
HAL Id: hal-04879964
https://hal.science/hal-04879964v1

Submitted on 10 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Coulomb interactions and effective quantum inertia of
charge carriers in a macroscopic conductor

Adrien Delgard, Boris Chenaud, Ulf Gennser, Antonella Cavanna, D. Mailly,
P. Degiovanni, Christophe Chaubet

To cite this version:
Adrien Delgard, Boris Chenaud, Ulf Gennser, Antonella Cavanna, D. Mailly, et al.. Coulomb inter-
actions and effective quantum inertia of charge carriers in a macroscopic conductor. Physical Review
B, 2021, 104 (12), pp.L121301. �10.1103/PhysRevB.104.L121301�. �hal-04879964�

https://hal.science/hal-04879964v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Coulomb interactions and effective quantum inertia of charge carriers in a
macroscopic conductor

A. Delgard1, B. Chenaud1, U. Gennser2, A. Cavanna2, D. Mailly2, P. Degiovanni3 and C. Chaubet1
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We study the low frequency admittance of a quantum Hall bar of size much larger than the
electronic coherence length. We find that this macroscopic conductor behaves as an ideal quantum
conductor with vanishing longitudinal resistance and purely inductive behavior up to f . 1 MHz.
Using several measurement configurations, we study the dependence of this inductance on the length
of the edge channel and on the integer quantum Hall filling factor. The experimental data are well
described by a scattering model for edge magnetoplasmons taking into account effective long range
Coulomb interactions within the sample. We find that the inductance’s dependence on the filling
factor arises predominantly from the effective quantum inertia of charge carriers induced by Coulomb
interactions.

PACS numbers: 72.10.-d, 73.23.-b,73.43.-f, 73.43.Fj

By demonstrating that macroscopic conductors could
exhibit robust d.c. transport properties of quantum ori-
gin, the integer quantum Hall effect (IQHE) [1? –4] has
been a major surprise. The importance of this break-
through for metrology was acknowledged immediately [1]
and has lead to the redefinition of the Ohm [5? ]. The
finite frequency response of quantum Hall conductors has
been intensively studied by metrologists: the use of an
a.c. bridge at finite frequency f revealed departure of
the Hall resistance RH(f) at ν = 2 from the expected
value RK/2 = h/2e2 [6–10]. It was then attributed to
“intrinsic inductances and capacitances” [11, 12]. Later,
Schurr et al proposed a double shielded sample allowing
for a frequency-independent resistance standard [13], but
these works left open the question of the origin of these
capacitances and inductances.

On the other hand, the finite frequency transport prop-
erties of quantum coherent conductors, of size smaller
than the electron coherence length, are expected to be
dominated by quantum effects. For low-dimensional con-
ductors such as carbon nanotubes [14], or graphene [15],
the inductance is of purely kinetic origin. Small super-
conducting inductors [16, 17] now used in space indus-
try [18] are based on the inertia of Cooper pairs. For
a quantum coherent conductor, the theory developed by
Bűttiker and his collaborators [19–21] relates the associ-
ated L/R or RC times to the Wigner-Smith time delay
for charge carriers scattering across the conductor. These
remarkable predictions have been confirmed by the mea-
surement of the finite frequency admittance of quantum
Hall R-C [22] and R-L [23, 24] circuits of µm-size in the
GHz range at cryogenic temperatures.

In this Letter, we demonstrate that, in the a.c. regime,
a mm long ungated macroscopic quantum Hall bar, of
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size much larger than the electronic coherence length,
exhibits a finite inductance as well as a vanishing longi-
tudinal resistance. Such a purely inductive longitudinal
response is expected for quantum conductors with zero
backscattering: a kinetic energy cost proportional to the
square of the current arises from both the Pauli principle
and the linear dispersion relation for electrons close to
the Fermi level (see Sec. I of Suppplemental Material at
[? ]). This effective inertia of carriers causes the current
response to lag the applied electric field. Here, we iden-
tify an inductance of the order of tens of µH mm−1 and
connect it to an effective velocity veff along the quantum
Hall bar’s edges. Contrary to gated samples, in which veff

is almost independent of the filling factor ν [23], we show
that, because of Coulomb interactions between opposite
edges of the sample, veff depends on ν in our samples. Us-
ing the edge-magnetoplasmon scattering approach com-
bined with a discrete element approach à la Bűttiker, we
show that:

veff(ν)

vd(ν)
= 1 +

ναeff(ν)

