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Davydov-Yetter cohomology Hpy (F') is associated to a monoidal functor F' : C — D
between k-linear monoidal categories where k is a field, and its second degree classifies the
infinitesimal deformations of the monoidal structure of . Our main result states that if
F admits a right adjoint R, then there is an object I" in the Drinfeld center Z(C) defined
in terms of R such that the Davydov-Yetter cohomology of F' can be expressed as the
Davydov-Yetter cohomology of the identity functor on C with the coefficient I'.

We apply this result in the case when the product functor ® : CKC — C has a monoidal
structure given by a braiding ¢ on C and determine explicitly the coefficient I" as a coend
object in Z(C) X Z(C). The motivation is that Hpy (®) contains a “space of infinitesimal
braidings tangent to ¢” in a way that we describe precisely. For C = H-mod, where H is
a finite-dimensional Hopf algebra over a field k, this is the Zariski tangent space to the
affine variety of R-matrices for H. In the case of perfect k, we give a dimension formula
for this space as an explicit end involving only (low-degree) relative Ext’s of the standard
adjunction between Z(C) and C. As a further application of the adjunction theorem,
we describe deformations of the restriction functor associated to a Hopf subalgebra and a
Drinfeld twist. Both applications are illustrated in the example of bosonization of exterior
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1 Introduction

We continue to explore properties of Davydov—Yetter (DY) cohomology of monoidal functors
coming from its relation with relative homological algebra discovered in [GHS23, [FGS24]. This
is part of a research program whose goal is to derive efficient tools for the computation of DY
cohomology from the properties of relative Ext groups. In the present work we investigate how
adjoint functors interact with DY cohomology groups and deduce an adjunction theorem for
DY cohomology.

Let k be a field. Recall that given a k-linear monoidal functor F' : C — D between
k-linear monoidal categories C,D one can define the DY cohomology spaces H}y (F) for all
n > 0 [Dav97, [CY9S]. The space HZy(F) classifies infinitesimal deformations of the monoidal
structure F )((2 L F(X)® F(Y) S F(X ®Y) while H3, (F) is responsible for obstructions of
lifting deformations to higher order. We briefly review the deformation of monoidal structures
and DY cohomology in §3.I] Many interesting categorical structures can be repackaged into
monoidal structures of well-chosen functors and their deformation theory is thus controlled by
Davydov—Yetter cohomology. For instance a result of Joyal-Street [JS93] gives a correspondence
between braidings on a monoidal category C and equivalence classes of monoidal structures for
the product functor ® : C x C — C. Hence, as noted by Yetter [Yet98], the DY cohomology



of ® is related to infinitesimal deformations of braidings. Another example is the one-to-
one correspondence between mixed associators for a C-module category (M, >) and monoidal
structures for the action functor p : C — Fun(M), X — X > —. Hence the DY cohomology of
p is related to deformations of mixed associators.

In this paper, we focus on the application to deformations of braidings. Using our adjunction
theorem we give a precise description of the vector space of infinitesimal deformations of a given
braiding on a (finite) tensor category C in terms of certain 2nd relative Ext groups involving
non-trivial coefficients, as we explain now.

In [GHS23] a version of DY cohomology with coefficients was introduced — they are pairs
of objects in the centralizer of the functor F'; which is a monoidal category denoted by Z(F),
see §3.2] For F = Idc then Z(F) is the Drinfeld center Z(C). In this case, the coefficients are
very much similar to those in the standard Hochschild theory, and can be realised as internal
bimodules over an algebra in C X C. Indeed, it is known that Hpy (Ide) is isomorphic to the
Hochschild cohomology of the algebra object .o/ = erC XXXV e CKC, [EGNO] Prop. 7.22.7],
and furthermore the category of internal o/-bimodules is equivalent to Z(C) by [EO04, §3.4],
[Shil7, §4.4].

We denote the DY cohomology of F' with coefficients V,W € Z(F) by HYy(F;V,W). For
the trivial coefficients V,W = 1 we have HY) (F) = Hpy(F;1,1). Although the infinitesimal
deformations of F® are classified by the cohomology with trivial coefficients, non-trivial co-
efficients play an extremely important role in this work. As we explain below, our adjunction
theorem allows to reduce the study of any right exact functor F' to the study of the identity
functor on its source category, at the price of a non-trivial coefficient.

We recall from [FGS24, Cor.4.7] that under certain assumptions on the linear monoidal
categories C, D and the monoidal functor F': C — D, we have an isomorphism between the DY
cohomology of F' and the relative Ext groups associated to the forgetful functor Z(F') — D:

Hpyy (F5V, W) = Exty ) p(V, W), and in particular Hpyy (F) = Extz ) p(1,1). (1)

While was proven for exact functors F' between finite tensor categories in [FGS24], the
more general existence results of coends contained in the Appendix [A] allow us to relax these
assumptions to right-exact functors (see .

The computation of Ext}(F)p(l, 1) in remains a non-trivial task which requires in
particular to have a good understanding of the category Z(F'). The case F' = Id¢ is somewhat
special because the category Z(C) is well-known and in [FGS24] we have obtained more results
for this choice of F', like a method to construct DY cocycles explicitly. The application of our
adjunction theorem is precisely to replace computations in Z(F') by computations in the more
familiar category Z(C), by trading F' for a certain coefficient object thanks to an adjunction
that we now discuss.

Note first that the monoidal functor F' can be “lifted” at the level of centralizers:

Z(C)—E ~ Z(F) (2)
% @ 5 @)
C _ D

where Ue, Ur are the forgetful functors and F¢, Fr are their left adjoints (see . Given a
half-braiding A : V® — = — ® V one obtains from F'(\) and the monoidal structure of F' a
natural isomorphism F(V) ® F(—) = F(—) ® F(V) which is is a half-braiding relative to F,
whence defining F. An important point is that the pair of functors (F), F ) is compatible with
the adjunctions, meaning that apart the equality Ur F=F Ue we have a natural isomorphism

FFe=FpF



which is compatible with the adjunction data. The pair (F, F ) is an example of what we call
a strong morphism of adjunctions (Definition .

Strong morphisms of adjunctions are relevant to us for two reasons. First, they preserve
relatively projective resolutions (Proposition : in the particular case , the functor F
transforms a resolution of V € Z(C) into a resolution of F(V) € Z(F). Second, if F admits a
right adjoint R : D — C then a classical theorem on adjoint lifting [Joh75| gives a right adjoint
Rof F (see and . It follows from these two facts that

Extz(mp(L, 1) & Extz(e)c (1, R(1))
and by we get the adjunction theorem for DY cohomology:

Theorem 1. Let C,D be k-linear monoidal abelian categories. Assume moreover that C is
finite and rigid and Qp is right-exact in each variable. Then for any k-linear monoidal functor
F : C — D which has a right adjoint R : D — C we have

Hyy(F) = Hpy (Ide; 1, R(1)) (3)

where R : Z(F) — Z(C) is the lift of R.

In the case the category D is also finite, then the right adjoint of F' : C — D exists if and
only if F'is right exact [DSPS19, Cor.1.9]. Hence, the DY cohomology of the identity functor
with coefficients determines the DY cohomology of any right-exact functor out of C. Theorem
is efficient in practice because only the second coefficient in the right-hand side of is non-
trivial. Hence to compute Hpy (Ide;1, E(l)) = Extze)c (1,§(1)) it is enough to find once
and for all a relatively projective resolution of 1 € Z(C). Then one must determine the object
ﬁ(l) € Z(C) and compute the resulting cohomology. This last cohomological computation is
expected to be less hard than finding a resolution of 1 € Z(F) for any functor F' if we were
to use formula . Moreover the cohomological computation can be replaced by the following

dimension formula (Cor. [3.6):
dim Hpy (F) = dim Homz(¢)(K, M) — dim Homz ) (P, M) + dim Homz (1, M)

where P is is the relatively projective cover of 1 € Z(C) [FGS24, §2.3] (or any relative projective
object covering 1), K = ker(P — 1) and M = R(1) ® (KY)"™L, for n > 2. Note that everything
in the right-hand side is computed in Z(C).

Theorem |1] is inspired by [GHS23, §4.3] where it was observed that the DY cohomology of
the fiber functor H-mod — vecty of the category of modules over a finite-dimensional k-algebra
H can be equivalently described through the DY cohomology of the identity functor at the price
of a coefficient H* with the D(H)-module structure given by coregular H-action and adjoint
H*-action. This is generalized in where we consider the DY cohomology of the restriction
to a Hopf subalgebra functor endowed with a monoidal structure involving a Drinfeld twist.

Our next results concern a functor whose deformations are related to deformations of braid-
ings. To explain this, let ¢ = (ch XY S Y X)X,Yec be a braiding on the k-linear
monoidal category C and consider the product functor P = ® : C X C — C endowed with the
following monoidal structure coming from c:

PXiXY)®@P(X;XY;) = X100V 0 X, ®@Ys

iXm ®cyy, X, ®idy2 (4)
’ P((Xl@yl)Q@(Xz@Yé)) = Xi0Xo0Y QY.

Denote by P, this monoidal functor. Actually, any monoidal structure on P which satisfies
certain unitality conditions is isomorphic to for some braiding ¢ on C. This correspondence
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between (equivalence classes of) unital monoidal structures for P and braidings on C was found
by Joyal and Street when they studied multiplications in a monoidal category [JS93|, §5]. In
we establish an infinitesimal version of this correspondence. Let T .Br(C) be the vector
space of infinitesimal braidings tangent to c¢. As the name and notation indicate, these are
natural transformations ¢ = (th XY —-Y® X)X,Ye(,’ such that ¢+ et is a braiding on the

category C ®y kle]/(€?) with scalars for Hom spaces extended to the dual numbers k[e]/(€?).

Theorem 2. Let C be a k-linear monoidal category and for any braiding ¢ € Br(C) let P. =
® :CKRC — C be the monoidal product functor endowed with the monoidal structure . We
have

Hiy(P.) = T Br(C) ® Hiy(1de) ® Hpy (Ide).

Note that we do not require finiteness assumption on C in this theorem. This generalizes a
result of Yetter [Yet98], who noted that the Joyal-Street correspondence gives at the infinites-
imal level a relation between infinitesimal braidings on C and the 2nd DY cohomology of ®¢.
However he did not describe a complement of T.Br(C) in Hiy(P.).

In the context of Vassiliev invariants and deformations of symmetric categories, a slightly
different notion of “infinitesimal braidings” has appeared [Car93, §4], [Kas95, §XX.4]. More
precisely, when the braiding ¢ on C is symmetric, infinitesimal braidings in this other sense
can be seen as a subspace (strict in general) of the vector space T.Br(C) defined above, see
Remark (4.2

It follows from Theorem [2] and Ocneanu rigidity [ENOO05, §7], [GHS23| §3.5] that infinites-
imal deformations of a braiding on a finite tensor category C might exist only in the case of
non-semisimple C. A deep and active trend in quantum topology is the construction of topo-
logical invariants from non-semisimple ribbon categories, like Lyubashenko’s representations of
mapping class groups [Lyu95] or renormalized link invariants based on modified traces [GKP11].
Since the braiding is one of the main ingredients in these constructions, it could be interest-
ing to see how the non-semisimple invariants deform along the infinitesimal deformations of
braidings (or higher order deformations).

Theorem [2] motivates the computation of the DY cohomology of the monoidal functor P,
whose monoidal structure is defined by the braiding c. Our third main result is the application
of Theoremto P., which amounts to describe the object R(1) € Z(CXC) in this case. Namely,
in §4.3) we prove:

Theorem 3. 1. For the choice F' = P., the object ﬁ(l) appearing in Theorem 15 equal to
(o, X)) where o = fXGC XVRX € CRC and X)) is a half-braiding defined in
by using the braiding c and its inverse in C.

2. If the ground field k is perfect, (,Qf, )\(+)’(_)) can be expressed as the coend

XeC
F:/ (XY, exv o) B(X, cZy)

through the equivalence Z(CXKC) = Z(C)X Z(C).

The assumption on k in item 2 is used in our proof of the equivalence Z(CXC) = Z(C)X Z(C)
in Lemma [4.20] It ensures that the Deligne product of two resolvent pairs is again a resolvent

pair (App. .

