
HAL Id: hal-04878986
https://hal.science/hal-04878986v1

Submitted on 10 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Scalable Decentralized Algorithms for Online
Personalized Mean Estimation

Franco Galante, Giovanni Neglia, Emilio Leonardi

To cite this version:
Franco Galante, Giovanni Neglia, Emilio Leonardi. Scalable Decentralized Algorithms for Online
Personalized Mean Estimation. 39th Annual AAAI Conference on Artificial Intelligence - AAAI 2025,
Feb 2025, Philadelphia (Pennsylvania), United States. �hal-04878986�

https://hal.science/hal-04878986v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Scalable Decentralized Algorithms for Online Personalized Mean Estimation

Franco Galante1, Giovanni Neglia2, Emilio Leonardi1

1Politecnico di Torino
2INRIA

franco.galante@polito.it, giovanni.neglia@inria.fr, emilio.leonardi@polito.it

Abstract

In numerous settings, agents lack sufficient data to learn a
model directly. Collaborating with other agents may help, but
introduces a bias-variance trade-off when local data distri-
butions differ. A key challenge is for each agent to identify
clients with similar distributions while learning the model, a
problem that remains largely unresolved. This study focuses
on a particular instance of the overarching problem, where
each agent collects samples from a real-valued distribution
over time to estimate its mean. Existing algorithms face im-
practical per-agent space and time complexities (linear in the
number of agents |A|). To address scalability challenges, we
propose a framework where agents self-organize into a graph,
allowing each agent to communicate with only a selected
number of peers r. We propose two collaborative mean esti-
mation algorithms: one employs a consensus-based approach,
while the other uses a message-passing scheme, with com-
plexity O(r) and O(r · log |A|), respectively. We establish
conditions for both algorithms to yield asymptotically opti-
mal estimates and we provide a theoretical characterization
of their performance.

Code — https://github.com/Franco-Galante/scalable-
decentralized-algorithms-AAAI25

1 Introduction
Users’ devices have become increasingly sophisticated and
generate vast amounts of data. This wealth of data has en-
abled the development of accurate and complex models.
However, it has also introduced challenges related to se-
curity, privacy, real-time processing, and resource manage-
ment. In response, Federated Learning (FL) has emerged as
a key privacy-preserving approach for collaborative model
training (Kairouz et al. 2021; Li et al. 2020). While tra-
ditional FL methods aim to develop a single model for all
clients, the statistical diversity of clients’ datasets has led to
the development of personalized models, designed to better
align with the data distributions of individual clients (e.g.,
Ghosh et al. 2020; Fallah, Mokhtari, and Ozdaglar 2020; Li
et al. 2021; Marfoq et al. 2021; Ding and Wang 2022).

Many personalized FL strategies group clients into clus-
ters and then tailor a model for each cluster (e.g., Ghosh
et al. 2020; Sattler, Müller, and Samek 2021; Ding and Wang
2022). Ideally, clustering would group clients with similar
local optimal models. However, since the optimal models

are unknown a priori, model learning and cluster identifi-
cation become deeply interconnected tasks. Various stud-
ies have suggested empirical measures of similarity as a
workaround (e.g., Ghosh et al. 2020; Sattler, Müller, and
Samek 2021), while others rely on presumed knowledge
of distances across data distributions (e.g. Ding and Wang
2022; Even, Massoulié, and Scaman 2022). Nonetheless, ac-
curately estimating these distances, especially within an FL
framework where clients may possess limited data, proves to
be particularly challenging. These estimation difficulties are
well documented in the literature—e.g., by Even, Massoulié,
and Scaman (2022) [Sec. 6]—highlighting the problem of
identifying similar clients for collaborative model learning
as a significant yet unresolved issue.

In this paper, we focus on a fundamental aspect of the
broader challenge: estimating the mean of an RK-valued
distribution. This problem is often regarded as the archety-
pal federated learning problem (Dorner et al. 2024; Tsoy
et al. 2024; Grimberg et al. 2021), but it also holds signif-
icant practical relevance across various fields, such as smart
agriculture, grid management, and healthcare, where multi-
ple sensors collect private, noisy data on identical or related
variables (Adi et al. 2020).

We consider an online, decentralized scenario where, at
each time slot, clients receive new samples and exchange
information with a limited number of peers. To the best of
our knowledge, the state-of-the-art method in this setting is
the Collaborative Mean Estimation algorithm (ColME) by
Asadi et al. (2022). Unfortunately, ColME faces scalability
issues in large systems, as both its per-agent space and time
complexities are linear in the number of clients |A|. More-
over, in its current form, ColME is applicable only to scalar
mean estimation problems (K = 1) and its convergence
guarantees only hold for sub-Gaussian data distributions.

We extend the methodology proposed by Asadi et al.
(2022) to accommodate multidimensional data drawn from
the broader class of distributions with bounded fourth mo-
ment. To address ColME’s scalability challenges, we pro-
pose that clients self-organize into a network where each
client communicates with at most r neighbors. Over time,
this set of neighbors is pruned as clients progressively ex-
clude the less similar ones. In this framework, we introduce
two collaborative mean estimation algorithms: one based on
consensus and the other on a message-passing scheme. The



complexities of these algorithms areO(r) andO(r·log |A|),
respectively. We demonstrate that, despite each client ex-
changing information with only r ≪ |A| neighbors, it is
possible to achieve a convergence speedup for mean esti-
mates by a factor of Ω(|A|1/2−ϕ), where ϕ can be made ar-
bitrarily close to 0.

Lastly, we conduct preliminary experiments demonstrat-
ing how our algorithms can be adapted to federatedly learn
more general machine learning models.

2 Related Work
For an overview of personalized federated learning, see the
recent survey by Tan et al. (2023). Here, we highlight only
the most relevant approaches related to this paper.

