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Abstract

FTDMP is a software framework for biomolecular docking and scoring. It can 

perform docking of subunits containing one or more protein, DNA or RNA chains, followed 

by subsequent scoring of the resulting models. FTDMP can also be used for ranking of user-

provided models of biomolecular complexes, generated by any structure prediction method. 

FTDMP evaluates models according to the consensus-based method VoroIF-jury, which 

combines individual scores derived from the Voronoi tessellation of biomolecular structures. 

In addition to the default scoring mode, FTDMP can easily adopt additional scores, thus it 

may be used as a tool to assess newly developed scoring functions. FTDMP was evaluated 

during blind testing in recent CAPRI experiments and using protein-protein, protein-DNA 

and protein-RNA docking benchmarks. It proved to be a useful tool for different research 

tasks, related to modeling biomolecular interactions. The software, cleaned docking 

benchmarks and benchmarking results are available at 

https://bioinformatics.lt/software/ftdmp/.
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Introduction

To perform their functions, proteins often interact with various biomolecules, 

including other proteins, peptides, and nucleic acids. Knowledge of the three-dimensional 

(3D) structures of the resulting complexes is a prerequisite for understanding their molecular 

mechanism. In recent years, these structures are more and more often predicted using 

computational methods. In particular, the field was revolutionized by the advent of deep 

learning-based structure prediction methods, AlphaFold1 and AlphaFold-Multimer2, offering 

unprecedented accuracy. Most recently, newly developed AlphaFold 33, RoseTTAFold-NA4 

and RoseTTAFold All-Atom5 introduced the features to also predict protein complexes with 

nucleic acids and small molecules.

Despite these advancements, significant challenges remain. CASP6, 7 and CAPRI8 

experiments, which have monitored progress in predicting protein interactions for many 

years, highlight persistent difficulties in accurately predicting certain interactions. Even with 

the introduction of AlphaFold, modeling of antibody-antigen or host-pathogen interactions 

remains difficult2, 7–9. The accuracy of AlphaFold deteriorates with the increasing number of 

chains and residues in the complex7, 10. Protein-nucleic acid complexes are in general modeled 

with lower success rates compared to protein-protein complexes3. In some cases, these 

limitations may be complemented by alternative methods, such as docking. Docking methods 

can help to tackle cases where AlphaFold and similar methods encounter difficulties. 

Additionally, docking can be used to generate synthetic data, for example, by generating 

structure models of varying accuracy for training machine learning methods11.

Molecular docking consists of two major stages: (1) construction of structural models 

and (2) estimating their accuracy (scoring). It should be emphasized that the scoring stage is 

important not only for docking. While most of the modern modeling methods provide 

accuracy self-estimation, these evaluations are often inconsistent across different methods 
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and cannot be directly compared. Independent scoring methods are therefore necessary to 

reliably select the best models from a pool of diverse predictions.

Our group (‘Venclovas’) has participated in CAPRI experiments since 2016, initially 

relying on template-based methods to predict the structures of protein complexes12, 13. For 

subsequent CAPRI Rounds (47-52, see Supplementary Table S1) we continued using 

homology modeling, sometimes in combination with docking. However, the release of 

AlphaFold-Multimer represented a clear watershed in our methodology. We observed that 

AlphaFold-Multimer significantly outperforms template-based approaches, and can 

accurately predict structures even when templates are not available14. Thus, during the post-

AlphaFold CAPRI Rounds (53-55) we focused our efforts on the development of solutions 

for the cases when AlphaFold and other similar methods encounter difficulties.

Here we present FTDMP (Flexible Toolkit Dedicated to Multimeric Predictions), a 

software framework for biomolecular docking and scoring. FTDMP can be used to perform 

docking and subsequent scoring, or to rank user-provided models from various sources. 

Developed and tested during the CASP15-CAPRI experiment14, FTDMP enabled our group 

to achieve top results in both multimeric structure prediction7, 8 and CAPRI scoring 

categories8. Besides its testing in recent CASP and CAPRI rounds, we evaluated FTDMP 

using protein-protein15, 16, protein-DNA17 and protein-RNA18–21 docking benchmarks. In 

addition, we tested FTDMP as a framework for evaluation of new scoring functions.

