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p3q Institut Recherche Mathématique Avancée, UMR 7501, Université de
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Abstract

Estimators of the conditional tail moment risk measure based on

extreme Kaplan–Meier integral constructions are proposed. The situa-

tion when observations are heavy-tailed and subject to right-censoring

is considered, which arises often in non-life insurance. Weak conver-

gence is established for both standard and bias-reduced versions of the

estimator, and the finite-sample performance is studied through sim-

ulations. A real data application to a theft guarantee from a Danish

non-life insurer is considered.

Keywords: Conditional tail moment; Pareto-type distribution; Ran-

dom censorship.

1 Introduction

Claims in non-life insurance often experience long settlement periods, which

are further complicated by heavy-tailed claim size distributions and right-
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censoring effects. These challenges are particularly present in lines of busi-

ness with long settlement durations, such as third-party liability insurance.

Consequently, the correct estimation of the underlying risks, taking into ac-

count the censoring effects while assuming power-law tails has recently been

studied in various contexts. For instance, Matthys et al. (2004) considered

catastrophic quantile levels, Reynkens et al. (2017) considered parametric

distributional fitting, and Bladt et al. (2020) incorporated ultimate infor-

mation, from individual claims reserving.

In fully observed settings, the study of rare events has been explored ex-

tensively through extreme value theory (EVT), which offers a wide range of

statistical tools, particularly tailored to answer questions on risk assessment

which frequently arise in insurance settings, see, e.g., Chavez-Demoulin &

Embrechts (2010) where the importance of EVT for financial risk man-

agement is highlighted. In that context, and especially for non-life in-

surance applications, the most popular risk measure has classically been

the Value-at-Risk (VaR) at a level p P p0, 1q, defined as the upper p-th

quantile of a loss distribution function FX associated with a random vari-

able X, i.e., UXp1{pq, where UX is the tail quantile function of X, that is

UXp.q :“ inftx : FXpxq ě 1 ´ 1{.u. Despite its versatility and widespread

use, it is well known that the VaR suffers from several shortfalls, among

them, the fact that it only provides pointwise information, and that it is not

a coherent risk measure, as defined by Artzner et al. (1999).

In an attempt to alleviate some of these drawbacks, the conditional tail

expectation (CTE), also known as the tail-VaR or expected shortfall in the

case of a continuous loss distribution, has been considered extensively by

insurers and scholars alike. Its definition in terms of the introduced notation

is simply ErX|X ą UXp1{pqs, which is well defined whenever E|X| ă 8. It

represents the mean of the loss distribution above a high quantile. Arguably,

the CTE takes into account information contained in the entire upper tail

of the distribution, making it a more robust tail risk measure. For non-

negative random variables, a natural generalization of this measure can then
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be formulated by considering further moments ζ ą 0 of X, i.e., to consider

θp,ζ :“ E
”

Xζ
ˇ

ˇ

ˇ
X ą UXp1{pq

ı

,

which is well defined whenever ErXζs ă 8, allowing in particular to consider

arbitrary moments such as the second moment, and thus the conditional

variance of a risk. This risk measure is called the Conditional Tail Moment

(CTM, see El Methni et al., 2014), and is of particular interest when data

is heavy-tailed.

The goal of this paper is to efficiently estimate θp,ζ not only when the

positive random variable X has a heavy-tailed distribution, but when cen-

soring is additionally present. The practical contribution for developing the

statistical methodology in this case is tailored for applications in the insur-

ance industry, where claim size distributions are often heavy-tailed, and it

is common to encounter censorship for instance when faced with long devel-

opments of claims. This is indeed the case in the application we consider,

where we analyze ten years of data comprised of claim sizes corresponding

to a theft coverage from a Danish non-life insurance company, where settle-

ments take time to be reached. In that case, the correct estimation of the

CTM is crucial to understand and assess the risk of any outstanding claim.

It is also worth mentioning that our methodology may be used in other ap-

plication areas, for instance when measuring lifetimes of objects following

a power-law distribution. To the best of the authors’ knowledge, the only

estimator in the literature designed for the same task is the one introduced

in Goegebeur et al. (2024), based on a different mathematical construction,

which is compared throughout the paper.

The remainder of the paper is organized as follows. In Section 2, we intro-

duce the necessary notation and present recent ideas regarding techniques to

handle censored extreme values, which allows us to motivate our new estima-

tor of θp,ζ . Then, in Section 3, we establish the main asymptotic properties

of our estimator. Subsequently, Section 4 is devoted to a simulation study,

where we illustrate the performance of our estimator and compare it with

several alternative estimators, including bias-corrected versions. Section 5
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presents a real-data application from the non-life insurance sector. All the

proofs are postponed to the Appendix.

2 Construction of the estimators adapted to cen-

soring

In this section, we survey the construction of estimators of the CTM adapted

to censoring, covering both established methods and new approaches.

2.1 Setting and construction

Throughout this article, X is the variable of interest and its distribution

function FX is assumed to be of the form

FXpxq “ 1 ´ x
´ 1

γX ℓXpxq, x ą 0, (1)

where γX ą 0 is called the extreme value index of X, and ℓXp.q is a slowly

varying function at infinity, i.e., a positive measurable function which satis-

fies

lim
xÑ8

ℓXpλxq

ℓXpxq
“ 1, for all λ ą 0.

The model (1) can be shown to be equivalent to

UXpxq “ xγX ℓU pxq (2)

with ℓU p.q also a slowly varying function at infinity. Variables having such

distribution are said to have regularly varying tails, and are in particular

heavy-tailed, in the sense that they do not possess a finite moment generat-

ing function.

