]: We use the standard (std) set
which contains 1,000 fake videos obtained from the same non-manipulated videos
as FaceForensics+—+ using the same HQ compression scheme. The fake videos in
this dataset are obtained by face swapping using a different method compared
to FaceForensics++-.

4.2 Data Pre-Processing

For each video, the first 120 frames are extracted, and the state-of-the-art
MTCNN [34] face detector is used to crop the subject’s face in each frame. We
manually verify the correct detection of the subject’s face. The resulting crop
is enlarged by 20% in both height and width to guarantee the presence of both
manipulated and authentic regions then resized to 224 x 224 using bilinear in-
terpolation. We use the official training, validation, and test splits recommended
by the authors for FF++ and Celeb-DF. Since DF-1.0 (std) is generated from
the same source videos as FF-++, the same FF-++ video IDs are used to split
DF-1.0 into the various sets.

Image Sequence Classification and Frame Sampling Strategies In order
to study the impact of sequence length on classification performance, we evaluate
three different length values: each sequence of 10, 20, or 60 successive frames is
taken as a data point for the image sequence classification task.

In addition to sampling every frame successively (i.e., a skip of zero), we
evaluate other sampling schemes: for sequences of lengths 10 and 20, we test
skips of one, two, and three frames before sampling again. For sequences of
length 60, we test a skip of one!. In order to exploit all available images in a
given video, we also shift the sampling window when using frame skipping. The
intuition for implementing this frame skipping strategy is that two successive
frames in a video may be too similar for the learning of meaningful temporal

1Since our videos consist of 120 frames, one is the maximum possible skip for
sequences of 60 frames.
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features. It is worth noting that different frame rates between videos can result
in differences in the elapsed time between two successive samples.

To illustrate this sampling strategy, consider the following example: Let us
represent an arbitrary video with N = 120 frames as {Ii}izév ~1. If we were to
choose a sequence length of 10 and a frame skip of zero (referred to in Section 5
as 10f), the resulting set of image sequences we would obtain is described by the
following equation:

SlOf = {{Io,fl,...,fg}, {1107111,...,119}, cey {111071111,...,1119}}. (3)

If we were to choose the same sequence length but a frame skip of one instead
of zero (referred to in Section 5 as 10f, s = 1), then the resulting set is described
by

Siof,s=1 = {{lo, Iz, ..., s}, {I20, I22, ..., Iss}, ..., {I100, T102; - - -, 1118},
{Ih,Is,... . Iio}, {Io1, Ios, . .., Iso}, -, {Two1, Tr03, - - -, Juio} ). (4)

Note that in both cases, we would obtain the same number of sequences:
[Si0f| = |S10f, s=1| = 12 per video of 120 frames.

4.3 Baseline Architectures

In this work, we use a set of popular baseline architectures to compare and
benchmark our proposed method against. For image classification, we use Xcep-
tionNet [6], a popular CNN architecture for image classification which is widely
used for benchmarking purposes in deepfake detection [27]. We also use the T
(tiny) and B (base) versions of ConvNeXt [19], a more modern CNN architec-
ture which achieves excellent results in image classification on ImageNet [9].
All CNN architectures are initialized with pre-trained weights on ImageNet-1K
before training on our datasets.

Additionally, we use three Transformer-based deepfake detection architec-
tures which achieve strong results and for which code is publicly available:
CVIT |[31], Efficient ViT [7], and Convolutional Cross ViT [7]. For both Effi-
cient ViT and Convolutional Cross ViT, we use an EfficientNet-B0 [29] that is
pre-trained on ImageNet as a feature extractor, as per the original paper.

For image sequence classification, we use the same spatio-temporal architec-
ture in the RGB domain as [3] due to the ease of reproduction of this work. This
architecture combines XceptionNet with a single-layer LSTM.

4.4 Training Procedure

We use binary cross-entropy with appropriate class weights to account for the
imbalance between real and fake data. For all image classification architectures,
a batch size of 32 is used. For the spatio-temporal architectures, due to memory
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constraints, we use batch sizes of 8, 4, and 2 with sequences of 10, 20, and 60
frames, respectively. We have found the AdamW [20] optimizer with a learning
rate of 107° and 8 epochs to work well for all tested architectures.

Classification accuracy and the area under the ROC curve (AUC) are used as
performance metrics. During training, evaluation on the validation set is carried
out periodically four times per epoch, and the model with the highest average
of accuracy and AUC is kept at the end of training. Performance scores are
computed over all data points in the test set of the target dataset (i.e., we do
not compute nor average per-video scores).

5 Results

Before comparing the proposed WaveConViT with the baselines, we present in
Table 1 the complete results of WaveConViT in both the standard setting (train-
ing and testing on FF++) and the cross-manipulation scenario (training on
FF++ and testing on either Celeb-DF or DF-1.0).