4



Materials and methods

Description of the FTDMP framework

FTDMP is a framework for biomolecular docking and scoring. Its default pipeline 

(Fig. 1) consists of:

 generating a large number of docking models from given subunit structures22,

 filtering them using fast interface-focused scoring23,

 ranking the remaining models using a consensus method called VoroIF-jury14,

 relaxing a small number of models to get rid of clashes and improve interface 

interactions24,

 re-ranking the relaxed models by VoroIF-jury again.

By default FTDMP uses a number of scoring methods based on Voronoi tessellation 

to rank the models14, and also allows easy introduction of custom scoring functions.

In addition to the docking and scoring pipelines (ftdmp-all and ftdmp-qa-all, 

respectively), FTDMP offers useful helper scripts, e.g., to split multi-model PDB files to files 

containing separate structures, to renumber biomolecular structures in PDB format according 

to given sequences, to generate structure files from docking results, to relax structures using 

OpenMM, etc.

Docking methods

FTDMP accepts two subunits for docking, static and mobile, which can be composed 

of one or several chains in PDB format. The mobile subunit is docked to the static one, and a 

large diversity of binding poses is generated aiming to exhaustively explore the possible 

conformational space. By default, FTDMP uses FTDock software for the conformational 

sampling22. FTDock was modified by adding parallelization to employ multiple processors. 

Initial filtering of conformations was removed, and all generated conformations are recorded 
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for subsequent scoring. In addition to FTDock, using other docking software, such as Hex25 

or SAM26 is also possible with FTDMP.

Scoring methods

FTDMP uses scoring methods, mostly based on VoroMQA23 and VoroIF-GNN11, as 

described previously14. VoroIF-GNN is used only for the protein-protein interfaces. 

VoroMQA was initially developed for assessment of protein structures. It has been adapted 

for scoring protein-nucleic acid interfaces as follows. First, protein and nucleic acid atom 

types were mapped to a residue-agnostic set of atom types, used in Knodle27 (Supplementary 

Table S2). The original VoroMQA was derived from the sums of contact areas of interactions 

between protein atom types, computed from a non-redundant set of PDB protein structures23. 

For the modified (“generalized”) VoroMQA potential, we used the same input structures, but 

summed the contact areas by more general types of atom-atom interactions described using 

the Knodle atom types. The obtained sums were then converted to contact potential values 

using the same algorithm as described in the original VoroMQA publication23. The resulting 

“generalized” VoroMQA is then able to evaluate structures, consisting of proteins, DNA and 

RNA.

Model scoring and ranking is done by the VoroIF-jury procedure14 which is based on 

the consensus between rankings according to multiple scoring functions. VoroIF-jury first 

computes rankings using several methods. Then it selects top models according to each 

ranking, and calculates the average interface CAD-score28 value for every model with all the 

other selected models as a consensus measure – the VoroIF-jury score. If multiple scoring 

methods favor similar models, these models will get a high consensus score. Therefore, the 

models are finally ranked according to the VoroIF-jury score. For every model in the final 

ranking, its maximum similarity (interface CAD-score) to the higher ranked models is 
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recorded. This enables removing redundant entries from the ranking list by applying a 

threshold to these maximum similarity values, effectively performing a greedy clustering of 

models. In the FTDMP software, the maximum similarity threshold is adjustable, with the 

default value of 0.9. Full details of the VoroIF-jury algorithm are reported in our previous 

publication14.

Docking benchmarks

To test the performance of FTDMP in protein-protein docking, we used the most 

recent protein-protein benchmark v.5.515, 16, which contains 252 cases (158 rigid-body, 59 

medium difficulty, 35 difficult), 67 of which are antibody-antigen complexes. The protein-

DNA docking benchmark created by the Bonvin group and containing 47 complexes was 

used to evaluate protein-DNA docking17. The dataset for protein-RNA docking was taken 

from three different benchmarks18–20, which were combined excluding redundant cases21. We 

selected only the complexes that had unbound both protein and RNA structures in the Protein 

Data Bank (PDB)29. This yielded a total of 42 cases.