The variable X is moreover assumed to be censored by another random

variable, say Y , assumed to be independent of X, and which also has a

heavy-tailed distribution FY satisfying

FY pxq “ 1 ´ x
´ 1

γY ℓY pxq, x ą 0, (3)
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with γY ą 0 and ℓY p.q again a slowly varying function at infinity. The

censorship framework stipulates that we only observe Z :“ minpX,Y q to-

gether with an indicator δ :“ 1ltXďY u, the latter specifying whether X or

Y has been observed. Thus, given a sample pZi, δiqt1ďiďnu, of independent

copies of pZ, δq, the aim is now to perform inference on θp,ζ when p is very

small, i.e., smaller than 1{n. As mentioned in the introduction, this task

has also been considered in Goegebeur et al. (2024). Thus, our objective is

to propose an alternative estimator which can outperform the former one in

practical situations.

To start with our construction, we notice that using Theorem 1.5.11(ii)

in Bingham et al. (1987), for any p Ó 0 and for γX ă 1{ζ, we have

θp,ζ “ ´
1

FXpUXp1{pqq

ż 8

UXp1{pq

xζ dFXpxq

“

„

UX

ˆ

1

p

˙ȷζ

`
ζ

FXpUXp1{pqq

ż 8

UXp1{pq

FXpxqxζ´1 dx

„

„

UX

ˆ

1

p

˙ȷζ "

1 `
γX ζ

1 ´ γX ζ

*

“
1

1 ´ γX ζ

„

UX

ˆ

1

p

˙ȷζ

. (4)

Consequently, a natural idea is then to estimate θp,ζ based on this asymptotic

consideration by

pθ
pc,1q

p,ζ :“
1

1 ´ pγ
pc,1q

X,k ζ

„

pU
pc,1q

X

ˆ

1

p

˙ȷζ

, (5)

where k is an intermediate sequence, i.e., a sequence such that k Ñ 8

and k
n Ñ 0, and pγ

pc,1q

X,k , resp. pU
pc,1q

X p1{pq, an estimator of γX , resp. for

UXp1{pq, adapted to the censorship context. This construction principle

was considered in Goegebeur et al. (2024).

An alternative idea to estimate θp,ζ is to use a Weissman-type construction

(see Weissman, 1978), which consists in a two-step procedure relying on the

following approximation coming from (4)

θp,ζ „

«

UXp1pq

UXpnk q

ffζ

θ k
n
,ζ ,
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from which we deduce that

θp,ζ „

ˆ

k

np

˙ζ γX

θ k
n
,ζ ,

by Model (2). This leads to a new estimator of θp,ζ defined as

pθ
pc,2q

p,ζ :“

ˆ

k

np

˙ζ pγ
pc,2q

X,k
rθ

pc,2q
k
n
,ζ
, (6)

where pγ
pc,2q

X,k , resp. rθ
pc,2q

k{n,ζ , is a suitable estimator of γX , resp. for θk{n,ζ ,

adapted to the censorship context. In the case of no censoring, this Weissman-

type construction was considered in Goegebeur et al. (2022). The idea is

that stabilization can be achieved by the two-step procedure, relying on ex-

trapolation only when considering the far tail. It is also worth noting that

the construction principle of (6) does not have the drawback of dividing

with a quantity that can possibly become zero, as is the case in (5). Indeed,

estimators of extreme value indices in insurance tend to have positive bias

when they are based on observations far from the tail, meaning that they

estimate γX with a value larger than its actual value for medium or large

values of k, exacerbating the division problem of (5).

Next, we discuss the estimators of the tail parameters required in both

estimators (5) and (6) for θp,ζ , that is the estimators of γX , UX

´

1
p

¯

and

θ k
n
,ζ adapted to censored data.

2.2 Extreme value index estimator in case of censoring

Extreme value theory, and in particular the estimation of the extreme value

index for randomly censored data was originally mentioned in Reiss and

Thomas (Section 6.1, 1997), where an estimator of a positive extreme value

index was introduced without establishing their asymptotic results. Later,

this topic was taken up in detail by Beirlant et al. (2007) and Einmahl et

al. (2008) for a general extreme value index (i.e., an index in R instead of

a positive index) and for an extreme quantile. In all of these contributions,

the idea of the construction of an estimator of γX adapted to the censorship

framework has been to consider a classical extreme value index estimator
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based on the Z-sample, e.g., the Hill estimator (Hill, 1975), and then to

divide it by the proportion of non-censored observations in the k´largest

Z’s. This leads to

pγ
pc,1q

X,k “

1
k

řk
i“1 logZn´i`1,n ´ logZn´k,n

1
k

řk
i“1 δrn´i`1,ns

(7)

where Zi,n, 1 ď i ď n, denote the order statistics associated to the Z-sample,

and δr1,ns, ..., δrn,ns are the δ’s corresponding to Z1,n, ..., Zn,n, respectively.

The idea which motivates this construction is that, due to the indepen-

dence between X and Y , the observed random variable Z has a distribution

function FZ which satisfies FZpxq “ 1 ´ p1 ´ FXpxqqp1 ´ FY pxqq, and thus

it is also of the form

FZpxq “ 1 ´ x
´ 1

γZ ℓZpxq, x ą 0, (8)

with γZ “
γX γY
γX`γY

ą 0 and ℓZp.q again a slowly varying function at infinity.

Thus, the classical Hill estimator based on the Z-sample, i.e., the numerator

of (7), estimates γZ and not γX which is the parameter of interest. As a

consequence, this Hill estimator requires adaptation, which can be done by

dividing it by the denominator in (7), which represents the proportion of

non-censored observations in the k largest Z’s, and thus which estimates

γY
γX`γY

. In that way, we recover an estimator of γX .

Although the above construction based on moment considerations is easy

to conceptualize, it may be sometimes outperformed by newer estimators.

