

On the melting of boron chalcogenides B6S and B6Se under pressure

Vladimir Solozhenko

▶ To cite this version:

Vladimir Solozhenko. On the melting of boron chalcogenides B6S and B6Se under pressure. 2025. hal-04878927

HAL Id: hal-04878927 https://hal.science/hal-04878927v1

Preprint submitted on 10 Jan 2025

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On the melting of boron chalcogenides B₆S and B₆Se under pressure

Vladimir L. Solozhenko^{*} 💿

LSPM–CNRS, Université Sorbonne Paris Nord, 93430 Villetaneuse, France

Melting of new of boron-rich chalcogenides, orthorhombic B_6S and B_6Se , has been studied at pressures up to 8 GPa using *in situ* electrical resistivity measurements. It was found that above 2.5 GPa both chalcogenides melt congruently, and the melting curves have a negative slope (-61(5) K/GPa for B_6S and -80(2) K/GPa for B_6Se), indicating a higher density of the melts compared to the solid phases. The melting points at ambient pressure were estimated to be 2190(30) K for B_6S and 2347(12) K for B_6Se .

Keywords: boron chalcogenides, melting, high pressure, high temperature

Two novel boron-rich chalcogenides, B_6S and B_6Se , have recently been synthesized by chemical interaction of elemental boron with sulfur and selenium melts at high pressures and high temperatures [1]. Both phases have orthorhombic symmetry and belong to the same space group *Pmna*, which is unusual for boron-rich compounds of light elements. Both chalcogenides are low-compressible phases [1,2] characterized by high Vickers hardness [1] and relatively high oxidation resistance [3]. In the present study, the melting of new boron chalcogenides was investigated at pressures up to 8 GPa.

Single-phase polycrystalline orthorhombic B₆S and B₆Se were synthesized by reaction of amorphous boron (Grade I ABCR) with sulfur and selenium (both Alfa Aesar, 99.5%) at 6.1 GPa and 2700 K in a toroid-type high-pressure apparatus according to the method described previously [1]. Melting of both boron chalcogenides in the pressure range of 2.5–8 GPa was studied *in situ* by electrical resistivity measurements [4] in a specially designed high-temperature cell [5] of a toroid-type high-pressure apparatus. The cell was pressure calibrated at room temperature using phase transitions in Bi (2.55 and 7.7 GPa), PbSe (4.2 GPa) and PbTe (5.2 GPa). Temperature calibration under pressure was performed using well-established reference points: melting of Si, NaCl, CsCl, Pt, Rh, Al₂O₃, Mo and Ni–Mn–C ternary eutectics. No evidence of chemical interaction between the samples and graphite electrical inputs was observed over the entire pressure-temperature range studied. The samples recovered from high-pressure experiments were characterized by powder X-ray diffraction (Equinox 1000 Inel diffractometer; Cu Kα radiation).

^{*} vladimir.solozhenko@univ-paris13.fr

The experimental data are shown in the Figure. The melting curves of B_6S and B_6Se (dashed lines obtained by the least-squares method) have negative slopes of -61(5) K/GPa and -80(2) K/GPa, respectively, indicating the higher density of the melts of both boron chalcogenides compared to the solid phases in the pressure range studied. A similar melting behavior has been previously observed for the orthorhombic boron silicide B_6Si (the melting slope is -31(2) K/GPa) [6]. Conversely, in the case of rhombohedral boron-rich compounds of light elements (B_6O , $B_{13}N_2$, $B_{12}P_2$), the melting slopes are positive [7-9] and vary from 23(6) K/GPa for $B_{12}P_2$ [9] to -60 K/GPa for B_6O [7]. Such a significant difference in the melting behavior of boron-rich solids with orthorhombic and rhombohedral crystal structures is apparently due to the difference in the structure (and hence the density) of their melts.