Only the complexes’ PDB IDs and chain IDs were taken from the original 

benchmarks. The structures of complexes from all the benchmarks were downloaded directly 

from the PDB29 and only the chains given in the benchmarks’ tables were selected. To 

facilitate model evaluation, all the structures, including the complex, constituting bound and 

unbound monomers were renumbered according to the sequences in the FASTA file of the 

complex obtained from PDB, since DockQ, RMSD, and CAD-score calculations (see below) 

require identical model and target residue numbering. For several cases, we checked if there 

are alternative binding modes using the PPI3D web server30. When alternative interfaces are 

present, docking models need to be evaluated against all of them, selecting the highest 
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evaluation scores. The cases with the alternatives together with a few corrected 

inconsistencies and errors are listed in Supplementary Table S3.

The B-form DNA structure for the protein-DNA docking was modelled using the 

ChimeraX software31. Modified nucleotides in the DNA sequence were changed to the 

corresponding canonical nucleotides before ChimeraX modeling, since ChimeraX generates 

the DNA without modifications and the default scoring methods in FTDMP cannot handle 

modified nucleotides. The modified nucleotides of both bound and unbound RNA structures 

were also changed to the corresponding canonical nucleotides.

Evaluation of model accuracy

Protein-protein docking results were evaluated by comparing resulting structure 

models to corresponding experimental structures and classifying the models as incorrect, 

acceptable, medium, or high accuracy, according to the CAPRI criteria32, estimated using the 

DockQ software33. The protein-nucleic acid docking results were evaluated using ligand 

RMSD (L-RMSD), where receptor was the protein, and ligand was DNA or RNA. A model 

having L-RMSD ≤ 10 Å was considered as acceptable. The success rate was defined as the 

percent of complexes for which at least one prediction of acceptable or higher accuracy was 

found among the top N models.

The interface and binding site CAD-score values were calculated for all docking 

models28. Interface CAD-score values were used to test if the pre-filtering of docking poses 

filters out any accurate models, and for an alternative definition of docking success, where 

models having interface CAD-score > 0.1 were considered as acceptable. Binding site CAD-

score was employed to evaluate the predictions of epitopes in the cases of antibody-antigen 

complexes, and DNA and RNA binding sites. The binding site (epitope) prediction was 

considered acceptable when the binding site CAD-score was above 0.25.
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Evaluation of FTDMP using docking benchmarks

Both unbound-unbound docking and bound-bound docking was performed using the 

docking benchmarks. This allowed us to evaluate the scoring of models without the 

limitations of rigid-body docking in cases where conformational changes occur during 

complex formation. Comparing unbound-unbound and bound-bound docking results also 

provides information on the effect that conformational changes have on identifying a good 

model.

Docking generates around 40,000 models with default FTDMP parameters. 

Prefiltering of these models is then performed by selecting top 3,000 models according to 

VoroMQA interaction interface energy score23. These top models are then ranked using 

different interface-focused scoring functions. For each scoring function, the top 200 models 

are selected, then the union of all the selected models and all their ranks is passed to the 

VoroIF-jury algorithm14. Then the top 200 models ranked by VoroIF-jury are relaxed using 

OpenMM24. The relaxed models are then re-evaluated again with VoroIF-jury to generate the 

final ranked list of the best models.

Evaluation of FTDMP scoring

Model selection by FTDMP using the VoroIF-jury algorithm and default scoring 

functions was evaluated for the CAPRI target T188 (Round 53), during the CASP15-CAPRI 

experiment (CAPRI Round 54), and in the subsequent CAPRI Round 55. During these 

CAPRI rounds we had to select the best model from sets of diverse structure models 

generated by different methods.