When k is perfect, the combination of Theorems [3| and [2| gives a dimension formula:

A nice feature of this formula, which makes it efficient in practice, is that it is enough to know
a relatively projective resolution of 1 € Z(C) to compute these relative Ext’s (it is even enough
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knowing the first four terms of the resolution). Indeed a resolution of 1 X1 € Z(C) X Z(C)
can be obtained by taking the product of the resolution of 1 € Z(C) with itself, thanks to the
general results in Appendix [C|] about Deligne product of resolvent pairs.

Furthermore, in §4.4] and under the assumption that k is perfect, we apply a Kiinneth
formula and rewrite the dimension formula (5) via an explicit end involving only Ext% )¢ at
n = 1,2. For example, if C is unimodular with a symmetric braiding ¢, we obtain the following

end-formula

dim T.Br(C) = dim Extzey e (1, (PY,cpv ) @ Extieye(1, (P cp-))

PeProj(C)

+ 2dim ExtZ o) ¢ (1, (Pr, cpy,—)) — 2dim Ext% ey o(1,1) , (6)

where Pj is the projective cover of 1 in C, and (P, cp_) denotes the corresponding object in
Z(C), while for the general case expression see Corollary [4.25|

In §5[ we specialize our results to the case C = H-mod where H is a finite-dimensional Hopf
algebra over a field k. In this case it is well-known that a braiding on H-mod is equivalent
to an R-matrix in H®2. When they are expressed in a basis of H, the defining conditions
of an R-matrix are polynomial equations, so we have an affine variety of R-matrices for H.
Similarly, an infinitesimal braiding tangent to ¢ on H-mod is equivalent to a vector in the
Zariski tangent space of the R-matrix associated to c¢. Note that Z(C) = D(H)-mod and
Z(CXC) = D(H®H)-mod. Through these isomorphisms, the object (&, A(")(7)) in Theorem
is equal to the dual vector space H* endowed with a D(H ® H)-module structure based on the
coregular actions of H on H*, c¢f. Proposition to see how the R-matrix enters in this action.
Hence for C = H-mod, the dimension formula takes the following form:

Corollary 4. Let H be a (quasi-triangular) Hopf algebra over a field k with an R-matriz R.
We then have

dim TrRMat(H) = dim Ext? g gen (k, H*) — 2 dim Ext], g g (k, k) (7)

where RMat(H) is the affine variety of R-matrices on H, TrRRMat(H) is its Zariski tangent
space at the point R, H* has the D(H ® H)-module structure (134)) and k is the ground field
with the trivial module structure.

In §5.2 we consider the example of C = By-mod, where By = ACF x C[Z/2Z] is the bosoniza-
tion of the exterior algebra seen as a Hopf superalgebra. It admits a triangular R-matrix
Ry € BY? and thus a symmetric braiding in By-mod. The end formulas in Corollary reveal
that the Zariski tangent space to Ry has dimension k? and also allow for a quick computation
of the dimensions of the DY cohomology spaces of ® endowed with the monoidal structure
coming from the symmetric braiding. For completeness we also obtain these results by using
the formula , which requires the analysis of the action of D(By ® By) on the coefficient
R(C) = B;. Moreover we provide an explicit basis of T, RMat(By,) and promote this space to
a k*-parameter family of genuine R-matrices for By, which is in agreement with [PV99)].

Finally, in We apply Theoremto restriction functors. Let J € H®? be a Drinfeld twist.
Suppose that K is a Hopf subalgebra of H;, which has the product of H but its coproduct
is altered by J. Then J induces a monoidal structure on the restriction functor F' = Resf :
H-mod — K-mod. We describe the centralizer category Z(Resk) as a category of finite-
dimensional modules over a “twisted Drinfeld double” D(H;, K), while Z(C) = Z(H-mod)
is of course isomorphic to D(H)-mod. The object R(1) € D(H)-mod is Homg(H k) as a
vector space. We show that the subalgebra H C D(H) acts by coregular action on ﬁ(l)
while H* C D(H) acts by an adjoint action twisted by .J; see Corollary In the case of



quasi-triangular H, restriction functor Resg@)H induced by the coproduct A : H - H® H
and Drinfeld twist defined from the R-matrix, then the corresponding coefficient E(l) recovers
the coefficient of Theorem [3] see Example An example is provided in for restriction
functors B,,-mod — Bi-mod with k£ < n.
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2 Adjunction theorem for relative Ext groups

This section contains general facts on resolvent pairs which will later be applied to the specific
resolvent pair whose relative Ext groups give the DY cohomology of tensor functors. We
first show in that appropriate pairs of functors (F,®) connecting two resolvent pairs as
displayed in are compatible with relatively projective resolutions. If the functor ® has a
right adjoint, we deduce an adjunction formula for the relative Ext groups associated to these
resolvent pairs. Then in §2.3| we note from Beck’s theorem [Bec67, Th. 1] that any resolvent
pair is monadic. We recall the theorem of adjoint lifting along monads [Joh75] which allows
one to construct a right adjoint of the top functor ® from a right adjoint of the bottom functor
F'. This is relevant in practice because F' is easier to manipulate than ®.

2.1 Resolvent pairs and relative Ext groups

Let A, B be abelian categories and
A (8)

be a pair of adjoint functors where F is left adjoint to /. The adjunction () is called a resolvent
pair if the functor U is additive, exact and faithful. Then F is automatically an additive functor
IMLOS8|, §IV.1, Th.3]. Recall from [ML75, Chap. IX] (also see [FGS24l §2.1] for a quick but
complete review) that under these assumptions we have the relative Ext groups

EXtZ\,B(V, W)

for all n > 0 and V,W € A. Despite the notation they depend on the adjunction F 4 U and
not just on the categories A, 3. They are computed by applying the functor Hom 4(—, W) to
a relatively projective resolution 0 <— V < Py <— P} < ... and taking the cohomology of the
resulting cochain complex. The bar resolution of V' € A is the relatively projective resolution
given by

%

Bar® (V) = (o VL qv) Ll @) ) (9)

where G = FU : A — A is the comonad associated to the adjunction F 4 U, ¢ : G = Id4 is

its counit and
n

dy = (=10,  with 9), = G" " (ccuv))- (10)

n
=0



Note that if the categories A, B are k-linear, where k is a field, then the relative Ext groups
Ext’y 5(V, W) are actually k-vector spaces.

2.2 Relating resolvent pairs and their relative Ext groups

Let A, A’ be abelian categories with enough projectives and ® : A — A’ be an exact functor
which has a right adjoint ¥ : A" — A. Recall that for usual Ext groups it is in general not true
that

Ext®, (®(V), = Ext%(V, U(1V") (11)

where V € A and V' € A’. This isomorphism of abelian groups holds true if and only if ® pre-

serves projective objects. Indeed, if ® preserves projectives and 0 «— V & P & P &

is a projective resolution of V' in A then 0 <— ®(V) Lldo) o(Py) L) O(P) 2B s a

projective resolution of ®(V') in A’ by exactness of . Thus by adjunction we have a commu-
tative diagram

0 Hom g (®(P)), V') s Homy (@(By), V') 2" (12)
0 HOH’l_A(Pl, \I/(V,)) d* HOIHA(PQ, \IJ(V/)) dr
1 2

which gives the isomorphism . Conversely if holds and P € A is a projective object
then for all V! € A’ we have Extl,(®(P),V’) = ExtY (P, ¥(V')) = 0, proving that ®(P) is
projective.

In this section we prove an isomorphism of the form for relative Ext groups of two
resolvent pairs. The point is that if these resolvent pairs are related by a well-behaved pair of
functors then we can show that their relative cohomologies are related as well. More precisely:

Definition 2.1. Consider the following diagram of categories and functors:

A—2 N (13)
]-'<—|>L{ F (—|>u’
B = B

where the columns are adjunctions.

1. If there is a natural isomorphism o : FU = U'® then we say that (F,®,a) : (F 4U) —
(F'HU'") is a morphism of adjunctions.

2. For such (F,®,«) let 5% : F'F = ®F be the natural transformation defined by

F'F(nx) F'larx)) o F(X)

VX eB, f%:FFX) 2 FRUF(X) —225 FUSF(X) 22 o F(X)  (14)

where ¢ is the counit of F AU and n' is the unit of F' 4 U’'. If 3 is an isomorphism then we
say that the morphism of adjunctions (F,®,«) is strong.

3. If the columns in the diagram are resolvent pairs and the functors F, ® are additive
then we say that a triple (F, ®, «) as in item 1 is a morphism of resolvent pairs.

The next lemma characterizes the formula defining 5% in . It follows from naturality
and the defining properties of units and counits (given e.g. in [ML9g §IV.1]).



Lemma 2.2. Let (F,®,«) be a morphism of adjunctions as in Deﬁm’tz’on and let : F'F =
OF be any natural transformation. Consider the following diagrams (Dy) and (Ds)

FX)— e (X) FFUV) 20 o Fu(v)
(Dy) F(ﬂx)j lu’(ﬂx) (Dy) ]'—’(Oév)l l@(‘Ev)
FUF(X) UDF(X) FU'D(V) (V)

Co(v)

wheren and € (resp. ' and €') are the unit and counit of the adjunction F HU (resp. F' AU').
The following statements are equivalent:
1. The diagram (Dy) commutes for all X € B.

2. The diagram (D) commutes for all V € A.
3. The natural transformation B is equal to B defined in (14)).

Remark 2.3. 1. Lemmal[2.2]is actually true even if « is not an isomorphism, but just any natural
transformation FU/ = U'®. Yet another property equivalent to the statements in Lemma
is ay =U'Q(ev) oU'(Buv)) © Miyyqvry for all V € A.

2. In [MLOS, §IV.7] a “map of adJunctlons is defined to be a pair of functors (F, ®) as in ((13))
such that F'(nx) = njy) for all X € B or equivalently such that ®(ey) = £y for all V € A.
By Lemma a “map of adjunctions” is a morphism of adjunctions (F, ®, ) such that o = id
and /% =id

3. Morphisms of adjunctions of the form (F, ®,id) are discussed e.g. in [SS86] and [Zagl7].

4. Ttem 1 in Deﬁnitionyields a category whose objects are adjunctions (i.e. pairs of functors
together with a unit and counit). The composition of morphisms is (Fy, ®o, a?) o (Fy, @y, al) =
(FoFy, @81, a'?) with a'? = a2 o Fy(a'). One shows easily that 8~ = ®,(8%") o & (it
suffices to check that any one of the diagrams in Lemma commute with this choice of 3).
In particular, if 3% and 6a2 are isomorphisms then so is 8¢ *. Hence the composition of two
strong morphisms of adjunctions is again a strong morphism of adjunctions.

A morphism of resolvent pair (F, ®, «) as in item 3 of Definition allows us to relate the
comonads G = FU and G' = F'U' on A and A’, from which the bar resolutions @D are defined.
Indeed consider the natural transformation v : G'® = ®G with components

Bivy

s GB(V) = FUs(v) 2 Fruev) B0 e muv) = ac(v) (15)

for all V' € A, where 8 is defined in (14)). By diagram (D) in Lemma it satisfies

YV EA epuy=P(ev)ow. (16)

For n € N define v : G'"® = ®G™ by ’Yv = idg(vy and then by induction

/(,y(’ﬂ)

Vamhev) S o (V) 21 eGmt (V). (17)

In particular 7‘(/) = Yy.

Lemma 2.4. Let (F,®,«) be a morphism of resolvent pairs as in Def.[2.1(3). For all V € A,

the morphisms %(/n ) provide a morphism of chain complexes

W Barty g (B(V)) — & (Barty 5(V)).



Proof. Let (9,‘: ;, and 83 g") be the coface morphisms of the two bar complexes, see . We
prove by induction on n that

Ve, oo = 0k on

The case n = 0 is . Assume that this is true for some n > 0. Note by definition of the
coface maps that 9! +1 =GO )y and Oy y1: = G(9Y,;). Then for any i € {0,...,n} we have

n,e

by (17} . ), naturality of v and the induction hypothesis
W0 0L = ranw) 0 G (0) 0 G'O1) = vy 0 GB(OY) 0 G (W)
= ®G(3),) 0 vorn) © G (1) = <aX+1,z> ont?.

