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Abstract

Reinforcement learning (RL) models usually assume a stationary internal model structure of agents,
which consists of fixed learning rules and environment representations. However, this assumption does
not allow accounting for real problem solving by individuals who can exhibit irrational behaviors or hold
inaccurate beliefs about their environment. In this work, we present a novel framework called Dynamic
Structure Learning (DSL), which allows agents to adapt their learning rules and internal representations
dynamically. This structural flexibility enables a deeper understanding of how individuals learn and
adapt in real-world scenarios. The DSL framework reconstructs the most likely sequence of agent struc-
tures—sourced from a pool of learning rules and environment models—based on observed behaviors. The
method provides insights into how an agent’s internal structure model evolves as it transitions between
different structures throughout the learning process. We applied our framework to study rat behavior
in a maze task. Our results demonstrate that rats progressively refine their mental map of the maze,
evolving from a suboptimal representation associated with repetitive errors to an optimal one that guides
efficient navigation. Concurrently, their learning rules transition from heuristic-based to more rational
approaches. These findings underscore the importance of both credit assignment and representation
learning in complex behaviors. By going beyond simple reward-based associations, our research offers
valuable insights into the cognitive mechanisms underlying decision-making in natural intelligence. DSL
framework allows better understanding and modeling how individuals in real-world scenarios exhibit a
level of adaptability that current AI systems have yet to achieve.

1 Introduction

Behavioral research traditionally explores how individuals address the credit assignment problem (CAP) -
the challenge of attributing “values” to actions based on their effectiveness in achieving rewards (Doya, 1999;
Daw et al., 2005; Niv, 2007; Otto et al., 2013; Dolan and Dayan, 2013; Dezfouli and Balleine, 2013; Cushman
and Morris, 2015). Typically, these studies assume a stationary agent structure, where an agent adheres
to a consistent learning rule and employs a fixed internal representation of its environment. However, this
model does not reflect the complexities of real-world behavior, where an individual’s internal environment
representation and learning rule can evolve, resulting in more adaptive behavior.

We introduce a Dynamic Structure Learning (DSL) framework designed to capture how agents transi-
tion between different internal model structures. In dynamic structure models (Muzy and Zeigler, 2014a;
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Uhrmacher, 2001; Barros, 1997), changes of structure consist of the addition, deletion or alteration of model
components. We extend here this approach to learning systems. Specifically, we define an Agent Structure
(AS) as a combination of an internal environment representation (decision graph) and a learning rule. The
latter can be described by a Reinforcement Learning (RL) algorithm, which achieves a particular credit as-
signment (cf. Figure 1a). By constructing all possible AS combinations from a set of reinforcement learning
rules and environment representations, we can infer the most likely sequence of ASs for an individual, based
on its behavioural observations.

We apply the DSL framework to a T-maze task involving rats, where they must learn the two correct
paths between two feeder boxes in the maze (cf. , Figure 1b). The rats need to identify the optimal paths
leading to rewards in the left feeder (LF) and right feeder (RF). The optimal path from LF differs from that
of RF and therefore the optimal behavior in the maze if governed by a hidden rule related to the starting
feeder box. Initially, the rats’ Internal Maze Representation (IMR) is suboptimal (IMRsubOpt), as they are
unaware of the hidden rule and construct an incorrect task representation. Over time, they refine their IMR
to match the true optimal decision graph (IMRopt), recognizing the environmental factors (feeder boxes)
that influence the reward path, thus reducing errors and increasing reward acquisition.

We also examine two distinct learning rules, achieving distinct credit assignments: Cognitive Activity-
based Credit Assignment (CoACA) (James et al., 2023), a heuristic decision-making method based on
Activity-based Credit Assignment (Muzy, 2019; James et al., 2023)(ACA), and Q-learning (Watkins and
Dayan, 1992), representing a more economically rational approach. CoACA is a “suboptimal learning rule”
that reinforces actions based on both rewards and action duration, with longer actions being more memorable
(James et al., 2023). This can lead to seemingly irrational choices, as rats may persist with more memorable
past actions that offer partial rewards, regardless of their actual economic value. In contrast, Q-learning
represents an “optimal learning rule,” aimed at identifying the sequence of actions that maximizes rewards
in the maze.

The combination of two learning rules and two environment representations results in four potential agent
structures (ASs):

1. The “suboptimal AS”: the combination of the suboptimal learning rule (LRsubOpt or CoACA) and the
suboptimal internal maze representation (without feeder boxes) (IMRsubOpt),

2. The “LR suboptimal AS”: the combination of the suboptimal learning rule (LRsubOpt or CoACA) and
the optimal internal maze representation (with feeder boxes) (IMRopt),

3. The “IMR suboptimal AS”: the combination of the optimal learning rule (LRopt or Q-learning) and
the suboptimal internal maze representation (without feeder boxes) (IMRsubOpt), and

4. The “optimal AS”: the combination of the optimal learning rule (LRopt or Q-learning) and the optimal
internal maze representation (with feeder boxes) (IMRopt).

We define rats’ strategies as their ASs, which are given by the combination of learning rules and the
internal environment representation they employ. Assuming rats utilize a specific AS to produce behavioral
trajectories within a session, our objective is to determine the most probable sequence of these ASs across all
sessions. Previously, Inverse Reinforcement Learning (IRL) (Ziebart et al., 2008; Babes et al., 2011; Michini
and How, 2012) methods have been used to infer agent’s internal models from observations. IRL methods aim
to capture individual behavior by inferring reward functions from observations, with Ashwood et al. (2022)
also allowing time-varying reward functions. In Kwon et al. (2020), both reward functions and individual’s
beliefs about the world are inferred in a Partially Observable Markov Decision Process (POMDP) setting.
Ashwood et al. (2020) present a method for inferring individuals’ learning rules from behavioral data in a
perceptual decision-making task, without the need to learn the reward function.