In addition to the default scoring functions, implemented in FTDMP, the framework 

can use custom scoring methods. We tested this feature for protein-RNA docking using 
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specialized DARS-RNP and QUASI-RNP potentials34 and 42 protein-RNA docking 

benchmark cases.
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Results and Discussion

Protein-protein docking

Protein-protein docking capabilities of FTDMP were evaluated using 252 protein 

complexes from protein-protein docking benchmark v5.515, 16, which includes 67 antibody-

antigen complexes. The results are presented in Fig. 2, A-B, and Supplementary Fig. S1, A-

B. Considering only the top prediction, according to the CAPRI criteria the success rate for 

unbound docking was 12%, compared to 80% for bound docking. The success rate is 

considerably higher when top 10 or top 100 predictions are taken into account (for unbound-

unbound docking 26% and 60%, for bound-bound docking 60% and 95%). A slightly lower 

success rate was observed for antibody-antigen complexes: 4 (6%), 14 (21%), and 32 (48%) 

acceptable or better models for the top 1, top 10, and top 100 predictions, respectively. 

Interestingly, the success of bound-bound antibody-antigen docking was similar to the 

success rate in the whole protein-protein docking benchmark. This difference might be 

attributed to the antibody and antigen conformational changes upon binding, which are quite 

frequent16. The overall observed difference between unbound-unbound and bound-bound 

docking illustrates that even the slightest conformational changes upon binding have impact 

on rigid-body docking result.

To compare the FTDMP results with other docking programs, we used the previously 

reported results15, 16. For 52 benchmark v5 cases FTDMP performs better than the rigid-body 

ab initio docking methods pyDock and ZDOCK (Supplementary Table S4)15. FTDMP also 

obtained more accurate predictions than the information-driven docking method HADDOCK, 

which used predicted interface residues as restraints. Notably, a failure in predicting interface 

residues lead to incorrect HADDOCK models in several cases15. FTDMP is slightly 

outperformed by SwarmDock, which uses a flexible docking algorithm (Supplementary 

Table S4)15. For 67 antibody-antigen docking cases, FTDMP results are again better than 
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ZDOCK’s, but slightly lower compared to ClusPro (Supplementary Table S4)16. Yet, for both 

ZDOCK and ClusPro, the docking was restrained to favor models with antibody CDR loops 

at the interface, whereas no restraints were applied during docking with FTDMP.

Protein-DNA docking

The FTDMP framework was evaluated on the protein-DNA docking benchmark 

containing 47 cases, of which 13 are classified as easy, 22 as intermediate and 12 as 

difficult17. The results are shown in Fig. 2, C, and Supplementary Fig. S1, C. The unbound-

unbound docking had success rates of 9% (4) and 13% (6) for the top 1 and top 10 models, 

respectively. Compared to pyDockDNA35, FTDMP success rate is higher than for top 1 (6%), 

but lower for the top 10 (16.4%) predictions (Supplementary Table S4). When comparing the 

ab initio docking results with no prior knowledge about the interface residues, FTDMP 

outperforms the HDOCK server which has success rates of 4.3% for top 1 and 8.7% for top 

10 models36.

To analyze how detrimental the conformational changes are to the protein-DNA rigid-

body docking, we performed bound-bound docking for the same 47 cases. The bound-bound 

docking success rates were 83% and 94% for the top 1 and top 10 models, respectively, 

which is almost ten times higher than the unbound-unbound docking results. The high 

success of bound-bound docking demonstrates the ability of the FTDMP scoring to identify 

good models of protein-DNA complexes if they are present in the model set. Moreover, the 

huge difference between bound and unbound docking exemplifies the importance of 

flexibility for the protein-DNA docking. Similar results were obtained previously using 

HADDOCK. While the unbound-unbound protein-DNA docking results were similar to our 

rigid-body docking results, significant improvement was observed when flexibility was 

incorporated into the docking protocols37, 38.
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Protein-RNA docking

Protein-RNA docking was tested using 42 protein-RNA complexes (21 rigid-body, 15 

medium difficulty, 6 difficult)18–20. Both unbound-unbound and bound-bound docking was 

performed and the results are shown in Figure 2, D, and Supplementary Figure S1, D. The 

unbound docking success rate was 24 % and 26%, the bound docking success was 62% and 

74% for the top 1 and top 10 models, respectively.

We compared these results to two RNA docking servers (Supplementary Table S4). 