Ghosh et al. (2020) and Sattler, Müller, and Samek (2021)
were the first to propose clustered FL algorithms, which di-
vide the clients based on the similarity of their data distribu-
tions. Similarity is empirically evaluated by the Euclidean
distance between local models and by the cosine similar-
ity of their updates. Ding and Wang (2022) study more so-
phisticated clustering algorithms assuming that clients can
efficiently estimate some specific (pseudo)-distances across
local distributions (i.e., the integral probability metrics).

Beaussart et al. (2021), Chayti et al. (2022), Grimberg
et al. (2021), and Even, Massoulié, and Scaman (2022) con-
sider decentralized approaches, which allow each client to
learn a personal model relying on a specific convex com-
bination of information (gradients) from other clients. In
particular, Even, Massoulié, and Scaman (2022) prove that
collaboration can at most speed up the convergence time
linearly in the number of similar agents and provide algo-
rithms, which, under a priori knowledge of pairwise client
distributions’ distances, achieve such speedup. The authors
recognize the complexity of estimating these distances and
provide practical estimation algorithms for linear regression
problems, which asymptotically achieve the same speedup,
scaling the number of clients but maintaining the number of
clusters fixed. The generalization properties of personalized
models obtained by convex combinations of clients’ mod-
els are studied in Mansour et al. (2020), while Donahue and
Kleinberg (2021) look at the problem through the lens of
game theory. The work most similar to ours is Asadi et al.
(2022), which we describe in detail in the next section.

3 Model and Background
Table 1 lists the most important symbols used throughout
the paper. Superscripts are added to variables to indicate
whether they pertain to C-ColME (C), B-ColME (B), or both
approaches (D).

We consider a set A of agents (computational units). At
each time instant t, an agent a ∈ A = {1, 2, · · · , |A|} gener-
ates a new sample xt

a ∈ RK , with K ∈ N, drawn i.i.d. from
a distribution Da with expected value µa = E[xt

a]. Ex-
pected values are not necessarily distinct across agents. In-
deed, given two agents a and a′, and a norm || · || in RK , we
denote the gap between the agents’ true means by ∆a,a′ :=
||µa − µa′ ||. Let Ca be the group of agents with the same

true mean as a, (i.e., those for which ∆a,a′ = 0). In the
following, we will refer to Ca as the ‘similarity class of a.’

The goal of each agent a ∈ A is to estimate its mean µa.
To this end, at each time t the agent can compute its lo-
cal mean estimate x̄t

a,a = 1
t

∑t
t′=1 x

t′

a over the t available
samples. Additionally, the agent can obtain a more accurate
estimate by leveraging information from other agents in A,
provided it can identify those who share the same true mean.

For the scalar case, (i.e., when K = 1) Asadi et al. (2022)
proposed ColME as a collaborative algorithm for mean es-
timation. It relies on two key steps, executed concurrently:
i) the identification of the similarity classes; ii) the collab-
oration with agents believed to belong to the same class to
improve the local estimate. To ensure direct comparability
with the results in (Asadi et al. 2022) and simplify notation,
in what follows, we focus on the scalar case. Readers inter-
ested in the general case can find the analysis in Appendix C.
All the appendices referred to in this work are accessible
at (Galante, Neglia, and Leonardi 2024).

Symbol Description

A Set of agents (computational units)
Da Distribution of agent a ∈ A
µa True mean of distribution Da, i.e., µa = E[xt

a]

x̄t
a Vectorial sample x̄t

a ∈ RK drawn from Da

∆a,a′ Gap between agents a and a′ true means
Ca Similarity class of a, Ca = {a′ ∈ A|∆a,a′ = 0}
Cta Estimated similarity class of a at time t

x̄t
a,a Local mean estimate of agent a at t

x̄t
a,a′ Local mean estimate of agent a′ by agent a at t

nt
a,a′ Number of samples used to compute x̄t

a,a′ at t
µ̂t
a Collaborative mean estimate at t

βγ(n) Width of the confidence interval
dtγ(a, a

′) Optimistic distance between agents a and a′

ζa Time to identify same-class neighbors w.h.p.
τa Time to obtain (ϵ, δ) convergence
G Collaborative graph G(A, E)
Gt Pruned collaborative graph Gt(A, Et)
Na Neighborhood of agent a (or up to distance d: N d

a )
r Upper bound on a’s neighborhood size |Na|
CCa Agents in the connected component of the subgraph

induced by agents in Ca to which agent a belongs
CCda Same as CCa but with agents up to d-hops from a

Table 1: Notation Summary

1) Identifying Similarity Classes. We denote Cta as the
set of agents that, at time t, agent a estimates to belong
to its similarity class Ca. Specifically, agent a includes
agent a′ in its estimated similarity class Cta if their lo-
cal mean estimates are sufficiently close. In general, at
time t, agent a does not have access to the most re-
cent local mean estimate of agent a′ (computed over t
samples), but rather to a stale value x̄t

a,a′ computed over
nt
a,a′ samples, where nt

a,a′ corresponds to the time when a

and a′ last communicated. Agent a can then estimate its
true mean and the true mean of agent a′ to belong to the



confidence intervals Ia,a =
[
x̄t
a,a − βγ(t), x̄

t
a,a + βγ(t)

]
,

Ia,a′ =
[
x̄t
a,a′ − βγ(n

t
a,a′), x̄t

a,a′ + βγ(n
t
a,a′)

]
, respec-

tively. As expected, the interval amplitude βγ(n) depends
on the number of samples n on which the empirical average
is computed and on the target level of confidence 1-2γ as-
sociated with the interval. Agent a will then consider a′ to
belong to its estimated similarity class Cta if the two inter-
vals overlap, i.e., Ia,a ∩ Ia,a′ ̸= ∅, or equivalently if the
optimistic distance dtγ(a, a