For instance, Bladt & Rodionov (2024) studied the asymptotics and favourable

finite sample performance of the class of estimators

ż 8

1
φpxq dFk,npxq, (9)

for suitable choices of φ functions, where Fk,n is the extreme Kaplan–Meier

estimator defined as

Fk,npxq :“ 1 ´

k
ź

i“1

„

1 ´
δrn´i`1:ns

i

ȷ1ltZn´i`1,n{Zn´k,nďxu

.
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In the special case of φpxq “ logpxq the following alternative estimator of

γX is obtained

pγ
pc,2q

X,k :“

ż 8

1
logpxq dFk,npxq, (10)

which can actually be shown to be equal, after some calculations, to the

estimator defined in equation (7) of Worms &Worms (2014). More precisely,

this estimator (10) is a consistent estimator in probability for

ż 8

1
logpxq dF ˝pxq “ γX ,

where F ˝pxq :“
´

1 ´ x
´ 1

γX

¯

1ltxě1u, as soon as γY ą γX (see Section 3 in

Bladt & Rodionov, 2024).

2.3 Extreme quantile estimator in case of censoring

Concerning the estimator pU
pc,1q

X p1{pq required in (5), Goegebeur et al. (2024)

proposed a Weissman-type construction similar to the one used in (6), but

now based on the approximation

UX

ˆ

1

p

˙

„ UX

´n

k

¯

ˆ

k

np

˙γX

„ UX

´n

k

¯

ˆ

1 ´ FXpUXpnk qq

p

˙γX

. (11)

Denoting the Kaplan–Meier product-limit estimator (Kaplan & Meier, 1958)

of FX by

Fnpxq :“ 1 ´

n
ź

i“1

„

1 ´
δrn´i`1:ns

i

ȷ1ltZn´i`1,nďxu

,

Goegebeur et al. (2024) estimate UXp1{pq by

pU
pc,1q

X

ˆ

1

p

˙

“ Zn´k,n

ˆ

1 ´ FnpZn´k,nq

p

˙

pγ
pc,1q

X,k

, (12)

where pγ
pc,1q

X,k is defined in (7).
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2.4 Conditional tail moment estimator in case of censoring

We now finally put all the pieces together. We propose an estimator of the

form (6) with pγ
pc,2q

X,k given in (10) and

rθ
pc,2q
k
n
,ζ

:“
”

pU
pc,2q

X

´n

k

¯ıζ
ż 8

1
xζ dFk,npxq (13)

where

pU
pc,2q

X

´n

k

¯

:“ Zn´k,n

ˆ

1 ´ FnpZn´k,nq

k{n

˙

pγ
pc,2q

X,k

. (14)

Heuristically, we can understand this estimator as follows: in case of no-

censoring θ k
n
,ζ can be estimated by

1

k

k
ÿ

i“1

Xζ
n´i`1,n “ rXn´k,nsζ

1

k

k
ÿ

i“1

ˆ

Xn´i`1,n

Xn´k,n

˙ζ

.

In case of censoring, according to Bladt & Rodionov (2024), the analogue of

1

k

k
ÿ

i“1

ˆ

Xn´i`1,n

Xn´k,n

˙ζ

is
ż 8

1
xζdFk,npxq,

which again conveniently falls into the framework of (9). Concerning the

analogue of Xn´k,n, the natural idea is to use Zn´k,n, which is observed, but

it should obviously be modified since it estimates UZpn{kq and not UXpn{kq.

Our modification consists to use a Weissman-type construction similar to the

one used in (11), but this time for p replaced by k{n. This yields to estimate

the intermediate quantile of X by (14).

In Goegebeur et al. (2024) it was proposed to estimate θp,ζ by (5) with

pγ
pc,1q

X,k and pU
pc,1q

X p1{pq defined in (7) and (12), respectively.

3 Weak convergence of our estimator

When considering the asymptotics of large observations, and in particular

when proving consistency of an estimator of a tail parameter, one usually
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only needs to assume a first-order condition, i.e., Model (1) suffices. On

the contrary, when dealing with the weak convergence of the estimator, one

often requires to strengthen this convergence by specifying further the form

of the distribution function of X and Y . Since we are interested in this type

of asymptotic result, we assume in the sequel that both X and Y satisfy a

second-order Pareto-type model given in Assumption pDq below, where RVψ

denotes the class of regularly varying functions at infinity with index ψ P R,

i.e., positive measurable functions f satisfying fptxq{fptq Ñ xψ, as t Ñ 8,

@x ą 0.

Assumption pDq The survival functions of X and Y satisfy

F ‚pxq “ A‚ x
´ 1

γ‚

ˆ

1 `
1

γ‚

δ‚pxq

˙

,

where ‚ denotes either X or Y , A‚ ą 0, γ‚ ą 0, and |δ‚p¨q| P RV´β‚
, β‚ ą 0.

Distribution functions satisfying Assumption pDq also satisfy the so-called

second-order condition in univariate extreme value statistics (see, e.g., The-

orem 2.3.9 in de Haan and Ferreira, 2006). This assumption is however

slightly more general than the Hall class of distribution functions (Hall,

1982, Hall and Welsh, 1985) and is satisfied by many commonly used distri-

butions in insurance, such as the Pareto, Log-gamma, Burr, Fréchet, Stu-

dent’s t-distributions. Under Assumption pDq, the tail quantile function

U‚p¨q satisfies

U‚pxq “ Aγ‚
‚ xγ‚ p1 ` a‚pxqq (15)

where a‚pxq “ δ‚pU‚pxqqp1 ` op1qq, and thus |a‚p¨q| P RV´β‚γ‚
.

Note that the survival function of Z also satisfies Assumption pDq with

AZ :“ AXAY , γZ :“ γX γY
γX`γY

and |δZp.q| P RV´βZ , where βZ :“ minpβX , βY q,

and hence UZ satisfies p15q.