Training & testing Generalization
on FF++ Celeb-DF DF-1.0
Accuracy | AUC |Accuracy| AUC |Accuracy| AUC
WaveConViT 10f 96.57 95.59 66.83 60.88 72.50 43.45

94.82 86.74 71.33 73.29 65.80 45.12
WaveConViT 10f, s = 97.12 96.46 67.12 59.81 81.25 58.42
WaveConViT 10f, s 96.79 97.74 69.87 67.75 78.21 59.75
WaveConViT 20f 96.83 96.61 67.17 55.14 73.99 45.32
WaveConViT 20f, s = 1| 96.63 96.89 67.48 61.49 77.32 52.16
WaveConViT 20f, s = 2| 96.37 98.74 64.63 52.60 84.40 | 79.37
WaveConViT 20f, s = 3| 96.96 95.91 63.51 53.09 77.95 48.14
WaveConViT 60f 96.96 96.80 67.15 57.21 77.86 51.16
WaveConViT 60f, s = 1| 96.37 97.87 66.34 55.80 79.46 60.97

\
W N e

WaveConViT 10f, s

Table 1: Full classification results of the proposed WaveConViT for all configura-
tions. For each dataset, the best result is indicated in bold, while the second-best
is underlined.

Most sequence length and frame skip size configurations achieve comparable
and strong performance scores when training and testing is done on FF++. Note,
however, how the shortest possible length with a small skip achieves the best re-
sults in the generalization test on Celeb-DF while a longer sequence length gives
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the best results on DF-1.0. As such, the best configuration is heavily dependent
on the target dataset for cross-manipulation detection; however, the 10f, s = &
configuration achieves a good balance between both datasets.

Another observation is that the accuracy, on average, tends to be higher on
DF-1.0 compared to Celeb-DF. This is to be expected since DF-1.0 shares a
stronger similarity to the training set since it was created from the same source
videos as FF++.

5.1 Known Manipulation Techniques

Table 2 shows the best results for the spatial and spatio-temporal architectures
when training and testing on FF++-. For readability purposes, only the sequence
length and skip size configuration which achieves the highest accuracy for each
spatio-temporal architecture is shown.?

Accuracy AUC
XceptionNet [6] 96.22 87.64
ConvNeXt-T [19] 96.79 | 80.70
ConvNeXt-B [19] 96.37 88.74
CViT [31] 91.54 85.19
Efficient ViT [7] 91.61 90.24
Convolutional Cross ViT [7] 95.14 94.23
XceptionNet + LSTM 20f, s = 2 [3]| 95.81 89.79
WaveConViT 10f, s = 2 (ours) 97.12 96.46

Table 2: Classification results when training and testing on FF++. The double
horizontal line denotes the separation between image and image sequence classi-
fication. The best result is indicated in bold while the second-best is underlined.

Our proposed WaveConViT outperforms all baselines both in accuracy and
AUC with the 10f, s = 2 configuration. It improves on ConvNeXt-T, which
achieves the highest accuracy among the baselines by 0.33% and its AUC is
2.23% higher than second-placed Convolutional Cross ViT. Note that relatively
shorter sequences of 10 or 20 frames with frame skipping yield the best results
for the spatio-temporal architectures.

2The full results and architecture code are available at gitlab.liris.cnrs.fr/unmask-
deepfake-videos/waveconvit.
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5.2 Generalization Performance

Table 3 shows the best results for all architectures in the cross-manipulation
(i.e., generalization) scenario. Similarly to Table 2, only the sequence length and
skip size configuration with the highest accuracy on either dataset is shown for
each spatio-temporal architecture.

FaceForensics++ was chosen for training because it contains fake videos gen-
erated using five different techniques. This results in a richer set of tampering
clues to learn from compared to Celeb-DF and DF-1.0, both of which use a single
tampering technique. As shown in [3], frequency-aware deepfake detection works
better when learning occurs on a diverse set of tampering artifacts.

Once again, WaveConViT outperforms all baselines, achieving the best gen-
eralization performance overall. The 10f, s = I configuration achieves the best
performance on Celeb-DF while the 20f, s = 2 configuration is the best on DF-
1.0, where WaveConViT significantly outperforms the baselines. Overall, the
spatio-temporal architectures outperform the image-only approaches in gener-
alization, showing the value of exploiting the temporal dimension in deepfake
video detection.

One important aspect to note with sequence length is that there is a trade-off
between the richness of temporal features in longer sequences and the amount
of data available for training. Indeed, longer sequences contain more temporal
information—potentially enabling the learning of richer and more representa-
tive features—but yield fewer total data points for training/testing since each
sequence covers a larger part of the total length of the video. Table 4 illustrates
this, showing the total number of data points depending on the length of the
sequence and the value of the frame skip.

This trade-off may help explain why WaveConViT performs better with rel-
atively shorter sequences, as Vision Transformers are notorious for performing
best when trained on larger datasets [12].