′) is zero or less:

dtγ(a, a
′) := |x̄a,a − x̄a,a′ | − βγ(t)− βγ(n

t
a,a′) ⩽ 0. (1)

To achieve the most accurate estimation of its similarity
class, agent a could retrieve from each other peer a′ the
most recent estimate x̄t

a,a′ at each time t. However, this ap-
proach would result in a per-agent communication burden
of O(|A|). To mitigate this effect, node a cyclically queries
a single node from Ct−1

a at each time instant t, according to
a Round-Robin scheme. This leads to the following update
rule for Cta:

Cta = {a′ ∈ Ct−1
a : dtγ(a, a

′) ⩽ 0}, (2)

and we observe that by construction Cta ⊆ Ct−1
a . Initially,

the agent sets C0a = A and progressively makes irreversible
decisions to remove agents that are deemed too dissimilar.

2) Estimating the Mean. Each node a computes an esti-
mate µ̂t

a of its true mean µa combining the available esti-
mates according to a simple weighting scheme, where the
number of samples nt

a,a′ are the weights:

µ̂t
a =

∑
a′∈Ct

a

nt
a,a′∑

a′∈Ct
a
nt
a,a′

x̄t
a,a′ .

ColME’s theoretical guarantees. Asadi et al. (2022)
prove that if data distributions {Da}a∈A are sub-Gaussian
and the amplitude of the confidence intervals is selected as:

βγ(n) = σ

√
2

n

(
1 +

1

n

)
ln(

√
(n+ 1)/γ), (3)

then, with high probability, client a correctly identifies its
similarity class (Cta = Ca) and obtains an ϵ-accurate estimate
for t larger than two opportune constants ζa and τa, respec-
tively (see Appendix A for the expressions and the results’
statements).

ColME’s limitations. Asadi et al. (2022) acknowledge in
their paper the main limitations of ColME: each agent re-
quires a memory footprint and computational complexity
proportional to |A|. Indeed, each agent a must store all
neighbors’ local estimates x̄t

a,a′ and the corresponding sam-
ple counts nt

a,a′ . Additionally, as agent a receives a new
sample at each time t, it updates its local estimate x̄t

a,a (and
also nt

a,a). This update affects the distance dtγ(a, a
′), which

thus must be recomputed for all a′ ∈ Cta. This leads to a per-
agent time and space complexity of O(|A|) per time slot,
which becomes impractical in large-scale systems. More-
over, while the Round-Robin query scheme reduces the com-
munication burden, it introduces a significant delay in the
estimation as ζa ∈ O(|A|).

4 Scalable Algorithms over a Graph G
Online mean estimation can be made Õ(1) with our scalable
approaches: C-ColME (Sec. 4.1), and B-ColME (Sec. 4.2).
Both algorithms consider agents A organized in a fixed
graph G(A, E) and restrict communication to pairs of agents
adjacent in G. LetNa andN d

a denote the set of neighbors of
agent a and the set of agents at distance at most d from a, re-
spectively. Let r represent the maximum size of any agent’s
neighborhood in G, i.e., |Na| ≤ r for all a ∈ A.

Consider the subgraph G′ of G induced by the agents
in Ca. Let CCa denote the (initially unknown) set of agents in
the connected component of G′ to which a belongs, and let
CCda ⊂ CCa represent the subset of agents within CCa that
are at most d hops away from a.

Each agent a aims to identify which nodes in its neigh-
borhood Na belong to its similarity class Ca. To achieve
this, agent a receives at time t an updated local mean es-
timate x̄t′

a,a′ from each neighbor a′ ∈ Na. We denote with
Cta ⊆ Na the set of neighbors that agent a deems to belong
to its own similarity class at time t, initially: C0a = Na. Sim-
ilarly to ColME, at each time t, agent a first computes the
distance dtγ(a, a

′) for every a′ ∈ Ct−1
a according to (1) and

then updates Cta according to (2). As for ColME, Cta ⊆ Ct−1
a

and as soon as a removes a′ from Cta, it stops communicating
with a′. Subsequently, communication occur over the pruned
graph Gt = (A, Et), where Et = {(a, a′) ∈ E : a′ ∈ Cta}.

The theoretical guarantees of our algorithms hold under
more general settings than those in (Asadi et al. 2022). In
particular, they apply to any set of distributions {Da}a∈A
for which the following assumption is satisfied:

Assumption 1. There exists a positive function βγ(·) ∈ o(1)
such that the true mean belongs to all intervals centered in
x̄t
a,a of width ±βγ(t) for t ∈ N with confidence 1 − 2γ,

namely:

P
(
∀t ∈ N,

∣∣x̄t
a,a − µ

∣∣<βγ(t)
)
≥ 1− 2γ,∀a ∈ A. (4)

Assumption 1 is satisfied by sub-Gaussian distributions
(SGD) with parameter σ2, by selecting βγ(·) as in (3).
In Appendix B, we show that the assumption also holds
for bounded fourth-moment distributions (BFMD) for βγ(·)
chosen as follows:

βγ(n) =

(
2
(κ+ 3)σ4

γ

) 1
4
(
1 + ln2 n

n

) 1
4

, (5)

where σ2 bounds the variance of the distributions {Da,∀a ∈
A} and κσ4 their fourth moment. When all the variables are
identically distributed, κ corresponds to the kurtosis. More-
over, for distributions with a larger number of bounded mo-
ments, tighter expressions can be derived for βγ(·) (see Re-
mark 1 in Appendix B). In what follows, we assume that
Assumption 1 is always satisfied.