π
ln

[
W/ξH(ν)

ν

]
(1)

for a sample of width W . Here, vd(ν) represents the
charge density wave velocity along the system of ν-
copropagating chiral edge channels, neglecting Coulomb
interactions with the other (counter-propagating) edge
channels. In a Büttiker view of the edge channels [25] as
well as in models assuming that no compressible stripes
are present at the edge [? ? ], vd(ν) is the drift velocity of
non-interacting electrons at the edge in an effective con-
fining potential Uν and, therefore, it plays the role of an
effective Fermi velocity in the 1D linear dispersion rela-
tion along the edge [26]. In the presence of compressible
stripes, which appear for a sufficiently smooth confining
potential [27], it corresponds to the effective velocity of
the charge density mode in the system of ν copropagat-
ing edge channels [28], taking into account the presence

mailto:christophe.chaubet@umontpellier.fr


ii

of the incompressible part of the edge channel [29]. Nev-
ertheless, we denote it by vd(ν) because, in a model of an
edge channel without compressible parts, it really would
be an electronic drift velocity. Importantly, this velocity
deviates from from the classical 1/B behavior of the elec-
tronic drift velocity because of screening effects, which
change the electrostatic potential at the edge as ν varies.

Here, αeff(ν) denotes the effective fine structure con-
stant (αqed in the vacuum) at filling factor ν: αeff(ν) =
(αqed/εr)× (c/vd(ν)). The length ξH(ν), which also de-
pends on ν, is an effective renormalized width of a single
edge channel of the order of the width of incompressible
edge channels λH(ν) [27] (see Sec. IV of the Suppplemen-
tal Material at [? ]).

Our work demonstrates that the purely inductive re-
sponse of the macroscopic ungated quantum Hall bar
reflects the effective quantum inertia of charge carriers
renormalized by Coulomb interactions within the sam-
ple. Therefore, although electron transport across such
a conductor is not coherent, its d.c. and a.c. transport
properties are of quantum origin, a fact that ultimately
relies on the coherence of edge-magnetoplasmon (EMP)
modes propagating along chiral edge channels. EMP co-
herence has enabled the demonstration of single and dou-
ble EMP Fabry-Pérot interferometers [30] as well as of a
Mach-Zehnder plasmonic interferometer [31].

Using shallow etching, our samples are processed
on an AlGaAs/GaAs heterojunction with the two di-
mensional electron gas (2DEG) located at the hetero-
interface (105 nm beneath the surface) with carrier den-
sity ns = 5.1× 1011 cm−2 and mobility µ = 30 m2/Vs.
We have processed a 2×0.4mm2 ungated Hall bar which
exhibits a sufficiently large kinetic inductance. The sam-
ple has no back gate and is glued on a ceramic sample
holder to avoid parasitic capacitances. It is placed at the
center of a high magnetic field at 1.5 K.

In the measurement setup depicted on Fig. 1-a., the
current is injected using Hcur (5 mV bias), and measured
using Lcur. The potential of Hpot is measured while V =
0 and I = 0 are imposed at Lpot. The current intensity
(. 0.5 µA at ν = 2) remains below the breakdown current
and currents used in metrology [6? ]. For each values of
B, the resistance and the reactance have been measured
for 300 values of the frequency f in the range 40 Hz-
100 kHz.

Due to chirality of the quantum Hall transport, an
ohmic contact wire-bonded to the sample holder and so to
a coaxial cable, generates a leakage current through the
cable capacitance if the potential does not vanish [34, 35].
This results in a faulty measurement [36, 37]. For this
reason, all results presented here have been carried out
at integer filling factors, where the longitudinal resistance
Rxx(ω) vanishes[38]. Furthermore, only 3 of the ohmic
contacts processed on the sample were wire-bonded onto
the sample holder as shown on Fig. 1.b. To measure a
zero resistance state, the third contact is inserted along
the edge connected to the reference potential. In d.c.,
one would measure a potential VHpot

= 0. In a.c.,

FIG. 1. a) The Device Under Test (DUT) is measured
using four coaxial cables and the impedance-meter Agilent
HP4294A, which measures the current I at Lcur, the poten-
tial V at Hpot, and gives G = I/V , for details see Ref. [32, 33].
Note that the potentials of Hpot, Lpot, Hcur and Lcur are the
potentials of the four connectors of the impedance-meter. b)
Scheme of the multi-terminal Hall bar with only three ohmic
contacts wire-bonded onto the sample holder. In this geome-

try, the impedance is Z
(expt)
23 (ω) = −(∂V3/∂I2)(ω) for V2 = 0.

