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Abstract
Recently, the costs of training deep learning models have
dramatically increased. Volunteer Computing (VC) enables
cost-effective gathering of large amounts of idle computing
resources, but has been little applied to deep learning. Volun-
teer Deep Learning (VDL) applies VC to train deep learning
models while keeping costs low. In this paper we review cur-
rent VDL concepts, projects, challenges and opportunities.
We analyze the VDL security challenges and countermea-
sures. We propose guidelines towards a VDL framework
implementation based on decentralized federated learning.

Keywords: Volunteer Deep Learning, Volunteer Comput-
ing, Federated Learning, Decentralized Learning, Security,
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1 Introduction
Over the last decades, different combinations of paradigms
such as cloud computing, collaborative architectures, arti-
ficial intelligence and distributed computing have been in-
tensively investigated to make systems smarter and cost effi-
cient. Applications span multiple research fields [5, 14, 35],
including medicine [8, 16], education [36], astronomy [10],
agriculture, energy efficiency [3] or smart mobility.

Deep Learning.More recently, the spectacular development
of Large Language Models (LLM) has confirmed deep learn-
ing (DL) as a major step towards smarter systems. DL models
have shown to yield higher accuracy with larger numbers of
parameters and training data [27]. Though, large DL model
training remains expensive and requires a great amount of
data and computing power.

Volunteer Computing. To reduce costs, academia devel-
oped the Volunteer Computing (VC) paradigm [34]. Explored
in projects such as Folding@home [8] or BOINC [1], VC aims
to use idle resources of computers (e.g., CPU scavenging)
for scientific tasks (e.g., protein folding simulations, prime
number research) that require massive computing power or
to operate over large amounts of data. Crowdsourcing [20] is
a related approach that uses volunteers to produce data, e.g.,
to label data sets. The Amazon Mechanical Turk (MTurk)1 is

1https://www.mturk.com/

a commercial example of crowdsourcing against a remuner-
ation. Unfortunately, VC approaches have seldom been used
to train DL models.

Volunteer Deep Learning: combining VC and DL. To
reconcile both worlds, we propose the term Volunteer Deep
Learning (VDL) to refer to situations when VC is applied to
train DL models [18, 19, 37].
Those approaches leverage Federated Learning (FL) [12],
used to train DL models on confidential data directly on the
devices holding the data.
Compared with centralized DL training, VDL presents sev-
eral critical challenges: 1) Synchronisation requires effi-
cient communications and to take into account device hetero-
geneity, 2) Security countermeasures are needed to guaran-
tee training integrity and privacy, 3)Deployment guidelines
should be defined to support a high diversity of hardware
and software. While current works has focused on improv-
ing performance, unfortunately, security and deployment
remain little studied.
Therefore, we felt it necessary to provide a bird’s eye view of
the VDL paradigm, with a focus on security challenges and
solutions, and to provide first elements of a VDL framework,
exploring the potential of decentralized FL architectures.
We provide in this paper the following contributions. We
review the current VDL concepts, projects, challenges and
opportunities. We survey the security challenges of VDL and
its countermeasures. We propose guidelines towards a VDL
framework implementation.
The paper is structured as follows. Section 2 provides back-
ground on VC and VDL. Section 3 presents the VDL security
challenges and countermeasures. Section 4 gives an overview
of the VDL ecosystem and opportunities. Section 5 proposes
guidelines towards implementing a secure VDL framework.

2 Background
2.1 Volunteer Computing
Overview. VC [34] approaches are based on a form of vol-
unteering where each participant shares unused resources
of his computer (see Figure 1). VC approaches have been
the subject of an important literature. The most popular VC
projects are based on a gamification of participation (e.g.,
high-score pages). VC approaches where participants are
being paid remain scarce.



Figure 1. Volunteer Computing

VC projects are usually based on client-server architectures
as in FL, with tasks easy to parallelize (e.g., searching for
prime numbers). Communications can then take place on
high-latency and low-bandwidth connections.
One notable difference between VC and grid computing is
that VC participants are highly untrusted and unreliable.
Therefore, tasks often rely on replication mechanisms.
VC projects face three types of challenges:

• Participation: gather a maximum number of partici-
pants and of computing resources.

• Performance: exploit efficiently available resources.
• Security: guarantee confidentiality, integrity, and avail-
ability.

Participation challenges include:
• Encouraging participation: attract participants that
will volunteer resources to the VC project. This chal-
lenge is critical as VC project resources directly de-
pend on participation.

• Heterogeneity: make a project available on a diver-
sity of hardware and software and take into account
their capacity. Clients may each have different devices.