The case i = n + 1 is treated separately without using the induction hypothesis. Indeed, by
naturality of &', and we have

n+1 (Vv n+1 (n+1
7\(/ "o am(tl)nﬂ = %(/ "o 5G'"+1<I>(V) - 6<1>Gn+1 ) © G,( ))
= ‘I)(€Gn+1(V)) O Yan+1(v) © G/( nH ) (aXH 1) © ’Yx(/nH)

Since @ is additive it follows that fy‘(/" ) o O(d)) = dr") o fy‘(/n ™ for all n, where d¥ and d®")
are the differentials of Bar% 5(V) and Bar%, ;5 (®(V)). O

Recall the notion of a strong morphism of adjunctions (item 2 in Definition .

Theorem 2.5. Let (F,®,a) be a morphism of resolvent pairs as in Def. [2.1(3) and assume
that ® : A — A’ has a right adjoint V. Then there are morphisms of abelian groups

Vn >0, Ext)g(V,¥(V")) = Ext} 5 (@), V)
forallV e A, V' € A'. If (F,®,«) is strong then they are isomorphisms of abelian groups.

Proof. By Lemma and adjunction ® 4 ¥ we have a commutative diagram

av D V iy d’r‘{ 1)*
S Homa(Gn(V), U(V')) — 2 Hom  (GmHL(V), O(V')) —e . (1g)

o(dY_,)* l Vi l G
G Hom  (BG(V), V') —2 ) Hom 4 (BGmL(V), V') )
l(v“‘*”)*
Hom 4 (G'" 1 (V), V')

o) l(v“‘))
d * (V)
( n—1 ) HOmA/ (G/n@(‘/)’ V/) (d )

The cohomology of the first row is Ext% 5(V, ¥(V”)) while the cohomology of the third row is
Ext’y 5 (®(V),V’), so we get the desired morphisms of abelian groups. For the second claim
note that if (F, ®, ) is strong then the natural transformation v : G'® = ®G is an isomorphism
whose inverse is given by 7;1 = F(ay)o (ﬁf‘{(v))*l. It follows by induction that (™ is an
isomorphism for all n. Hence the columns in the diagram above are isomorphisms. O

The next proposition means that strong morphisms of resolvent pairs are compatible with
all the definitions for relative cohomology. Compare with the introductory discussion at the
beginning of this section and note that exactness assumptions are not required in the relative
case.
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Proposition 2.6. Let (F,®,«) be a strong morphism of resolvent pairs as in Def. [2.1/(3).
1. If a morphism f in A is allowable for F AU then ®(f) is allowable for F' AU’.
2. If P € A is relatively projective for F 41U then ®(P) is relatively projective for F' 4 U'.

3 If0 «— V Qo P I Py & isa relatively projective resolution of V€ A then
0+— o(V) 20 o(P) Lo O(Ps) 20 s relatively projective resolution of (V') € A'.

Proof. 1. Werecall that f € Hom4(V, W) is called allowable if there exists s € Homg (U(W),U(V))
such that U(f) osolU(f) =U(f). Define

PO puvy) 2% u' (V).

-1
§U(BW)) 2 FUW))
By naturality of o we have U'(®(f)) o s’ oU'(P(f)) =U'(P(f)) and thus ®(f) is allowable.
2. The object P is relatively projective if and only if it is a direct summand of G(V') for some
V e A [FGS24, Prop. 2.17(1)]. Note that by the strongness assumption vy : @G(V) — G'®(V)
from is an iso. Hence, since ® is additive, ®(P) is a direct summand of ®G(V) = G'®(V)
and is thus relatively projective.
3. By items 1 and 2 we know that ®(P,) is a relatively projective object and that ®(d,,) is
allowable for each n. It remains to prove that the image under ® of the resolution is an exact
sequence. This is based on Lemma [2.4] which here gives an isomorphism of cochain complexes
due to the strongness assumption. The comparison theorem of relatively projective resolutions
[IML75, Th.IX.4.3] ensures that idy can be lifted to morphisms of chain complexes in two ways:

Vv 4
0~ V<2 p® p2 0~ V"GV <t (v) <2
b |
O(—VTG(V)TGZ(V>? 0 Vv % P1 o P2 o

Note that g, o f, and idp, are two lifts of idy along the resolution V' < F,. Hence, still by
the comparison theorem [MLT75, Th.IX.4.3], these two lifts are chain homotopic. Applying &
to the homotopy it follows that ®(g.) o ®(f,) and idg(p,) are homotopic. The same argument
gives that ®(f,) o ®(gs) and idege(v) are homotopic. Hence ®(f,) : ®(P,) — ®G*(V) and
D(gs) : PG*(V) — ®(P,) are inverse to each other up to homotopy. We thus have quasi-
isomorphisms

®(P,) = @ (Bar’ 5(V)) = Barly 5 (2(V))

where Py = V. Since the bar resolution is exact, the complex ®(V) < ®(P,) is exact as
well. 0

2.3 Lifting adjunctions along resolvent pairs

Recall diagram . In order to apply Theorem , one would like to deduce the existence of
a right adjoint of ® from the existence of a right adjoint to F'. We will see that this is indeed
possible, by first showing that every resolvent pair is monadic and then by using the technology
of lifting right adjoints along categories of modules over monads which is reviewed below from
[Joh75] (and also [BLV11l §3.5]). We start with a few preliminaries.

Let C be a category and T = (T, 1, 7) be a monad on C, with underlying functor 7' : C — C,
multiplication p : TT = T and unit n : Ide = T [ML98, Chap. VI]. Let T-mod be the category
of T-modules (a.k.a. T-algebras, a.k.a. Eilenberg—Moore category), whose objects are pairs (V, r)
where V € C and r € Hom¢(T'(V'), V) satisfies roT'(r) = ro puy and rony = idy. A morphism
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f:(V.r) = (W,u) in T-mod is f € Home(V, W) such that for = wo T(f). This yields the
adjunction

T-mod Fr(X) = (T'(X), px),  Fr(f) =T(f) (19)
Fr <_|>U1r
C Ur(Vir) =V, Uz(f)=f

such that T" = Ur o Fr. The unit of this adjunction is just the unit n of the monad while its
counit € is given by

V(V,r) € T-mod, e,y =1 € Hompmoea (FT(V), (V, r)) (20)

Let F: B— Aand U : A — B be a pair of adjoint functors: F 4 U. Then we have the
monad T = (U]:, U(ery), 77) on B, where n : Idg = UF and ¢ : FU = Id4 are the unit
and counit of the adjunction F < U. There exists a unique functor K : A — T-mod, called
comparison functor [MLIS|, §V1.3|, such that UrK = U and KF = Fr. It is given by

E(V)=UWV)UEy)),  K(f)=U(f) (21)

on an object V and a morphism f in A [MLI8, §VI.3]. The adjunction F - U is called monadic
if K is an equivalence of categories.

Proposition 2.7. 1. Any resolvent pair is a monadic adjunction.
2. Conversely, if T = (T, pu,n) is a monad on an abelian category C such that T : C — C is
additive then the adjunction s a resolvent pair.

u
3. Let A_7 B be a resolvent pair and T the associated monad on B. Then
F

EXt;\,B(‘/? W) = EXt';F—mod,B (K(V)u K(W))
for all V,\W € A, where K : A — T-mod is the comparison functor.

Proof. 1. Take a resolvent pair F < U as in (8). Note that the functor U is faithful by
definition and recall that any faithful functor reflects epimorphisms and monomorphismsE] Let
f be a morphism in A such that U(f) is an isomorphism. Then in particular U(f) is both a
monomorphism and an epimorphism. By the preliminary remark, f is both a monomorphism

and an epimorphism. Since A is an abelian category, it follows that f is an isomorphism [ML9§|,
§VIIL.3]. Hence:

e U reflects isomorphisms.
e A has all coequalizers (by existence of cokernels in an abelian category).

e U preserves coequalizers (because it is exact and in particular it preserves cokernels).

We can thus apply Beck’s monadicity theorem [Bec67, Th. 1] by which K is an equivalence.

2. T-mod is an abelian category under these assumptions [EM65, Prop. 5.3]. The functor Uy is
exact due to the definition of kernels and cokernels in T-mod, and it is obviously faithful and
additive.

3. By item 2 the relative Ext groups on the right-hand side make sense. From the defining
properties of the comparison functor K we see that (IdB, K, id) is a morphism of resolvent pairs
in the sense of Def. 2.1 The diagram (D1) in Lemma[2.2] commutes with the choice § = id since
F =1d in the present situation. Hence ' = id by Lemma [2.2| and in particular the morphism

ndeed if f is a morphism in A such that U(f) is an epimorphism then for any morphisms g, ¢’ such that
gof=g¢g of wehave U(g) oU(f) =U(g") oU(f), whence U(g) = U(g’) and faithfulness of U gives g = ¢’ and
thus f is epi. A similar argument applies to monomorphisms.

12



of adjunctions (IdB,K , id) is strong. One can choose the quasi-inverse K : T-mod — A so
that it is a right-adjoint of K [ML98, §IV.4]. Then by Theorem we have Exty 5(V, W) =
Ext$ z(V, KK(W)) = Exty0q5(K(V), K(W)). O
It follows from Proposition that we can restrict ourselves to resolvent pairs arising from

linear monads.

Let C, D be categories (not necessarily abelian), T = (7', u,n) be a monad on C and T" =
(T, 1/, ") be a monad on D.

Definition 2.8. [Str72, §1] A morphism of monads T — T’ is a pair (F,() where F : C — D
is a functor and ¢ : T'F = FT is a natural transformation such that

Cx © Wpxy = Fpx) o Crx) o T'(Cx),

VX eC, )
Cx °NMpx) = F(UX)'

(22)

We say that a morphism of monads (F, () is strong if ¢ is an isomorphism.
This yields a category Mnd whose objects are monads. The composition of (G,w) : T' — T”
with (F,¢): T = T"is (GF,G(¢) owp(—y) : T = T".

The next lemma relates morphisms of adjunctions (Def. with morphisms of monads; it
is a slight adaptation of [Joh75l Lem. 1], [BLV11 §3.5] or [Zagl7, Prop.2.2.4].

IN;emma 2.9. 1. Let (F,() be a morphism of monads T — T'. Then there is a lifted functor
Fr : T-mod — T'-mod defined by
Fe(Vir) = (F(V),F(r)oCv),  Fe(f)=F(f) (23)

and (F), ﬁ(, id) is a morphism between the adjunctions defined by T and T’ (see ) Moreover
if (F,Q) is strong then (F, F¢,id) is strong (item 2 in Def. .
2. Conversely, consider the diagram

T-mod —2 = T"-mod
Fr <_|> U For <—|> U
C D

F

and assume that (F,®,«) is a morphism of adjunctions. Then there exists a morphism of
monads (F,() : T — T such that ® = F,. Moreover if (F,®, ) is strong then (F, () is strong.

Proof. 1. The conditions ensure precisely that F(r) o ¢y is a T’-module structure on
F(V) and hence FC is well- deﬁned It is readily seen that FlUy = Z/{T/FC, so (F, Fc,ld) is
morphism of adjunctions. For the last claim note that FpFp(X) = (FT(X), F(ux) o Cr(x )
that 9 : Fp F = F.Fr from (14) is given by

% = €Iﬁ<ﬁ(x) o FrF(nx) = Fux) o (rx) o T'F(nx) = F(ux) o FT(nx) o(x = (x  (24)

where for the second equality we used and the definition of Fp on morphisms, the third
equality is by naturality of ( and the last equality uses the unit axiom for monads.