VHpot 6= 0 and we measure the frequency dependent

impedance Z
(expt)
23 (ω) = − ∂V3/∂I2|V2=0 (ω). Different

configurations and edge channel lengths can be obtained
by recabling the contacts and changing the sample side
(in this case, the magnetic field orientation must be re-
versed). We have also wire-bonded a fourth ohmic con-
tact on the same side of the sample to connect Lpot to
access another edge channel length.

Figure 2 presents unfiltered and non-averaged raw data

for the reactance X(f) = Im(Z
(expt)
23 (2πf)) in a given

sample configuration for ν = 2, 4, 6 and 8. The positive
linear dependence of X(f) is the signature of an induc-
tive behavior. The corresponding inductance decreases
with ν. These data are completely reproducible in the
regions of magnetic fields where Rxx = 0. This is a key
point of our work: for integer filling factors, the real part

R(f) = Re(Z
(expt)
23 (2πf)) of the measured impedance is

close to zero with values between ±0.5 Ω at low frequency
as shown in the inset of Fig. 2. These results extend the
work of Gabelli et al [23] in which the sample resistance
was RH = RK/ν, to the case of a zero resistance macro-
scopic device. At higher frequencies, a small real part
of the measured response function R(f) appears. This
effect is discussed in Sec. II of Suppplemental Material
at [? ] and is related to the deviation of the reactance
X(f) from linearity seen on Fig. 2.

Since the ac transport properties of a quantum Hall
conductor is directly related to the scattering of edge-
magnetoplasmons [39–42], already used to study EMP
propagation [43, 44], charge fractionalization [45–48], and
electronic relaxation and decoherence [49–51], we have
developed an analytical model (see Sec. III in Suppple-
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FIG. 2. The reactance X as a function of the frequency f
for different ν and B<0, in the measurement configuration
shown here. Inset: the longitudinal resistance R(f) vanishes
quadratically for integer filling factors at low frequency.

mental Material at [? ]) in the spirit of Ref. [30] for
scattering of EMP modes in a quantum Hall bar taking
into account long range inter-channel Coulomb interac-
tions. It assumes that, in our ungated quantum Hall
bars, all edge channels of same chirality have the same
velocity vd(ν) and are so strongly coupled that they see
the same time dependent potential as in Ref. [24]. Since
edge states are distant from more than 1.5 cm from shield
of coaxial cables located beneath the sample holder, es-
timated parasitic capacitance to shield for edge states is
below 1 fF while the inter-edge capacitance cH is of the
order of 0.1 pF. Therefore, Coulomb interactions effects
are dominated by the inter-edge capacitance CH . Fi-
nally, dissipation of EMP modes have been neglected, an
hypothesis a posteriori satisfied in our samples.

In the geometry depicted on Fig. 1, the low frequency
expansion of the measured reactance is of the form:

Im
(
Z

(expt)
23 (ω)

)
= iLω +O(ω2) (2)

where L denotes the total inductance for the quantum
Hall bar delimited by a dashed red box on Fig. 1-b. Be-
cause here, the magnetic inductance is much smaller than
the kinetic inductance (see Suppplemental Material at [?
], Sec. I), L can be obtained from the edge magnetoplas-
mon scattering model as

L = (RK/ν)× (l/2 veff(ν)) (3a)

veff(ν) = vd(ν)×
(

1 +
Cq(ν)

2CH(ν)

