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Abstract—Modern Cyber-Physical Systems (CPS) often exhibit
both relaxed real-time constraints and a mode-dependent execu-
tion. Relaxed real-time constraints mean that only a subset of
the processes of a CPS have real-time constraints, and a mode-
dependent CPS has conditional execution branches. Static anal-
ysis tools, such as the PolyGraph model (a formalism extending
the Cyclo-Static Dataflow model with real-time constraints), can
specify and analyze systems with relaxed real-time constraints.
However, PolyGraph is limited in its ability to specify and
analyze mode-dependent CPSs. This paper extends PolyGraph
with routing actors, yielding the Routed PolyGraph model. This
model is further extended to the Real-time Mode-Aware Dataflow
(RMDF), which both leverages routing actors and incorporates
a new dataflow actor to specify mode-dependent CPSs under
relaxed real-time constraints. This paper also extends the static
analyses of PolyGraph to RMDF. We showcase the application of
RMDF with a specification and an analysis (derivation of timing
constraints at the job-level and a feasibility test) of the vision
processing system of the Ingenuity Mars helicopter.

Index Terms—Dataflow Model, Real-time Systems, Mode-
Dependent Execution, Timing Analysis

I. INTRODUCTION

Cyber-Physical Systems (CPSs) are reactive systems that

detect environmental shifts through sensors, process this infor-

mation using computational processes, and then use the output

to control actuators. CPSs range from digital signal processing

systems to embedded/cloud infrastructures, soft/hard real-time

systems, and even a mix of all the above. These complex

systems must operate reliably without threatening their inter-

nal processes. For example, a failure of the actuator in an

autonomous car can lead to catastrophic consequences such

as a car crash or a pedestrian accident.

An increasing number of systems exhibit dynamic behavior,

allowing them to switch between various modes of opera-

tion at runtime, e.g., a switch between the nominal and the

degraded execution mode. The procedure that initiates these

mode switches may rely on runtime data, limiting the static

analyzability of the system. This paper presents an extension

of an existing static analysis tool to specify and analyze such

systems with dynamic behavior.

The design tools of interest in this paper are Dataflow

Models of Computation and Communication (DF MoCC).

These tools can formally prove the correctness of some classes

of CPSs regarding safety and temporal properties, such as

consistency, liveness, latency, and throughput. This paper

presents a DF MoCC called Real-time Mode-aware Dataflow

(RMDF), which extends the routed PolyGraph model, this

latter being itself an extension of the DF MoCC PolyGraph [1].

While PolyGraph is tailored to specify and analyze CPSs with

relaxed real-time constraints, that is, a CPS with real-time

constraints on only a subset of its processes, it cannot specify

and analyze mode-dependent CPSs.

1) Contribution: We have developed an extension of Poly-

Graph, called RMDF, to specify and analyze mode-dependent

CPSs under relaxed real-time constraints. As a dataflow model

is a trade-off between its expressiveness and its analyzabil-

ity [2], the challenge here is to enhance the former without

reducing the latter. Within the scope of this paper, a mode-

dependent CPS has a set of conditional execution branches.

The consistency analysis (checking the existence of a memory-

bounded execution) and the liveness analysis (checking the

existence of a deadlock-free execution) of PolyGraph are

extended to RMDF. In addition, the timing analysis described

in [3] for PolyGraph is extended to RMDF, and a feasibility

test is proposed.

2) Paper organization: The paper starts by presenting the

background and the terminology of the PolyGraph model in

Section II. The PolyGraph model is extended to the routed

PolyGraph model in Section III, which is further extended to

the RMDF model in Section IV. The extension of the static

analysis of PolyGraph to RMDF is detailed in Section V.

Section VI presents the timing analysis of an RMDF specifica-

tion. This timing analysis permits a feasibility test presented in

Section VII. Section VIII applies the RMDF model to specify

and analyze a dataflow specification of the Ingenuity vision

processing system. Section IX discusses the mode change

protocol of RMDF. Finally, Section X presents discussions

and related works, and Section XI concludes the paper.

II. BACKGROUND AND TERMINOLOGY

RMDF is an extension of PolyGraph [4], which is itself a

superset of the Synchronous Dataflow (SDF) model [5]. In this

section, we briefly present SDF, and we explain how the Poly-

Graph model expands it. We also introduce disjoint directed

meshes to explain further how RMDF extends PolyGraph.



A. The SDF Model

An SDF specification is an oriented graph G = (V,E)
where V is a finite set of actors and E is a finite set of

channels. An SDF specification is characterized by a topology

matrix GΓ of size |E|× |V |. An actor is a computational unit

that both produces and consumes data tokens every time it is

executed. The atomic amount of data exchanged is known as a

token. The entry (i, j) of GΓ is the number of tokens produced

or consumed by the actor vj on the channel ci each time the

actor vj is executed (this number is positive if the tokens are

produced, and negative otherwise). An execution of an actor

is called a job.

An actor v ∈ V has (optional) input and output ports

connected to input and output channels of E. A channel

ci = (vj , vk, nij , nik, initi) ∈ E connects an output port of

the actor vj ∈ V to an input port of the actor vk ∈ V . This

channel also has a production rate nij ∈ N∗ (which is the entry

(i, j) of GΓ), a consumption rate nik ∈ N∗ (the entry (i, k)
of GΓ), and a number of initial tokens initi ∈ N. An actor’s

job produces/consumes tokens to/from the buffer of its out-

put/input channels according to the production/consumption

rate. For the sake of simplicity in the rest of this paper, we

denote [ci] the number of initial tokens of the channel ci.

B. The PolyGraph Model

1) Syntax and semantics: The PolyGraph model is a su-

perset of the SDF model. It expands it in two ways: the

production and consumption rates become periodic sequences

(as in CSDF [6]), and a subset of actors may have timing

constraints. The terminology of the static analysis of an SDF

specification, i.e., consistency, liveness, consistent and live

execution, and hyperperiod [5], is extended to a PolyGraph

specification. Consistency ensures the system can be executed

within a bounded memory, while liveness guarantees deadlock-

free execution. A hyperperiod is a partially ordered set of

actors’ jobs that returns the system to its initial state within a

given time frame.

2) Rational production and consumption rates: Let G =
(V,E) be a PolyGraph specification and let GΓ = (γij) ∈
Q|E|×|V | be its topology matrix. The production and con-

sumption rates are rational1: a channel ci ∈ E is a tuple

(vj , vk, γij , γik, [ci]) such that γij ∈ Q∗ and γik ∈ Q∗, and

[ci] ∈ Q (Q∗ = Q \ {0}). Rational rates imply that the

number of tokens produced/consumed can differ for each job.

Specifically, a token is produced and stored in a channel if

and only if sufficient fractional token parts are symbolically

produced. Indeed, only an integer number of tokens may be

produced or consumed. In other words, an actor with a rational

production rate such as 1/n in the dataflow specification

actually produces data once every n jobs during runtime, thus

validating the precedence constraint toward the consumer once

every n of its jobs.

1A channel of a PolyGraph specification as defined in [4] has at least one
integer rate. However, for the sake of simplicity, we consider in this paper
that both rates are rational.

The rational production and consumption rates are natural

consequences of the periodicity of real-time actors (with speci-

fied and imposed frequencies) together with the consistency of

the system’s model imposed by the topology matrix. The ratio-

nal rates are a compact notation for a CSDF equivalency [6].

3) Timing constraints: The actors of a PolyGraph speci-

fication may have a frequency constraint. Furthermore, they

may also have a phase if they have a frequency constraint.

The phase usually models the system’s end-to-end latency.