2. We are given a natural isomorphism « : Fldy = Up® from which we can define a natural
transformation % : Fp F = ®Fp as in (14)). For all X € C let

—1
U 6X qu( )

Cx t T'F(X) = Up FrF(X) 255 Up @ Fp(X) 2 FUpFr(X) = FT(X).
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We want to show that ( satisfies . Note first by and by naturality of « that

F(ux)o a};T(X) = FlUr(ery(x)) © oz;_.;quT(X) x) © Ur®(eF(x)) (25)
for all X € C. Moreover by items 2 and 3 in Lemma 2.2 we have

PD(ery(x)) © Brx) = Plerx) © Blnrn(x) = Eorm(x) © Fr(am(x)- (26)

Hence

F(px) o Grex 0 T'(Cx) = Fpx) 0 @z xy o Un (B7(x)) 0 T'(azy ) © T'UR(5%)

@) _ o
= Oé;;(x) oUp®(eF(x)) o Ur (B x)) © T/(afT(X)) o T'Up (8%)

@) - o
@ Az x) O U (g rx)) © U Fro(azyx)) o T'(az) ) o T'Un (BS)

= %rl( o Ur (5<I>}‘ ) o Uy Frldy (BY) = %rl( x) ° U (B%) o Ur (gl]-‘T,F(X)) =(xo© NIF(X)
where the second-to-last equality is by naturality of &' while the last equality is by and
(20). Multiplying the equality (D1) in Lemma by a~! we also have (x o Mrx) = F(nx)
for all X € C. Hence ( satisfies the condition and we have the functor ]54 defined
as in (23) above. We claim that « provides a natural isomorphism F, = ®, i.e. Q) €
Homr_pod (F¢(V,7), ®(V, 1)) for all (V,r) € T-mod. Indeed, denote ®(V,r) = (W, s) for some
W € D. Then

so T (o) = Up (gvyy) o UrFr (o) = Ur (ew,) o Ur (BY)
—Oé(vr) OFUT( )OOé]_- V) OU’H‘I(ﬁ\o}) :a(V,r) OF(T’) OCV.

where the first equality is by (20]) and (19 ., the second is by item 2 in Lemma 2.2} the third is
by naturality of o and the last is by and definition of ¢. Finally if (F, ®, «) is strong then
B¢ is an isomorphism and we see from its definition that ¢ is also an isomorphism. O

FExample 2.10. Let C,D be monoidal categories, assumed to be strict for simplicity. Let
(A,ma,14) be an associative algebra in C, where the multiplication my : A ® A — A and
the unit 14 : 1¢ — A satisfy the obvious axioms. It defines a monad T4 = (T4, u*,n*) with
Ty =A® —, pt = my ®idx and n§ = 14 ® idx. Similarly let (B, mp, 1) be an algebra in
D and T = (B ® —, 4P, 1n?) be the associated monad. Let F : C — D be a monoidal functor.
Then F(A) is an algebra in D with product mpay = F(ma) o Ff}‘ and unit 1pa) = F(1a).
For f: B — F(A) define
2)
L TyF(X) = Bo F(X) 229599 pa) @ F(X) 2% F(A® X) = FTA(X).

Denote by Homg\i’n_d) (T4, Tp) the set of monad morphisms (Def. whose underlying functor
is exactly the monoidal functor F'. Then we have two maps

Hom{f (T4, Ts) == € Homay (B, F(4)), Q) =G, O(f) = ¢/

where Hom,j; means morphisms of algebras in D. Clearly €2 0 © = id. But the converse, i.e.
that © o 2 = id is not in general true: one checks easily that ( is in the image of © o () if and
only it satisfies (xgy o (idp ® F)((Q%,) = Ff@%x,y o (Cx ®idp(yy) for all X,Y € C. If we look at
C (resp. D) as a right C-module category by X <Y = X ®Y (resp. VY =V ® F(Y))
then this extra condition on ( is equivalent to the fact that ( : TgF' = F'T4 is a morphism
of C-module functors [EGNO.| Def. 7.2.2] from (TgF,s) to (FTa,t), where sxy = idg ® F)((Q%/

and txy = FIE@) xy forall X;Y € C. If we call such monad morphisms C-equivariant, then
the conclusion is that we have a bijection between algebra morphisms B — F(A) in D and
C-equivariant monad morphisms T4 — Tp with underlying functor F.
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Now we recall the lifting theorem for right adjoints [Joh75l Th. 4] (a short summary is also
given in [BLV1I] §3.5]). We keep the notations introduced before Lemma Assume that F
has a right adjoint R : D — C. Denote by e : Id¢ = RF and h : FR = Idp the unit and counit
of the adjunction FF H R. If ( : T'"F = FT is an isomorphism we can define ¢ : TR = RT"
by

-1
ETR(Y) (CR(Y))

& : TR(Y) 0 RETR(Y) 22 prvpRy) 20, prvy), (27)

A tedious computation using the naturality of e, h, { and the unit-counit equations for e, h
shows that

VY €D, &y o pryy = R(py) o &ryy o T'(&y) and &y o npyy = R(ny).

Hence (]E, €) is a morphism of monads T — T and by item 1 in Lemma there is a lifted
functor R = R¢ : T"-mod — T-mod defined by

R(W,u) = (ROW),R(u) o &),  R(g) = R(g). (28)
Lemma 2.11. [Joh75l, Th. 4] Let (F,() : T — T’ be a strong morphism of adjunctions (Def. @)
and F¢ : T-mod — T'-mod be the associated lifted functor . If R is a right adjoint of F
then R defined in is a right adjoint of F¢.

Proof. For convenience here are some details, taken from [BLV11], §3.5]. Let (V,r) € T-mod.

Define €(v,,) = ey € Home(V, RF(V)). Using the definition of ¢ (27), the naturality of e, h, ¢
and the unit-counit equations for e, h, we get

RF(r)o R(Cv) o&pvyoT(ey) =eyor

which means that ey, € HomT_mod((V, ), E?}(v, 7")) and thus € is a natural transformation
ldrmea = RF,. Similarly, for (W,u) € T'-mod let hoyy = hw € Homp(FR(W),W). Then
actually hqyu) € Homp mod (FCR(W, u), (W, u)) and thus h is a natural transformation FR =

Idp 104. The pair (€, h) satisfies thg unit-counit equations because so does the pair (e, k), which
implies that R is right adjoint to Fr [ML9S8| §IV.1, Th. 2|. ]

Thanks to the right adjoint construction in we are in the following situation when (F, ()
is a strong morphism of monads:

T-mod T’-mod (29)

ﬁc
€
Fr ( —|> Ur Z For < —|> Uspr

c— L =D

;U<I—ﬁ =

Proposition 2.12. Let C, D be abelian categories, T = (T, pu,n) be a monad on C and T" =
(T, 1/, ") be a monad on D such that T, T' are additive functors. Let (F,() : T — T’ be a
morphism of monads such that

e [':C — D is an additive functor which has a right adjoint R,
e (:T'F = FT is an isomorphism.
Then B B
Vn >0, Extpoqp(Fe(V),W) = Exth q0(V, R(W))

for all V € T-mod and W € T'-mod, where R is the right adjoint of ]*N} defined in (128]).
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Proof. 1t is clear that ﬁg is additive because it is equal to F' on morphisms. Hence (F, 134, id) is
a strong morphism of resolvent pairs by item 1 in Lemma [2.9] and we apply Theorem 2.5 [

To finish we describe explicitly the isomorphism in Proposition [2.12| Let Gt = Frldr (resp.
G = FpUr) be the comonad on T-mod (resp. on T'-mod). The conditions on ¢ imply
(x € Hompr_oq (FT/F(X), FC}"T(X)) for all X € C. Hence for all V = (V,r) € T-mod we have

Cv = Cup(vy € Homppmoq (Fr FUn(V), FeFrlde(V)) = Homprmod (G Fe (V), FeGr(V))

where we used that FlUy = U FC Since (F, FC, a)is a morphism of resolvent pairs with a@ = id
(Def. [2.1), the natural transformation v : G Fy = F,Gr from is given by

WV = (V,r) € T-mod, Ay = B, o Fray!) = 84 B ¢

The morphism Pyv ) defined inductively in is thus equal to C‘(/") ; G%,ﬁg(V) — EG%(V)
defined inductively by

G (=17 (M) ~ Curarv=CTn(v) ~ "
— = GrFGR(V) —— » FeGr (V) (30)

QY GEIR(V)

and ¢ = idg ) for all V = (V,7) € T-mod. Hence by (I8), for all V = (V,r) € T-mod and

W € T"-mod, we have an isomorphism

Hom mod (G%“ (V), f%(W)) s Hompr o (EG%“ (V), W>

ity

i (31)
", Homprpod (G%“FC(V), W)

which descends to the isomorphism of Proposition [2.12]

3 Application to deformation of monoidal structures

In this paper we only consider infinitesimal deformations. This section begins with a brief review
of the deformation theory of monoidal structures ( We adopt a geometric language: given
a functor F' and a monoidal structure 6 for F', we look at deformations of § as tangent vectors at
the point 6, although there is in general no underlying algebraic variety (or manifold) structure
on the set of all monoidal structures for F. This point of view will be convenient in §4.2
Then we recall the isomorphism between DY cohomology and relative Ext groups (§3.2), and
actually re-prove it under weaker assumptions than in [FGS24]. This allows us to apply the
general results of §2| and to obtain an adjunction theorem for DY cohomology (Theorem

n .

3.1 Tangent spaces and DY cohomology

Let C, D be monoidal categories, which we take strict for simplicity. The tensor unit object will
be denoted by 1. Let F': C — D be a functor which satisfies F'(1) = 1. A monoidal structure
for F is a natural isomorphism 0 : F ® F = F(— ® —) such that

Oxev,z o (Oxy ®idpz)) = Oxyez o (idpx) ® Oy,z)

‘ VX,Y,Z€eC 32
and 9)(71 = 917)( = ldF(X). ( ) ( )
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The pair (F,0) is called a monoidal functmﬂ When the monoidal structure 6 of F'is fixed it
is customary to denote it by F®. Using 0 repeatedly one obtains for each n > 0 a natural
isomorphism

0%  FX)®...0F(X,) 3 FX,0...9X,) (33)

.....

with the convention that /) = idy and 6® = 6; when the notation F'® is used we write F™
instead of #. There are many different explicit formulas for #™ in terms of 6, but they all
give the same isomorphism in D due to the coherence theorem for monoidal structures [Eps66].

Given two monoidal functors (F,6),(F',0') : C — D, a monoidal natural transformation
w: (F,0)= (F',0) is a natural transformation w : F = F’ such that

/
Oxy © (WX ® WY) = Wxey °fOxy

for all X, Y € C. Denote by Mon(F') the set of all monoidal structures for a given functor F'. We
say that 61,0 € Mon(F) are equivalent, denoted by 6y ~ 0, if there exists a monoidal natural
isomorphism (F,6;) = (F,6,). Consider the group Aut(F) of all natural automorphisms
F = F. For u € Aut(F) and 0 € Mon(F) let u-0 : F® F = F(— ® —) be the natural
isomorphism with components

(u-0)xy = uxgy ©fxy o (u;(1 ® u;l) (34)

It is straightforward to check that u -6 € Mon(F'). Hence Aut(F') acts on Mon(F') and (by
definition) the equivalence class [f] for the relation ~ is the orbit of # under the action of
Aut(F):

Mon(F')/~ = Mon(F')/Aut(F). (35)

In the situation when D (the target category of F') is linear, we introduce a vector space
which is “tangent” to a given point # € Mon(F'). More precisely let k be a field and assume
that D is a k-linear category whose monoidal product is k-bilinear on morphisms. Consider the
category D, defined by

Ob(D,) = Ob(D),  Homp, (X,Y) = Homp(X,Y) @y kle]/(¢?). (36)

In short, the objects are unchanged and the Hom spaces have their scalars extended to the ring
of dual numbers. Thus, a morphism in D, is an expression a + €b where a, b are morphisms in
D. The composition and monoidal product are bilinearly extended in the obvious way:

(a+eb)o(a +eb)=aod +elaob +bod),

37
(a+eb) @ (d +eb)=a®d +elab +b@d) (37)

and (D., ®., 1) becomes a k[e]/(¢*)-linear monoidal category. For any natural transformation
f:F(—)® F(—) = F(— ® —), not necessarily monoidal, we have the collection of morphisms
0+ ¢ef = (9X7y + evaY)XYeC in D.. We define the tangent space at 0 as

ToMon(F) = {f: F(—) ® F(—) = F(— ® —) | 6 + f satisfies (32) }. (38)
Explicitly a natural transformation f is in TyMon(F') if and only if

9X1,X2®X3 o <1dF(X1) ® fX27X3) - fX1®X2,X3 © (6X1,X2 oY idF(Xs)) (39)
+ fx1,x20x5 © (Idrc) ® Ox,,x5) — Ox,0x0,x5 © (fx,,x, @ idp(x;) =0