While these inference methods have similarities to our problem, they are typically investigated in settings
where state spaces are the same across tasks, differing only in reward functions or transition dynamics. Our
approach differs from existing methods to infer agents’ internal models in three key aspects. First, we do not
assume that the agent always acts optimally; instead, it can use heuristic decision-making rules, as captured
by CoACA. Second, we do not require the agent to have a perfect understanding of the environment; it can
operate with a potentially flawed internal representation (IMRsubOpt). We also enable the agent to switch
between different internal representations, allowing us to model scenarios where, for example, rats might
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initially use a suboptimal AS or IMR suboptimal AS based on a simpler yet suboptimal IMRsubOpt, and
then transition to a more complex but optimal AS based on IMRopt after learning (see Figure 2).

Applying DSL to the rats’ dataset shows that: (i) rats that show slower learning progress appear to rely
on the suboptimal AS during the early stages of the experiment before switching to the optimal AS, whereas
rats that learn quickly adopt the optimal AS from the beginning of the experiment, (ii) rats’ switches from the
suboptimal AS to the optimal AS indicate a progressive refinement in their perception of the task structure
(environment model). The gradual refinement of the IMR requires the rats to “imagine” and construct novel
maze representations consistent with their experience, ultimately defining learning as the ability to forge an
accurate mental model of the task.

DSL framework offers a more nuanced perspective on learning compared to the traditional dichotomy
of exploration and exploitation in reward-based learning (Cohen et al., 2007; Mehlhorn et al., 2015). We
demonstrate that randomly exploring the state space to better assess the “value” of actions also includes
refining an internal model of the world, transitioning from simpler, flawed model to a more complex, accurate
representation of the world. Additionally, the rats’ ability to ”imagine” new maze representations underscores
a crucial adaptability trait in natural intelligence (Lake et al., 2017). This ability enables them to infer the
causal structure of their environment—such as learning the hidden rules that govern the rewards in the
maze experiment—and to update their internal models accordingly. In contrast, current AI systems are not
capable of inferring causal structures from observations (Lake et al., 2017; Shanahan et al., 2020; Fjelland,
2020; Javed et al., 2020; Bishop, 2021). DSL framework allows better understanding and modeling how
individuals in real-world scenarios exhibit a level of adaptability that current AI systems have yet to achieve.

2 Methods

2.1 Maze experiment

Five male Long-Evans rats were used in the experiment. To motivate the rats to collect food rewards from
the maze, they were subjected to a food deprivation program by keeping them at 90% of their body weight
during the experiment. Each rat has multiple sessions in the maze, where each session lasts 20 minutes.
During the sessions, the rats can freely move around in the maze uninterrupted. The T-maze with return
arms (cf. Fig. 1b) has two feeder places, Left Feeder (LF) and Right Feeder (RF), where the rats could get
a food reward. The maze consists of a central stem (100cm long), two choice arms (of 50cm each) at one end
of the central stem and two lateral arms connecting the other end of the central stem to the choice arms.
Prior to the experiment, the rats were trained in the maze for two days, with one 20-minute session per day
during which they were free to explore the maze and collect the sugar pellets that were randomly scattered
throughout. The experiment began on the third day with two 20-minute sessions.During the sessions, the
rats can freely move around in the maze uninterrupted. The maze has four possible choice points, A, B, LF
and RF, where the rat must choose between alternative paths. The behavioral task for the rat is to associate
the rewards with the two good paths.
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(a) RL Agent Structure. (b) 3D representation of the T-maze experiment

Figure 1: Agent Structure and 3D representation of the T-maze experiment: (a) Semi-Markov Decision
Problem (SMDP) formulation of a Reinforcement Learning (RL) problem where agent structure is defined
as a combination of learning rule and an internal environment representation, with action of the agent having
a random duration τ (b) 3D representation of the T-maze experiment: A, B, LF and RF are four choice
points. LF and RF represent the Left and Right Feeders respectively. Good path to LF, Good.LF, is shown
in red, while good path to RF, good.RF, is shown in blue.

Figure 2: An example of ASs inferred by DSL framework over multiple sessions of rat experiment.

2.2 Semi-Markov Decision Process

The maze learning task is defined as a Semi-Markov Decision Process (SMDP), which is a generalisation of
a Markov Decision Process where actions have a random duration. An SMDP can be defined by a tuple
(S,A,R, T, F ), where S is the set of states, A is the set of actions, R is the reward function that gives the
reward associated with each (S,A) in the environment, T is the transition function that gives the transition
probabilities Pr(s′|(s, a)), F : F (t|s, a), with t ∈ R+, gives the probability that next state s′ is reached within
time t after action a is chosen in state s.