The reasons for participation have been explored in-depth,
highlighting the different categories of participants, their
behaviors and incentives [34].

Performance challenges include:
• Resilience: the system should support random client
failures. Clients in VC projects are subject to high
disconnection rates (churn).

• Scaling: the system should support a high number
of participants. VC projects aim to gather massive
computing power through an important number of
low-capacity participants.

• Task scheduling: dispatching tasks to volunteers
efficiently in terms of requirements and performance
(latency, bandwidth).

Security challenges include:
• Confidentiality of data, participants, and in some
cases, of task results.

(a) Federated Learning (b) Volunteer Deep Learning

Figure 2. Federated Learning vs. Volunteer Deep Learning
for model training across the Cloud-Edge

• Byzantine threats: protect tasks against a fraction
of malicious participants providing spurrious replies,
threatening computing integrity.

• Sybil attacks [4]: i.e., a single entity creates multiple
identities to increase its voting rights. Sybil attacks
can be a first step for Byzantine threats.

• Availability of resources (e.g., memory, computing
units) and of the distributed system (e.g., central server,
P2P network).

So far, most works focused on guaranteeing integrity of
results. Folding@home adopts a closed-source approach to
limit retro-engineering. It also adopts replication: the same
task is sent to multiple clients to detect malicious replies.
Cheating has been detected in SETI@home, i.e., participants
claim credit for data that has not been processed. Mitigation
is similar to the Folding@home approach.

2.2 VDL: Volunteer Computing for Deep Learning
Overview. DL is used to solve a variety of tasks, including in
computer vision or natural language processing, e.g., object
recognition, text generation [27, 38]. In FL [12, 25], a server
sends a model to be trained to clients on their local data.
Clients send back the trained models to the server for ag-
gregation (see Figure 2a). FL can be considered as a form of
VC to train DL models - more specifically when the training
data set is not shared between clients.
The aim of VDL is to train large DLmodels using all available
resources in the IoT-Cloud continuum. Examples include
unused devices and idle resources of personal computers or
cheapest clouds (see Figure 2b).
VDL projects include [11, 18, 19, 22, 30, 37]. [30] is one of
the most recent works in this area. [18] includes resilience
mechanisms and AWS spot instances to reduce computing
costs (cloud optimization). Its client-server architecture is
implemented with the VC framework BOINC.
For training, two VDL projects are up to our knowledge
implemented and ready-to-deploy. Hivemind [7, 39] is the
most famous project. Disco [33] proposes to participate in
the training of DL models directly in the web browser, in a
federated or decentralised manner - without need to install
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a software. For inference, Petals [6] runs in a cooperative
manner DL models too large to fit on a single computer.
The key challenge for VDL is to train large models with
minimal performance overhead and securely on multiple
clients. Training should also be privacy-preserving, scalable
and resilient. We discuss VDL performance challenges and
security challenges below and in Section 3 respectively.

Performance challenges. Task scheduling is hard in VDL
as tasks are concurrent, but not independent. Local models
should be synchronized regularly (e.g., at each training step).
This requirement can make training quite inefficient on a
high-latency and low-bandwidth network. Handling strag-
gler nodes is also challenging for resilience and efficiency.

Figure 3.Model and Data Parallelism

In terms of design solutions to such communication and
concurrency issues in a decentralized setting, distributed
learning can be based on two types of parallelism: model
and data parallelism (see Figure 3).
Most approaches are based on data parallelism: a batch of
training data is distributed on multiple machines. This al-
lows distributing the computing load on multiple computing
units in parallel. Each client processes its own batch of data
separately and then aggregates its model with other clients.
For large models, the whole model cannot fit in the mem-
ory of a single machine. Model parallelism should then be
adopted, where a client holds a fraction of the whole model
in its memory (usually divided by layers).
Model parallelism is usually implemented using techniques
such as Gpipe [29]. SWARM [23] proposes a similar approach
to distribute layers on different devices, taking into account
performance and distance (network latency, bandwidth).
Other techniques such as gradient accumulation allow to
reduce the memory footprint. Memory transfer from GPU
VRAM to RAM are possible, with slower training speed. For
large models, other compression techniques like quantiza-
tion and pruning can be added by reducing weight size and
eliminating useless neurons. Impact on model accuracy is
low, but memory footprint may be reduced by an order of
magnitude [40].

3 VDL Security
Wenow reviewVDL security challenges and counter-measures.

3.1 Security Challenges
Many threats on DL [24] and FL [9] may also apply to VDL.
We focus on the following key VDL security challenges:
integrity, as training should produce a correct DL model; and
privacy, as training data should be kept private.