We aim first to determine the time needed for all agents
in the connected component CCa to identify the subset of
neighbors residing in their similarity class, i.e., Cta′ = Ca′ ∩
Na′ , ∀a′ ∈ CCa. Following a similar approach to Asadi et al.
(2022, Theorem 1) we can prove that:



Theorem 1. [Proof in Appendix B] Considering an arbi-
trarily chosen agent a in A, for any δ ∈ (0, 1), employing
either B-ColME or C-ColME we have:

P
(
∃t > ζDa ,∃a′ ∈ CCa : Cta′ ̸= Ca′ ∩Na′

)
⩽

δ

2
, (6)

with ζDa = n⋆
γ

(
∆a

4

)
+ 1, ∆a = min

a′∈A\Ca

∆a,a′ , γ = δ
4r|CCa| .

n⋆
γ(x) denotes the minimum number of samples that are

needed to ensure βγ(n) < x, i.e., n⋆
γ(x) = ⌈β−1

γ (x)⌉.

This result demonstrates that the time required for all
agents a′ in CCa (the connected component to which a be-
longs) to correctly identify their neighbors within the same
similarity class Ca is bounded by n⋆

γ(
∆a

4 )+1. Here, n⋆
γ(

∆a

4 )
represents the number of samples needed to distinguish
(with confidence 1− 2γ) the true mean of agent a from that
of an agent belonging to the ‘closest’ similarity class (i.e.,
the one with the closest true mean). The additional 1 ac-
counts for the unit delay in communicating with the neigh-
bors.

When comparing performance of B-ColME and C-
ColME (Theorem 1) with ColME (Asadi et al. 2022) [Theo-
rem 1] (reported in Appendix A as Theorem 7 for complete-
ness), we observe that for large systems, if r|CCa| ∈ Θ(|A|),
ζa ≈ |A|+ ζDa , showing that, as expected, agents can iden-
tify much faster similar agents in their neighborhood than in
the whole population A.1 See Sec. 5 for a detailed compari-
son of ColME, C-ColME, and B-ColME.

4.1 Consensus-based Algorithm: C-ColME
This section introduces the first collaborative mean estima-
tion approach, inspired by consensus algorithms in dynamic
settings, as in (Montijano et al. 2014; Franceschelli and Gas-
parri 2019). The basic idea is that each agent maintains two
metrics: the empirical average of its local samples x̄t

a,a, and
the ‘consensus’ estimate µ̂t

a. The consensus variable is up-
dated at time t by computing a convex combination of the
local empirical average x̄t

a,a and a weighted sum of the con-
sensus estimates in its (close) neighborhood {µ̂t−1

a′ , a′ ∈
Ct−1
a ∪ {a}}, see Algorithm 1.
The dynamics of all estimates are captured by:

µ̂t+1 = (1− αt) x̄
t+1 + αtWtµ̂

t, (7)

where (Wt)a,a′ = 0 if a′ /∈ Cta and αt ∈ (0, 1) is the mem-
ory parameter. Once the agents cease pruning their neigh-
bors, say at time τ , the matrix Wt does not need to change
anymore, i.e., Wt = W for any t ⩾ τ with Wa,a′ > 0 if
and only if a′ ∈ Ca ∩ Na. In order to achieve consensus,
the matrix W needs to be doubly stochastic (Xiao and Boyd
2004) and we also require it to be symmetric. By time τ ,
the original communication graph is split into C connected
components, where component c includes nc agents. By an

1For a fairer comparison, we should let ColME query r other
agents at each time t, where r is the average degree of G. In this
case, ζa ≈ |A|/r + ζDa and the conclusion does not change.

opportune permutation of the agents, we can write the ma-
trix W as follows

W =

 1W 0n1×n2
· · · 0n1×nC

0n2×n1 2W · · · 0n2×nC

· · · · · · · · · · · ·
0nC×n1 0nC×n2 · · · CW

 , (8)

where each matrix cW is an nc × nc symmetric stochastic
matrix. For t ⩾ τ , the estimates in the different components
evolve independently. We can then focus on a given compo-
nent c. All agents in the same component share the same ex-
pected value, which we denote by µ(c). Moreover, let cµ =
µ(c)1c. We denote by cx

t and cµ̂
t the nc-dimensional vec-

tors containing the samples’ empirical averages and the con-
sensus estimates for the agents in component c and by λ2,c

the second largest module of the eigenvalues of cW .
Note that the actual evolution of Wt is challenging to

characterize due to topology changes during the graph prun-
ing phase. However, our main results (Theorems 2 and 3)
remain applicable to any system where the sequence of ma-
trices Wt for t ≤ τ is arbitrarily set.

Algorithm 1: C-ColME over a Time Horizon H

Input: G = (A, E), (Da)a∈A, ϵ ∈ R+, δ ∈ (0, 1]
Output: µ̂a, ∀a ∈ A with P (|µ̂a − µa| < ϵ) ⩾ 1− δ
C0a ← Na,∀a ∈ A
for time t in {1, ..,H} do

In parallel for all nodes a ∈ A
Draw xt

a ∼ Da

x̄t
a ← t−1

t x̄t−1
a + 1

tx
t
a

Compute βγ(t) with Eq. (3) or Eq. (5)
for neighbor a′ in Na ∩ Ct−1

a do
dtγ(a, a

′)←
∣∣x̄t

a − x̄t−1
a′

∣∣− βγ(t)− βγ(t− 1)
end for
Cta ←

{
a′ ∈ Na ∩ Ct−1

a s.t. dtγ(a, a
′) ⩽ 0

}
µ̂t
a ← (1− αt)x̄

t
a + αt

∑
a′∈Ca∪{a}(Wt)a,a′ µ̂t−1

a′

end for

Theorem 2. [Proof in Appendix F] Consider a system which
evolves according to (7) with Wt = W in (8), for t ⩾ τ . Let
cP = 1/nc1c1

⊺
c . For αt =

t
t+1 , it holds:

E
[
∥cµ̂t+1 − cµ∥4

]
∈ O

(
sup

W1,··· ,WζD

E
[
∥cµ̂ζD − cµ∥4

]
(t+ 1)4

)

+O
(
(1− 1/lnλ2,c)

2

(1− λ2,c)2
E
[
∥cx− cP cx∥4

]
(t+ 1)4

)

+O
(
E
[
∥cP cx− cµ∥4

](1 + ln t

1 + t

)2
)

.