Throughout the paper, we assume that both pγ
pc,iq
X,k , i “ 1, 2, defined in (7)

and (10) respectively, satisfy the weak convergence

?
k
´

pγ
pc,iq
X,k ´ γX

¯

d
ÝÑ Γpiq. (16)
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This assumption is somewhat immaterial, since under suitable lax assump-

tions, they are satisfied. The reason for writing these convergences in such

a generic fashion is to highlight the fact that any estimator satisfying such

weak convergence is also a suitable plug-in estimator in our construction

for the estimator of the CTM. Such fact becomes clear when examining

the proofs in the Appendix. We come back to this point when considering

bias-reduced estimators of the extreme value index.

The weak convergence of pθ
pc,1q

p,ζ defined in (5), has already been established

and is repeated below for reference and comparison.

Theorem 3.1 (Theorem 2 in Goegebeur et al., 2024.) Assume pDq with

FX continuous and that the convergence (16) holds for pγ
pc,1q

X,k . Then, for

k, n Ñ 8 with k{n Ñ 0 and
?
k δXpUZpn{kqq Ñ λ P R, and a sequence p

such that
log

´

k
n ppγX`γY q{γY

¯

?
k

ÝÑ 0 and
k

np
ÝÑ 8,

we have for ζ ă 1{γX

?
k

log
1´FnpZn´k,nq

p

¨

˝

pθ
pc,1q

p,ζ

θp,ζ
´ 1

˛

‚

d
ÝÑ ζ Γp1q.

To derive a similar result for our estimator pθ
pc,2q

p,ζ defined in (6), we need

first to establish the weak convergence of the intermediate estimator pU
pc,2q

X pn{kq

in (14). This is done in the following theorem.

Theorem 3.2 Assume pDq with FX continuous and that the convergence

(16) holds for pγ
pc,2q

X,k . Then, for k, n Ñ 8 and
?
k δXpUZpn{kqq Ñ λ P R and

?
k{ logpn{kq Ñ 8, we have

?
k

log
1´FnpZn´k,nq

k{n

˜

pU
pc,2q

X pnk q

UXpnk q
´ 1

¸

d
ÝÑ Γp2q.

Note that the condition
?
k{ logpn{kq Ñ 8 is required in order to ensure

that the rate of convergence of the above theorem tends to infinity (see (18)

in the proof of Theorem 3.2).
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Next, we look at the estimator rθ
pc,2q
k
n
,ζ

defined in (13). Its weak convergence

is stated below.

Theorem 3.3 Assume pDq with FX continuous and that the convergence

(16) holds for pγ
pc,2q

X,k . Then, for k, n Ñ 8 and
?
k δXpUZpn{kqq Ñ λ P R and

?
k{ logpn{kq Ñ 8, we have when ζ P

´

0, 12

”

1
γX

´ 1
γY

ı¯

?
k

log
1´FnpZn´k,nq

k{n

¨

˝

rθ
pc,2q
k
n
,ζ

θ k
n
,ζ

´ 1

˛

‚

d
ÝÑ ζ Γp2q.

We are now able to state the main result of this paper:

Theorem 3.4 Assume pDq with FX continuous and that the convergence

(16) holds for pγ
pc,2q

X,k . Then, for k, n Ñ 8 and
?
k δXpUZpn{kqq Ñ λ P R, we

have when ζ P

´

0, 12

”

1
γX

´ 1
γY

ı¯

?
k

log k
np

¨

˝

pθ
pc,2q

p,ζ

θp,ζ
´ 1

˛

‚

d
ÝÑ ζ

ˆ

1 `
γX

γX ` γY
C

˙

Γp2q

if log pn{kq{ log pk{pnpqq Ñ C P r0,8q and
?
k{ log pk{pnpqq Ñ 8, and

?
k

log
1´FnpZn´k,nq

k{n

¨

˝

pθ
pc,2q

p,ζ

θp,ζ
´ 1

˛

‚

d
ÝÑ ζ Γp2q

if log pn{kq{ log pk{pnpqq Ñ 8,
?
k{ log pn{kq Ñ 8 and k{pnpq Ñ 8.

A comparison between Theorems 3.1 and 3.4 leads to the following remarks:

• The rates of convergence of pθ
pc,1q

p,ζ and pθ
pc,2q

p,ζ , properly normalized, are

the same, as well as the limiting distributions (the only difference being

Γpiq for pθ
pc,iq
p,ζ , i “ 1, 2, in the limit), since, according to (18)

log
1 ´ FnpZn´k,nq

p
“

γX
γX ` γY

log
´n

k

¯

` log

ˆ

k

n p

˙

` oP

´

log
´n

k

¯¯

and

log
1 ´ FnpZn´k,nq

k{n
“

γX
γX ` γY

log
´n

k

¯

` oP

´

log
´n

k

¯¯

.
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• The weak convergence of pθ
pc,2q

p,ζ is only valid in case ζ P

´

0, 12

”

1
γX

´ 1
γY

ı¯

,

while that for pθ
pc,1q

p,ζ requires only ζ ă 1{γX .

• Some of the conditions required in order to have (16) for pγ
pc,1q

X,k , more

precisely Conditions (14) and (15) in Einmahl et al. (2008) about

ppzq :“ Ppδ “ 1|Z “ zq, are not standard conditions and difficult to

verify in practice. On the contrary, those required for pγ
pc,2q

X,k are rather

standard (see Appendix E in Bladt & Rodionov, 2024), except the

condition γY ą γX . The latter condition may be practically overcome

as explained in Bladt & Rodionov (2024), through the estimation of

γZ and γY , and retrieving from these two quantities an estimator for

γX , although weak convergence has not been established in that case.