Extrapolation of the melting lines to the low-pressure region allows the estimation of the melting points at ambient pressure of 2190(30) K for of B₆S and 2347(12) K for B₆Se, which is close to the melting temperature of rhombohedral boron β -B₁₀₆ (~2360 K [10]).

The lattice parameters of the samples quenched from different pressures immediately after melting (overheating relative to the melting curve did not exceed 100 K) are exactly the same as those of the pristine B_6S and B_6Se , and no lines of other phases are present in the diffraction patterns, indicating the congruent type of melting of both boron chalcogenides above 2.5 GPa.

The author thanks Dr. Vladimir A. Mukhanov for assistance with high-pressure experiments.

References

- K.A. Cherednichenko, V.A. Mukhanov, Z. Wang, A.R. Oganov, A. Kalinko, I. Dovgaliuk, V.L. Solozhenko, Discovery of new boron-rich chalcogenides: orthorhombic B₆X (X = S, Se). *Sci. Rep.*, 2020, vol. 10, 9277.
- 2. K.A. Cherednichenko, Y. Le Godec, V.L. Solozhenko, Equations of state of new boron-rich selenides B₆Se and B₁₂Se. *High Press. Res.*, 2021, vol. 41, no. 3, pp. 267-274.
- V.L. Solozhenko, Oxidation resistance of hard boron-rich chalcogenides B₆X and B₁₂X (X = S, Se). *J. Superhard Mater.*, 2021, vol. 43, no. 6, pp. 455-456.
- 4. V.A. Mukhanov, V.L. Solozhenko, On electrical conductivity of melts of boron and its compounds under pressure. *J. Superhard Mater.*, 2015, vol. 37, no. 4, pp. 289-291.
- 5. V.A. Mukhanov, P.S. Sokolov, V.L. Solozhenko, On melting of B₄C boron carbide under pressure. *J. Superhard Mater.*, 2012, vol. 34, no. 3, pp. 211-213.
- 6. V.L. Solozhenko, V.A. Mukhanov, V.V. Brazhkin, Melting and decomposition of orthorhombic B₆Si under high pressure. *High Press. Res.*, 2020, vol. 40, no. 4, pp. 488-494.
- 7. V.L. Solozhenko, C. Lathe, On the melting temperature of B₆O. *J. Superhard Mater.*, 2007, vol. 29, no. 4, pp. 259-260.
- V.L. Solozhenko, V.A. Mukhanov, On melting of boron subnitride B₁₃N₂ under pressure. J. Superhard Mater., 2017, vol. 39, no. 2, pp. 147-148.
- V.L. Solozhenko, V.A. Mukhanov, P.S. Sokolov, Y. Le Godec, K.A. Cherednichenko, Z. Konôpková, Melting of B₁₂P₂ boron subphosphide under pressure. *High Press. Res.*, 2016, vol. 36, no. 2, pp. 91-96.
- 10. V.L. Solozhenko, O.O. Kurakevych, Equilibrium p-T phase diagram of boron: experimental study and thermodynamic analysis. *Sci. Rep.*, 2013, vol. 3, 2351.

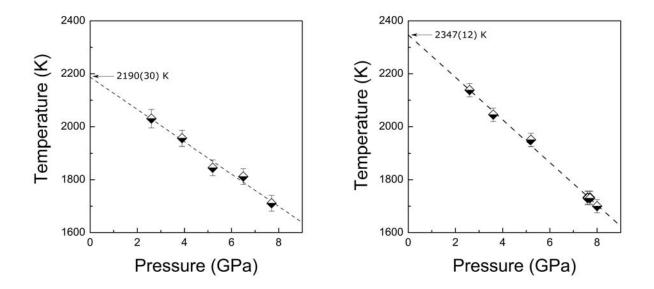


Figure Melting temperatures of orthorhombic B₆S (*left*) and B₆Se (*right*) versus pressure. Half-filled diamonds show the onset of melting as determined *in situ* by electrical resistivity measurements. Dashed lines are the linear approximations of the melting curves.