An episode is defined as a minimal segment of the rat’s trajectory where the rat starts from one feeder
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box, visits the other feeder box and returns to the starting box. Two examples of episode are given below,
where τp,n,t1 , τp,n,t2 and τp,n,t3 represents the durations of actions taken at times t1, t2 and t3 in episode n
of session p:

LF
(sp,n,t1

,ap,n,t1
)

−−−−−−−−−−→
τp,n,t1

RF
(sp,n,t2

,ap,n,t2
)

−−−−−−−−−−→
τp,n,t2

LF

LF
(sp,n,t1

,ap,n,t1
)

−−−−−−−−−−→
τp,n,t1

LF
(sp,n,t2

,ap,n,t2
)

−−−−−−−−−−→
τp,n,t2

RF
(sp,n,t3

,ap,n,t3
)

−−−−−−−−−−→
τp,n,t3

LF

2.3 Learning Rules

2.3.1 Cognitive Activity-based Credit Assignment (CoACA)

Cognitive Activity-based Credit Assignment (CoACA) leverages the concept of activity from Activity-based
Credit Assignment (Muzy and Zeigler, 2014b; Muzy, 2019). In contrast to traditional RL which views action
duration as a cost to minimize, CoACA interprets duration as the effort invested in a choice. This distinction
is captured in CoACA’s concept of activity, which acts as a measure of action effort. By prioritizing choices
with higher activity (longer duration), CoACA becomes a heuristic decision-making approach – favoring
choices that are more memorable due to the effort invested, but not necessarily the most rewarding (James
et al., 2023).

Activity is computed as the duration of an action, relative to the duration of an episode:

A(sp,n,ti , ap,n,ti) =
τp,n,ti∑M
i=1 τp,n,ti

(1)

where ti represents the the time of the ith action in episode n of session p, where i ∈ [0,M ] with M being
the total number of actions in the nth episode of pth session. τp,n,ti represents the duration of the action
taken at time ti in episode n of session p.

At the end of a session, the credits of all (s, a) pairs in the maze are decayed:

(2)Kp+1,1(s, a) = (1− γ
√
p
)×Kp,Np

(s, a)

where γ ∈ [0, 1] is forgetfulness parameter, which decays with time, i.e., the rats forget less and less with
training and Np represents the final episode of session p. Here ti represents the time at which ith action of
episode n in session p was taken, i ∈ [1,M ], Rp,n = {0, 1, 2} is the total reward obtained in episode n and α
is the learning parameter (0, 1]. CoACA implicitly employs memory trace of one episode as it requires the
agent to maintain a memory of its choices in the last episode.

The probability of selecting an action a in state sp,n,t is computed using the softmax rule:

(3)Prcoaca(a|sp,n,t) =
exp(Kp,n(sp,n,t, a))∑
a′ exp(Kp,n(sp,n,t, a′))

2.3.2 Discounted Reward Reinforcement Learning

A continuous-time version of Q-learning called SMDP Q-learning, which uses temporal difference (TD) errors
to iteratively update Q-values, defines the rational behaviour of agents based on an exponential discounting
of future rewards (Bradtke and Duff, 1994).

Let sp,n,t1 , ap,n,t1 be part of episode n of session p, leading to new state sp,n,t2 after duration τp,n,t1 with a
reward r(sp,n,t1 , ap,n,t1) = exp(−βτp,n,t1)Rt1+τp,n,t1

where Rt1+τp,n,t1
= {0, 1} is the reward obtained in the

maze after time τp,n,t1 for taking action ap,n,t1 at time t1, and β is the exponential discount factor applied
to future rewards. This state transition can be noted as:

(sp,n,t1 , ap,n,t1)
duration=τp,n,t1−−−−−−−−−−−→
r(sp,n,t1

,ap,n,t1
)

sp,n,t2

Since CoACA implicitly implements a memory trace of an episode, we implement an eligibility trace in
DRL, lasting for the duration of a single episode. At time t2 = t1 + τp,n,t1 after taking action ap,n,t1 at time
t1, eligibility trace ep,n,t2 is updated as below:
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ep,n,t2(s, a) =


λ exp(−βτp,n,t1)ep,n,t1(s, a) + 1, if (s, a) =

(sp,n,t1 , ap,n,t1)

λ exp(−βτp,n,t1)ep,n,t1(s, a), otherwise

(4)

where ep,n,t1(s, a) represents the eligibility trace of state-action pair (s, a) at time t1 in episode n of session
p. At the end of an episode, e(s, a) = 0 ∀(s, a).

Temporal difference prediction error δ is given by:

δ = r(sp,n,t1 , ap,n,t1) + exp(−βτ)max
a′

Q(sp,n,t2 , a
′)−Q(sp,n,t1 , ap,n,t1)

TD update is given by: (5)

∀(s, a) :
Qp,n,t(s, a)←− Qp,n,t1(s, a) + αδep,n,t1(s, a)

The probability of selection of action a in state sp,n,t is

Prdrl(a|sp,n,t) =
exp(Q(sp,n,t2 , a))∑
a′ exp(Q(sp,n,t, a′))

(6)

2.4 Inferring Rats’ Switching Agent Structures

Our objective is to infer the agent structure (AS) used by the rats in each session based on their experimental
trajectories. The AS in session p is represented by xp ∈ {suboptimal AS, LR suboptimal AS,IMR suboptimal
AS,optimal AS}. The complete log-likelihood consists of the joint distribution of the unknown ASs x1:P and
the observed trajectories of each session y1:P , where P is the final session, can be expressed as:

logPrθ(x1:P , y1:P ) = log µ(x1) +

P∑
p=1

log gθ(yp|xp) +

P−1∑
p=1

log fθ(xp+1|x1:p) (7)

where the initial probabilities µ(x1) are initialized uniformly to 0.25, gθ(yp|xp) gives the likelihood of
observations yp in pth session and fθ(xp+1|x1:p) gives the transition probabilities of ASs given all past ASs
and θ represents the parameters estimated from rats’ experimental data.