• It is clear from Theorems 3.1 and 3.4 that the estimators for θp,ζ

inherit the behavior of those for γX . As it is well known in EVT

that the estimation of tail parameters can lead to bias problems, this

is the case for the estimators of γX and consequently also for those

of θp,ζ . Bias-reduction has been briefly discussed in Goegebeur et

al. (2024), where an estimator introduced by Beirlant et al. (2016)

was used instead of pγ
pc,1q

X,k in (5) and in (12) in order to obtain an

asymptotically unbiased estimator of θp,ζ . The resulting estimator has

a larger asymptotic variance than the initial estimator. However, the

estimator of Beirlant et al. (2016) depends on an unknown parameter,

which must then be replaced by a canonical value, and thus the bias-

correction is generally impractical and lost from a theoretical point of

view. Recently, Bladt et al. (2024) introduced a new bias-corrected

estimator of γ based on pγ
pc,2q

X,k . This estimator has also the advantage to

be a minimum-variance reduced-bias estimator as introduced in Caeiro

et al. (2005). As such, it has the same variance as the initial (non-

bias-reduced) estimator. This estimator satisfies (16) and thus the

above theorem also applies when considering these novel bias-reduced

estimators. Both bias-reduced versions of the CTM estimators are also

13



considered in the next section.

4 A simulation study

In this section, we illustrate the finite sample behavior of our estimator

by means of a simulation experiment. We consider the flexible class of

Burrpφ‚, τ‚q distributions, whose distribution function is defined as

F‚pxq “ 1 ´ p1 ` xτ‚q
´φ‚ , x ą 0,

for pφ‚, τ‚q P p0,8q2, where ‚ is either X or Y . This distribution satisfies

Assumption pDq with γ‚ “ 1{pφ‚ τ‚q and β‚ “ τ‚. The set of parame-

ters used is pφX , τXq “ p1, 5q which yields γX “ 0.2 and βX “ 5, whereas

pφY , τY q P tp1{3.8, 1q, p1{1.8, 1q, p1{0.8, 1qu. These choices yield an asymp-

totic proportion of censoring γX
γX`γY

of 5%, 10%, and 20%, respectively.

For each distribution, we simulate N “ 1 000 samples of size n “ 500

and plot different estimators of θp,ζ with p P t 1
n ,

1
1.5nu and ζ P t1, 2u. Due

to the restriction ζ P

´

0, 12

”

1
γX

´ 1
γY

ı¯

in Theorem 3.4, the case where
´

γX
γX`γY

, ζ
¯

“ p20%, 2q is not theoretically substantiated for our estimator

but kept in order to highlight the robustness of our approach in a case where

our theorem does not apply. More precisely, we compare the performance of

our estimator pθ
pc,2q

p,ζ with that of the alternative estimator pθ
pc,1q

p,ζ introduced

in Goegebeur et al. (2024). As explained under Theorem 3.4, these two

CTM estimators, correctly normalized, have the same limiting distribution

as the extreme value index estimator used in their expressions, and thus

may exhibit significant bias effects as is well known in the EVT literature.

To illustrate this point, we also compare two bias-corrected versions of these

CTM estimators obtained as follows:

‚ pγ
pc,1q

X,k is replaced in (5) and (12) by a bias-corrected estimator of γX intro-

duced in Beirlant et al. (2016). This yields the estimator pθ
pcb,1q

p,ζ .

‚ pγ
pc,2q

X,k is replaced in (6) and (14) by a recent bias-corrected estimator of γX

proposed in Bladt et al. (2024). The resulting estimator is denoted pθ
pcb,2q

p,ζ .

14



The algorithms used to compute the two bias-corrected extreme value in-

dices estimators are described in detail in Bladt et al. (2024), where these

estimators are also compared and shown to perform well in a simulation

study.

In Figure 1 we plot the mean (left) and the MSE (right) based on theN repli-

cations when pφX , τXq “ p1, 5q and pφY , τY q “ p1{3.8, 1q, with, from the top

to the bottom, a series of values of pp, ζq, namely
`

1
n , 1

˘

,
`

1
n , 2

˘

,
`

1
1.5n , 1

˘

and
`

1
1.5n , 2

˘

. The horizontal lines on the left panel correspond to the true value

of θp,ζ computed by numeric integration. Figures 2 and 3 are constructed

similarly, but when pφY , τY q “ p1{1.8, 1q and p1{0.8, 1q, respectively. In

terms of mean, the estimators pθ
pc,iq
p,ζ , i “ 1, 2, are similar, as well as their

bias-corrected versions pθ
pcb,iq
p,ζ , but always with a slightly better behavior for

our proposals, i.e., when i “ 2. In terms of MSE, pθ
pc,2q

p,ζ is always better than

pθ
pc,1q

p,ζ with a much larger improvement when ζ is large. The bias-corrected

estimator pθ
pcb,2q

p,ζ is also the best, with, in Figures 1 and 2, long stability as a

function of k compared to pθ
pcb,1q

p,ζ where the stability is only reached for the

highest values of k. This is a favorable property for pθ
pcb,2q

p,ζ as it implies that

the selection of k is not too crucial for this estimator. For a given value of

ζ, we can observe that decreasing p complicates the estimation, which is ex-

pected since in that case we are interested in a conditional expectation above

a more extreme quantile. Conversely, for a given p, increasing ζ implies a

greater variability. This is again expected since, in that case, we estimate

a higher conditional moment. Finally, by comparing the three figures, we

can observe that the higher the proportion of censoring, the more difficult

the estimation of θp,ζ is. Nonetheless, our proposals pθ
pb,2q

p,ζ and pθ
pcb,2q

p,ζ still

perform well in Figure 3, where the restriction on ζ imposed in Theorem 3.4

is not satisfied for the ζ “ 2 case.