5.3 Ablation Study

Table 5 presents the performance in both the known manipulation and cross-
dataset evaluation scenarios when isolating specific components of the WaveCon-
ViT architecture: RGB branch only, DWT branch only, both branches without
the cross-attention module, and the full architecture.

Additionally, we compare our DWT-based high-frequency feature extraction
method to SRM [13], another approach which has been used recently for deepfake
detection with good results [3,23] as well as for more general image tampering
detection [35]. Specifically, we replace DWT in WaveConViT with a block which
uses the same group of SRM kernels as [35] to extract high-frequency maps.

We can observe that the RGB branch outperforms the high-frequency branch
when both are evaluated on their own. This reinforces the findings in [3], where
high-frequency filtering was shown to suppress meaningful temporal manipula-
tion artifacts such as color inconsistency between successive frames in a deepfake
video or flickering artifacts.
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Celeb-DF DF-1.0

Accuracy| AUC |Accuracy| AUC
XceptionNet [6] 68.40 63.69 72.10 30.19
ConvNeXt-T [19] 69.78 59.78 62.58 28.55
ConvNeXt-B [19] 70.74 65.63 71.52 27.74
CViT [31] 69.25 71.00 63.94 52.43
Efficient ViT [7] 66.58 62.15 63.46 53.96
Convolutional Cross ViT [7] 69.45 64.34 67.63 43.97
XceptionNet + LSTM 20f, s = 2 [3]| 59.53 50.26 81.49 50.21
XceptionNet + LSTM 60f, s = 1 [3]| 67.51 71.03 55.00 64.26
WaveConViT 10f, s = 1 (ours) 71.33 73.29 65.80 45.12
WaveConViT 20f, s = 2 (ours) 64.63 52.60 84.40 79.37

Table 3: Classification results when training on FF+-+ and testing on Celeb-
DF and DF-1.0 (i.e., generalization). The double horizontal line denotes the
separation between image and image sequence classification. The best result on
each dataset is indicated in bold while the second-best is underlined.

Sequence length 10f 20f 60f
and frame skip
combination |no skip|s = 1|s = 2|s = 3|no skip|s = 1|s = 2|s = 3|no skip|s = 1
# of data
points 72 72 72 72 36 36 36 24 12 12
(thousands)

Table 4: Number of data points (image sequences) available in our FF++ dataset
depending on the sequence length and frame skip combination.

Generalization performance increases when both branches are used together
and, finally, the best results are achieved when adding the cross-attention mod-
ule, which raises generalization accuracy by 0.73% and 1.6% on Celeb-DF and
DF-1.0, respectively. These tests thus confirm the validity of the design choices
underpinning the WaveConViT architecture.

Finally, the comparison in Table 5 shows that the DWT approach using
the Haar wavelet allows WaveConViT to learn more generalizable tampering
artifacts, resulting in superior cross-dataset performance compared to SRM.

6 Conclusion

In this paper, we propose WaveConViT, a novel spatio-temporal architecture for
deepfake video detection which relies on a hybrid backbone consisting of a state-
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Components Training & testing Generalization
Cross- on FF++ Celeb-DF DF-1.0
RGB|DWT|SRM |attention
module |Accuracy | AUC |Accuracy | AUC |Accuracy| AUC
v 97.26 | 97.07 69.74 64.59 80.36 59.07
v 85.97 78.23 67.71 65.11 57.92 54.15
v v 96.85 92.47 70.60 | 72.79 82.80 58.93
v v v 97.12 96.46 71.33 | 73.29| 84.40 |79.37
v v v 96.87 | 97.38 69.50 67.30 84.29 | 71.09

Table 5: Influence of each component of WaveConViT on classification perfor-
mance. SRM [3,13], another high-frequency feature extraction method, is shown
for comparison against our DWT approach.

of-the-art convolutional neural network and a Vision Transformer, and learns
from color images as well as high-frequency data, which is extracted through
a two-dimensional discrete wavelet transform. The two constituent streams of
WaveConViT—the color and high-frequency ones—can also act as standalone
architectures which are also discussed in our study.

Additionally, we introduce a frame-skip-based sampling strategy for creating
image sequences, intuiting that successive frames in a video may be too similar
for the learning of meaningful temporal features.

Through a series of experiments on the FaceForensics++, Celeb-DF, and
DeeperForensics-1.0 datasets—with a particular focus on the challenging cross-
manipulation scenario—we test the validity and superiority of our architecture as
well as the effectiveness of the aforementioned frame sampling strategy. Specifi-
cally, we compare our proposed architecture to a group of state-of-the-art archi-
tectures consisting of Transformer-based models for deepfake detection and one
of the best-performing convolutional architectures for image classification. Re-
sults show WaveConViT outperforming all baselines, demonstrating the potency
of temporal and high-frequency features in tackling the challenging deepfake
generalization task, as well as the effectiveness of frame skipping strategies.

Future work will focus on the possibility of incorporating learning into high-
frequency feature extraction, and the viability of adapting video Vision Trans-
formers to the deepfake detection task.
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