The frequency dictates the actor’s execution at the specified

rate, while the phase postpones its initial execution. Actors

with frequency constraints are referred to as timed actors. An

execution of a consistent and live PolyGraph specification is

an infinite repetition of its first hyperperiod. Although the

number of jobs is not bounded during an execution, their

timing constraints are cyclic over a hyperperiod.

C. Disjoint Directed Meshes

Let G = (V,E) be a directed graph. Let us define two

maps in, out : V → 2E that associate to each actor v ∈ V the

set2 of input and output channels, respectively. G is a disjoint

directed mesh if:

1) there is a single source actor, i.e., there exists a unique

actor vs ∈ V such that in(vs) = ∅;
2) there is a single sink actor, i.e., there exists a unique

actor vt ∈ V such that out(vt) = ∅;
3) there exists at least one path from vs to vt, and a path

is called a branch;

4) the intersection of all the branches is the empty set.

A disjoint directed mesh is illustrated in Fig. 1.

source

A1

B1

C1

. . .

. . .

. . .

An1

Bn2

Cn3

sink

Fig. 1: An illustration of a disjoint directed mesh with three

branches. n1 to n3 are the (bounded positive) number of actors

in each branch.

III. THE ROUTED POLYGRAPH MODEL: SYNTAX AND

SEMANTICS

The RMDF model permits the specification of CPSs with

conditional execution branches. This feature requires routing

capabilities -specific actors to explicitly define how data tokens

are routed into the conditional execution branches. We will in-

troduce further in the paper such actors, called controlled split-

ters and controlled joiners. Controlled splitters and controlled

joiners rely on actors called splitters, joiners, duplicaters, and

discard [7], [8] . Those actors are not yet integrated into the

PolyGraph model (only an implicit reference to them is used

22E is the powerset of E, that the set of all subset of E. For instance,
if E = {c1, c2}, then 2E = {{∅}, {c1}, {c2}, {c1, c2}}
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in [1]). This section solves this issue by integrating these actors

into the PolyGraph model, resulting in the routed PolyGraph

model.

A. Routing Actors: Joiners, Splitter, Duplicaters, and Discards

The actors Splitter, Joiner, Duplicater and Discard were

introduced in [7]. These actors are routing actors. Instead of

engaging in computational tasks, they primarily render data

communication patterns explicit. This explicitness allows for

compile-time optimizations [7], especially reducing the mem-

ory requirements and improving overall CPS performance.

A splitter consumes tokens from a single input and dis-

tributes them to multiple outputs. A predefined number of

tokens is sent to the first channel in the lexicographic order of

the output channels, then to the second channel, and so on. The

number of tokens sent to an output channel is the numerator

of the production rate of that channel. We enforce that an

execution of a splitter consumes one token at a time; the reason

behind this enforcement will be detailed in the next paragraph.

Hence, the splitter of Fig. 2a sends two tokens to c1 in two

jobs and one token to c2 in one job. The process is repeated

cyclically. Similarly, a joiner consumes tokens from multiple

inputs and produces them to a single output. As for the splitter,

the execution of a joiner produces one token at a time. Thus,

the joiner of Fig. 2b receives two tokens from c1 in two jobs

and one token from c2 in one job. The process is repeated

cyclically. A duplicater, as illustrated in Fig. 2c, consumes

tokens from a single input and sends them to multiple outputs.

A discard (cf. Fig. 2d) is essentially a sink actor that consumes

tokens from a single input without producing any. It is used

to discard tokens that are no longer needed and is typically

employed at the output of a splitter.

In order to ease the extension of static analysis from

PolyGraph to the routed PolyGraph and then to RMDF, we

enforce that an execution of a splitter or a joiner consumes or

produces one token at a time. To that end, the production rate

of the input/output channel of a splitter/joiner is equal to 1.

In addition, the sum of the production/consumption rates of

the output/input channels of a splitter/joiner is equal to 1. For

instance, the production rates of the splitter of Fig. 2a are 2/3
and 1/3, whose sum equals 1.

B. Static Analysis of a Routed PolyGraph Specification

There is an equivalence between a PolyGraph specification

and a routed PolyGraph specification. Algorithm 3 details

the transformation of a routed PolyGraph specification to a

semantically equivalent PolyGraph specification.

Definition 1 (Floor and ceil functions). The floor function ⌊x⌋
returns the greatest integer less than or equal to x. The ceil

function ⌈x⌉ returns the smallest integer greater than or equal

to x.

To illustrate, let G = (V,E) be a routed PolyGraph

specification with a splitter v ∈ V that has n output channels

c1, . . . , cn with the numerator of their production rate denoted

as γ1, . . . , γn. The splitter v is removed by modifying the

(a) Splitter.

Splitter(1, 2, 3, 4, 5, 6, . . . )

2/3
c1

(1, 2, 4, 5, . . . )

1/3
c2

(3, 6, . . . )

(b) Joiner.

Joiner (1, 2, 3, 4, 5, 6, . . . )

(1, 2, 4, 5, . . . )

c1
2/3

(3, 6, . . . )

c2
1/3

(c) Duplicater.

Duplicater(1, 2, 3, . . . )
c1

(1, 2, 3, . . . )

c2

(1, 2, 3, . . . )

(d) Discard.

Discard(1, 2, 3, . . . )

Fig. 2: Illustration of a splitter, a joiner, a duplicater, and a

discard with their input and output traces. Rates of 1 and initial

tokens of 0 are omitted for clarity.

producer actor of the channel ci from v to the predecessor of

v. At this point, the predecessor of v may send more than one

token at some executions and no tokens at others. In order

to reproduce the expected behavior of the splitter, one token

has to be sent each time the predecessor of v executes. This

is done by shifting the production rate with initial tokens; a

challenge here is to find the correct amount of initial tokens.

There is a bijection from the production rate and the initial

tokens of a channel to the sequence of tokens sent to this

channel. This bijection can be constructed by exhaustively

enumerating all sequences generated by a production rate and

all values of initial tokens (cf. Algorithm 1). For instance, the

production sequence [1, 1, 0] is associated with the production

rate 2/3. The questions is “how many initial tokens are

needed to generate this production sequence?”. The production

sequence [1, 1, 0] is associated with the production rate 2/3,

so possible initial tokens are [2/3, 1/3, 0]. The production rate

2/3 with no initial token generates the production sequence

[0, 1, 1], the production rate 2/3 with 1/3 initial token gener-

ates the production sequence [1, 0, 1], and the production rate

2/3 with 2/3 initial token generates the production sequence

[1, 1, 0]. We can see that the production sequence [1, 1, 0] is

associated with 2/3 initial tokens.

The production sequence can be easily computed (cf. Line 5

to Line 9 of Algorithm 3). By following the procedure

described in Algorithm 1, the production rate and the required

initial tokens can be derived. Initial tokens are associated to

all output channels of a splitter with this approach bedore

removing the splitter. As a consequence, the behavior of the

splitter is preserved while removing it.

3



The same logic applies to removing a joiner using Algo-

rithm 2. A discard is removed while removing the splittr,

as a discard is always an output of a splitter. Removing a

duplicater is trivial. Fig. 3 illustrates the transformation of a

routed PolyGraph specification to a semantically equivalent

PolyGraph specification by removing a splitter (cf. Fig. 3a),

a joiner (cf. Fig. 3b), a duplicater (cf. Fig. 3c), and a discard

(cf. Fig. 3d).

Algorithm 1: Compute the rate and the number of

initial tokens that generate a production sequence.

Input: A production sequence s of length n.

Output: The production rate and the number of initial

tokens generating the input production

sequence.