)
. (3b)

where l is the length of the Hall bar (see Fig. 1-b),
Cq(ν) = νe2l/hvd(ν) is the quantum capacitance of
ν edge channels recently measured in Corbino geome-
tries [52], and the geometric capacitance CH(ν) describes
the effect of Coulomb interactions between counter-
propagating edge channels. This is different from the

quantum RL-circuit where, because of the gating, the
capacitance CH has to be replaced by the capacitance
Cg with the nearby gates leading to a renormalization of
vd by 1 + Cq/Cg for right and left moving charge den-
sity waves [23]. Here, the renormalization factor involves
a CH capacitance with the series addition Cq/2 of the
quantum capacitances of counter-propagating edges. As
a consequence, Eq. (3) still relates L = R2

HCµ to the
Hall resistance and to the electrochemical capacitance
[53] Cµ defined as the series addition of CH to Cq/2.
Eq. (3) suggests that the inductance can be interpreted
as a kinetic inductance associated with an effective time
of flight l/veff(ν). But, as discussed in Suppplemental
Material at [? ] (Sec. III), veff(ν) is neither the drift
velocity for non-interacting electrons nor even a renor-
malized electron’s velocity within chiral edge channels,
but an effective velocity arising from the combination of
their kinetic quantum inertia and Coulomb interactions
within the quantum Hall bar. This effective inertia is of
quantum origin, reflecting the minimal energy associated
with an electrical current and appears, as we will see, to
be dominated by the effects of Coulomb interactions.

The geometric capacitance CH(ν) depends on the
width W of the sample, and of the structure and geom-
etry of the quantum Hall edge channels (see Sec. IV of
Suppplemental Material at [? ]), through a length ξH(ν)
proportional to the width WH(ν) of a single channel. Fol-
lowing Ref. [27], WH(ν) = (1 + π2αeff(ν))λH(ν), which
is of the order of a few tens of nm for AlGaAs/GaAs
quantum Hall systems. Finally, the inter-edge Coulomb
interactions contribution to veff(ν)

vd(ν)Cq(ν)

2CH(ν)
' σH(ν)

2πε0εr
ln

(
W

νξH(ν)

)
(4)

is found to be linear in ν, because of its proportionality
to the quantum Hall conductivity σH(ν), but with a log-
arithmic multiplicative correction which is a signature of
Coulomb interactions.

We will now discuss how this expression and the ex-
perimental data enable us to rule out some models for
vd(ν). We have considered two different models for
the confining potential at the edge of the sample which
leads to a different prediction for vd(ν): in Ref. [54],
vd(ν) = ωc/kF where ωc = eB/m∗ is the cyclotron fre-

quency and kF =
√

2π/nS the Fermi wave-vector. This
leads to a dependence vd(ν) = vd/ν whereas in Ref. [55],
the gradient of the potential is proportional to ~ωc/lB
where lB =

√
~/eB is the magnetic length thereby lead-

ing to a scaling vd(ν) = vd/
√
ν.

Fig. 3 contains the first main quantitative result of
this work, i.e. the quantum inductance as function of
1/ν for configurations B < 0 (B > 0 configurations are
analyzed in the Sec. V of Suppplemental Material at [?
]). Values have been obtained from the reactance data
depicted on Fig. 2 using the slope at low frequency of
f 7→ X(f) datasets. Three configurations in which Lpot

and Hpot are plugged to different contacts (see Fig. 3)
and thus correspond to different l have been studied. The
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FIG. 3. (Color online) For measurement configurations with
B < 0 corresponding to l = 600 µm, 1000 µm and 1600 µm,
the inductance increases with 1/ν. Dashed lines correspond
to model vd(ν) = vd/ν with vd = 15, 5 and 40 (in units of
105 ms−1) from top to bottom. The vd(ν) = vd/

√
ν model

leads to (solid lines) vd = 6, 3 and 17 in units of 105 ms−1

from top to bottom. The blue points corresponds to the ex-
perimental data displayed on Fig. 2.

main result is the dependence of the inductance on 1/ν
which involves a linear part (see Eq. (3a)) due to the
presence of ν channels in parallel, but with a non-linear
correction stemming from the ν-dependence of vd(ν) (see
Eqs. (3b)) together with Coulomb interaction effects (see
Eq. (4)). The different dependences of vd(ν) lead to dif-
ferent theoretical predictions. We find that the scaling
vd(ν) = vd/

√
ν is the best for describing the experimen-

tal data.
We have then extracted the velocity veff(ν) using Eq.