5 Real data analysis

We consider a dataset of n “ 106 299 claims settlement observations corre-

sponding to a theft guarantee of a Danish issuer, with claim arrivals between

15



Figure 1: Mean (left) and MSE (right) of pθ
pc,2q

p,ζ (solid blue line), pθ
pc,1q

p,ζ (dotted

orange line) and the bias-corrected versions pθ
pcb,2q

p,ζ (dashed red line) and

pθ
pcb,1q

p,ζ (long-dashed green line) based on N “ 1 000 simulations of size n “

500, as a function of k. The parameters of the Burr distribution of X are

p1, 5q while those for Y correspond to 5% of censoring. From top to bottom:

pp, ζq “
`

1
n , 1

˘

,
`

1
n , 2

˘

,
`

1
1.5n , 1

˘

and
`

1
1.5n , 2

˘

.
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Figure 2: Mean (left) and MSE (right) of pθ
pc,2q

p,ζ (solid blue line), pθ
pc,1q

p,ζ (dotted

orange line) and the bias-corrected versions pθ
pcb,2q

p,ζ (dashed red line) and

pθ
pcb,1q

p,ζ (long-dashed green line) based on N “ 1 000 simulations of size n “

500, as a function of k. The parameters of the Burr distribution of X are

p1, 5q while those for Y correspond to 10% of censoring. From top to bottom:

pp, ζq “
`

1
n , 1

˘

,
`

1
n , 2

˘

,
`

1
1.5n , 1

˘

and
`

1
1.5n , 2

˘

.
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Figure 3: Mean (left) and MSE (right) of pθ
pc,2q

p,ζ (solid blue line), pθ
pc,1q

p,ζ (dotted

orange line) and the bias-corrected versions pθ
pcb,2q

p,ζ (dashed red line) and

pθ
pcb,1q

p,ζ (long-dashed green line) based on N “ 1 000 simulations of size n “

500, as a function of k. The parameters of the Burr distribution of X are

p1, 5q while those for Y correspond to 20% of censoring. From top to bottom:

pp, ζq “
`

1
n , 1

˘

,
`

1
n , 2

˘

,
`

1
1.5n , 1

˘

and
`

1
1.5n , 2

˘

.
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the 1st of January 2005 and the 31st of December 2014. The theft guarantee

of this dataset has not been studied in a statistical context before. Claim

sizes develop throughout years, with most settling within just a few months

after arrival, but others settlement processes spanning throughout several

years. Thus, at the time of data collection, claims are categorized accord-

ing to open or closed claims, depending on whether further payments are

expected in the future or not, respectively. From a statistical perspective,

open claims are right-censored, while close claims are fully observed.

Figure 4: Danish theft insurance. Top left panel: open claim sizes (red

triangles) and closed claim sizes (black circles) in order of arrival; top right

panel: Kaplan–Meier Pareto quantile plot; bottom panel: empirical propor-

tion of non-censored observations for the k-largest observations.
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The dataset is explored in Figure 4. In the top left panel we depict

log-claim sizes above 10k DKK (Danish Kroner) in chronological order of

arrival, with closed claims represented by black circles and open claims by

red triangles. Older claims are less likely to be open, as expected. Also note

that claims very close to the evaluation date, 31st of December 2014, tend

to not be censored. This is because many claims have arrived but the actual

payments are zero in the initial months, which naturally fall below the 10k

DKK value.

The validity of the Pareto assumption is checked through the Kaplan–

Meier Pareto Quantile plot (see Beirlant et al., 2007) given by

p´ log p1 ´ FnpZn´j`1,nqq , logZn´j`1,nq , j “ 1, ..., n´ 1,

and depicted for our dataset in the top right panel of Figure 4. The linear

behavior at the largest observations suggests an underlying regularly-varying

distribution. We also plot in the bottom panel of Figure 4 the empirical

proportion of non-censored observations in the k-largest observations, i.e.,

1
k

řk
i“1 δrn´i`1,ns as a function of k. We observe stability at the value 98%,

and thus our theoretical condition γG ą γF is satisfied easily.

Next we construct the estimators pθ
pc,2q

p,ζ , pθ
pc,1q

p,ζ , pθ
pcb,2q

p,ζ and pθ
pcb,1q

p,ζ as in the

simulation study, corresponding to our proposed estimator, the benchmark,

and their bias-reduced versions, respectively. The estimates of the corre-

sponding values for γF are provided in the top panel of Figure 5, where

we observe an agreement between the bias-reduced estimators at a value

around 0.4, while the standard (without bias-reduction) estimators have al-

most no stability. Due to the restriction on ζ in our Theorem 3.4, and the

approximated values of the proportion of non-censored observations and of

γF coming from Figure 4 (bottom) and Figure 5 (top), respectively, our the-

ory can only be applied in case we estimate the CTM with ζ “ 1. Thus, for

p “ 1{n (Figure 5, bottom left) and p “ 1{p1.5nq (Figure 5, bottom right)

we provide such estimates. We observe a significant discrepancy between the

standard and the bias-reduced versions of the estimators, probably due to a

value of the second-order parameter ρX “ ´βX γX , estimated here at ´0.18,
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Figure 5: Danish theft insurance. Extreme value index estimators (top)

and CTM estimators for pζ, pq “ p1, 1{nq (bottom left) and for pζ, pq “

p1, 1{p1.5nqq (bottom right). The estimators pθ
pc,2q

p,ζ , pθ
pc,1q

p,ζ , pθ
pcb,2q

p,ζ and pθ
pcb,1q

p,ζ

are depicted in solid blue, dotted orange, dashed red and long-dashed green

respectively, and so are their corresponding γF estimates, namely.
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too close to 0; We refer to Bladt et al. (2024), where this topic is discussed

in details. Finally, note that the differences in values for γF estimates are

magnified when constructing the CTM risk measures since they appear as a

power in (6) and (12). This highlights the delicacy with which the problem

must be approached in practice. A combination of expert information and

the statistical tools presented in this paper are the best recipe for real-world

applications.
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Appendix : Proofs

Proof of Theorem 3.2

We use the decomposition

log
pU

pc,2q

X pnk q

UXpnk q
“

´

pγ
pc,2q

X,k ´ γX

¯

log
1 ´ FnpZn´k,nq

k{n

`γX log
1 ´ FnpZn´k,nq

1 ´ FXpZn´k,nq

` log

"

Zn´k,n

UXpn{kq

ˆ

1 ´ FXpZn´k,nq

k{n

˙γX
*

“:
´

pγ
pc,2q

X,k ´ γX

¯

log
1 ´ FnpZn´k,nq

k{n
`Q1,k `Q2,k.