1 prod rate←
∑n

i=1 s.get(i)/n ;

2 init tkn← 0 ;

3 while init tkn 6= 1:

4 prod seq ← [] ;

5 for j ← 1 to n:

6 prod seq.get(i)←
⌊n · γ + init tkn⌋− ⌊(n− 1) · γ+ init tkn⌋ ;

7 if s = seq then
Result: prod rate, init tkn

8 init tkn← init tkn+ 1/n ;

Algorithm 2: Compute the rate and the number of

initial tokens that generate a consumption sequence.

Input: A consumption sequence s of length n.

Output: The consumption rate and the number of

initial tokens generating the input

consumption sequence.

1 cons rate←
∑n

i=1 s.get(i)/n ;

2 init tkn← 0 ;

3 while init tkn 6= 1:

4 cons seq ← [] ;

5 for j ← 1 to n:

6 cons seq.get(i)←
⌈n · γ − init tkn⌉− ⌈(n− 1) · γ− init tkn⌉ ;

7 if s = cons seq then
Result: cons rate, init tkn

8 init tkn← init tkn+ 1/n ;

The resulting PolyGraph specification is less explicit as

there are no routing actors. However, the static analyses of

PolyGraph apply to the transformed PolyGraph specification.

IV. RMDF MODEL: SYNTAX AND SEMANTICS

This section explains how splitters and joiners are extended

to the controlled splitters and controlled joiners. Those two

latter actors will be used to route data tokens into conditional

execution branches in an RMDF specification.

Algorithm 3: Removal of routing actors from a routed

Polygraph specification.

Input: A routed Polygraph specification G = (V,E).
Output: A semantically equivalent Polygraph

specification without routing actors.

1 for v ∈ V :

2 if v.is splitter then

3 for c ∈ v.output channels:

4 cons seq ← [] ;

5 for c′ ∈ v.output channels:

6 if c′.index < c.index or c′.index >
c.index then

7 cons seq.append(0) ;

8 else

9 cons seq.append(1) ;

10 , init tkn←
Algorithm 2 (cons seq, len(cons seq)) ;

E = E ∪
{(v.pred, c.cons, c.prod rate, 1, [init tkn])};

11 if v.is joiner then

12 for c ∈ v.input channels:

13 prod seq ← [] ;

14 for c′ ∈ v.input channels:

15 if c′.index < c.index or c′.index >
c.index then

16 prod seq.append(0) ;

17 else

18 prod seq.append(1) ;

19 , init tkn←
Algorithm 1 (prod seq, len(prod seq)) ;

E = E ∪
{(c.prod, v.succ, 1, c.cons rate, [init tkn])};

20 if v.is duplicater then

21 for c ∈ v.output channels:

22 E = E ∪ {(v.pred, c.cons, 1, 1, [0])};

23 for v ∈ V :

24 if v.is splitter or v.is duplicater then

25 for c ∈ v.output channels:

26 E = E \ {c};

27 V = V \ {v};

28 if v.is joiner then

29 for c ∈ v.input channels:

30 E = E \ {c};

31 V = V \ {v};

32 if v.is discard then

33 for c ∈ v.input channels:

34 E = E \ {c};

35 V = V \ {v};

Result: G = (V,E)

4



(a) Splitter removal.

SplitterA

B

C

2/3
c1

1/3

c2
A

B

C

2/3
[2/3]

1/3

(b) Joiner removal.

Joiner C

A

B

c1
2/3

c2
1/3

C

A

B

2/3

1/3
[2/3]

(c) Duplicater removal.

DuplicaterA

B

C

A

B

C

(d) Discard removal.

SplitterA

B

Discard

2/3
c1

1/3

c2 A B
2/3

[2/3]

Fig. 3: Removal of routing actors while preserving the se-

mantics of data communication pattern. Rates of 1 and initial

tokens of 0 are omitted for clarity.

A. Controlled Routing Actors and Mode-Dependent Execution

A controlled splitter/joiner is a splitter/joiner with an addi-

tional input control channel. A control channel is where transit

control token. A controlled splitter/joiner, which is illustrated

in Fig. 4a and Fig. 4b, alternates between consuming a

control token and consuming/producing a data token. The

control token decides which channel the next data token will

be sent/received, leading to a mode-dependent execution. In

addition, the production/consumption rates of the output/input

channels of a controlled splitter/joiner are parameters that take

the value 0 or 1. For instance, parameters3 m1 and m2 in

Fig. 4a and Fig. 4b take the value 0 or 1. The actual value of

m1 and m2 is determined at runtime by the value carried by

control tokens consumed from c2 in Fig. 4a and Fig. 4b.

As for the non-controlled splitter/joiner, we want to ensure

that executing a controlled splitter/joiner consumes/produces

one token at a time. To that end, we enforce that a parameter

assignation (i.e., transforming m1 and m2 into 0 or 1 at

runtime) to adhere to the following constraints: exactly one

parameter must be equal to 1, and the other parameters must

be equal to 0. In Fig. 4, we have either m1 = 1 and m2 = 0

or m1 = 0 and m2 = 1. We will detail later in the paper how

this constraint is formally defined.

B. Mode Decider

As controlled splitters and joiners consume control tokens,

we need an actor to produce them. A mode decider consumes

3m1 and m2 are symbolic rates which are assigned a value at runtime

a data token from its input channels and produces a control

token on its output control channel. The algorithm inside the

mode decider that determines the value of the control token is

usually a switch case, but it can be more complex depending

on the application’s needs. A mode decider has exactly one

input data channel4 (the channel c1 in Fig. 4c) and exactly

one output control channel (the channel c2 in Fig. 4c), with

this latter being connected to a duplicater. This duplicater is

connected to one or many controlled splitters and controlled

joiners. Fig. 4c illustrates a mode decider.

C. A Complete RMDF Specification

Fig. 5 illustrates an RMDF specification with three con-

ditional execution branches (C1 to Cn1
, D1 to Dn2

and E1

to En3
with n1, n2, n3 ∈ N∗). An RMDF specification is

a tuple (V,E,M) where V is a finite set of actors, E is a

finite set of channels, and M is a set of functions that enforce

the production and consumption of one token at a time for

the controlled splitters and joiners. This set of functions of

the RMDF specification of Fig. 5 is M = {M1,M2,M3} as

defined in the right bottom corner of Fig. 5. Each function

specifies an execution mode. In Fig. 5, the actor B is a mode

decider. The control token it produces is sent to a duplicater

and then to a controlled splitter and a controlled joiner. The

value carried by the control token (produced by B) will be

used at runtime to determine the value of parameters m1, m2

and m3.

V. STATIC ANALYSIS OF AN RMDF SPECIFICATION

A. Control Areas

In order to ease the extension of the static analysis of

the PolyGraph model to the RMDF model, we enforce that

an execution of a controlled splitter/joiner consumes/produces

one token at a time. In addition, we impose conditions on

using the mode deciders, controlled splitters, and controlled

joiners in an RMDF specification. Let us define control areas

(Definition 2) on which restrictions (Property 1) will be

applied. A control area is a disjoint directed mesh where the

source and sink actors are a controlled splitter and controlled

joiner.

Definition 2 (Control area of a mode decider). Let G =
(V,E,M) be an RMDF specification, let vmd ∈ V be a mode

decider, let dup(vmd) be the duplicater connected to vmd, let

cs(vmd) be the controlled splitters connected to dup(vmd) and

let cj(vmd) be the controlled joiners connected to dup(vmd).
The control area of vmd, defined as control(vmd), is the

set of actors conditioned by the execution mode output by

vmd. It is the intersection of all the successors of controlled

splitters belonging to cs(vmd) and all the predecessors of

the controlled joiners belonging to cj(vmd). Formally, we

have control(vmd) = {v ∈ V |∃(v1, . . . , vi, . . . , vn), v1 ∈
cs(vmd), vi = v, vn ∈ cj(vmd), ∀1 ≤ j < n : vj+1 ∈
succ(vj)} with succ(v) the set of successors of v.