Rats are more likely to employ an AS based on IMRsubOpt early in the experiment, with a shift to
IMRopt based AS once they learn the true structure of the task. To capture this shift in the probability
of ASs during the course of the experiment, we utilize a time-varying transition function based on Chinese
restaurant process (CRP) (Aldous et al., 2006). This function defines the probability of employing an
AS based on its popularity (the number of times it has been chosen previously). The transition function
fθ(xp|x1:p−1) is defined below.

For k = 1, 2, 3, 4 representing the four ASs, the occurrences of each of the four ASs in the previous sessions
p− 1 is given by:

nk =

p−1∑
i=1

1(xi = k)

The number of ASs that been chosen at least once until session p is given by:

chosenASCount =

4∑
k=1

1(nk>0)

The transition function fθ(xp|x1:p−1) is defined for two scenarios: Case 1, where the AS with IMRopt

has not yet been selected, allowing the rat to explore new ASs, and Case 2, where the AS with IMRopt has
already been chosen, limiting the rat to switching between previously selected ASs without trying any new
ones.

Case 1: If optimal AS or LR suboptimal AS has not been selected until session p, the probability of
selecting AS in session p is given by:
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(8)fθ(xp = k|x1:p−1) =



nk

p− 1 + αcrp
, if nk > 0

αcrp

4−chosenASCount

p− 1 + αcrp
, otherwise

where nk is the number of times AS k has been selected during sessions 1 : p− 1, αcrp is the concentration
parameter of CRP.

Case 2: If either optimal AS or LR suboptimal AS is selected once:

fθ(xp = k|x1:p−1) =


nk +

αcrp

chosenASCount

p− 1 + αcrp
, if nk > 0

0, otherwise

(9)

In our study, observations yp are the trajectories of the rat in a particular session p and g(yp|xp) gives
the probability of trajectory yp in session p:

gθ(yp|xp) =

Np∏
n=1

Tn,p∏
t=1

Pr(ap,n,t|sp,n,t)

whereNp represents the total number of episodes in session p and depending of the value of xp, Pr(ap,n,t|sp,n,t)
can be given either by Equation (3) or Equation (6).

To infer ASs of rats from their behavioral observations, we employ the Dynamic Structure Learning
(DSL) method in Algorithm 1 that computes the smoothing distribution of ASs given by Pr(xp|y1:P ) and
takes the Maximum A Posteriori estimate to determine the AS in each session. Since standard particle filters
do not give good estimates of the smoothing distribution, we use Conditional Particle Filter With Ancestor
Sampling (CPF-AS) that generates samples from the joint smoothing distribution Pr(x1:P |y1:P ) (Lindsten
et al., 2014).

Algorithm 1 Dynamic Structure Learning

Input: Rat behavioral data y1:P
Output: Inferred ASs x1:P

1. Estimate Parameters:
Run PSAEM (Algorithm 2) to estimate:
θ = (α1

CoACA, γ
1
CoACA, α

2
CoACA, γ

2
CoACA, α

3
DRL, λ

3
DRL, α

4
DRL, λ

4
DRL, αcrp)

2. Compute Joint Smoothing Distribution:
Use θ and Algorithm 3 to find Pr(x1:P |y1:P )

3. Infer ASs:
For each session p, compute xp = argmaxxPr(xp|y1:P )

The parameters θ of the four different ASs learned from the rat experiment data are:

1. suboptimal AS : α1
CoACA, γ

1
CoACA

2. LR suboptimal AS : α2
CoACA, γ

2
CoACA

3. IMR suboptimal AS : α3
DRL, λ

3
DRL

4. optimal AS : α4
DRL, λ

4
DRL

5. CRP concentration parameter: αcrp

Discount rate β3
DRL in IMR suboptimal AS and β4

DRL in optimal AS are set to 10−4 so that CoACA and
DRL models have two paameters each.

In Algorithm 2, model parameters θ are estimated by computing the maximum likelihood estimate by
applying Stochastic Approximation Expectation-Maximization (SAEM) to CPF-AS (Lindsten et al., 2013;
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Lindholm and Lindsten, 2018), which computes the maximum likelihood estimate. Line 8 of Algorithm 2
represents the E-step of SAEM, where Q̂k(θ) is estimated using Equation 7. In the M-step (Algorithm 2, line
9), new parameters θk, maximizing the Q̂k(θ), are determined using the Self-adaptive Differential Evolution
optimiser from the Pagmo cpp package (Biscani and Izzo, 2020).

Algorithm 2 Particle Stochastic Approximation Expectation Maximization (PSAEM)

1: Initialize:
2: Set θ0
3: Set β2

DRL, β
4
DRL to 10−4

4: Set Q̂0(θ) = 0
5: Set reference trajectory x1:P [0] arbitrarily
6: for k ≥ 1 do
7: Run CPF-AS (Algorithm 4) with N particles and reference trajectory as x1:P [k − 1]
8: Compute SAEM update by

(10)Q̂k(θ) = (1− γk)Q̂k−1(θ) + γk

N∑
i=1

wi
P∑

l w
l
P

logPrθ(x
i
1:P , y1:P )

where wi
P is the importance weight of ith particle after final session P , computed by Algorithm 4

9: Compute θk = argmaxθ Q̂k(θ)
10: Sample particle j with Pr(j = i) ∝ wi

P

11: Set x1:P [k] = xj
1:P

12: end for

The joint smoothing distribution Prθ(x1:P |y1:P ) is computed using Algorithm 3 and model parameters
determined applying Algorithm 2 on experimental data. The most likely sequence of ASs in each session
is determined as the Maximum A Posteriori (MAP) estimate of the smoothing distribution Prθ(xp|y1:P ),
where p represents the current session and P is the final session.