The theorem shows that the error, quantified through the
fourth moment, can be decomposed into three terms decreas-
ing over time. The first term depends on the estimates’ error
at time τ . The second term captures the effect of the consen-
sus averaging, i.e., how effective is the algorithm in bringing
the local estimates cx close to their empirical value cP cx
(for example it is minimized if λ2 = 0, which corresponds
to cW = cP , the ideal choice for the matrix cW ). Finally,



the third term represents the minimum possible error, which
would be obtained by averaging the estimates of all agents
in the component using the matrix cP .

Theorem 3 shows that C-ColME achieves a speedup pro-
portional to the size of the connected component |CCa|.
Theorem 3. [Proof in Appendix F] Consider a graph com-
ponent c and pick uniformly at random an agent a in c. Let
g(x) := x ln2(ex) and αt =

t
t+1 . Under BFMD, it holds:

P
(
∀t > τCa , |µ̂t

a − µa| < ϵ
)
⩾ 1− δ

where τCa = max

{
ζDa , g

(
C

E[∥cP cx−cµ∥4]
|CCa|ϵ4δ

)
∈ Õ

(
ñ δ

2
(ε)

|CCa|

)}
and ñ δ

2
(ε) =

⌈
2(κ+3)σ4

δε4

⌉
.

The theorem shows that the time to reach an ϵ-accurate
estimate with high probability is the maximum of the time
for the agents in CCa to identify their neighbors in the same
similarity class and the time required for those agents to ob-
tain and ϵ-accurate estimate if they could share their own
samples. Indeed, we observe that n⋆

δ/2(ϵ) is the number of
samples sufficient to ensure that P(|µ̂a − µa| > ϵ) < δ/2
(see details in Appendix E) and that the nodes in CCa collec-
tively gather this number of samples by time t =

⌈
n⋆
δ/2(ε)

|CCa|

⌉
.

Appendix F also presents convergence results for the case
αt = α, but they do not enjoy the same speedup factor.

4.2 Message-passing Algorithm: B-ColME
In B-ColME, each node a ∈ A continuously exchanges
messages with its direct neighbors a′ ∈ Cta. This enables
node a to acquire not only the neighbor’s local estimates
{x̄t

a,a′ , a′ ∈ Cta}, but also aggregated estimates from nodes
up to a distance d in the graph Gt (where d is a tunable
parameter). Indeed, each neighbor a′ acts as a forwarder,
granting node a access to the records from its own neigh-
bors a′′ ∈ Cta′ \{a}. Provided each agent correctly identifies
all similar nodes in its neighborhood, agent a can potentially
access the (delayed) local estimates of all agents in CCda.

In our message-passing scheme, at time t, agent a ∈ A
receives a message M t,a′→a from all neighbors a′ ∈ Cta.
The message M t,a′→a is a d × 2 table whose elements
mt,a′→a

h,1 contain a sum of samples, while mt,a′→a
h,2 indicates

the number of samples contributing to this sum. In partic-
ular, at each time t, the first row of the table is set as:
mt,a′→a

1,1 =
∑t

τ=1 x
τ
a′ and mt,a′→a

1,2 = t, i.e., the immedi-
ate neighbors’ sum of local samples. The remaining entries
are computed through the following recursion:

mt,a′→a
h,i =

∑
a′′∈Ct

a′ , a
′′ ̸=a

mt−1,a′′→a′

h−1,i ,

for h ∈ {2, . . . , d} and i ∈ {1, 2}. This captures information
extending beyond immediate neighbors. For additional de-
tails on B-ColME see Algorithm 2 and Fig. 5 in Appendix D.

If Gt ∩N d
a is a tree, then mt,a′→a

h,1 contains the sum of all
samples generated within time t−h+1 by agents a′′ ∈ Gt at

distance h−1 from a′ and distance h from a, while mt,a′→a
h,2

contains the corresponding number of samples (the proof is
by induction on h). Agent a can estimate its mean as:

µ̂t
a =

∑t
τ=1 x

τ
a +

∑
a′∈Ct

a

∑d
h=1 m

t,a′→a
h,1

t+
∑

a′∈Ct
a

∑d
h=1 m

t,a′→a
h,2

. (9)

Under the local tree structure assumption, this corresponds
to performing an empirical average over all the samples gen-
erated by all agents in Gt at distance 0 ⩽ h ⩽ d from a up
to time t− h. If Gt ∩ N d

a is not a tree, samples collected by
a given agent a′′ may be included in messages received by a
through different parallel paths (from a to a′′). As a result,
these samples are erroneously counted multiple times in (9).
The parameter d must be chosen to prevent this issue with
high probability, as discussed in Sec. 4.3.