2In full generality one requires the existence of an isomorphism F(© :1 5 F (1) and the second line in
becomes 0x 1 o (idpx) ® FO) = 01,x © (FO idp(x)) = idp(x). In what follows we always assume that
FO =id r1) for simplicity. This is sufficient for our main application in where we take F' = ®¢ with a
monoidal structure coming from a braiding in C.
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for all X1, X5, X5 € C and
fxai=/ ix=0 (40)
for all X € C. Since the conditions and are linear, TyMon(F') is a k-vector subspace
in Nat(F @ F, F(—® —)).
We now want to give a definition for T(g(Mon(F)/~). As a motivation, recall that when a

Lie group G acts on a manifold M then under suitable assumptions the quotient set M /G is a
manifold (see e.g. [Leel3, Chap.21]) and one has

Tam(M/G) = (T M) /(T (G - m))

where T denote tangent spaces at the prescribed points. Combining this with we would
like to define T(g(Mon(F)/~) as TyMon(F)/To(Aut(F) - §) but we must give a sense to the
denominator. Note that for all v € Nat(F, F'), u = idp + €v can be thought as the first term of
the Taylor expansion of a curve passing through the point id € Aut(F') and we have

((idF+EU)'0)X7Y.exy+€[UX®yO€9xy—6'XYO(ldF ®Uy)—9XYO(UX®1dF )]

The elements arising as the coefficients of ¢ in these “Taylor expansions” form a reasonable
ansatz for Ty (Aut(F) . 8). These heuristic remarks lead to the precise desired definition:

T (Mon(F)/~) = (TeMon(F))/=, (41)
where we declare that f =y g if there exists v € Nat(F, F') such that

fxy —9xy = Oxy o (idpx) ® vy) — vxey 0 Oxy + Oxy o (vx ®idpy)) (42)

for all X|Y € C. Let us show that, up to isomorphism, this definition does not depend on
the representative 6. For u € Aut(F) and f € TyMon(F') define u - f as in (34). There is an
isomorphism of vector spaces

ly, : ToMon(F') — TeMon(F), fru-f. (43)

For v € Nat(F, F) set (u-v)x = uy ovy ouy', which defines u - v € Nat(F, F). If f and g are
as in a simple computation reveals that

(u- f)X,Y — (u- g)X,Y
= (u-0)xy o (idrp) @ (u-v)y) = (u-v)xey o (u-0)xy + (u-0)xy o ((u-v)x @idpw)).

Hence f =4 g implies u - f =,.9 u - g, so that ¢, descends into a linear map
L, : TeMon(F)/ =y — TyoMon(F)/ =,

whose inverse is £,,-1.
Here is a rephrasing of the above definitions for multilinear functorsf]

Lemma 3.1. Let C',...,C", D be k-linear monoidal categories and F : C* x ... x C" — D be a
functor which is k-linear in each variable. Define a K[e]/(€*)-linear functor F, : Ct x ... xC" —
D, by linear extension of F' in each variable. Then for any 0 € Mon(F):

1. We have f € ToMon(F) if and only if 0 + e¢f € Mon(F,).

2. For all f,g € ToMon(F), we have f =y g if and only if there exists v € Nat(F, F') such that
idp +ev: (F.,0 +€f) = (F., 0+ eg) is a monoidal natural isomorphism.

3We consider multilinear instead of just linear functors because in we will apply Lemma to F' = ®.
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Proof. 1. Indeed by definition +¢f € Mon(F,) if and only if 6+ ¢ f satisfies (32)), which means
that f € TyMon(F') by . The only point of this lemma is that when F' and its source
category are linear (or more generally F' is multilinear), then one can define the extension F,
and talk about monoidal structures for F..

2. Straightforward computation. O]

We now recall the cohomological interpretation of the above discussion, following [Dav97,
CY98, Yet98]. Let (F,0) : C — D be a monoidal functor and assume that D is k-linear. For
each n > 0 define a k-vector space

cn(F.6) = natural transformations of the form
DY\~ - (le 77777 XnF(X1)®®F(Xn)_>F(X1®®Xn))X1 77777 X, eC
Foralln >0and 0 <i<n+1let
O - Cpy(F,0) = Cpy' (F,0) (44)
such that 07'(f)x,,.. x,,, is equal to
9X1,X2®...®Xn+1 % (idF(Xl) ® fX2 ..... Xn+1) ifi=0
Ix1 Xi@ X1y Xnss © (IdrC)e.erx 1) ® 0x, X, @ 1dr(x, 0. 0F(xX0) 11 <i<n
0x,0..0XnXnp1 © (X1 X0 @ 1dp(x, 1)) ifi=n+1
Also for 0 < i <n—1let s : CBy(F,0) — Cp (F, 0) be given by
i ()X X = FX0 X X1 X (45)

These linear maps satisfy the cosimplicial identities recalled in Appendix [Bl In particular
we have the differential 6" = S (—1)/97 and (Cpy(F,0),0) is called the Davydov—Yetter
(DY) complex of (F,0). We write the subspaces of cocycles and coboundaries in degree n as
Z3y (F,0) and Bpy (F,0), respectively. The DY cohomology for F' in degree n is H}y (F,0) =
ZBY(F7 9)/BBY(F7 6)

An element f € CEy(F,0) is in Z3y(F,0) if and only if it satisfies (39). The condition (40)
in the definition of TyMon(F') corresponds precisely to the normalization defined in Appendix
. Indeed, due to , the normalized complex for DY is

NC3y(F,0) = {f € CBy(F,0)| fxi,..x, = 0if X; =1 for some i}. (46)

.....

As a result
TyMon(F) = NZ2y(F,0)

where NZ2y (F,0) = Z2y (F,0) N NCR (F, 0) is the subspace of cocycles in the normalized DY
complex. Moreover is equivalent to f — g = §'(v), which means that f =4 g if and only if
f and g are cohomologous. One can assume that v € NCL(F,6) by item 3 in Proposition .
Thus if we denote by NHpy (F,6) the cohomology of the normalized DY complex (46]), we have

Ty (MOH(F)/N) = NHpy (F,0) = Hpy (F.0) (47)

where the second isomorphism is due to Corollary [B.3] which asserts that the inclusion NCpy (F, 6) —
CYy(F,0) is an isomorphism in cohomology.

Notation. When a monoidal structure on F is fixed we denote it by F®. Then we write
Hyy (F) instead of Hpyy (F, F®).
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We finish with some explicit formulas for the normalization projector N : Chy(F) —
NCP(F) defined in general in Appendix [B] which is a quasi-isomorphism. In degree 2 it is
given by

N (fxy = fxy —idpi) @ fiy — fxeva +idre @ fra

thanks to (163). Moreover if f is a cocycle then N2(f) = f—6'(f1.—) by (164). For f € C3y(C)

we have

N3 (Fxvz= fxyvz—idx ® fivz — fxeviz — [xyezi +1dx ® fyi1z
+ fxgvzi +idx ® fivez:r —idx ® fyiza

thanks to (163). Moreover if f is a cocycle then N3(f) = f+6*(—fi,- -+ f-1- —1d® f11,-)
by .

Remark 3.2. All this subsection remains valid if we consider laz monoidal structures (i.e. not
assumed to be isomorphisms). However all our results in the sequel need monoidal structures
which are isomorphisms, and “monoidal structure” is always understood in this sense.

3.2 Relative Ext groups and DY cohomology with coefficients

Let C,D be monoidal categories and F' : C — D a monoidal functor with a given monoidal
structure F)((Ql{XQ c F(Xy) ® F(X2) - F(X1 ® Xs). We denote by Z(F') the centralizer of the
functor F [Shi23], §3.1], [GHS23, Def. 3.1]; its objects are pairs V = (V, p) where p: VR F(—) =
F(—) ® V satisfies

VX,Y €C, pxayo (idy ® F}f} ) = ( Fg ®idy) o (idpx) ® py) © (px @ idpy))-

It is a monoidal category with (V,p") @ (W,p") = (V@ W, (p¥ @ idw) o (idy ® p")). For
F = 1d¢ we recover the Drinfeld center Z(C).

Assume that D is k-linear, for a field k, with k-bilinear monoidal product. There is a gen-
eralization of DY cohomology with coefficients, which are objects from Z(F') [GHS23| Def. 3.3].
For coefficients V,W € Z(F'), the cochain space of degree n, denoted by Cfy (F;V, W), consists
of natural transformations of the form

fxi x, VROF(X))®...0 F(X,)) > F(X1®...0X,) @ W. (48)

Then CPy (F;V,W) is a simplicial vector space. The coface maps with coefficients are given in
[GHS23|, Def. 3.3] when F' is strict. For non-strict F' the coface maps without coefficients (or
with V.= W = 1) are given below (44)). It is straightforward to combine these two definitions
for the general case; we will however not need the explicit formulas in the sequel and thus omit
them. We denote by Hpy(F;V,W) the associated cohomology. Note that trivial coefficients
recover the cohomology from HYy(F;1,1) = HYy(F).

Recall that a k-linear category is called finite if it is equivalent to the category of finite-
dimensional modules over a finite-dimensional k-algebra [EGNO| §1.8]; such a category is in
particular abelian. A monoidal category C is called rigid if every object has left and right dual
objects XV and VX, meaning that there exist morphisms

evy XV ®X =1, coevy:1l > X®XY, vy : X®X =1, coevy:1 = "X®X
satisfying the usual “zig-zag” axioms [EGNO §2.10]. If C is rigid and F' : C — D is a monoidal
functor, define for all X € C

F®_
evex) : F(XY)® F(X) - F(XY® X)

(2) -1
X,xV

F(evx) 1

?

(49)

F(coevx)

F(X®XY) F(X)® F(XY).

coevp(x) : 1
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This turns F'(X"Y) into the left dual of F(X). One can similarly define évp(x) and coevp(x)
which turns F'(YX) into the right dual of F'(X). Note that there are compatibilities like

evp(y) © (idp(yv) ® evp(x) ® idF(y)) = eVE(Xgy) © (F}(/?\)’)(\/ ® F)(?’) ).
From now on we make the following assumptions on C, D and F"

C,D are k-linear abelian categories,

C, D have k-bilinear monoidal products (strict for simplicity),

C is finite and rigid, (50)
®p : D x D — D is right exact in each variable,

F :C — D is a k-linear monoidal right-exact functor.

We will show that these are sufficient conditions to construct a left adjoint Fr of the forgetful
functor Up : Z(F') — D, thus yielding a resolvent pair Fr 4 Up between Z(F') and D. In the
special case where F'is a strict exact functor between finite tensor categories C, D we related in
[FGS24] §4.2] the DY cohomology of F' with the corresponding relative Ext groups ExtZm p
building upon the main result of [GHS23] on DY cohomology and comonad cohomology. This
still holds under the more general assumptions :

Theorem 3.3. Under the assumptions we have for all V,W € Z(F) an isomorphism of
cochain complexes

C].DY(F; V7 W) = HomZ(F) (Bar.Z(F),D(V)7 W) (51)
where Bar® is defined in @[}7. Therefore there is an isomorphism of k-vector spaces
Hpyy (F;V, W) = EXt.Z(F),D(V>W)- (52)

The proof of this theorem in [FGS24] §4.2] uses the explicit construction of the left adjoint
Fr, based on the description of Z(F') as a category of modules over some monad Zr (see
for a short reminder on monads). This last fact is well-known: [BVI2, Th.5.12] can be used
for F' = Id¢, [Shi23|, §3.3] considers a related situation and [GHS23, §3.3] gives a sketch of
proof for general strict F'. However here we work with weaker assumptions on C, D and F'. In
particular, F' is not assumed to be strict as a monoidal functor, because of the application in
for the tensor product functor with the monoidal structure given by a braiding on C. Hence
some (rather straightforward) adaptations are required in order to prove Theorem and we
discuss some details for convenience.