4It would not be difficult to consider more than one input data channel
for mode deciders.
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(a) Controlled splitter.

Controlled

splitter
(1, 2, 3, 4, . . . )

c1

((

m1 = 1
m2 = 0

)

,

(

m1 = 1
m2 = 0

)

,

(

m1 = 1
m2 = 0

)

,

(

m1 = 0
m2 = 1

)

, . . .

)

c2 m1
(1, 2, 3, . . . )

m
2 (4, . . . )

(b) Controlled joiner.

Controlled

joiner
(1, 2, 3, 4, . . . )

((

m1 = 1
m2 = 0

)

,

(

m1 = 1
m2 = 0

)

,

(

m1 = 0
m2 = 1

)

,

(

m1 = 0
m2 = 1

)

, . . .

)

c2

(1, 2, . . . )
c1

m
1

(3, 4, . . . ) c3
m2

(c) Mode decider.

Mode

deciderc1
(1, 2, 3, 4, . . . )

c2

((

m1 = 1
m2 = 0

)

,

(

m1 = 0
m2 = 1

)

,

(

m1 = 1
m2 = 0

)

,

(

m1 = 0
m2 = 1

)

, . . .

)

Fig. 4: An illustration of a controlled splitter and a controlled joiner with their input and output traces. Dashed lines represent

control channels, and plain lines represent data channels. Rates of 1 and initial tokens of 0 are omitted for clarity.

For instance, in Fig. 5, the actor B is a mode

decider. We have dup(B) = {Duplicater 2 },
cs(B) = {Controlled splitter} and cj(B) =
{Controlled joiner}. The control area of the actor B
is {C1, . . . , Cn1

, D1, . . . , Dn2
, E1, . . . , En3

}. The following

property imposes restrictions on the control areas of an

RMDF specification.

Property 1 (Restrictions on controls areas). Let G =
(V,E,M) be an RMDF specification:

1) Execution of actors in a control area must depend on

exactly one execution mode. Algorithm 4 return True if

this condition is fulfilled, False otherwise (see Fig. 6a

for an RMDF specification that does not fulfill this

requirement).

2) Let vmd ∈ V be a mode decider. There is no channel

from an actor v1 ∈ control(vmd) / v1 /∈ control(vmd)
to an actor v2 /∈ control(vmd) / v2 ∈ control(vmd) (cf.

Fig. 6b).

3) If there are timed actors in a control area, they must

have the same frequency (cf. Fig. 6c).

4) The production and consumption rate inside a control

area and the parametric rates associated with the con-

trolled joiner and controlled splitter of that control area

must be equal to 1 or 0 (cf. Fig. 6d).

5) Let vmd ∈ V be a mode decider. When all parametric

rates of a controlled splitter are assigned a value, their

sum is equal to 1. The same condition holds for the

parametric rates of a controlled joiner (cf. Fig. 6e).

Definition 3 (Mode-coherent RMDF specification). Let G be

Algorithm 4: Checking that actors’ execution in con-

trol areas of an RMDF specification depends on a

single execution mode. Some work remains to handle

loops within a branch.

Input: An RMDF specification G = (V,E,M).
Output: True if execution of the actors of G depends

on a single mode, False otherwise.

1 def label successor(v, associated mode):

2 for c ∈ v.output channels:

3 if mode /∈ c.conditioning mode then

4 c.conditioning mode.append(mode) ;

5 if len(c.conditioning mode) = 2 then
Result: False

6 if c.consumer.is controlled joiner then
Result: True

7 else

8 label successor(c.consumer,mode) ;

9 for v ∈ V :

10 if v.is mode decider then

11 for v ∈ cs(v):
12 mode = 0 ;

13 for c ∈ v.output channels:

14 if

label successors(c.consumer,mode) =
False then

Result: False

15 mode← mode + 1 ;

Result: True

6



A

100 Hz

Duplicater 1

Duplicater 2
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splitter

Controlled

joiner

B

C1
. . . Cn1

D1
. . . Dn2

E1
. . . En3

F

100 Hz

m1

m2

m
3 m3

m2

m
1

Data channel

Control channel

A Usual actor

A Mode decider

A Routing actor

M = {M1,M2,M3}
M1(m1) = 1,M2(m2) = 0,M3(m3) = 0
M1(m1) = 0,M2(m2) = 1,M3(m3) = 0
M1(m1) = 0,M2(m2) = 0,M3(m3) = 1

Fig. 5: An example of an RMDF specification. A usual actor is an actor which is neither (non-) controlled splitter or joiner,

nor a mode decider.

an RMDF specification. G is mode-coherent if it satisfies the

restrictions of Property 1.

B. Consistency and Liveness Analysis of an RMDF Specifica-

tion

The consistency and liveness analysis of an RMDF spec-

ification is based on the static analysis of the exhaustive set

of conditional execution branches of the RMDF specification.

An RMDF specification with a single conditional execution

branch can be analyzed as a routed PolyGraph specification.

For instance, Fig. 7 presents the PolyGraph specifications

obtained from an RMDF specification.

Theorem 1 (Consistent and live RMDF specification). Let

G = (V,E,M) be a mode-coherent RMDF specification.

G is consistent if the PolyGraph specification yield when

parametric rates are assigned a value is consistent. G is

consistent and live if the PolyGraph specifications yield when

parametric rates are assigned a value is consistent and live.

Proof of Theorem 1. Let G = (V,E,M) be a mode-coherent

RMDF specification. A symbolic execution of G is a sequence

of symbolic execution of PolyGraph specifications. Indeed,

executions of mode deciders assign values to parameters,

transforming an RMDF specification into a PolyGraph spec-

ification. If this latter is consistent and live, G returns to

its initial state without deadlocking. Note that the mode-

coherence property of G ensures that the execution of a control

area is consistent and live. Once back to the initial state,

the process repeats with another assignation of parameters,

possibly yielding a different PolyGraph specification because

another conditional execution branch can be taken. G also

returns to its initial state. It remains to verify that all Poly-

Graph specifications are consistent and live. Such techniques

are defined in [1].

VI. TIMING ANALYSIS OF AN RMDF SPECIFICATION

A. Pre-processing of an RMDF Specification

The RMDF model, as it is based on the routed PolyGraph

model, allows system designers to define an arbitrary number

of initial tokens on each channel. This feature is helpful

for modeling data in memory, such as the initial state of a

system, which is already available when the system starts.

Therefore, an actor may have all its input channels filled

with initial tokens, meaning that it can start its execution

immediately. Such actor can undergo “offline execution” and

be pre-processed before the system starts without waiting for

the first data produced by sensors. In other words, “offline

jobs” may be executed to reduce the computational load of

the system when it starts. It also eases the computation of

the system’s timing constraints, as we will see further in this

paper.

The pre-processing of an RMDF specification is detailed

in Algorithm 6 (located on Page 11), which in turn relies

on Algorithm 5. This latter converts a rational rate into the

number of tokens produced or consumed at a specific job

instance. Indeed, a rational rate of a PolyGraph specification

only gives a number of tokens produced or consumed over a

set of consecutive jobs, but not at every job instance.