Algorithm 2: B-ColME over a Time Horizon H

Input: G = (A, E), (Da)a∈A, ε ∈ R+, δ ∈ (0, 1]
Output: µ̂a, ∀a ∈ A with P (|µ̂a − µa| < ε) ⩾ 1− δ
C0a ← Na,∀a ∈ A
for time t in {1, ..,H} do

In parallel for all nodes a ∈ A
Draw xt

a ∼ Da

x̄t
a ← t−1

t x̄t−1
a + 1

tx
t
a

Compute βγ(t) with Eq. (3) or Eq. (5)
for neighbor a′ in Ct−1

a do
dtγ(a, a

′)←
∣∣x̄t

a − x̄t−1
a′

∣∣− βγ(t)− βγ(t− 1)

if dtγ(a, a′) > 0 then
Cta ← Cta \ {a′}

end if
end for
for neighbor a′ in Cta do

Compute M t,a→a′
and send it to a′

end for
Wait for messages M t,a′→a ∀a′ ∈ Cta
µ̂t
a ←

∑t
τ=1 xτ

a+
∑

a′∈Ct
a

∑d
h=1 mt−1,a′→a

h,1

t+
∑

a′∈Ct
a

∑d
h=1 mt,a′→a

h,2

end for

Theorem 4 presents the (ϵ, δ) convergence result for B-
ColME, which enjoys a speedup proportional to |CCda|.

Theorem 4. [Proof in Appendix E] Provided that CCda is a
tree, for any δ ∈ (0, 1), employing B-ColME, we have:

P
(
∀t > τBa , |µ̂t

a − µa| < ε
)
⩾ 1− δ

where τBa = max

[
ζDa + d,

ñ δ
2
(ε)

|CCd
a|

+ d

]
and ñ δ

2
(ε) =

⌈
−

2σ2

ε2 ln
(

δ
4 (1− e−

ε2

σ2 )
)⌉

for SGD and as in Theorem 3 for
BFMD.

Similar considerations to those for Theorem 3 apply. The
additional term d accounts for the delay introduced by the
message-passing scheme.



Corollary 5. Let P(CCda is not a tree) = δ′, then for any
δ ∈ (0, 1), employing B-ColME, we have:

P
(
∀t > τBa : |µ̂t

a − µa| < ε
)
⩾ 1− δ − δ′.

Theorem 23 (Appendix G) provides upper bounds for δ′
when G is a random regular graph. In particular, as long we
set d as in Proposition 6 (Sec. 4.3), δ′ converges to 0 as the
number of agents |A| increases.

4.3 Choice of the Graph and other Parameters
The selection of the graph G(A, E) is crucial for the effec-
tiveness of our algorithms. Here we state the key desirable
properties of G(A, E). First, Theorems 3 and 4 show that
learning timescales, τBa and τCa , decrease as the size of the
collaborating agent groups, CCda and CCa, increase. There-
fore, a highly connected graph is preferred to promote the
formation of large clusters of agents belonging to the same
similarity class after the disconnection of inter-class edges.
Second, the spatial and temporal complexities of B-ColME
and C-ColME are directly proportional to the agents’ degree
within the graph. Hence, we want the degree to be small
and possibly uniform across the agents to balance compu-
tation across agents. Note that the first two criteria par-
tially conflict, as a higher degree generally leads to larger
groups CCda and CCa, while a smaller degree ensures better
spatial and temporal complexities. A third criterion, specific
to B-ColME, is that each agent’s neighborhood should have
a tree-like structure extending up to d hops, with d as large
as possible.

Considering these criteria, we opt for the class of sim-
ple random regular graphs G0(N, r). These graphs are sam-
pled uniformly at random from the set of all r-regular sim-
ple graphs with N nodes, i.e., graphs without parallel edges
or self-loops, and in which every node has exactly r neigh-
bors. Note that an even product rN guarantees the set is not
empty. The class G0(N, r) exhibits strong connectivity prop-
erties for small values of r. Specifically, for any r ⩾ 3, the
probability that the sampled graph is connected approaches
one as N increases. Moreover, the sampled graph demon-
strates a local tree-like structure with high probability (proof
in Appendix G). The choice of r (agents’ degree) illustrates
the trade-off discussed above between reducing complexity
(low r) and having large connected components (high r).
A sensible rule is to select r sufficiently large to guarantee
that most agents in the smallest (most critical) class belong
to the same connected component. Consider a class includ-
ing a fraction pka of agents, Table 3 in Appendix G shows
the average fraction of agents in this class that is not con-
nected to the main connected component as a function of r.
To keep this fraction below e.g. 10−2 a good rule of thumb
is r = 4/pka

.
A final key parameter for B-ColME is the maximum dis-

tance d over which local estimates from agents are propa-
gated. This parameter must be carefully calibrated: it should
be small enough to ensure that CCda, for a randomly cho-
sen a ∈ A, has a tree-like structure with high probability.
However, choosing a d that is too small could unnecessarily

restrict the size of CCda, thereby undermining the effective-
ness of the estimation process (Theorem 4). A comprehen-
sive analysis of how the parameters r and d influence both
the structure of N d

a and the size of CCda can be found in Ap-
pendix G. Here, we informally summarize the main result:

Proposition 6. By selecting d =
⌊
1
2 logr−1

|A|
logr−1 ||A|

⌋
the

number of nodes a ∈ A, whose d-neighborhood is not a tree,
is o(|A|) with a probability tending to 1 as |A| increases. For
the same d and r ∈ Θ(log(1/δ)), |CCda| is in Ω(|A| 12−ϕ)
for any arbitrarily small ϕ > 0 with probability arbitrarily
close to 1.

Finally, for C-ColME, the consensus matrix W could be
chosen to minimize the second largest module λ2,c of the
eigenvalues of each block cW in order to minimize the
bound in Theorem 2. This optimization problem has been
studied by Xiao and Boyd (2004) and requires in general a
centralized solution. In what follows, we consider the fol-
lowing simple, decentralized configuration rule: (Wt)a,b =

1
max{|Ct

a|,|Ct
b|}+1

,∀b ∈ Cta and (Wt)a,a = 1 −
∑

b∈Ct
a

(Wt)a,b,

making W symmetric and doubly stochastic.