Note first that the only reason for the stronger assumptions regarding rigidity, finiteness
and exactness in [GHS23, [FGS24] was to ensure for all W € D the existence of the following
coend by invoking [KLO0I, Cor.5.1.8]:

XeC
Zp(W) :/ F(XY)oW ® F(X). (53)
But we can use the more general Corollary which proves the existence of Zp(W) under
the assumptions . Denote by
iAW) F(XV)YoW @ F(X) — Zrp(W)

its universal dinatural transformation. Being a coend with parameters, the assignment W —
Zp(W) is a functor Zp : D — D [MLIS, §1X.7]. Explicitly, if f € Homp(W, W’) then Zg(f) is
defined by the commutative diagram

dpxv)®f®idpx)

FXY)oW® F(X) FXY)oW' e F(X) (54)
if((W)l lz@(W/)
Zp(W) Zp(W')

NZr(f)
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for all X € C. The functor Zr has the structure of a monad whose multiplication u* : Z% = Zr
is described as follows. By the theorem for iterated coends [MLIS, §I1X.8] we have Z&(W) =

[YYCRYVY @ F(XY)@ W ® F(X)® F(Y) and let
i D W) =i (Ze(W)) o (idppv) @ 5 (W) @ idry)) (55)

be the associated universal dinatural transformation. Then by universality there is a commu-
tative diagram

2 : 2
F}(f\}’x\/ ®1dW®F)((,)Y

FYV)o F(XY)@W e F(X)® F(Y) F(X@Y))eWeF(X®Y)
if(”(s)(W)L llf(@Y(W)

ZE(W) Zp(W)

3k,

(56)
for all X, Y € C and W € D. This defines a natural transformation u’" : Z2 = Zp. Also define
n' :Idp = Zp by nl, = i’ (W) for all W € D. It follows from the axioms of F® in that
uf is associative and has the unit . As a result we have the monad (Z o pE ot ), its category

of modules Zp-mod and the adjunction (see (19))

(Zr(W), uly) Zp-mod (V,r) (57)
]
|44 D V

For F' = Id¢ we get the standard central monad and write Z¢, i$(V), u¢ and nC.

Furthermore, there is an isomorphism of categories Zp-mod = Z(F') constructed as follows.
If (W,r)is a Zp-module, we can define for all X € C

coevp(x) ®id

p(r)x : W@ F(X) FX)@ F(XY) oW ® F(X)

. (58)
id®r

ideil (W)
—

F(X)® Zp(W) F(X)oW

with coevp(x) from (49). Long but straightforward computations prove that p(r) : WQF(—) =
F(—) ® W is a half-braiding relative to F' and thus (W, p(r)) € Z(F). Conversely if (W, p) €
Z(F) define r(p) : Zp(W) — W by the commutative diagram

idF(XV)®PX

F(XY) @ W @ F(X) FXY)® F(X)® W (59)
if{(W)j jeVF(X)(X)idW
Zr(W) w

Jir(p)

for all X € C and with evp(x) from (49)); then (VV, r(p)) € Zp-mod. Through this isomorphism,
the adjunction becomes

(Ze(W).p? W) Z(F)  (V.p") (60)
S T
w D %4
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with the half braiding p?r") = p(ufy,) : Zrp(W) ® F(—) = F(—) ® Zp(W) defined by (58).
We note that the construction in can be interpreted a posteriori as the comparison functor
K : Z(F) — Zp-mod (defined in general in (21])) associated to the adjunction (60)).

Since the functor Z is additive the adjunction is a resolvent pair thanks to item 2 in
Proposition . Due to the isomorphism Zp-mod = Z(F) explained above, the same is true
for the adjunction (60)) . Hence, under the assumptions , we have the relative Ext groups
ExtZ g p- Of course

VV, W e Z(F)v EXt;’(F),D<V7 W) = EXt.ZF—mod,’D (K(V)7 K(W>) (61)

where K is the isomorphism Z(F) = Zp-mod.

Proof of Theorem[3.3. Let Gr = FrlUp be the comonad on Z(F) and recall from @[) that
Bar p p(V) = G'5PH(V). We construct an isomorphism

I : Chy(F;V,W) = Homz(r) (GE(V), W)

by inserting the monoidal structure of F' in [FGS24] eq. (48)], where F' was assumed to be strict.
Write V = (V,p") and W = (W, p""). Using the Fubini theorem for coends [ML98, §IX.8], note
that G (V) is

.....

Zn(V) = /Xl e FX))®.. @ FX))®V®F(X)®...® F(X,) (62)

as an object in D. Let iy™ o (V): F(X))®...@ F(X\)®V@F(X)®...@ F(X,) = ZpV)

Tyeeny
be the universal dinatural transformation defined inductively by if(’(l)(V) =& (V) and

F(n+1 . n . .F\(n .
ZX1(,~-TLJ2n+1(V) = Z§n+1 (ZF(V>) © (1dF(XX+1) ® ZX].(7-~)~7X77.<V) ® ldF(Xn+1)) (63)

= ixy xes (ZE(V)) 0 (idp(xy, pe.eriy) @ i, (V) ® drco)e. oF () -

Take f € Cpy(F;V,W), which has components (48). Using the universality of Z(V), we
define I'"(f) by declaring that (meaning is explained after the picture)

W

|
()

ZEH (V)

F(X3) FXY) VF(Xy) F(Xntr) F(XY,)) F(xy) F(XY) F(Xn) F(Xn41)  (64)

for all Xi,..., X1 € C. We use the same graphical conventions as in [FGS24, §3]: we
read diagrams from bottom to top, the caps correspond to the evaluation morphisms evg(x)

defined in and F™ was defined in (33). The inverse I'"! is constructed similarly, by
inserting the iterated monoidal structure F' in [FGS24, eq. (49)]. One can check by tedious
but straightforward computations that I' commutes with the coface maps. O
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3.3 Adjunction theorem for DY cohomology

Let C, D and F : C — D be as in (50). Recall from the monads Z; : C — C and
Zrp : D — D. Here we establish a strong morphism (Def. between these monads and
deduce from Prop. [2.12|and Thm. our main result Thm. called Adjunction Theorem for
DY cohomology.

For V € C, W € D and all X € C we continue to denote by i (V) : XV @V ®@ X — Z¢(V)
and iL(W) : F(XV) @ W @ F(X) — Zr(W) the universal dinatural transformations of the
coends Z¢(V) and Zr(W). From the monoidal structure F? : F® F = F(— ® —) we can
define F® : F F@ F = F(— ® — ® —); the exact formula of F® is irrelevant due to
the coherence theorem for monoidal structures [Eps66]. By universality of i (F(V)) we have
a commutative diagram

F&)
F(XV)® F(V)® F(X) ahilcs F(XVeV®X) (65)
iE(F(V)) lF(z‘%(V))
XecC v _ XeC yrv
ZeF(V) = [Y F(XY) @ F(V) ® F(X) —— FZc(V) = F ( [*xveVve X)

It is easily seen from that the collection of isomorphisms ({y)yec assembles into a natural
isomorphism ¢ : Zp F = F Z¢.

Lemma 3.4. (F,() defined in is a strong morphism of monads Zec — Zp (Def. [2.§).
Hence by Lemma[2.9 we have the functor

F =F: Zg-mod — Zp-mod, (V,r) = (F(V),F(r)odv), f F(f). (66)

Proof. Since F': C — D is a right exact functor, Corollary ensures (y is an isomorphism
for any V' € C. To show the first equality in (22)) we compute

v o iy 0 xS (FWV) B ¢y 0ty (FIV)) 0 (2 o @idp 0 FEY)
® F(iSay(V)) o F}(f3V)®XV,V,X®Y ° (Fx(va) xv ®@idpy) ® F)((2)Y)
F(M ) o F(i5 (Ze(V))) o F(idyv ® i% (V) @idy) o Fl(/V)®XV,V,X®Y ° (Fl(/QV) xv ®idpy) ® F)(()Y)
= F( “V (ZCY (Ze(V))) 0 F(idyv @ i% (V) @idy) o Fi(/sv) xvevexy © (idryv) ® F§(3,V,X ® idp(y))
F( g/(ZC ) © Yv) Ze(V) y © (idrrv) ® F(ZX(V)) ®idp(Y))

o (idror) ® Fyyx ® idry))

1

F(i5) 0 Czeqvy 0 iy (FZe(V)) o (idrrv) ® (Gv 0 ix (F(V))) @idry))
@ F(1$) © Czevy © Zr(Cv) 0 iy (ZpF(V)) o (idpyv) @ ik (F(V)) ® idpy)
D Fi$) 0 Crery 0 ZelGy) 0 XD (F(V))

where the unlabelled equalities are respectively derived from the coherence condition for monoidal
structures and from naturality of F®). The second equality in is readily true. O]

Now assume that F' has a right adjoint R : D — C. The existence of R is automatic if D
is finite as a k-linear category by [DSPS19, Cor. 1.9], which asserts that a right-exact k-linear
functor between finite k-linear categories admits a right adjoint. Since ¢ is an isomorphism,
Lemma M applies and the adjunction F' 4 R can be lifted to an adjunction F; 4 R between
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the categories of modules over Z; and Zr. Using the isomorphisms Zg-mod = Z(C) and
Zp-mod = Z(F) explained in this can be rephrased as follows

Z(C) i Z(F) (67)
}'c(—i)uc i fF<4>uF

c- L =D

Using , and one can compute that the functor F in is given on objects by
F(V,p) = (F(V),p") with

(2) Flox) (F (2)) 1

ph FV)QF(X) =5 FVeX) L5 FXeV) —— F(X)® F(V)

for all X € C and on morphisms by F(f) = F(f). Although we do not need it in the sequel,
we note that F' is monoidal. Indeed if Vi = (Vi,p1),Va = (Va,p2) € Z(C) then using
it is straightforward to check that F‘(/f?VQ € Home(F (Vi) ® F(Va), F(Vi ® V3)) is actually in
Homz ) (ﬁ(Vl) ® F(Vy), F(V, ® Vy)), i.e. it commutes with the half-braidings. Hence we can
define ]:;\(/?)vg = F‘(/?’)VQ.

Theorem 3.5. Recall the assumptions on C, D and F made in (50) and assume moreover
that F admits a right adjoint R (which is for instance the case when D is finite as k-linear
category). Then with the notations from we have

Hpy (F3 F(V), W) 2 Hiy (C;V, R(W)).
for allV € Z(C) and W € Z(F). In particular,
Hi (F) = Hiy (€51, R(1)).
Proof. We have
Hpyy (F; F(V),W) = Extl ) p(F(V), W) = Exty o (V, R(W)) = Hpy (C;V, R(W)).  (68)

The first isomorphism uses Theorem , the second uses and Proposition and the
third uses again Theorem but now for the identity functor Idc. For the last claim in the
theorem, take V = W = 1 and note that F'(1) = 1. O

Recall from the space Ty (Mon(F)/~) which is “tangent” to the equivalence class [6]
of a monoidal structure 6 for F'

Corollary 3.6. 1. Let 0 = F® be the given monoidal structure of F. Then under the assump-
tions and notations of Theorem[3.5 we have

T (Mon( )/N) Extz (1 R( ))

2. If0 - K— P —1— 0 is an allowable exact sequence in Z(C) with P relatively projective
then for all n > 2 we have

dim Hpy (F) = dim Homz(¢)(K, M) — dim Homz ) (P, M) + dim Homz (1, M)
where M = R(1) @ (KV)&(n-
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Proof. 1. Follows from and Theorem .
2. Follows from Theorem and the dimension formula in [FGS24, Cor. 4.10]. ]

We can describe rather explicitly the functor R : Z(F) — Z(C).

Proposition 3.7. If (W,)\) € Z(F) then R(W,\) = (ROW), \) where A\ : R(W) @ X —

X ® R(W) is the image of A\x : W @ F(X) — F(X) ® W through the following sequence of

linear maps for all X € C:

Homp (W @ F(X), F(X) ® W) —= Homp(F(XY) @ W @ F(X),W) (duality [49))

WEWED, Homp (F(XY) @ FR(W) ® F(X), W)
— Homp (F(XY @ R(W) ® X),W) (monoidality of F)
— Home (XY @ R(W) ® X, R(W))  (adjunction F 4 R)
— Home (R(W) ® X, X @ R(W))  (duality in C)

where h : FR = Idp s the counit of F' 1 R. On morphisms we simply have ]:?(f) = R(f).