(3a) from each value of the inductance (see Fig. 4).
This is the second main quantitative experimental re-
sult of this work. Each family of points corresponds
to a specific sample configuration for which the sample
has been heated up, re-bonded and cooled down again.
These manipulations affect the electrostatic arrangement
of charges at the edge, thereby modifying vd from one
experiment to the other. Fig. 4 presents predictions
for veff(ν) from Eq. (1) for different models for vd(ν).
Similarly to the discussion of Fig. 3, the ν−1/2 scaling
for vd(ν) gives the best reproduction of the experimental
data. But a striking point is that in order to reproduce
the experimental data, it is necessary to take into account
the inter-channel Coulomb interactions: ignoring the in-
teractions would correspond to using vd(ν) instead of veff

in Eq. (3a). This is shown by the thin filled and dashed
grey curves on Fig. 4, which clearly do not follow the ex-
perimental data. We thus interpret the ν-dependence of
veff(ν) when increasing ν from 2 to 10 (mostly linear with
log-correction) as a strong indication of the dominant role
of Coulomb interactions in these ungated samples.

Let us comment on the spread of values for vd given
in Fig. 4, which reflects the variability of the electro-

FIG. 4. (Color online) veff as a function of ν. Dashed curves
correspond to vd(ν) = vd/ν and full lines to vd(ν) = vd/

√
ν.

Colored lines correspond to the expressions (1) taking into
account inter-edge Coulomb interactions. Thin grey curves
correspond to plots of the bare velocity vd(ν). The full lines
have been obtained with (starting from the top curve): vd =
17, vd = 6 (fit of the data from Fig. 2), vd = 3, vd = 1.2 and
vd = 0.66 in units of 105 ms−1. For the dashed lines, we have
starting from the top curve: vd = 40, vd = 15, vd = 5, vd = 2
and vd = 1 in units of 105 ms−1.

static environment in the samples from one experimen-
tal cooldown to another. A variation by a factor 25 is
observed across all experiments (three higher curves for
B > 0, all others for B < 0) but by only a factor 6 when
considering only one orientation of B. This is still much
larger than the relative change of the 2DEG density but
vd reflects the edge potential, which may vary more from
one experiment to the other. As we use a shallow etch-
ing technique, the samples edges are very sensitive to
any change of the electric potential landscape[56]. The
values that we have obtained for vd(ν = 2) are com-
patible with estimates in the literature [57] for shallow
etched samples. Moreover, our measurements of veff(ν)
are in the same range and qualitatively show a similar ν-
dependence as the ones obtained in Ref. [58] for ungated
samples by a time-of-flight technique.

To summarize, we have shown that, at low frequencies,
a macroscopic quantum Hall bar is a perfect 1D conduc-
tor exhibiting a vanishing longitudinal resistance and a
finite inductance. By fitting its dependence on ν and on
the sample geometry using a simple long range effective
Coulomb interaction model in the spirit of Büttiker et al
[53], we have shown that it reflects the effective quan-
tum inertia of charge carriers within the edges of the
quantum Hall bar. Contrary to the case of superconduc-
tors where carrier inertia arises from the effective mass
of the Cooper pairs, here it reflects how Coulomb inter-
actions alter the propagation of low-frequency massless
edge-magnetoplasmon modes. Remarkably, the exper-
imental data can be understood using a simple model
which is formally similar to the one used for gated nano-
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fabricated samples [59? ]: starting from chiral charge
transport with bare velocity vd(ν), we include Coulomb
interactions with the other edges via classical electrostat-
ics and edge structure geometry from Ref. [27]. Going
beyond this phenomenological but practical model would
involve a multiscale treatment combining our approach
to inter-channel interactions with a self-consistent mi-
croscopic approach solving the problem of electrons in
the presence of intra-channel Coulomb interactions [60?
, 61].

Finally, macroscopic samples may provide a rescaled
test-bed for studying the scattering properties of edge-
magnetoplasmons in 1 to 100 µm-sized samples. Study-
ing a.c. transport properties of macroscopic samples up
to radio-frequencies could thus open the way to realiz-
ing controlled quantum linear components for quantum

nano-electronics in 1D edge channels, with possible appli-
cations to electron [62] and micro-wave quantum optics
in ballistic quantum conductors [63].
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D. Glattli, B. Etienne, Y. Jin, and M. Büttiker, Phys.
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