To estimate the smoothing distribution, we use the Conditional Particle Filter with Ancestor Sampling
(CPF-AS) (Lindsten et al., 2014, 2013). This algorithm takes a reference trajectory x1:P and outputs a new
trajectory x′

1:P which is a sample from the joint smoothing distribution Prθ(x1:P |y1:P ).

Algorithm 3 Smoothing Algorithm

1: Input: x1:P [0]
2: Input: θ = (α1

CoACA, γ
1
CoACA, α

2
CoACA, γ

2
CoACA, α

3
DRL, λ

3
DRL, α

4
DRL, λ

4
DRL, αcrp)

3: Output: x1:P [1], x1:P [2], . . . , x1:P [K]
4: for k = 1 to K do
5: Run CPF-AS (Algorithm 4) with N particles and reference trajectory as x1:P [k − 1] to generate N

new agent structure (AS) sequences and particle weights {xi
1:P , w

i
P }Ni=1.

6: Sample particle j with Pr(j = i) ∝ wi
P

7: Set x1:P [k] = xj
1:P

8: end for

A standard particle filter, based on importance sampling and resampling, approximates the filter distri-
bution Prθ(xp|y1:p) by iteratively performing the following steps to update the filtering distribution as new
observations arrive:

• Resample: Simulate new ancestors aip for each particle i, according to the importance weights from the
previous iteration (line 5 in Algorithm 4).

• Propagate: Particles are propogated to next timestep by sampling from the proposal distribution
r(xp|x1:p−1, yp) that incorporates both past ASs x1:p−1 and current observations yp to generate ASs
for session p.
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• Weight: Compute new importance weights wi
p using Equation 13.

While particle filter provides accurate filtering estimates Prθ(xp|y1:pS), it does not generate good esti-
mates of the joint smoothing distribution Prθ(x1:P |y1:P ) due to the issue of path degeneracy as repeated
resampling leads to all particles sharing common ancestors for sessions p << P (Chopin et al., 2020). Here
we use CPF-AS (see Algorithm 4) to estimate the smoothing distribution, where CPF-AS acts as a Markov
Chain Monte Carlo (MCMC) kernel with stationary distribution given by the joint smoothing distribution
Prθ(x1:P |y1:P )(Lindsten et al., 2014). We run CPF-AS with N = 30 particles. Each particle i has an
ancestral trajectory aip that represents the ASs from sessions 1 : p − 1. The ancestral path of each particle
represents a potential sequence of ASs, reflecting the behavior of a rat in the maze. Each particle maintains
its own unique set of credits or q-values for each of the four different ASs based on its ancestral trajectory
aip. A locally optimal proposal distribution is used to propagate particles to time p given by (Chopin et al.,
2020)

r(xp|x1:p−1, yp) =
fθ(xp|x1:p−1)gθ(yp|xp)∑
xp

fθ(xp|x1:p−1)gθ(yp|xp)
(11)

In CPF-AS, the N th particle ASs xN
1:P are deterministically set to input reference trajectory. The ancestor of

the N th particle is resampled based on the ancestor weights given by Equation (12). Since the ASs evolve in
non-Markovian manner in our models, (Lindsten et al., 2014) provides a a non-Markovian adaptation where
the product is truncated to L steps, which implies a gradual decay of the non-Markovian influence of the
current time step p over the next L steps. In our analysis we set (L = 5).

3 Results

3.1 Behavioral Analysis

As shown in Fig. 3, the rats trajectories in the initial sessions highlight the differences among slow-learning
rats (rat1, rat2 and rat3) and the fast-learning rats (rat4 and rat5). The fast-learning rats learn to get
rewards from both LF and RF consistently, whereas the slow learning rats seem to get fewer rewards during
the early sessions.

0 1000 2000 3000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Paths

S
uc
ce
ss
R
at
e

rat1
rat2
rat3
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rat5

Figure 3: Success rate as proportion of rewarded paths: Success rate computed as a proportion of rewarded
paths: The rats can be categorized as slower learning (rat1, rat2, rat3) or faster learning (rat4, rat5) based
on the proportion of rewarded paths.

3.2 Cognitive Insights Into Rats’ Suboptimal Behaviors

During the learning stage, the rats make significantly more loop path errors compared to other errors. Table
1 shows the number of errors of each type (loop, backward loop, reverse and v) (cf. Fig. 4) made by the
rats during the learning stage (first 400 paths). Chi-square test shows that the looping errors occur above
chance levels and cannot be explained as simply random chance events during the learning phase of the rats.
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Algorithm 4 Conditional Particle Filter with Ancestor Sampling (CPF-AS)
-

1: Input: Reference Trajectory x′
1:P

2: Input: Truncation parameter L = 5
3: Input: θ = (α1

CoACA, γ
1
CoACA, α

2
CoACA, γ

2
CoACA, α

3
DRL, λ

3
DRL, α

4
DRL, λ

4
DRL, αcrp)

4: Output: Trajectory x⋆
1:P

5: for i = 1 to N − 1 do
6: Draw xi

1 ∼ r(x1|y1)
7: end for
8: Set xN

1 = x1[k]
9: for i = 1 to N − 1 do

10: Set w̃i
1 =

gθ(y1|xi
1)Pr(xi

1)

rθ(xi
1|y1)