Proof. Let us first use the categories of modules Z¢-mod and Zp-mod, which are isomorphic
to Z(C) and Z(F). Let (W,r) € Zp-mod; then by Lemma , R(W,r) = (R(W),R(r)o&w)
with & @ ZeR(W) — RZp(W) defined in (27). Let e : Ide = RF and h : FR = Idp denote
the unit and counit of F' 4 R. By naturality of e, by definition of { in and by definition of
Zp(hw) in , &w is characterized by the following commutative diagram

XV e RW)® X Dfonmnex RF(XY & R(W) X) (69)
lR(Fﬁ?& rewy )
i (ROW)) R(F(XY)® FR(W) ® F(X))

lR(idF(XV)(X)hW@idF(X))

ZeR(W) R(F(XV)@ W @ F(X))

RZp(W)

Few R(E (W)
Now one can check that the functor Z(F) Zp-mod — Ze-mod Z(C) is indeed given
by the announced formula. O]

To finish, we describe the isomorphism in Theorem at the level of the DY cochain
complexes. Recall from (62)—(63)) the iterated coend Z(V) and its universal dinatural trans-
formation zf((,”)_xn(V). Let G¢ (resp. Gg) be the comonad on Z(C) & Zg-mod (resp. on
Z(F) = Zp-mod). erte V = (V,p¥) € Z(C) and W = (W, p") € Z(F). Note that the
natural isomorphism Cv LE(V ) — FG3(V) generally defined in is characterized by
the commutative diagram

F(2n+1)
XY, XV,V,XI,.“Xn

F(XY)...F(X\)F(V)F(X)) ... F(XY)

H'C(n)

where on the top row we omit ® and on the bottom row we use that ﬁCG%C (V)= FZ3(V) and
GYy. ]54 (V) = ZEF(V) as underlying objects in D. Then we can define an isomorphism between
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DY cochain complexes by requiring that the following diagram commutes in all degrees n > 0:

Homgz c) (Gg+1 (V), }N%(W)> Homz p) (G;@HE(V), W)

= .
(164) lN (164) jfv

Cny (C;V, R(W)) 2=

Chy (F: F(V), W)
Explicitly, it is given as follows on the components of the natural transformations:

Home (VR X1 ®...0 X,, X1 ®...® X,, ® R(W))
>~ Home (X, ®...0 Xy @V X1 ®...@ X,,, RW))  (duality)

>~ Homp (F(X,) ®.. 0 Xy @Vo X, ®...0 X,),W)  (adjunction F 4 R)
>~ Homp (F(X,) ®...0 X))@ F(V)@ F(X1)®...® F(X,), W) (monoidality of F')
>~ Homp(F(V)® F(X1)®...Q F(X,),F(X;1®...9 X,) @ W) (duality)

where for the second duality transformation we use .

4 Tangent space to a braiding

Let C be a monoidal category, which we assume strict for simplicity. Recall that a braiding on

C is a natural isomorphism ¢ = (cX7y XY SY® X)XYeC which satisfies

cxevz = (cxz ®idy) o (idx ® ¢y z), cxyez = (ldy ® cxz) o (cxy ®idy) (70)

for all X,Y,Z € C. We denote by Br(C) the set of all braidings on C (not taken up to
equivalence). Note that a braiding automatically satisfies cx 1 = ¢4, x = idx.

Now assume that C is k-linear and that ® is k-bilinear on morphisms, where k is a field.
For ¢ € Br(C) there is a space of “tangent vectors” to c:

Definition 4.1. An infinitesimal braiding tangent to ¢ is a natural transformation t = (tX7y :

XY — Y®X)XY€C such that for all X,Y,Z € C we have

txovz = (cxz ®idy) o (idx @ tyz) + (txz ®idy) o (idx ® ¢y z)
tX,Y@Z = (ldy & CX,Z) o} (txyy & 1dz) + (1dy & th) 9] (nyy & 1dz)

We denote by T Br(C) the k-vector space of infinitesimal braidings tangent to c.

As the name and notation suggests, this definition is obtained as follows: ¢ is an infinitesimal
braiding on C tangent to c¢ if and only if ¢ + €t is a braiding on C, where C, = C @y k[e]/(€?) is
defined in

Remark 4.2. 1. The name “infinitesimal braiding” is already used in the context of deformation
of symmetric monoidal categories, in relation with Vassiliev invariants [Car93, §4|, [Kas95l Def.

XX.4.1]. If ¢ is a symmetric braiding on C and (hyy € Ende(X ® Y))XYEC is an infinitesimal
braiding in the sense of [Car93|, §4], then (c xyoh va) Xyvec satisfies Definition . The converse

is not true in general because the property cxy o hxy = hy x o cxy required in [Car93, §4] is
not implied by our definition.

2. A slight variation of Deﬁnition appears in [ABSW24l Def. 1.1] under the name pre-Cartier
braidings: (hX7y € EndC(X®Y))X vecisa pre-Cartier braiding if and only if (CX7yOhX7y>
is an infinitesimal braiding in our sense.

X,yec
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Our first goal and the topic of and is to explain the relation between T .Br(C) and
the DY cohomology of the monoidal product ® : C xC — C endowed with a monoidal structure
coming from the braiding c. This is based on work by Joyal and Street [JS93] who established
a bijection between braidings and so-called multiplications on a monoidal category. Yetter
already realized in [Yet98, Th.3.9] that deformations of multiplications yield deformations of
braidings but did not describe how the space of infinitesimal deformations of a given braiding
fits into the DY cohomology of the corresponding multiplication, as we do in Corollary [£.15]
Let us mention that categories with several multiplications are explored in [BFSV03].

The second goal, achieved in §4.3] is to apply our general adjunction theorem for DY
cohomology (Thm. to the functor F' = ® : CKC — C endowed with the monoidal structure
induced by a braiding. We first compute the corresponding coefficient in Theorem 4.18 and this
gives us a formula for the dimension of T.Br(C) in terms of ExtQZ(C),E 2(c),cxcs See Corollary ,
which is computable from a relatively projective resolution of 1 € Z(C). In , we furthermore
apply a Kiinneth formula to rewrite this dimension formula in terms of the ‘standard’ adjunction
between Z(C) and C, i.e. involving only relative Ext% ) o at n = 1,2, into what we call the end
formula of the tangent space to a braiding, see Corollary [4.25]

4.1 Multiplications and braidings

In this section we define the notion of a weak-unital multiplication on a monoidal category. This
is a slight generalization of the concept of multiplication on a monoidal category introduced by
Joyal and Street [JS93, §5]. We then explain what the correspondence between multiplications
and braidings obtained in [JS93| Prop. 5.3] becomes for weak-unital multiplications. The point
of introducing weak-unital multiplications is that a DY deformation of a multiplication yields
only a weak-unital multiplication on C, = C ®y k[e]/(e?), as we will see in the next section

(Remark [4.10)).

Let C = (C,®,1) be a monoidal category, assumed to be strict for simplicity. Then C x C
is a monoidal category, with product (X1,Y)) ® (Xs,Ys) = (X1 ® X5,Y; ® Y3) and unit object
(1,1).

Definition 4.3. 1. A weak-unital multiplication on C is a monoidal functor ® : C x C — C
such that ®(—,1) = ®(1, —) = Id¢ as functors (but not necessarily as monoidal functors).

2. A multiplication on C is a monoidal functor ® : CxC — C such that ®(—,1) = &(1,—) = Ide
as monoidal functors [IS93, §5], meaning that their monoidal structures are equalﬁ

By definition a weak-unital multiplication ® comes with a monoidal structure ®®), which is a
natural isomorphism

2 ~
®E)21,Y1)7(X2,Y2) : ®(X17}/1) ® q)(X27 }/2> — (p(Xl ® X27 }/l & Yv?)

for all (X;,Y;) € C x C such that

2) (2) .
(X18X2,Y10Y2),(X3,Y3) © ((I)(Xl,yl),(xg,yg) ® 1dX3®Y3)

— o?

. (2) V(X:,Y;) eCxC (71)
- ®(X1,Y1),(X2®X3,Y2®Y3) o (ldX1®Y1 ® ¢(X2,Y2),(X3,Y3))

and @) @)
2 2 .
Q1. xy) = Pxyy iy = ldxey (72)

4Actually Joyal and Street use monoidal natural isomorphisms instead of equalities in these conditions, but
this is not the important point. Here we use equalities simply to have shorter formulas.

SRecall from that for simplicity we consider monoidal functors which satisfy F(1) = 1. Hence here
we assume that ®(1,1) = 1 and makes sense. This is enough for our purposes because very soon ® will
become ® as a functor. In full generality a given isomorphism ®(© : ®(1,1) — 1 has to be used.
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Since the monoidal structures of ®(—, 1) and ®(1, —) are given by ®(—, 1)2?3,)(2 = @E?l 1),(Xa.1)

and ®(1, —)§,21)7Y2 = (Dg?Yl),(l, )y We see that a multiplication is a weak-unital multiplication

Yo
which moreover satisfies the following unitality condition:

2 . 2 .

E)gl,l)v(x%l) =lidxex, and q)gl?yl),(l,yﬂ = idvisy,- (73)
Proposition 4.4. Let ® be a weak-unital multiplication on C. We have a natural isomorphism
v:® = O given by

)

<I)(X,l),(l,Y)

Yxw) X QY = 9(X,1) @ ®(1,Y) O(X,Y).

Let

’Y(Xlayl)@'y(Xszz)\
7

¢(X17Y1),(X27Y2) : Xl ® le ® X2 ® Yv2 CI)(Xla le) ® cD(XQa }/2)

(2)

q)(Xl’yl)1(X21Y2)

O(X;®X5,Y10Y5)

V(X1®9X2,Y1®Y2)
—>

X1®X,®Y @Y.

Then ¢ is a monoidal structure for @ and ~y is a monoidal natural isomorphism (®,¢) = P.
Moreover ® is a multiplication if and only if (®, @) is a multiplication.

Proof. This actually follows from a general easy fact: assume that we have a monoidal functor
(F,0) : X — ), any functor G : X — ) and a natural isomorphism v : G = F. Then G
inherits a monoidal structure given by

Yx QY x/

Ox x7 .
GX) ® G(X") XD p(x) @ F(X') 2% (X @ X') 225 G(X @ X)
and v becomes a monoidal natural isomorphism. For the last claim, note that

R NC) N
P(x1,1),(X201) = (I)(X171),(X2,1) and  Qa1,vy),1,2) = CI)(1,Y1),(1,Y2)
because 7 (x,1) = idx and 7y(1,y) = idy. O

Hence we can restrict ourselves to weak-unital multiplications for which the underlying functor
1s ®. In this case a weak-unital multiplication is just a monoidal structure for ®, i.e. a natural
isomorphism

Px1 V) (VYe)  X1QYI@Xp @Y - X1 X @Y1 ®Y)

which satisfies and . Similarly, with this point of view, a multiplication is just a
monoidal structure of ® which satisfies .

Definition 4.5. We denote by Mon(®) the set of monoidal structures on ®. We say that an
element in Mon(®) is unital if it satisfies the unitality condition (73|) and denote by UMon(®)
the subset of such elements.

Let us now see more precisely how UMon(®) fits into Mon(®). We write Mon(Id¢) for
the group of monoidal structures on the identity functor; its elements are natural isomorphisms
Xy, X, - X1 ®X2 — X1 ®X2 such that O X1 ®X2,X5 0 (CKXLX2 ®1dX3> = XX, X,®X3 © (iXm ®OCX2’X3).

Lemma 4.6. 1. For ¢ € Mon(®) let
P1(P)x1.x, = A(x1,1),(X2.1)5 P2(O)viyve = Ov1),1,7s)- (74)
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Then p1(¢) € Mon(Ide) and pa(¢) € Mon(Ide).
2. For o, € Mon(Id¢) and ¢ € Mon(®) let (o ® ) o ¢ be the natural transformations whose
components ((a ® f) o (b) (X0¥1).(Xo,vs) T given by the following composition:

P(X1,Y1),(X2,Y2) axy,x,®Byy v,

X101 0 Xo®Y,
Then (a ® ) o ¢ € Mon(®).
Proof. Straightforward computations. n

With the notations of Lemma , UMon(®) = {¢ € Mon(®) | pi(¢) = p2(¢) = id}. Also note
that pl((a ® f)o gzﬁ) = oo p(p) and pg((a ® ) o gb) = o pa(p). As a result there is a map

P Mon(®) = UMon(®), ¢+ (pi(¢) " @p2(9)™') 00 (75)
which satisfies P o P = P and UMon(®) = {¢ € Mon(®) | P(¢) = ¢}. Moreover there is a

bijection

F: Mon(®) — Mon(Id¢)*? x UMon(®) (76)
¢ = (p1(9), p2(0), P(9))

whose inverse is
FH e, 8,9) = (@@ B) 0. (77)

Recall from the equivalence relation ~ on Mon(F') and the description of equivalence
classes of ~. In particular for F' = ® and F = Id¢ we have the quotient spaces Mon(®)/~ and
Mon(Id¢)/~. Let us say that a natural isomorphism v : ® = ® is unital if

VX eC, Ux1) = U1,x) = idy.