Algorithm 6 pre-processes as many actors as possible us-

ing the initial tokens available in the channels. Actors with

sufficient initial tokens in all their input channels are pre-

processed. As each actor pre-processing produces tokens in

their output channels, they may produce sufficient tokens for

their successors to be pre-processed as well. Thus, each pre-

processing must be followed by a check of the complete

specification. Algorithm 6 terminates when no jobs can be

executed without depending on at least one job instance from

a sensor (which jobs are always at runtime). In other words,

7



(a) Actors C1 and Dn2
are not in two distincts branches.
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(b) There is a channel from an actor outside the control area to an actor inside the control area, and conversely.
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. . . En3
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m
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(c) Actors C, D, and E have different frequencies. For readability, each conditional execution branch has exactly one actor.
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Duplicater 1
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splitter
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joiner

B

C

25 Hz

D

50 Hz

E

100 Hz

F

100 Hz
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m
3

m
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(d) At least one production or consumption rate of the control area is not equal to 0 or 1.
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. . . Cn1
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E1
. . . En3

F
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2
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m
3

m
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(e) The sum of the assigned values of the production rates/consumption rates of the controlled splitter/controlled joiner is not equal to 1.
m1 and m2 are assigned to 1 and m3 to 0.
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Duplicater 1

Duplicater 2

Controlled

splitter

Controlled

joiner

B

C1
. . . Cn1

D1
. . . Dn2

E1
. . . En3
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100 Hz

1
1
0

1

1

0

Fig. 6: RMDF specifications that do not meet the required restrictions presented in Property 1.
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(a) Initial RMDF specification.
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(b) PolyGraph specification obtained when m1 = 1, m2 = 0 and m3 = 0.

A

100 Hz
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Duplicater 2
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splitter
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joiner

B

C1
. . . Cn1

F
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(c) PolyGraph specification obtained when m1 = 0, m2 = 1 and m3 = 0.

A

100 Hz

Duplicater 1

Duplicater 2

Controlled

splitter

Controlled

joiner

B

D1
. . . Dn2

F

100 Hz

(d) PolyGraph specification obtained when m1 = 0, m2 = 0 and m3 = 1.

A
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Duplicater 1

Duplicater 2

Controlled

splitter

Controlled

joiner

B

E1
. . . En3

F

100 Hz

Fig. 7: An illustration of the PolyGraph specification obtained from an RMDF specification. All PolyGraph specifications are

obtained by assigning values to m1, m2 and m3.
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all actors (except sensors) have a direct or indirect data

dependency.

TABLE I: Notations and variables used in Algorithm 6.

Notation/Variable Description

tkn state

A data structure that stores tokens produced by the actors.
It is an array of queues with a FIFO policy.

The length of this array is equal to the number of channels
of the RMDF specification being pre-processed.

ctrl tkn.channel
The channel on which the controlled splitter/joiner that

consume control token will produce/consume its next token.

Algorithm 5: Conversion of a rational rate to the

number of tokens produced or consumed at the job

level (Algorithm 2 in [1]).

Input: The n-th job instance of an actor v ∈ V of a

PolyGraph specification G = (V,E), a channel

c ∈ E from/to which v consumes/produces

tokens with a rate γ = p
q
∈ Q∗ and with

[c] ∈ Q initial tokens.

Output: The number of tokens consumed/produced by

the n-th job of v from/to c.
1 r ← [c]− ⌊[c]⌋ ;

2 if γ > 0 then
Result: ⌊n · γ + r⌋ − ⌊(n− 1) · γ + r⌋

3 else
Result: ⌈n · γ − r⌉ − ⌈(n− 1) · γ − r⌉

A consistent and live RMDF specification returns to its

initial state after a hyperperiod. We claim that the timing

constraints of a consistent, live and pre-processed RMDF

specification (i.e., pre-processed with Algorithm 6) are cyclic

over the first hyperperiod if the sensors and actuators of the

specification have a frequency. Indeed, after pre-processing, all

actors but the sensors have a direct or indirect data dependency

with at least one sensor. Sensors are timed actors, so they

release jobs periodically after the start of the execution. Con-

sequently, they also periodically release their successors’ jobs,

ensuring cyclic timing constraints. The same reasoning applies

to the actuators, which yield periodic deadline constraints that

are propagated to their predecessor through data dependencies.

B. Propagation of Timing Constraints

The arithmetic relation of [3], tailored initially for a Poly-

Graph specification, can be applied to the RMDF specification.

To do that, we must define a similar notion as well-defined

PolyGraph specification of [3] for an RMDF specification.

Definition 4 (Well-defined PolyGraph/RMDF specification).

A well-defined PolyGraph/RMDF specification is a weakly

connected graph5 that is both consistent and live. Actors

without predecessors/successors (i.e., the sensors/actuators)

are timed actors, meaning they have a frequency constraint. All

5A directed graph is weakly connected when its undirected induced graph
is connected [9].

actors within the specification have both a BCET and a WCET,

such that the BCET is less than or equal to the WCET. A well-

defined PolyGraph/RMDF specification is also pre-processed,

meaning that it has been processed with Algorithm 6. Note

that for a PolyGraph specification, Line 10 to Line 35 of

Algorithm 6 are not executed.

We remind the main result of [3] that allows the derivation

of the execution windows of a PolyGraph specification. This

result will be extended to an RMDF specification.

Theorem 2 (Derivation of the execution windows of a Poly-

Graph specification - Theorem 1 of [3]). Let G = (V,E) be

a well-defined PolyGraph specification, let vj , vk ∈ V be two

actors of G, and let ci ∈ E be a channel of G from vj to vk.

We define GΓ = (γij) ∈ Q|E|×|V | to be the topology matrix

of G, and ri = [ci]−⌊[ci]⌋ with ⌊[ci]⌋ being the floor function

applied to [ci]. We define periodv and phasev to be the

period and phase of an actor v ∈ V if v is a timed actor. Let

bcetv/wcetv be the BCET/WCET of an actor v ∈ V . Then,

the following holds:

1) Let vk ∈ V be a non-timed actor of G. Then, assuming

releasenvj returns the release of the n-th job of an actor

vj ∈ V , the release of the p-th job of vk is computed as

follows:

releasepvk = max
i∈[0,|E|]
j∈[0,|V |]
st γij<0

releaseα1(p,i,j,k)
vj

+ bcetvj

+
(

p− β1(p, i, j, k)
)

· bcetvk

with

α1(p, i, j, k) =
⌈⌈p · |γik| − ri⌉ − [ci]

γij

⌉

and

β1(p, i, j, k) = 1+
⌊⌊

(

α1(p, i, j, k)− 1
)

· γij + [ci]⌋+ ri

|γik|

⌋

2) Let vk ∈ V be a timed actor of G. Then, by denoting

release
p

vk
the release computed by Item 1, the release

of the p-th job of vk is computed as follows:

release
p
vk

= max
(

release
p

vk
, periodvk

·(p−1)+phasevk

)

3) Let vj ∈ V be a non-timed actor of G. Then, assuming

deadlinepvk returns the deadline of the p-th job of an

actor vk ∈ V , the deadline of the n-th job of vj is

computed as follows:

deadlinenvj = min
i∈[0,|E|]
k∈[0,|V |]
st γik>0

deadlineα2(n,i,j,k)
vk

− wcetvk

−
(

β2(n, i, j, k)− n
)

· wcetvj

with

α2(n, i, j, k) = 1 +
⌊⌊(n− 1) · γij + [ci]⌋+ ri

|γik|

⌋

10



Algorithm 6: Pre-processing of an RMDF specification.

Input: An RMDF specification G = (V,E,M).
Output: The RMDF specification where all jobs have a direct or indirect successor with at least one sensor’s job.