5 Algorithms’ Comparison
Table 2 presents a comparative analysis of the three algo-
rithms: ColME, C-ColME, and B-ColME. For a fair com-
parison, we consider a variant of ColME, where each agent
can communicate with r agents at each time t, so that all
three algorithms incur the same communication overhead.

The second column of Table 2 outlines the space and time
complexities of the algorithms. Notably, even when r and d
are allowed to increase logarithmically with the number of
agents |A|, B-ColME retains its efficiency advantage over
ColME. C-ColME demonstrates even greater improvements,
further reducing the per-agent burden compared to the sav-
ings achieved by B-ColME.

The third and fourth columns detail the characteristic
times required to achieve (ϵ, δ) convergence for the esti-
mates generated by the three algorithms, considering both
sub-Gaussian local data distributions and distributions with
bounded fourth moment. The characteristic times corre-
spond to τa, τCa , and τBa in Theorem 7 in Appendix A, Theo-
rem 3, and 4, respectively. The table reports their asymptotic
behavior as the number of agents |A| increases ignoring log-
arithmic factors. The detailed derivations of these results are
provided in Appendix H.

Three factors contribute to the characteristic times. The
first factor is the time required to correctly identify potential
collaborators. For ColME, this involves each agent classify-
ing the other |A| − 1 agents, leading to a term that scales
as log |A| or |A|, depending on the assumed properties of
the local distribution. For B-ColME and C-ColME, |A| is
replaced by |CCa|r, which represents an upper bound on the
number of connections the agents in CCa may have initially
established with agents from different classes. This substi-
tution may not be immediate, as one might initially expect
the relevant scale to be simply r. However, this adjustment
accounts for the potential ripple effect of classification er-



Per-agent space/time Convergence time
complexity sub-Gaussian bounded 4-th moment

ColME (r communications) |A| 1
∆2

a
log |A|

∆aδ
+ |A|

r + 1
|Ca|

1
ε2 log

1
δε2

1
∆4

a

|A|
δ + |A|

r + 1
|Ca|

1
δε4

C-ColME [Thm. 3] (αt =
t

t+1 ) r − 1
∆4

a

|CCa|r
δ + 1

|CCa|
1

δε4

B-ColME [Thm. 4] rd 1
∆2

a
log |CCa|r

∆aδ
+ d+ 1

|CCd
a|

1
ε2 log

1
δε2

1
∆4

a

|CCa|r
δ + d+ 1

|CCd
a|

1
δε4

Table 2: Comparison of collaborative estimation algorithms. The convergence time is provided in order sense.

rors: a mistake by any agent a can impact the estimates of
all agents within the same connected component CCa.

The second factor contributing to the characteristic times
is the time each agent needs to collect all relevant informa-
tion. For ColME, this time is proportional to |A|/r, as an
agent queries all other agents. For B-ColME, the time is
specifically tied to d, the maximum number of hops mes-
sages propagate. Notably, this term does not appear for C-
ColME, as it is dominated by the final term.

The final term represents the time needed for accurate
mean estimation after collaborators have been identified,
highlighting the benefits of collaboration. In ColME, the
collaboration’s benefit is particularly striking, as all agents
within the same class work together to improve their esti-
mates. This collective effort effectively reduces the conver-
gence time by a factor proportional to the size of the collab-
orating group, |Ca|. For B-ColME and C-ColME, although
the speed-up remains proportional to the number of collabo-
rating agents, the actual numbers of collaborators, |CCda| for
B-ColME and |CCa| for C-ColME, are in general smaller.

In conclusion, while ColME potentially offers the most
accurate estimates, it requires longer convergence times and
greater memory and computational resources. In contrast,
B-ColME and C-ColME present more efficient alternatives,
achieving faster convergence with reduced per-agent re-
source demands. However, this efficiency may come at the
expense of the maximum attainable accuracy. The next sec-
tion quantifies this trade-off experimentally.

6 Numerical Experiments
We evaluate the proposed algorithms on the class G0(N, r)
of simple regular graphs (see Sec. 4.3). In this setting,
each agent connects to r other agents chosen uniformly at
random in A. This setup also provides the tree-like local
structure required for B-ColME. Agents belong to one of
two classes, associated with Gaussian distributions D1 ∼
N (µ1 = 0, σ2 = 4) and D2 ∼ N (µ2 = 1, σ2 = 4). Each
node is assigned to one of the two classes with equal prob-
ability. Unless otherwise stated, in the experiments |A| =
N = 10000, r = 10, d = 4, ε = 0.1, δ = 0.1, and βγ(n)
as in (3). In Appendix C and I, we provide additional exper-
iments for the multidimensional case and varying the sys-
tem’s parameters.

Figure 1 showcases the performance of B-ColME and
C-ColME using two key metrics: the fraction of agents
with incorrect estimates (µ̂t

a more than ε away from the
true mean µa), and the fraction of wrong links still in use

(a wrong link connects agents from different classes). We
compare our algorithms against two benchmarks. The first
benchmark has each agent independently relying on its local
estimate x̄t

a,a. In the second benchmark, an oracle provides
each agent with precise knowledge of which neighbors be-
long to the same similarity class (i.e., Cta = Ca ∩ Na,∀a, t).
The figure reveals that B-ColME has a longer transient phase
but then exhibits a slightly steeper convergence than C-
ColME. Notably, B-ColME’s estimates show no apparent
improvement until about 90% of the wrong links have been
removed, whereas C-ColME’s estimates begin to improve
as soon as the first edges are eliminated. This phenomenon
can be explained as follows. In B-ColME, the estimates at
agent a are not influenced by the removal of some wrong
links as long as its d-hop neighborhood N d

a remains un-
changed. For instance, a given node a′ /∈ Ca is removed
from N d

a only when all paths of length at most d between
agent a and agent a′ are eliminated. In contrast, in C-ColME,
agent a′ contributes to the weighted estimate at agent a with
a weight equal to the sum over all paths between a and a′

of the product of the consensus weights along the path. As
paths are progressively removed, the negative impact of a′
on agent a’s estimate is gradually reduced. However, once
all wrong links are removed, B-ColME benefits from its es-
timates being computed solely on agents belonging to the
same class, while C-ColME requires some additional time
for the effect of past estimates to fade away.