11: end for
12: for p = 2 to P do
13: for i = 1 to N − 1 do
14: Draw aip with Pr(aip = j) ∝ wj

p−1

15: end for
16: for i = 1 to N − 1 do

17: Draw xi
p ∼ r(xp|x

ai
p

1:p−1, yp)
18: end for
19: Set xN

p = x′
p

20: Draw aNp with

Pr(aip = j) ∝ wj
p−1

p−1+L∏
s=p

gθ(ys|xj
1:p−1, x

′
p:s)fθ(x

′
s|x

j
1:p−1, x

′
p:s−1) (12)

21: for i = 1 to N do

22: Set xi
1:p = {xai

p

1:p−1, x
i
p}

23: end for
24: for i = 1 to N do
25: Set

(13)w̃i
p =

gθ(yp|xi
p)fθ(x

i
p|xi

1:p−1)

r(xi
p|xi

1:p−1, yp)

26: end for
27: end for
28: Sample particle j with Pr(j = i) ∝ wi

P

29: Set x⋆
1:P = xj

1:P
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Table 1: Error path comparison

V Inverse Loop
Inverted

Loop
Are all wrong paths

equally likely?
rat1 2 1 43 1 No (pval < 2.2 · 10−16)
rat2 2 0 19 2 No (pval = 6 · 10−9)
rat3 5 4 72 4 No (pval < 2.2 · 10−16)
rat4 8 3 13 5 No (pval = 4.9 · 10−2)
rat5 6 2 17 4 No (pval = 3.3 · 10−4)

Figure 4: Valid paths in the maze. Turning back in reward boxes are not considered as valid paths as the
rats rarely moved backward during the experiment. Top column shows paths starting in Left Feeder (LF)
and bottom column shows paths starting in Right Feeder (RF).

A possible explanation for the high number of loop errors is that the rats might be misinterpreting the
reward association. The final segment of their successful path from the Left Feeder (LF) (red dotted line in
Figure 5) could be mistakenly linked to the reward itself (located at the Right Feeder, RF). Since both the
successful “Good.LF” path and the looping “Loop.RF” path share the segment A→ B→ RF, the rats might
attempt to replicate this sequence even when starting from RF, hoping to receive another reward (depicted
by the blue dotted line in Figure 5).

Figure 5: Loop error: rats mistakenly associate the trajectory A → B → RF with reward. In suboptimal
representation, A → B → RF while starting in LF (in good.LF) is same as A → B → RF while coming
from RF (in loop.RF). Dotted circle indicates the starting feeder box.

Alternate explanations for the high number of loop errors are possible but they are not in agreement
with experiment data:

• The loop path could arise because the rats forget which feeder they come from and mistakenly decide
to return to the same feeder. If this were the case, then this behavior should consistently persist
throughout the experiment.

• It is possible that the rats receive a reward and simply want to revisit the same feeder, anticipating
more rewards. However, if their sole motivation were to return to the last feeder, a similar preference
for both loop and “inverted loop” (returning directly to LF) would be expected. The data suggest a
specific preference for the loop path, indicating a different underlying cause.

Based on the explanation that rats make more loop errors due to mistakenly associating the final segment
of the “Good” path with the reward (as shown in Figure 5), we can hypothesize that these loop errors arise
because rats are unaware that “starting feeder box” defines the next reward path. Essentially, they ignore
the role of this hidden factor and instead repeat the final segment of the previous “Good” path, leading to
the last reward.
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Building upon this insight, we will proceed to define both a suboptimal and an optimal decision graph
in the subsequent section to further understand and characterize the rats’ ASs.

3.3 Behavioral Models

3.3.1 Internal Maze Representations (IMR): Suboptimal vs Optimal

Fig. 6a represents IMRsubOpt, a suboptimal version of the maze decision graph, not accounting for the
starting feeder box. Here A→ B → RF coming from LF shares the same representation with A→ B → RF
coming from RF , thus leading rats to make loop errors (cf. Fig. 5) while searching for rewards.

The optimal maze representation in the maze task, IMRopt, represented by Fig. 6b, has a larger state
space with a separate decision graph for trajectories starting from LF and trajectories starting from RF .
Unlike IMRsubOpt, IMRopt, has two separate representations for trajectories such as A→ B → RF coming
from LF and A → B → RF coming from RF , thus having a larger state space and avoiding loop errors in
the maze.

(a) IMRsubOpt: Suboptimal
Internal Maze Representation

(b) IMRopt: Optimal Internal Maze Representation

Figure 6: Suboptimal and optimal maze representations: a) IMRsubOpt: Suboptimal Internal Maze Repre-
sentation not accounting for starting feeder box. This implies that trajectories such as A→ B → RF have
the same representation whether they start from LF or RF. b) IMRopt: Optimal Internal Maze Representa-
tion with two different decision graphs based on the starting feeder (LF or RF). Here A→ B → RF coming
from LF is different from A→ B → RF coming from RF. Dotted circles indicate the starting feeder box of
trajectories.