Using Csörgő (1996), if FX is continuous, we have

sup
xďZn´k,n

ˇ

ˇ

ˇ

ˇ

1 ´ Fnpxq

1 ´ FXpxq
´ 1

ˇ

ˇ

ˇ

ˇ

“ OP

ˆ

1
?
k

˙

, (17)

from which we deduce that Q1,k “ OP

´

1?
k

¯

.

Now, using Assumption (D), we have

Q2,k “ γX log

ˆ

1 `
1

γX
δXpZn´k,nq

˙

´ log
´

1 ` aX

´n

k

¯¯

“ δXpZn´k,nq p1 ` oPp1qq ´ δX

´

UX

´n

k

¯¯

p1 ` op1qq

“ δX

´

UZ

´n

k

¯¯

p1 ` oPp1qq ´ δX

´

UX

´n

k

¯¯

p1 ` op1qq

“ O
´

δX

´

UZ

´n

k

¯¯¯

,

since γZ ď γX . To conclude with the proof of Theorem 3.2, remark that,

according to Assumption pDq and under Model (15), we have using (17)

1 ´ FnpZn´k,nq

k{n
“

1 ´ FXpZn´k,nq

k{n

ˆ

1 `OP

ˆ

1
?
k

˙˙

“
AX
k{n

Z
´ 1

γX
n´k,n p1 ` oPp1qq

d
“ AX

n

k

!

UZp qZn´k,nq

)´ 1
γX p1 ` oPp1qq ,

where qZn´k,n is the pn ´ kq-largest observation in a random sample of size

n from the unit Pareto distribution. Since k
n
qZn´k,n

P
Ñ 1 (see, e.g. Corollary
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2.2.2 in de Haan and Ferreira, 2006) and by using the uniform convergence

property of regularly varying functions (Theorem B.1.4 in de Haan and

Ferreira, 2006), we have

1 ´ FnpZn´k,nq

k{n
“ A

γX
γX`γY
X A

´
γY

γX`γY
Y

´n

k

¯

γX
γX`γY p1 ` oPp1qq

P
ÝÑ 8, (18)

and as a consequence

?
k

log
1´FnpZn´k,nq

k{n

log
pU

pc,2q

X pnk q

UXpnk q
“

?
k
´

pγ
pc,2q

X,k ´ γX

¯

` oPp1q (19)

since
?
k δXpUZpn{kqq Ñ λ P R. This achieves the proof of Theorem 3.2.

Proof of Theorem 3.3

According to Proposition 1 in Goegebeur et al. (2024), we have

rθ
pc,2q
k
n
,ζ

θ k
n
,ζ

“

#

pU
pc,2q

X pnk q

UXpnk q

+ζ ş8

1 xζ dFk,npxq

1
1´γXζ

␣

1 `OpδXpUXpnk qqq
( ,

from which we deduce that

?
k

log
1´FnpZn´k,nq

k{n

¨

˝

rθ
pc,2q
k
n
,ζ

θ k
n
,ζ

´ 1

˛

‚

“ ζ

?
k

log
1´FnpZn´k,nq

k{n

˜

pU
pc,2q

X pnk q

UXpnk q
´ 1

¸

p1 ´ γXζq

ż 8

1
xζ dFk,npxqp1 ` oPp1qq

`

?
k

log
1´FnpZn´k,nq

k{n

ˆ

p1 ´ γXζq

ż 8

1
xζ dFk,npxq ´ 1

˙

p1 ` oPp1qq

`OP

¨

˝

?
k δXpUXpnk qq

log
1´FnpZn´k,nq

k{n

˛

‚.

The next step consists to prove that

?
k

ˆ

p1 ´ γXζq

ż 8

1
xζ dFk,npxq ´ 1

˙

“ OPp1q. (20)
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To this aim, remark that for ζ P p0, 1{γXq, we have

?
k

ˆ

p1 ´ γXζq

ż 8

1
xζ dFk,npxq ´ 1

˙

“ p1 ´ γXζq
?
k

"
ż 8

1
xζ dFk,npxq ´

ż 8

1
xζ dF ˝pxq

*

“ p1 ´ γXζq
?
k

ż 8

1
xζ d

´

Fk,npxq ´ F
Zn´k,n

X pxq

¯

`p1 ´ γXζq
?
k

ż 8

1
xζ d

´

F
Zn´k,n

X pxq ´ F ˝pxq

¯

“: Q3,k `Q4,k,

where, for x ě 1,

F tXpxq :“
FXpt xq ´ FXptq

1 ´ FXptq
.

According to Theorem 3.4 in Bladt & Rodionov, for ζ P

´

0, 12

”

1
γX

´ 1
γY

ı¯

?
k

ż 8

1
xζ d

´

Fk,npxq ´ F
Zn´k,n

X pxq

¯

is asymptotically normally distributed, and thus Q3,k “ OPp1q.