1 def consume(ts, v, c, n):

2 forall i ∈ [0, . . . , n− 1] do consumed token.get(i)← ts.get(v.c).dequeue();
Result: consumed token

3 def produce(ts, v, c, tkns):

4 forall t ∈ tkns do ts.get(v.c).enqueue(t);

5 should restart← True ; execute actor ← True ; tkn state← [] ;

6 forall v ∈ V do if v.is ctrl splitter or v.is ctrl joiner then v.has consumed ctrl tkn← False;

7 while should restart:
8 should restart← False ;

9 for v ∈ V :

10 if v.is mode decider and ts.get(v.input channel.get(0)).size() ≥ 1 then

11 tkn← consume(ts, v, v.input channel.get(0), 1) ;

12 ctrl tkn.channel← v.decide mode(tkn) ;

13 produce(ts, v, v.ctrl channel, ctrl tkn) ;

14 should restart← True ;

15 continue

16 if v.is ctrl splitter or v.is ctrl joiner then

17 if v.has consumed ctrl tkn = False and ts.get(v.ctrl channel).size() ≥ 1 then

18 ctrl tkn← consume(ts, v, v.ctrl channel, 1) ;

19 v.has consumed ctrl tkn← True ;

20 should restart← True ;

21 continue

22 else

23 if ts.get(v.ctrl tkn.channel).size() ≥ 1 then

24 if v.is controlled splitter then

25 tkn← consume(ts, v, v.input channel.get(0), 1) ;

26 produce(ts, v, v.output channel.get(ctrl tkn.channel), tkn) ;

27 v.has consumed ctrl tkn← False ;

28 should restart← True ;

29 continue

30 else

31 tkn← consume(ts, v, v.input channel.get(ctrl tkn.channel), 1) ;

32 produce(ts, v, v.output channel.get(0), tkn) ;

33 v.has consumed ctrl tkn← False ;

34 should restart← True ;

35 continue

36 for c ∈ v.input channels:

37 if ts.get(c).size() < Algorithm 5(v.job instance, c, c.cons rate, [c]) then execute actor ← False;

38 if execute actor = True then

39 for c ∈ v.input channels:

40 n← Algorithm 5(v.job instance, c, c.cons rate, [c]) ;

41 v.consumed tkns.get(c).append(consume(ts, v, c, n)) ;

42 v.produced tkns← execute actor(v) ;

43 for c ∈ v.output channels: produce(ts, v, c, v.produced tkns.get(c)) ;

44 v.job instance← v.job instance+ 1 ;

45 should restart← True ;
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and

β2(n, i, j, k) =
⌈⌈α2(n, i, j, k) · |γik| − ri⌉ − [ci]

γij

⌉

4) Let vj ∈ V be a timed actor of G. Then, by denoting

deadline
n

vj
the deadline computed by Item 3, the dead-

line of the n-th job of vj is computed as follows:

deadline
n
vj

= min
(

deadline
n

vj
, periodvj

·n+phasevj

)

The interested reader can find the proof of Theorem 2 in [3].

Theorem 3 (Derivation of the execution windows of an RMDF

specification). Let G = (V,E,M) be an RMDF specification

where all parameters are set to 1. Under the assumptions of

Theorem 2, except that G is a well-defined RMDF specification

instead of a well-defined PolyGraph specification, the result of

Theorem 2 can be extended to G.

Proof of Theorem 3. An RMDF specification as defined in the

assumptions of Theorem 2, i.e., with all its parameters set to

1, can be analyzed as a well-defined PolyGraph specification,

which is the assumption of Theorem 2.

Theorem 3 extends the timing constraints propagation of a

PolyGraph specification to an RMDF specification by consid-

ering all parameters to be set to 1. This implies a conservative

approach for the execution windows assignment of the con-

trolled splitters and controlled joiners. Deadlines are set to the

minimum of the deadlines of their output branches. Similarly,

the releases are set to the maximum of the releases of their

input branches.

VII. A FEASIBILITY TEST OF AN RMDF SPECIFICATION

The timing constraint propagation described in the previous

section provides a timing assessment of an RMDF specifica-

tion, serving as a feasibility test. Let G = (V,E) be a well-

defined RMDF specification and Grv(v) the repetition vector

of G, that is, the number of executions of v in a hyperperiod

of G. A necessary condition for the system to be feasible is

to assert if the execution window length of all jobs is greater

or equal to the WCET of the actor:

∀v ∈ V, ∀i ∈ Grv(v) : wcetv ≤ deadlineiv − releaseiv

The proposed timing assessment reduces the domain search

space of dataflow specifications, as unfeasible RMDF specifi-

cations can be detected as early as possible. Fig. 8 illustrates

the design flow we proposed with RMDF.

VIII. APPLICATION TO THE VISION SYSTEM OF

INGENUITY

As a reminder, a dataflow model is a trade-off between

its expressiveness and analyzability. In Section IV, we have

created the RMDF model, which extends the expressiveness of

PolyGraph while maintaining its consistency and liveness anal-

yses as detailed in Section V. In Section VI and Section VII,

the analyzability of RMDF was extended while maintaining its

expressiveness. The current section applies the previous results

to a dataflow specification of the vision processing system of

Ingenuity.

A. An Enhanced Model Fidelity with RMDF

We have specified the vision processing system of the

Ingenuity Mars helicopter [10] in Fig. 9 with both the Poly-

Graph model (Fig. 9a) and the RMDF model (Fig. 9b). The

vision processing system detects visual features on camera

frames and either stores them as reference features (modeled as

Pseudo landmarks) or tracks them from one frame to another.

After a filtering procedure, the tracked visual features are

matched with pseudo landmarks, enabling the computation of

a visual drift to enhance position estimation.

New pseudo landmarks are generated if certain conditions

are not met, and some of those conditions depend on runtime

data. Thus, we have to simplify the pseudo landmarks genera-

tion procedure in the PolyGraph specification and assume that

1 image over 10 is used to generate new pseudo landmarks6.

The expressiveness of the RMDF model allows us to model

the pseudo landmark generation with a mode decider actor

(which is Label decider in Fig. 9b), which is more accurate

than the simplification made in the PolyGraph specification.

Indeed, the selection algorithm inside the Label decider may

depend on runtime data, which is impossible to specify in the

PolyGraph specification.

B. Lazy Evaluation Propagation of Timing Constraints

The timing propagation presented in [3] and reminded

in the previous section applies to an RMDF specification.

Let us apply it to a slightly modified RMDF specification

of the Ingenuity vision processing system of Fig. 9b. This

modification, presented in Fig. 9c, is the following: 1) remove

the frequency of Feature Match, 2) add an actor Motors with

a frequency of 500 Hz and 3) add a channel between Feature

Match and Motors with a production rate of 1, a consumption

rate of 3/50 and 1/50 initial token. This modification resulted

in a more interesting outcome for the timing propagation, as

there is a fractional rate (the non-modified specification only

has rates of 1). Note that the actor Motors specified the rest

of the Ingenuity system, especially the motors triggering the

helicopter’s movements at a frequency of 500 Hz, as defined

by the textual specification [11]. The results of the propagation

of timing constraints is presented in Table II, in which we

assumed that BCETs and WCETs of all actors are 0.12 and

0.20 ms, respectively.

The results of Theorem 2 and its extension to RMDF

allow a timing constraints propagation with a lazy evaluation.

Specifically, arithmetic formulas enable us to compute directly

the job of interest, e.g., the successor job that consumes the

token produced by an actor. As a result, only the necessary

and sufficient computations are performed to derive the timing

constraints. This lazy evaluation is particularly useful when

6In the real system, at least 1 image over 10 is used to generate pseudo
landmarks. This condition is not the only one used in the real system.
However, it is the only one that can be modeled statically. All other conditions
depend on runtime data [10].
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Fig. 8: A design flow with RMDF. The central dotted rectangle is the workflow we proposed.

timing constraints are computed for a subset of actors or even

a subset of jobs.

C. A Feasibility Test

To put into context the feasibility test presented in section

Section VII, the result of Table II can be interpreted as follows.