3.3.2 Rats’ Agent Structures

We define rats’ AS as a combination of a internal maze representation (cf. Fig. 6) and a reinforcement
learning rule to solve the credit assignment problem. We use two different learning rules (LR):

1. LRsubOpt: Cognitive Activity-based Credit Assignment (CoACA) (cf. Section 2.3.1)

2. LRopt: Discounted reward RL (DRL), which is a continuous-time version of Q-learning (cf. Section
2.3.2)

Using the two internal maze representations and the two RL methods, we construct four different ASs
that the rats could employ in the maze:

• suboptimal AS : LRsubOpt with IMRsubOpt

• LR suboptimal AS : Hybrid AS of LRsubOpt with IMRopt

12



• IMR suboptimal AS : Hybrid AS of LRopt with IMRsubOpt

• optimal AS : LRopt with IMRopt

Considering all four ASs for each session, the total number of combinations for a rat across P sessions
would be 4P . However, to better reflect reality, we limit the possibilities to six specific ASs that fall into two
categories:

1. Switching from suboptimal to optimal representation: The rat might start with IMRsubOpt,
but can still switch to the optimal one later.

2. Sticking with the optimal representation: Once a rat chooses a AS with IMRopt, it stays with
that choice throughout the experiment.

By focusing on below six possible AS combinations, we create a more realistic model that captures the
decision-making switch process of the rats:

1. suboptimal AS → LR suboptimal AS

2. suboptimal AS → optimal AS

3. IMR suboptimal AS → LR suboptimal AS

4. IMR suboptimal AS → optimal AS

5. LR suboptimal AS

6. optimal AS

3.4 Inference On Rat Data

To infer how rats switch between agent structures (ASs), we used the Dynamic Structure Learning (DSL)
method (see Algorithm 1). This involved first performing model fitting on the experimental data by combin-
ing the Conditional Particle Filter with Ancestor Sampling (CPF-AS) (Lindsten et al., 2014) (see Algorithm
4) with Stochastic Approximation Expectation-Maximization (SAEM), following Algorithm 2 (Lindsten,
2013; Lindholm and Lindsten, 2018). The model parameters estimated through Algorithm 2 are presented
in Table 2. The agent structures (ASs) for each session were identified by calculating the Maximum A
Posteriori (MAP) estimate of the smoothing distribution Pr(xp|y1:P ) determined using Algorithm 3.

Table 2: Parameters estimated using Algorithm 2 on experimental data of rats

Rats
acaSubopt acaOpt drlSubopt drlOpt

αcrpα γ α γ α λ α λ
rat1 0.07 0.37 0.93 0.85 0.14 0.12 0.03 0.90 1.88
rat2 0.32 0.56 0.26 0.92 0.73 0.88 0.07 0.43 4.03
rat3 0.077 0.19 0.71 0.85 0.66 0.31 0.02 0.65 4.18
rat4 0.26 0.46 0.94 0.80 0.14 0.81 0.05 0.72 1.63
rat5 0.78 0.06 0.59 0.96 0.52 0.05 0.05 0.52 4.15

Inference results in Fig. 7 show that the slow learning rats - rat1, rat2 and rat3, utilize the suboptimal AS
during the initial few sessions before switching the optimal AS. In addition, rat1 seems to switch between
suboptimal AS and optimal AS, before settling on optimal AS. In contrast, fast learning rats (rat4 and rat5)
seem to learn the optimal maze representation early in the experiment and their behaviour is captured by
optimal AS throughout the experiment.

The behaviour of the slow learning rats - rat1, rat2 and rat3 - where they use the suboptimal AS in the
first sessions leads to a high frequency of loop errors (cf. Table 1) without learning the good path from LF
and RF. The fast learning rats, on the other hand, are quicker to use the optimal AS, even if they also make
loop errors in the beginning (see Table 1). The slow learners showed the cognitive flexibility over time to
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Figure 7: Agent Structures (ASs) of rats inferred using DSL method (see Algorithm 1). ASs result in
“strategies” followed by the rats to obtain rewards.

recognise the need to incorporate “start feeder box” into their internal maze representation and to transition
to an optimal behaviour AS. The transition from a suboptimal to an optimal AS over successive sessions
highlights two key aspects of the learning process:

1. Ability of rats to “imagine” and adopt a new, more complex internal maze representation that matches
their empirical observations.

2. Nature of learning as an ongoing process of refining and improving the internal maze representation.

3.5 Simulation Validation

We used simulations to analyze how well DSL recovers the true ASs used to generate the simulated data.
We generated simulated trajectories of rats according to the six possible combinations defined in the Section
3.3.2. Parameter recovery on simulated data using Algorithm 2 is plotted as boxplot of the recovery error
between the true parameter value and the value recovered from the simulated data is shown in Fig. 8. Overall,
the parameter recovery error is small, except in the case of LR suboptimal AS. Specifically, the parameter
gamma exhibits high variance during recovery. This could be attributed to the fact that gamma represents
the decaying forgetting process in Equation 3, which can be replicated by a wider range of parameters.
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Figure 8: Boxplots showing the errors between the parameter values estimated by the DSL method and the
true values on simulated data. The data is based on 300 simulations, with 60 simulations per each of the six
possible ASs.

AS recovery is tested by using DSL method (see Algorithm 1) to recover ASs from simulated data. Fig. 9
shows two examples where the true ASs were perfectly recovered. The recovery rate of agent structutres
(ASs) across sessions, based on 300 simulations with 60 instances of each of the six possible AS combinations
for 5 rats, is shown in Table 3.