Compared to P3DOCK21, FTDMP selected better top models, but the test set contained only 

12 overlapping cases. Out of 32 protein-RNA complexes that match our benchmark set and 

considering top 3 predictions, NPDock39 generates accurate models for 16 (bound docking) 

and 15 (unbound docking) cases, while success rate of FTDMP is 22 for bound and 11 for 

unbound docking. Thus, FTDMP is better at selecting bound-bound models and a bit worse at 

selecting unbound-unbound models. 

The overall protein-RNA docking results demonstrate that protein-RNA docking is a 

challenging task. The FTDMP framework can generate reasonably accurate predictions for 

complexes in which RNA and protein undergo negligible conformational changes upon 

binding. However, it is almost impossible to dock protein and RNA if medium or large 

conformational changes occur.

Prediction of binding sites

While the results of structure prediction for biomolecular complexes by docking are at 

best satisfactory, it has been observed that the binding sites are predicted reasonably well in 

the docking models40–43. Oftentimes a model with well-predicted binding sites might be 

sufficient for practical applications. Therefore, we decided to check if FTDMP can predict 
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epitopes of the antibody-antigen interactions, as well as DNA and RNA binding sites in the 

protein molecules. The success for binding site prediction was defined as having a binding 

site CAD-score >0.25 in the protein (antigen) molecule. The results are presented in Fig. 3, 

and detailed results are given in Supplementary Table S5.

For the antibody-antigen complexes, FTDMP managed to correctly predict the 

epitope for 25% of the cases, considering only the top 1 prediction (52% and 93% of cases 

for top 10 and top 100 predictions, respectively). The results are slightly better for protein-

nucleic acid binding sites. For protein-RNA complexes, 40% of top 1 and 57% of top 10 

predictions were successful. Moreover, the binding site was correctly identified for 62% of 

easy protein-RNA docking cases in the top docking model. The protein-DNA binding sites 

are predicted well in 30% of the top ranked models and in 55% cases when considering top 

10 models. Fig. 4 demonstrates some of the most successful examples, where the nucleic acid 

molecule is bound to the actual binding site although its orientation is incorrect. Interestingly, 

such a situation was also observed for CAPRI target T188 (Fig. 4, Supplementary Table S6). 

For this CAPRI target we used FTDMP to dock the provided bound conformation of DNA to 

the AlphaFold-Multimer model of the protein dimer.

Performance of FTDMP in the CAPRI scoring challenge

We used FTDMP in the scoring challenge of the post-AlphaFold CAPRI Rounds 53-

55, including the CASP15-CAPRI experiment, in which our group obtained the best scoring 

results8. During these rounds, we selected models of acceptable quality for 26 of 41 targets 

using FTDMP and VoroIF-jury (Supplementary Table S7). A slight relationship between the 

target difficulty and success of FTDMP scoring can be observed. For example, 9 of 15 failed 

cases were antibody-antigen targets, which are harder to predict even using AlphaFold-

Multimer2. Moreover, when we tried out FTDMP scoring on the targets of pre-AlphaFold 
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CAPRI rounds 47-49, it usually failed to choose models of at least acceptable quality. 

However, for these targets there were at best just a few good models in the scoring sets. 

VoroIF-jury depends on the consensus similarity among models that are ranked highly by 

multiple scoring functions. Limited availability of accurate models reduces the likelihood of 

achieving a strong consensus among the top-ranked models in multiple rankings.

Testing new scoring functions using FTDMP

In addition to the default scoring functions, the FTDMP framework can also utilize 

additional scoring methods. In such case, a script that provides one or more scores for a 

structure can be given for FTDMP, which will then rank the models based not only on the 

default scores, but also on the newly provided scores. In addition to the usage of the 

individual scores, the consensus of all the scores might be estimated by VoroIF-jury.

We have tested this FTDMP option with the freely available DARS-RNP and 

QUASI-RNP potentials for protein-RNA complexes34. DARS-RNP and QUASI-RNP were 

used for ranking models of the 42 protein-RNA docking benchmark cases in two ways: 

together with FTDMP built-in scoring functions and without them. The results are given in 

Fig. 5 and Supplementary Fig. S2 for both unbound-unbound and bound-bound docking. The 

DARS-RNP and QUASI-RNP alone demonstrate lower success rates than FTDMP scoring. 