Integrity. VDL does not require an exact model. It can even
be hard to get the same model every time due to floating-
point operations roundings that can vary between different
systems. Models can be victims of attacks such as backdoor
attacks [13]: the model performance is degraded on a spe-
cific class of samples. Counter-measures may only filter part
of malicious updates sent by clients. Different levels of in-
tegrity may be achieved depending of the update impact on
the overall model. The challenge is then to evaluate model
integrity – a first broad metric being model accuracy.

Privacy. Keeping training data private is a main driver
for FL [12, 25]. But assessing the privacy guarantees of FL
schemes remains difficult. While some VC projects training
data can be public, a common applicable approach for VDL
privacy is based on differential privacy (DP) [17]. DP provides
a probabilitistic indistinguishability guarantee for process-
ing a specific data sample during training. This means that a
specific training sample cannot be extracted from the trained
model – the training data set probability distribution can
still be leaked. Privacy requirements may also include confi-
dentiality of the neural network architecture and weights.

Sybil threats. In Sybil attacks, an attacker creates multiple
identities to increase its voting power [4]. For VC systems,
such attacks are generally ignored: countermeasures such
as IP address bans are considered sufficient.

VC security vs. cloud security. Security challenges differ
between traditional VC and cloud optimization. In the cloud
optimization case, preemptible instances are deployed across
multiple clouds. Unlike traditional VC, training integrity
and data privacy can be considered guaranteed, as the VDL
platform administrators control the devices that take part
in the training process. Also, cloud instances are considered
honest and privacy-preserving.

3.2 Integrity Countermeasures
For distributed machine learning, training integrity is closely
related to Byzantine resilience [31], as malicious models may
be introduced in such a decentralized setting. Most solutions
against Byzantine clients such as FLAME[28] are based on
filtering the most important outliers. They convert the model
weights into vectors and compare them, e.g., keeping the
median of vectors instead of the average. FLAME also adds



noise (DP) to further reduce the effectiveness of backdoor at-
tacks. Other approaches are based on redundancy by making
multiple clients perform the same tasks or storing interme-
diate results. However, they breach training data privacy, as
clients have to share their training data for safety checks.
To guarantee aggregation integrity, most solutions are se-
cure aggregation schemes [21] that may get in conflict with
Byzantine protections. For FL, this challenge is little explored
as the central server is considered trusted, under the direct
control of the organizers.

3.3 Privacy Countermeasures
Privacy countermeasures include: 1) differential privacy to
prevent leak of private data from the model weights, and
2) secure aggregation protocols to prevent the aggregating
server from accessing weights of individual models.
DP [17] improves FL and VDL privacy by adding random
noise to the model weights. DP can be applied by clients
to protect their training data from aggregators; or by ag-
gregators to protect training data from other clients at the
next training round. DP increases privacy but reduces the
accuracy of the model.
Secure aggregation protocols [21] are cryptographic schemes
where clients encrypt their model before sending it to the
server for aggregation. The server is only able to get access to
the weights of the aggregated model and not to the weights
of the individual models sent by clients. Secure aggrega-
tion schemes require high processing power. An algorithm
that is scalable, fault tolerant, while supporting Byzantine
protection and DP-enabled privacy still remains to be found.

3.4 Privacy and Integrity
Trusted Execution Environments (TEE) are also part of ap-
plicable counter-measures to achieve both privacy and in-
tegrity [15, 26]. The TEE encrypted memory and integrity
guarantees may help to analyze training data, train or ag-
gregate models in a secure and privacy-preserving manner.
TEE remote attestation may also be useful for devices to
verify that tasks take place on secure nodes. How to com-
pose TEE with other privacy-enhancing technologies such
as distributed protocols, DP, and cryptographic scheme is
still an open research challenge.

4 VDL Potential
We review some opportunities for VDL and analyze its cur-
rent ecosystem.

4.1 A SWOT Analysis
We use the SWOT (Strengths, Weaknesses, Opportunities,
Threats) methodology to provide a bird’s eye view of the
potential of VDL (see Table 1).

Strengths. The number of potential participants is extremely
important: many unused devices (e.g., smartphones, video

Strengths Weaknesses
✦ Potential participants ✦ Environmental impact
✦ Networking ✦ Dependence on popularity

Opportunities Threats
✦ Reduce training costs ✦ Intellectual Property
✦ Encourage data sharing ✦ Security and Privacy
✦ Collaborative training ✦ Unethical models

Table 1. A SWOT Analysis for VDL

game consoles, PCs) feature high computing power and
GPUs usable for DL tasks. On the network side, high band-
width and low latency connections are now easily available
to most participants.