Now, we need to handle Q4,k. To this aim, we consider a random variable

ξ following a strict unit Pareto distribution and being independent of the

Z-sample. Since

P
ˆ

UXps ξq

UXpsq
ď x

˙

“
FXpUXpsqxq ´ FXpUXpsqq

1 ´ FXpUXpsqq
,

we deduce that F tX is the distribution function of
UXpUÐ

X ptq ξq

UXpUÐ
X ptqq

. Using the fact

that UÐ
X ptq “ r1 ´ FXptqs´1, we deduce that

Q4,k “ p1 ´ γXζq
?
k

#

E

«

ˆ

UXpr1 ´ FXpZn´k,nqs´1ξq

UXpr1 ´ FXpZn´k,nqs´1q

˙ζ
ff

´ ErξγXζs

+

.

Now, for a fixed s, using a Taylor expansion, we have

E

«

ˆ

UXpsξq

UXpsq

˙ζ
ff

´ ErξγXζs “ ζ E
„

tupsquζ´1

"

UXpsξq

UXpsq
´ ξγX

*ȷ

,

where upsq is an intermediate random value between UXpsξq

UXpsq
and ξγX . Since,

under Model (15), we have

lim
sÑ8

UXpsxq

UXpsq
´ xγX

´γX βX
aXpsq

1`aXpsq

“ xγX
x´γX βX ´ 1

´γX βX
,
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according to Theorem 2.3.9 in de Haan and Ferreira (2006), for all ε, δ ą 0

there exists s0 “ s0pε, δq such that for all s ě s0 and x ě 1 we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

UXpsxq

UXpsq
´ xγX

´γX βX AXpsq
´ xγX

x´γX βX ´ 1

´γX βX

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď εxγX´γX βX`δ,

with AX „ aX . Consequently

E

«

ˆ

UXpsξq

UXpsq

˙ζ
ff

´ ErξγXζs “ ζ AXpsqE
”

tupsquζ´1 ξγX tξ´γX βX ´ 1u

ı

`oP

´

AXpsqE
”

tupsquζ´1 ξγX´γX βX`δ
ı¯

“ OP pAXpsqq

since combining Potter’s inequalities (see, e.g., de Haan & Ferreira, Propo-

sition B.1.9.5, 2006) with the dominated convergence theorem, we have

E
”

tupsquζ´1 ξγX tξ´γX βX ´ 1u

ı

ÝÑ E
”

ξγX ζ tξ´γX βX ´ 1u

ı

ă 8

E
”

tupsquζ´1 ξγX´γX βX`δ
ı

ÝÑ E
”

ξγX ζ´γX βX`δ
ı

ă 8.

This yields

Q4,k “ OP

´?
k AX

`

r1 ´ FXpZn´k,nqs´1
˘

¯

“ OP

´?
k δX

`

UX
`

r1 ´ FXpZn´k,nqs´1
˘˘

¯

“ OP

´?
k δX pZn´k,nq

¯

“ OP

´?
k δX

´

UZ

´n

k

¯¯¯

“ OPp1q

which ends the proof of (20). Finally using (19), we deduce that

?
k

log
1´FnpZn´k,nq

k{n

¨

˝

rθ
pc,2q
k
n
,ζ

θ k
n
,ζ

´ 1

˛

‚ “ ζ
?
k
´

pγ
pc,2q

X,k ´ γX

¯

` oPp1q, (21)

from which Theorem 3.3 follows.
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Proof of Theorem 3.4

We use the decomposition

pθ
pc,2q

p,ζ

θp,ζ
´ 1 “

$

&

%

rθ
pc,2q
k
n
,ζ

θ k
n
,ζ

´ 1

,

.

-

θ k
n
,ζ

θp,ζ

ˆ

k

np

˙ζ pγ
pc,2q

X,k

`

#

θ k
n
,ζ

θp,ζ

ˆ

k

np

˙ζ γX

´ 1

+

ˆ

k

np

˙ζ ppγ
pc,2q

X,k ´γXq

`

$

&

%

ˆ

k

np

˙ζ ppγ
pc,2q

X,k ´γXq

´ 1

,

.

-

“: Q5,k

θ k
n
,ζ

θp,ζ

ˆ

k

np

˙ζ pγ
pc,2q

X,k

`Q6,k

ˆ

k

np

˙ζ ppγ
pc,2q

X,k ´γXq

`Q7,k.

Using Proposition 1 in Goegebeur et al. (2024), we have under Model (15)

and since k{pnpq Ñ 8

Q6,k “

˜

1 ` aXpnk q

1 ` aXp1pq

¸ζ 1
1´γX ζ `OpδXpUXpnk qqq

1
1´γX ζ `OpδXpUXp1pqqq

´ 1

“ O
´

δX

´

UX

´n

k

¯¯¯

`O

ˆ

δX

ˆ

UX

ˆ

1

p

˙˙˙

“ O
´

δX

´

UX

´n

k

¯¯¯

“ O
´

δX

´

UZ

´n

k

¯¯¯

. (22)

Also, under the condition log pk{pnpqq{
?
k Ñ 0, we have

Q7,k “ ζ
´

pγ
pc,2q

X,k ´ γX

¯

log
k

np
p1 ` oPp1qq. (23)

Combining (21) with (22) and (23), we deduce that

pθ
pc,2q

p,ζ

θp,ζ
´ 1 “ ζ

´

pγ
pc,2q

X,k ´ γX

¯

"

log
1 ´ FnpZn´k,nq

k{n
` log

k

np

*

`oP

¨

˝

log
1´FnpZn´k,nq

k{n
?
k

˛

‚` oP

˜

log k
np

?
k

¸

`O
´

δX

´

UZ

´n

k

¯¯¯

.

Finally, since according to (18), the condition

log
1´FnpZn´k,nq

k{n

log k
np

P
ÝÑ D P r0,8s
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is equivalent to the condition

log n
k

log k
np

ÝÑ
γX ` γY
γX

D P r0,8s,

since k{pnpq Ñ 8, Theorem 3.4 follows.
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