However, adding DARS-RNP and QUASI-RNP scoring functions to the VoroIF-jury slightly 

increases success rates for the bound-bound docking, especially when considering only the 

top result (from 62% to 67%). Adding these additional scoring methods did not noticeably 

influence the success rate of the unbound-unbound docking, but this might be attributed to 

the limitations of rigid-body docking, not scoring. Thus, we demonstrated that including 

additional model accuracy estimation methods to the FTDMP scoring may have a positive 

impact on the model selection.
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The ability to easily introduce additional scoring methods makes FTDMP framework 

a useful tool to test newly developed scoring functions. To facilitate the testing, we provide 

all the FTDMP docking results for the docking benchmarks with tens to hundreds of 

thousands of models presented as translation and rotation vectors in a tabular format. Based 

on these tables, structure models can be generated and used to test scoring functions, skipping 

the docking step and saving valuable computing time.

When preparing the models, we optimized the docking parameters aiming to generate 

a reasonable number of structures: small enough to not substantially increase the computing 

time, but large enough to include accurate models. We tried to make sure that all docking sets 

contain at least one high accuracy model. To test this, we calculated interface CAD-score 

value28 for every docking model. The bound-bound docking tables include at least one high 

accuracy model with interface CAD-score >0.5 for every complex with negligible exceptions, 

where medium accuracy models are still available. As for the unbound-unbound docking 

tables, they contain less accurate models, which is expected because of conformational 

changes. 227 of 252 protein-protein complexes have acceptable models (interface CAD-score 

> 0.1). The docking results tables of 39 of 42 protein-RNA targets and 43 of 47 protein-DNA 

targets include at least one acceptable model. The fact, that for unbound-unbound docking 

some of the benchmark cases have only models of acceptable accuracy or even all incorrect 

models, is an indication that not all complexes can be predicted by rigid-body docking due to 

the substantial conformational changes upon binding. Nonetheless, the FTDMP docking 

tables contain sufficiently accurate models to use them for testing new scoring functions.

Conclusions

FTDMP is a software framework for biomolecular docking and scoring. It can be used 

for protein-protein, protein-DNA or protein-RNA docking, as well as for scoring structural 
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models of biomolecular complexes generated by diverse methods. In addition to that, 

FTDMP provides an easy-to-use environment for testing new scoring functions for 

interaction interfaces. The capabilities of FTDMP were showcased both during recent CAPRI 

rounds and through extensive testing on docking benchmarks, demonstrating its usefulness 

for various tasks associated with modeling biomolecular interactions. 

Software availability

FTDMP software is available at https://github.com/kliment-olechnovic/ftdmp  .  

Docking benchmarks and docking tables are available in Zenodo: 

https://doi.org/10.5281/zenodo.10517524  .  

The results of FTDMP testing using docking benchmarks are available in Zenodo: 

https://doi.org/10.5281/zenodo.12804208.
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Figure legends

Figure 1. The workflow of docking and scoring using FTDMP
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Figure 2. The summary of FTDMP docking results for the protein-protein (A), antibody-

antigen (B), protein-DNA (C) and protein-RNA (D) docking benchmarks
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Figure 3. Epitope and nucleic acid binding site predictions using FTDMP for the antibody-

antigen (A), protein-DNA (B) and protein-RNA (C) docking benchmarks
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Figure 4. Examples of successful prediction of protein-nucleic acid binding sites in docking 

models of low accuracy at the structure (A) and sequence (B) level. All the experimental 

structures are gray, benchmark proteins are orange, CAPRI T188 protein model is green, 

model DNA is in magenta and model RNA is in red; the binding site residues are marked in 

the sequences
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Figure 5. Protein-RNA docking results when using FTDMP with DARS-RNP and QUASI-

RNP potentials as additional scoring functions for unbound-unbound (A) and bound-bound 

(B) docking
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