We also compare the proposed algorithms with ColME
and a simplified version (s-ColME) where the optimistic dis-
tance dtγ(a, a

′) is recomputed only for the r agents queried at
time t, achieving an O(r) per-agent computational cost (the
memory cost remainsO(|A|)). As predicted by the theoreti-
cal analysis, B-ColME and C-ColME are faster than ColME,
but at the cost of a higher asymptotic error because agent a
collaborates only with the smaller group of nodes in CCda
for B-ColME, and CCa for C-ColME. ColME pays for this
asymptotic improvement with a O(|A|) space-time com-
plexity per agent, impractical for large-scale systems. Note
that s-ColME improves ColME’s complexity at the cost of a
much slower discovery of same-class neighbors.

While we focused on online mean estimation, our ap-
proach can be adapted to decentralized federated learn-
ing. To illustrate this possibility, we adapt the consensus-
based decentralized federated learning algorithm, by let-
ting agents progressively exclude neighbors they identify
as belonging to a different class. The cosine dissimilar-
ity of agents’ updates, the same metric used in Clus-
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Figure 1: Fraction of agents with estimate deviates by more than ϵ from the true value, i.e., |{a ∈ A : |µ̂t
a−µa| > ε}|/|A| (top)

and fraction of wrong links (bottom) for B-ColME (a) and C-ColME (b), over 20 realizations with 95% confidence intervals.
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Figure 2: Comparison of our algorithms and two versions of
ColME, over 10 realizations.

teredFL (Ghosh et al. 2020; Chen et al. 2021), replaces the
optimistic distance dtγ(a, a

′) (details in Appendix J). Fig-
ure 3 shows the performance of our decentralized FL over
a dynamic graph (FL-DG) with |A| = 100 agents initially
organized over a complete graph. Two different distributions
are obtained from MNIST (Deng 2012) by swapping/main-
taining some labels and each client progressively receives
new data samples from one of the two distributions. As the
graph is progressively split in two clusters of clients belong-
ing to the same class, each agent’s model benefits from co-
operating only with similar clients and it achieves a higher
accuracy.

7 Conclusions
In this paper, we introduced B-ColME and C-ColME, two
scalable and fully distributed algorithms for collaborative
local mean estimation. We thoroughly evaluated their per-
formance through both theoretical and empirical analyses.
Additionally, we adapted our approach for personalized fed-
erated learning, applying it to the task of handwritten digit
recognition using the MNIST dataset.

This work points to several future research directions.
Here we have allowed agents only to sever existing connec-
tions, but not to establish new ones. Investigating scenarios
where agents can rewire their connections to communicate
with new agents outside their original neighborhood would
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Figure 3: Accuracy of a local model (Local), a decentralized
FL over a static graph (FL-SG), and our approach over a
dynamic graph (FL-DG). We also show the fraction of links
between classes (wrong links) over time for FL-DG.

be an interesting extension. Additionally, we assumed that
agents are partitioned into similarity classes, with agents in
the same class generating data with identical true mean. Ex-
tending our approach to accommodate more general scenar-
ios, where each agent generates data with potentially differ-
ent true mean, would be a valuable avenue for further explo-
ration.

References
Adi, E.; Anwar, A.; Baig, Z.; and Zeadally, S. 2020. Ma-
chine learning and data analytics for the IoT. Neural Com-
puting and Applications, 32(20): 16205–16233.
Asadi, M.; Bellet, A.; Maillard, O.-A.; and Tommasi, M.
2022. Collaborative Algorithms for Online Personalized
Mean Estimation. Transactions on Machine Learning Re-
search.
Beaussart, M.; Grimberg, F.; Hartley, M.-A.; and Jaggi, M.
2021. WAFFLE: Weighted Averaging for Personalized Fed-
erated Learning.
Chayti, E. M.; Karimireddy, S. P.; Stich, S. U.; Flammarion,
N.; and Jaggi, M. 2022. Linear Speedup in Personalized
Collaborative Learning.
Chen, M.; Yang, Z.; Saad, W.; Yin, C.; Poor, H. V.; and



Cui, S. 2021. A Joint Learning and Communications Frame-
work for Federated Learning Over Wireless Networks. IEEE
Transactions on Wireless Communications, 20(1): 269–283.
Deng, L. 2012. The mnist database of handwritten digit im-
ages for machine learning research. IEEE Signal Processing
Magazine, 29(6): 141–142.
Ding, S.; and Wang, W. 2022. Collaborative Learning by
Detecting Collaboration Partners. Advances in Neural In-
formation Processing Systems, 35: 15629–15641.
Donahue, K.; and Kleinberg, J. 2021. Model-Sharing
Games: Analyzing Federated Learning Under Voluntary
Participation. In Proceedings of the AAAI Conference on
Artificial Intelligence.
Dorner, F. E.; Konstantinov, N.; Pashaliev, G.; and Vechev,
M. 2024. Incentivizing honesty among competitors in col-
laborative learning and optimization. Advances in Neural
Information Processing Systems, 36: 7659–7696.
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