5 10 15 20
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Sessions
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Strat 2

Strat 3

Strat 4

0 5 10 20 30

Simulation 2

Sessions

Strat 1

Strat 2

Strat 3

Strat 4

Strategies

Strat 1: Suboptimal strategy
Strat 2: LR suboptimal strategy
Strat 3: IMR suboptimal strategy
Strat 4: Optimal strategy

Recovered strategies

Figure 9: Recovery examples with successful recovery using DSL method on simulated data: Simulation 1
(using rat1 parameters) where AS switches from suboptimal AS → optimal AS ; Simulation 2 (using rat3
parameters) where AS switches from LR suboptimal AS → optimal AS

15



Table 3: Recovery rate of agent structures (ASs) across sessions for six different AS combinations, determined
using the DSL method on simulated data

Recovered AS

True AS suboptimal AS LR suboptimal AS IMR suboptimal AS optimal AS None

suboptimal AS 0.90 0.09 0.01 0 0
LR suboptimal AS 0.01 0.99 0 0 0
suboptimal AS 0.96 0 0.01 0.03 0
optimal AS 0 0 0 1 0
IMR suboptimal AS 0 0 0.96 0.04 0
LR suboptimal AS 0 0.90 0.01 0.08 0.01
IMR suboptimal AS 0 0 0.96 0.04 0
optimal AS 0 0 0 1 0
LR suboptimal AS 0 1 0 0 0
optimal AS 0 0 0 1 0

4 Conclusion

We developed a Dynamic Structure Learning (DSL) framework to reveal the internal model of agents. The
latter relies on their evolving cognitive processes behind their behavior. DSL models an agent’s internal
dynamics as the interaction between its learning rule and its internal representation of the environment.
These core components are drawn from a set of potential candidates, enabling a flexible and adaptive
representation of the agent’s decision-making process. The DSL framework aims to reconstruct the most
likely sequence of agent structures (ASs) based on observations of the agent, utilizing various learning rules
and environment representations.

We applied the DSL framework to the observation from a maze experiment where rats were free to move
around without restriction and received rewards in either the Left Feeder (LF) or the Right Feeder (RF) if
they took the designated correct paths from LF to RF and vice versa. The task required the rats to infer
the role of the hidden factor starting feeder box, which determined the next reward path in the maze. Thus,
the rats could form different possible internal representation of the task, such as one in starting feeder box
does not influence the observations and another where it influences.

Successfully earning rewards in the task required building a true internal model of the task (incorporating
the hidden factors of the task) as well as solving the credit assignment problem. Solving both the internal
environment model building and credit assignment problems simultaneously could be a computationally
intensive task, with some rats using a suboptimal model of the maze LRsubOpt for a few sessions before
eventually switching to the optimal maze model LRopt.

To understand how the rats solved the internal environment model building and credit-assignment prob-
lems, we defined four possible ASs as combinations of two internal maze representations: suboptimal maze
model IMRsubOpt and optimal maze model IMRopt; heuristic learning rule LRsubOpt based on CoACA and
optimal learning rule LRopt based on DRL. The optimal AS, consisting of LRopt and IMRopt, represented
the ideal AS for the rats to maximise their rewards in the maze. On the other hand, the suboptimal AS,
composed of LRsubOpt and IMRsubOpt, led the rats to potentially suboptimal behavioural patterns, such as
a tendency to make loop errors in the maze. We proposed that the loop errors observed in the experimental
trajectories of rats during the initial sessions were primarily due to rats employing the suboptimal internal
model IMRsubOpt, where the reward trajectory overlaps with the loop path, leading rats to mistakenly take
the loop path in search of rewards.

The inference results demonstrated that the slow-learning rats appeared to be utilising a suboptimal AS
in the initial sessions, whereas the fast-learning rats were able to identify the true structure of the task at
an early stage of the experiment and appeared to employ optimal AS from the initial session. Furthermore,
the change in AS from suboptimal AS to optimal AS in the slow learning rats shows an iterative refinement
of their internal maze representations from IMRsubOpt to IMRopt by the rats.

The slow-learning rats also use a heuristic credit assignment scheme, CoACA, which tends to repeat
choices from previously rewarded episodes, with more memorable choices (based on longer duration) receiving
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higher credits. The rats may rely on a heuristic method either because it is a computationally inexpensive
way of repeating choices from memory that were previously involved in a rewarded episode, providing them
with partial rewards at the beginning, or because their internal environment representation does not fully
explain their observations in the maze.

While our model captures the switching of agent structures by rats throughout the experiment, we
assumed that the rats’ internal models are fixed within each session. This approach provides a broader
analysis of rat behavior, but a more detailed examination—capable of identifying AS shifts within individual
sessions—could offer a deeper understanding of the learning process in individuals.

Our framework to capture the shifting internal structure of agents during their learning provides deeper
insights into the learning process of individuals in real-world scenarios. The shift from a suboptimal maze rep-
resentation, IMRSubOpt, to an optimal one, IMRopt, highlights how the learning process requires individuals
to ‘imagine” new possible models of the world when their observations do not match their internal models
of the world. This ability of animals and humans to generate previously unexperienced, novel thoughts from
past experiences highlights an important aspect of natural intelligence that allows them to adapt to differ-
ent environments, an ability that remains beyond the scope of AI models. A better understanding of the
computational process that drives the “imaginative” process in humans and animals (Buzsáki and Tingley,
2018; Comrie et al., 2022; Kurth-Nelson et al., 2023) could serve to illuminate the capabilities of natural
intelligence in flexibily adapting to different environment, paving the way for building more robust AI (Lake
et al., 2017; Botvinick et al., 2017; Siemens et al., 2022).
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