It is necessary that the WCET of all actors of Ingenuity are

less than the minimum execution window length presented

in column Execution window of Table II for Ingenuity to be

feasible. Those values are summarized in Table III.

A schedulability test has been proposed for the PolyGraph

model in [12]. While in this paper we do not consider a

scheduling policy, the authors of [12] consider a preemptive

context and interferences between actors. A response time

analysis is performed to determine the worst-case response

time of actors, considering the worst-case execution time of

actors and the interferences between actors. Another difference

is the timing evaluation procedure. While our approach is a

lazy evaluation, the approach of [12] recursively updates the

response time of actors until a fixed point is reached. Both

approaches achieve the same result, and the lazy evaluation

requires less computation if all timing constraints are unnec-

essary.

IX. THE MODE CHANGE PROTOCOL OF RMDF

Mode-oriented execution relies on Mode Change Protocols

(MCP) [13]. A Mode Change Protocol defines how the tran-

sition from one mode to another is handled. A Mode Change

Request (MCR) is an event that triggers a mode change during

a transition phase.

In the context of RMDF, an MCR is the production of

a control token by a mode decider. Following the criteria

presented in [13], an MCP is classified according to three

criteria: overlaping, periodicity, and retirement. In our context,

those criteria are defined as follows:

• An overlapping protocol allows actors from two distinct

execution branches to be executed at the same time.

• A periodic protocol allows actors outside conditional

execution branches to not be interrupted by the mode

change.

• A late-retirement protocol allows actors from an old

mode, i.e., a previous execution branch, to continue their

execution for a given amount of time.

The MCP proposed in this paper for RMDF is non-

overlapping, periodic, and late-retirement. In order to explain

the non-overlapping property, let us remind restriction 5 of

control areas (cf. Property 1). This restriction states that

whenever parametric rates of a control area are assigned a

value, their sum is equal to 1. In conjunction with restriction

4, which states that production and consumption rates of a

control area are equal to 0 or 1, it results in a single branch

being executed at a time, resulting in the non-overlapping

property. The proposed MCP is periodic as a mode change

only affects the execution of actors in a control area. Finally,

the late-retirement is ensured by the controlled joiner, which

prevents the consumption of the token produced by the second

branch until the first branch terminates. In other words, actors

are allowed to finish their execution without compromising the

expected order of tokens.
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TABLE II: Releases, deadlines and execution windows length of the n-th job for each actor of the Ingenuity vision processing

system, assuming BCET and WCET of all actors are 0.12 and 0.20 ms, respectively, except for the Controlled Splitter and

Controlled Joiner which have constant execution time of 0 ms.

Actor
Timing constraint of the n-th job

Release Deadline Execution window

Camera











100 · ⌊(n − 1)/3⌋ if (n− 1) mod 3 = 0

100/3 + 100 · ⌊(n− 1)/3⌋ if (n− 1) mod 3 = 1

200/3 + 100 · ⌊(n− 1)/3⌋ if (n− 1) mod 3 = 2











7/5 + 100 · ⌊(n − 1)/3⌋

177/5 + 100 · ⌊(n− 1)/3⌋

337/5 + 100 · ⌊(n− 1)/3⌋











7/5 = 1.4 ms

31/15 ≃ 2.1 ms

11/15 ≃ 0.73 ms

Feature Detection











3/25 + 100 · ⌊(n − 1)/3⌋ if (n− 1) mod 3 = 0

2509/75 + 100 · ⌊(n − 1)/3⌋ if (n− 1) mod 3 = 1

5009/75 + 100 · ⌊(n − 1)/3⌋ if (n− 1) mod 3 = 2











8/5 + 100 · ⌊(n − 1)/3⌋

178/5 + 100 · ⌊(n− 1)/3⌋

338/5 + 100 · ⌊(n− 1)/3⌋











37/25 = 1.48 ms

161/75 ≃ 2.1 ms

61/75 ≃ 0.81 ms

Label Decider











6/25 + 100 · ⌊(n − 1)/3⌋ if (n− 1) mod 3 = 0

2518/75 + 100 · ⌊(n − 1)/3⌋ if (n− 1) mod 3 = 1

5018/75 + 100 · ⌊(n − 1)/3⌋ if (n− 1) mod 3 = 2











9/5 + 100 · ⌊(n − 1)/3⌋

179/5 + 100 · ⌊(n− 1)/3⌋

339/5 + 100 · ⌊(n− 1)/3⌋











39/25 = 1.56 ms

167/75 ≃ 2.2 ms

67/75 ≃ 0.87 ms

Controlled Splitter











9/25 + 100 · ⌊(n − 1)/3⌋ if (n− 1) mod 3 = 0

2527/75 + 100 · ⌊(n − 1)/3⌋ if (n− 1) mod 3 = 1

5027/75 + 100 · ⌊(n − 1)/3⌋ if (n− 1) mod 3 = 2











2 + 100 · ⌊(n− 1)/3⌋

36 + 100 · ⌊(n− 1)/3⌋

68 + 100 · ⌊(n− 1)/3⌋











41/25 = 1.64 ms

173/75 ≃ 2.3 ms

73/75 ≃ 0.97 ms

Feature Tracking











12/25 + 100 · ⌊(n− 1)/3⌋ if (n− 1) mod 3 = 0

2536/75 + 100 · ⌊(n − 1)/3⌋ if (n− 1) mod 3 = 1

5036/75 + 100 · ⌊(n − 1)/3⌋ if (n− 1) mod 3 = 2











11/5 + 100 · ⌊(n − 1)/3⌋

181/5 + 100 · ⌊(n− 1)/3⌋

341/5 + 100 · ⌊(n− 1)/3⌋











43/25 = 1.72 ms

179/75 ≃ 2.4 ms

79/75 ≃ 1.0 ms

Filtring Procedure











3/5 + 100 · ⌊(n− 1)/3⌋ if (n− 1) mod 3 = 0

509/15 + 100 · ⌊(n− 1)/3⌋ if (n− 1) mod 3 = 1

1009/15 + 100 · ⌊(n − 1)/3⌋ if (n− 1) mod 3 = 2











12/5 + 100 · ⌊(n − 1)/3⌋

182/5 + 100 · ⌊(n− 1)/3⌋

342/5 + 100 · ⌊(n− 1)/3⌋











9/5 = 1.8 ms

37/15 ≃ 2.5 ms

17/15 ≃ 1.1 ms

Pseudo Landmarks











12/25 + 100 · ⌊(n− 1)/3⌋ if (n− 1) mod 3 = 0

2536/75 + 100 · ⌊(n − 1)/3⌋ if (n− 1) mod 3 = 1

5036/75 + 100 · ⌊(n − 1)/3⌋ if (n− 1) mod 3 = 2











12/5 + 100 · ⌊(n − 1)/3⌋

182/5 + 100 · ⌊(n− 1)/3⌋

342/5 + 100 · ⌊(n− 1)/3⌋











48/25 = 1.92 ms

194/75 ≃ 2.6 ms

94/75 ≃ 1.2 ms

Controlled Splitter











18/25 + 100 · ⌊(n− 1)/3⌋ if (n− 1) mod 3 = 0

2554/75 + 100 · ⌊(n − 1)/3⌋ if (n− 1) mod 3 = 1

5054/75 + 100 · ⌊(n − 1)/3⌋ if (n− 1) mod 3 = 2











13/5 + 100 · ⌊(n − 1)/3⌋

183/5 + 100 · ⌊(n− 1)/3⌋

343/5 + 100 · ⌊(n− 1)/3⌋











47/25 = 1.88 ms

191/75 ≃ 2.5 ms

91/75 ≃ 1.2 ms

Feature Match











21/25 + 100 · ⌊(n− 1)/3⌋ if (n− 1) mod 3 = 0

2563/75 + 100 · ⌊(n − 1)/3⌋ if (n− 1) mod 3 = 1

5063/75 + 100 · ⌊(n − 1)/3⌋ if (n− 1) mod 3 = 2











14/5 + 100 · ⌊(n − 1)/3⌋

184/5 + 100 · ⌊(n− 1)/3⌋

344/5 + 100 · ⌊(n− 1)/3⌋











49/25 = 1.96 ms

197/75 ≃ 2.6 ms

97/75 ≃ 1.3 ms

Motors 1 + 2 · (n− 1) 1 + 2 · n 2 ms

TABLE III: Maximum WCETs of the actors of the Ingenuity

vision processing system that constitute a necessary condition

for its feasibility.