Weaknesses. The environmental impact should be assessed:
VDL consumes a lot of bandwidth, with therefore a signifi-
cant impact in terms of energy efficiency. A VDL project is
also dependent on popularity in order to attract the partici-
pants necessary for success.

Opportunities. The main VDL opportunity is to reduce
and/or mutualize training costs of large models: when cloud
capacities are insufficient, costs can be reduced using pre-
emptible instances and choosing best-of-breed cloud providers.
Also, VDL encourages data sharing: as in FL, participants shar-
ing their data enables to produce more optimal models than
training models individually. Finally, VDL enables collabo-
rative model training: typically between stakeholders that
do not wish or cannot centralize computing, e.g., hospitals,
that use organization-specific anonymization techniques but
wish to access a common model.

Threats. In any VDL project, the question of Intellectual
Property (IP) is critical: who owns the trained model and/or
training data can be a legal challenge. Security and privacy
is another key challenge as participants could degrade the
performance of the models, introduce backdoors, or infor-
mation on training data could be extracted from the model.
VDL could also be used to train unethical models.

4.2 Ecosystem
VC seems to be mostly explored in academia, with well-
established projects such as BOINC [1] from UC Berkeley.
Such non-profit projects attract participation by garnering
public interest on hot topics such as cure of rare diseases or
search for extra-terrestrial life.
Up to our knowledge, VC seems so far little investigated by
FAANG or BATX companies. Those players are major cloud
stakeholders fromwhich they make a significant part of their
income. They also profit from data collection.
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Figure 4. FDFL training process [32]

5 Towards a VDL Framework
VDL requires a framework to support new projects. Ideally,
no networking or security background should be necessary.

5.1 Requirements
In a first approach, a VDL framework should run on a high
diversity of devices and cloud platforms, while making the
most of their performance and handling failures. It should
also provide security and privacy guarantees. One direction
for future work is to provide a detailed requirements analysis
for building a VDL platform and framework [2].

5.2 Architecture
As FL can be implemented with composable security compo-
nents and a common data set (or not) to train DL models in
a collaborative manner, a FL architecture could be a starting
point for a VDL architecture. As in centralized systems, the
server is a single point of failure. It also limits the number
of participants in terms of load. To tackle those challenges, a
fully decentralized learning approach is preferred.
FDFL [32] proposes a fully decentralised FL extension to
improve FL scalability and resilience while preserving con-
vergence speed. First, intermediate aggregators are placed
between the server and clients to reduce the load on the
server and improve scalability (see Figure 4). Second, re-
silience is improved by introducing an election process on a
peer-to-peer network to regularly designate new aggrega-
tors and a server. This allows to replace the aggregators or
server in case of failure. Security countermeasures have to
be added and are currently under implementation.
Figure 5 sketches a possible VDL framework architecture.
The system is managed using a configuration file that al-
lows participation of any entity without need for a central
server to supervise training. The file can be a template that
may be specialized (e.g., training hyper-parameters, security
configuration). This approach improves project re-usability
such as starting from a well-known security configuration.
Security components are selected among a list of pre-defined
alternatives (e.g., type of DP to be applied) or downloaded

at start-up time. It allows to list alternative security compo-
nents if the first one is unavailable. The database can be a
private internal database (classic FL approach) or a public
data set shared on cloud storage or a P2P network. The VDL
framework should be self-managed in terms of configuration,
optimization, resilience and protection [2].

5.3 Implementation
The framework is foreseen to be implemented in JavaScript
for ease of deployment [33] – it can be run onto any device
with a JavaScript run-time (e.g., nodeJS server, smartphone
web browser, video game console). This allows to develop a
single framework that can run with user-level rights.
Compute-intensive tasks can be run using WASM for an
improved performance and safety. Interface with GPUs is
also easy using a DL framework such as TensorflowJS (us-
ing the CUDA API on cloud servers, or WebGL on mobile
devices). In a decentralized setting, the P2P network should
help participants optimize aggregation by choosing peers
close in terms of latency and bandwidth.

6 Conclusion
VDL shows potential to reduce DL training costs, using VC
to gather idle resources from a high number of participants
in edge devices or multiple clouds. Despite opportunities,
protection remains a main barrier, with security challenges
and counter-measures similar to FL. A decentralized, scalable
and resilient FL framework such as FDFL could provide a
first step towards a VDL framework.
Next steps are to design and implement amulti-platformVDL
framework for the IoT-Cloud continuum. This framework
should provide automated adaptation to hardware capacity
and support failures. Composition of security components
to guarantee training integrity should be explored, espe-
cially its impact on training performance and on the models.
Further studies should also quantify the environmental and
economical impact of VDL.
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