Actors WCET Actors WCET

Camera 0.73 ms Filtering Procedure 1.1 ms
Feature Detection 0.81 ms Pseudo Landmarks 1.2 ms

Label Decider 0.87 ms Controlled Splitter 1.2 ms
Controlled Splitter 1.2 ms Feature Match 1.3 ms
Feature Tracking 1.0 ms Motors 2 ms

X. DISCUSSIONS AND RELATED WORKS

A. Comparison of RMDF with LUSTRE and PRELUDE

Synchronous languages such as LUSTRE [14] and PRE-

LUDE [15] share the same goal as RMDF, that is to specify

and analyze real-time systems. However, differences remain;

the state of the art of LUSTRE and PRELUDE from [16]

and [17] are used in the following paragraphs to explain

those differences. An RMDF specification is composed of

actors, which communicate by exchanging data tokens on

channels, and a system specified with LUSTRE is composed

of nodes. Variables in nodes represent an infinite sequence

of values, i.e., a dataflow or, more simply, a flow. Nodes

are composed of equations, which can be understood as

mathematical equations: each equations define an output flow

from input flow(s).

LUSTRE is structured around clocks: each dataflow has a

clock and is present only when the clock is present, i.e.,

“it produces a tick”. A static analysis named clock calculus

verifies the consistency of clocks, i.e., all combinations of

flows can be evaluated without synchronization mechanisms

such as buffering. This is different from RMDF (and dataflow

models in general). In RMDF, produced data tokens are always

present until they are consumed.

LUSTRE cannot directly specify real-time constraints, e.g.,

periods and deadlines. To overcome that, PRELUDE extends
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(a) A PolyGraph specification of the vision processing system of
Ingenuity.
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(b) An RMDF specification of the vision processing system of
Ingenuity.

Camera

30 Hz

Feature

detection

Duplicater 1

Controlled

splitter

Pseudo

landmarks

Label

decider
Duplicater 2

Feature

tracking

Controlled

joiner

Filtering

procedure

Feature

match

30 Hz

m1

m2

m1

m
2

[1]

(c) A modified RMDF specification of the vision processing system
of Ingenuity to have more interesting result for the timing constraints
propagation.
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Fig. 9: Specifications of the Ingenuity vision processing sys-

tem with PolyGraph and RMDF. All those specifications are

consistent and live. Rates of 1 and initial tokens of 0 are

omitted for clarity.

LUSTRE to allow system designers to explicitly define the

period of a flow (i.e., the period of its clock) or let the compiler

infer it. As an illustration, yet without proving any semantic

equivalence, the same logic in RMDF would be to specify the

period of production and consumption of data tokens instead

of the period of the actors.

A system specified with PRELUDE can then be composed of

flows with different periods; those flows are not synchronous in

the sense of [14]. In order to combine non-synchronous flows,

rate-transition operators allow the production of a flow that is

faster or slower than the input flow. As an illustration, yet again

without proving any semantic equivalence, the rational rates

RMDF greater/lower than 1 allow for specifying faster/slower

data tokens production and consumption.

B. Comparing RMDF with an Extended PRELUDE

The static analysis of the proposed RMDF relies on restric-

tions applied to control areas (cf. Property 1 for the exhaustive

list of restrictions). Among those restrictions, the third asserts

that “if there are timed actors in a control area, they must have

the same frequency” and the fourth asserts that “the production

rate inside a control area and the parametric rates associated

to the controlled joiner and controlled splitter of that control

area must be equal to one”.

LUSTRE has been extended in [18] to allow the specification

of multi-mode system. A switch-like statement allows to

switch between sets of equations according to some enu-

merated value and an automaton construction. In addition,

in the work of [18], all flows within a state must have the

same period. The mode-dependent systems considered in this

paper have a similar behavior because of the third and fourth

restrictions presented in Property 1.

The gap between and PRELUDE and [18] is addressed

in [13]. The best of both works is used to support the

specification of states with multi-periodic states in PRELUDE.

The work of [13] addressed the third and fourth restrictions

of Property 1. However, this work is in the context of syn-

chronous languages, and work remains to be done to know if

the same logic can be applied to RMDF and dataflow models.

C. Dataflow Models with Conditional Execution

Dynamic reconfiguration has been introduced in the dy-

namic PolyGraph model [19]. In this reference, a set of actors

can select an execution mode. In addition to its data, each

token is labeled with an execution mode. When an actor

consumes tokens, it reads the mode of the token and decides

how to process the data. Note that this processing occurs as a

black box inside the actor’s implementation. The processing of

input tokens can also include discarding input tokens. A key

advantage of this procedure is that the consistency and liveness

checking algorithms of PolyGraph can be directly extended

to dynamic PolyGraph. Mode execution is transmitted transi-

tively from actor to actor, meaning all actors of a dynamic

PolyGraph model must have a specific implementation to

process execution mode. In the RMDF model, the execution

modes are carried only from mode deciders to controlled
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splitters and controlled joiners. In other words, actors in a

control area of an RMDF specification do not have a specific

implementation that considers the execution mode. Therefore,

RMDF allows for the easier integration of actors inside a

control area. Our approach puts the complexity at the model

level, while in dynamic PolyGraph, the complexity is at the

implementation level.

TPDF [20] is a generalization of CSDF where some actors

are control actors. Those latter are similar to our mode decider.

A control actor outputs a control token, which a subsequent

actor consumes to decide how this actor consumes or produces

its tokens. For instance, it can select one of the input or output

tokens or select the available input token with the highest

priority. The expressivity of the different execution modes

available is greater in TPDF than in RMDF. The key advantage

of RMDF is that it is easier to specify data communication

patterns and timing constraints than TPDF.

XI. CONCLUSION AND FUTURE WORKS

We have presented the RMDF model, a dataflow model

that extends the PolyGraph model. This latter is well-suited

to specify CPSs with relaxed real-time constraints. Besides

keeping this advantage, RMDF allows for the specification of

CPSs with a mode-dependent execution, i.e., with a set of

conditional execution branches. In such CPSs, some actors

can select from/to which input/output channel tokens are

consumed/produced, and this choice may depend on runtime

data. We have extended the static analysis algorithm of the

PolyGraph model to the RMDF model to verify the consis-

tency and liveness of an RMDF specification. The timing

behavior analysis of the PolyGraph model presented in [3]

is also extended to RMDF, and we presented a feasibility

test. Static analyses of the RMDF model have also been

implemented.

A dataflow model is a trade-off between expressiveness

and analyzability. The expressiveness of RMDF could be

improved by relaxing restrictions imposed on control areas,

while the analyzability could be enhanced by incorporating

mode dependencies within an RMDF specification. This ap-

proach is reasonable, as execution modes in real systems do

not occur arbitrarily. More generally, it would be valuable

to explore how the feasibility test proposed for RMDF can

be applied to other design models beyond dataflow models,

such as MatLab/Simulink. To that end, it is necessary to

define semantically equivalent model transformations from

those models to RMDF.
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