For ¢, ¢ € UMon(®) we declare that ¢ ~y ¢’ if there exists a unital monoidal natural isomor-
phism v : (®, ¢) = (®, ¢’). This defines an equivalence relation on UMon(®).

Lemma 4.7. The map F defined in descends to a bijection

X

F : Mon(®)/~ — (Mon(Ide)/~)"* x UMon(®)/~y.

Proof. Let ¢,w € Mon(®) be such that ¢ ~ w. Then there is a monoidal natural isomorphism
m: (®,¢) = (®,w). Define natural isomorphisms

py(m), py(m) : Ide = Ide, pi(m)x =mx1), Pa(m)x =max). (78)

It is easily seen that they are monoidal natural isomorphisms p;(m) : (Ide, pi(¢)) = (Ide, ps(w))
and hence p;(¢) ~ p;(w) for i = 1,2. Next define a natural isomorphism

P'm):@=,  P(muxy = @im)x @pm)y') omuy). (79)
A straightforward computation reveals that it is a monoidal natural isomorphism P’(m) :

(®,P(¢)) = (®,P(w)). Moreover it is clearly unital and thus P(¢) ~y P(w). This shows

that the map F : [¢] — ([p1(9)], [p2(¢)], [P(¢)]u) is well-defined.

Conversely, let (o, 8, ¢), (o, 8',¢') € Mon(Id¢)*? x UMon(®) and assume that o ~ o/, 8 ~ /3,
¢ ~u ¢'. Then there exist monoidal natural isomorphisms r : (Ide, &) = (Ide¢, o), s : (Ide, B) =
(Ide, B') and a unital monoidal natural isomorphism u : (®, ¢) = (®, ¢’). Consider the natural
isomorphism

(res)ou:® = ®, [(T@S)Ou}(xy):(Tx®SY)OU(X,Y)~

A straightforward computation reveals that (r ® s) o u is a monoidal natural isomorphism
(@, (@® B)o¢) = (®,(a/ ® )0 ¢), which means that F~'(a, 8,¢) ~ F (o, F,¢). As a
result the map F~1: ([o], [8], [8lu) — [F(a, B,¢)] is well-defined and is inverse to F. [
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For ¢ € Mon(®) let

-1

D(1,X),(Y,1) (v,1),(1,X)
RN

@
B(d)xy : X®Y Y ®X Y ®X (80)

for all X,Y € C. This defines a natural isomorphism B(¢).

Proposition 4.8. [JS93] §5]
1. For all p € Mon(®), B(¢) is a braiding on C. Moreover if ¢ ~ ¢’ then B(¢) = B(¢').

2. Conversely let ¢ be a braiding on C and id®c®id be the natural isomorphism with components
(1d ® c®id)(x,,v1),(Xa,v2) = 1dx; @ €y x, ®idy, : X1 @Y @ Xo®Yo = X190 X, @Y @Y, (81)

Then id ® ¢ ® id € UMon(®).
3. For all $ € UMon(®) we have ¢ ~y id @ B(¢) ® id.
4. As a result there is a bijection

UMon(®)/~y = Br(C),  [¢lu —= B(¢).
(where | |y means the equivalence class with respect to ~y ) whose inverse is
Br(C) — UMon(®)/~y, ¢~ [id®c®id]y

Proof. The details of the computations are not given in [JS93]. We thus provide a detailed
proof for the convenience of the reader.

1. Let us check the first axiom of a braiding recalled in . We use the usual diagrammatic
calculus for strict monoidal categories, reading diagrams from bottom to top:

1 T F 1 9
l l
Z X Y -1 — 1
ll l ‘ gb(l,X):(l,Y) ¢(Zl,1),(1,X) (b(Zal),(LX)
P1,%),1,) X [v [z |x EES
—1 _
i X Y Yanaxey) | _ | $xay | [Pa0@D
B(¢)xavz| = | Bd)xevz |= Jz__[x v [z [x [v B
T ] [x v ) oL
x v z (1,X®Y),(Z1) b1,x),(2Y) (21),1Y)
P(1,x),(1,Y) BS [y [z v [z v
x v oz |faxan ‘ S1v)(z1) ¢<T,Y>,(zl,1>
X v 7z x v X vy z

The first equality is by naturality of B(¢), the second equality is the definition of B(¢), the
third equality uses (71]) two times (once for the two lower coupons and once for the two upper
coupons) and the fourth equality also uses with (X1,Y7) = (1, X), (Xy,Y2) = (Z,1),
(X3,Y3) = (1,Y) applied to the two middle coupons. Finally the last term is equal to (B(¢)x z®
idy) o (idx ® B(¢)y z) as desired. The other axiom of a braiding is shown similarly. The second
claim is obtained by a straightforward computation.

2. It is an easy computation to check that id ® ¢ ® id € Mon(®) using . Moreover the
axioms of a braiding imply ¢; x = c¢x1 = idx, hence id ® ¢ ® id € UMon(®).

3. Define u(xy)y = ¢x1),0y) : X ®Y = X ®Y. Then u € UAut(®). Note from and the
unitality condition that

Ux vievs) = x)(Lye) © (Uxy) @idy,), (82)

UX,0XaY) = Px11),(Xay) © (idx, ® txyy)). (83)
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We have

U, 0xv10vs) © (idy, ® B()y, x, ® idy,)
®2).(9
¢ X1®X2,Y1)

e}

),(1,Y2) © (U(X1®X2,Y1) & idYg) (1dX1 @ U, , X Y1) X ldyz)
(idx, ® d(y1),(x201) ®1dy,)

. gb X1®X2,Y1),(1,Y2) o (¢(X1 J(X2,Y1) & 1dY2 o (1dX1 & Cb 1,Y1),(X2,1) & ldYQ)

D Px1@X211).(1,Y2) © (E(x1.v1),(x201) @ iy, ) © (U, ) @ idx,evs)
! P(X1,¥1),(X2,¥2) © (u(leYl) ® U(X27Y2))

Hence u is a monoidal isomorphism (®,id ® B(¢) ® id) = (®, ¢).

4. Tt is readily seen that the composition Br(C) — UMon(®)/~y — Br(C) is the identity.
Conversely the composition UMon(®)/~y — Br(C) — UMon(®)/~y is given by [¢]y

[id ® B(¢) ® id]y, which is the identity by the previous item. H

Note that in item 1 of Proposition .8 we simply assumed ¢ € Mon(®), i.e. ¢ is not assumed
to be unital. Hence the following result makes sense:

Corollary 4.9. There is a bijection Mon(®)/~ — (Mon(ldc)/rv)X2 x Br(C) given by

(@] = ([p1(0)]; [p2(0)], B(¢))
where py, ps are defined in Lemmal4.6 Its inverse is ([al, [B], ¢) = [(a® B) o (id ® c®id)].

Proof. Combining Lemma with item 4 in Proposition 4.8, we know that the map [¢] —

([p1(9)], [p2(9)], B(P(6))) is a bijection Mon(®)/~ — (Mon(Idc) /N)X2 x Br(C). But it is
easily seen that B(P(¢)) = B(¢). O

In particular any ¢ € Mon(®) is equivalent to (p1(¢) @ p2(¢)) o (id ® B(¢) ®id), which is a sort
of canonical decomposition.

4.2 DY cohomology of multiplications and tangent braidings

The goal of this subsection is to establish the infinitesimal counterpart of the results in §4.1]
and to build the bridge to the DY cohomology of the tensor product functor ® equipped
with a monoidal structure. We assume that the monoidal category C is k-linear (where k is
a field) and that its monoidal product ® is k-bilinear on morphisms. We will make heavy
use of the notations and definitions from and in particular of the monoidal category C. =
C @ kle]/(€?) defined in (36)—-(37). Recall that ®. denotes the monoidal product of C.. Also
note that a + €b is an isomorphism in C, if and only if a is an isomorphism in C and then
(a+eb)t=at—elatoboat).

Recall the sets Mon(®) and UMon(®) from Definition[4.5] If ¢ € Mon(®) and f is a natural
transformation with components fix, vi),(x,1) : X1 @Y1 @ Xo @Y - X1 @ Xo ®Y; @ Y, we
denote by ¢+e¢f the natural isomorphism in C. with components ¢(x, vi),(xs,v2) T €f(x1,v1),(X2,¥2)-
Then by item 1 in Lemma

¢+ef € Mon(®.) <= feTsMon(®).
When ¢ € UMon(®) C Mon(®) there is a relevant subspace:

T¢UMOH(®) = {f € T¢Mon(®) }VX, Y € C, f(X,l),(Y,l) = f(l,X),(l,Y) = 0}
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It is clear from that
¢p+ef € UMon(®,) <<= feT,UMon(®).

Recall from the maps pq, p2 : Mon(®) — Mon(Id¢). For the category C., these are maps
p1, P2 Mon(®,) — Mon(Ide, ) which we can write under the form p;(¢+ef) = pi(¢) +€ Typi(f)
with

VX, Yel, Tipi(f)xy = fix1),mva)s Typ2(f)xy = fa,x),ay)
for i = 1,2. We have p;(¢) + e Typ;(f) € Mon(lde, ), which is equivalent to Typ;(f) €
T, (»Mon(Ilde). In this way we get linear maps Typ; : ToMon(®) — T, 4 Mon(Ide) which
are the infinitesimal versions of p; and py at the point ¢. Similarly the projection map
P : Mon(®.) — UMon(®,) defined as in can be written as P(¢ + €f) = P(¢) + €T, P(f)
with

T,P(f) = (p1(¢)71 ®p2(¢)71) of— [(pl(d))fl o Typ1(f) Op1<¢)71) ®P2(¢)71} °Q

- [p1(¢)71 ® (p2(<b)71 o Typa2(f) Op2(¢)71)} o ¢

and we get a linear projection TyP : TyMon(®) — Tp») UMon(®) which is the infinitesimal
version of P at the point ¢. Now by applying to the category C. we obtain a linear
isomorphism

T¢.F2 T¢MOH(®) — Tp1(¢)MOH(Idc)EBTp2(¢)MOIl(Idc)@Tp(¢)UMOIl(®)
foe (Tepr(f), Tepa(f), TyP(f))

To compute its inverse write F ! (p1(¢) + €a, p2(¢) + €b, P(¢) + €g) = ¢ + €T r()(F*)(a, b, g)
and note that Tr)(F ') = (TyF) . Hence by we find

(ToF) "' (a,b,9) = (p1(d) @ p2(9)) © g + (p1(¢) @ b) 0 P(¢) + (a @ p2(¢)) © P(h).

Remark 4.10. If ¢ € UMon(®) then p;(¢) = p2(¢) = e with exy = idxgy and P(¢) = ¢. As a
result TyMon(®) = T.Mon(Id¢)®?@®TsUMon(®) and TP is the projection onto T sUMon(®).
In general, if (®,¢) is a multiplication on C and f € T,Mon(®) then (X, ¢ + €f) is just a
weak-unital multiplication on C,; it is a multiplication if and only if T4P(f) = f. Briefly: the
deformation of a multiplication on C is in general just a weak-unital multiplication on C..

In order to obtain the tangent version of Lemma recall from that by definition
Ty (Mon(®)/~) = (TyMon(®)) /=4,  Tja(Mon(lde)/~) = (ToMon(Ide))/=.

for any ¢ € Mon(®) and a € Mon(Idc), where = is defined in general in ({#2). By (47), these
spaces are isomorphic to the DY cohomology spaces Hiy (®, ¢) and Hzy (Ide, ), respectively.
Since ® and Id¢ are k-linear in each variable, it will be convenient to use the other definition

of = given in item 2 of Lemma Also recall the equivalence relation ~y on UMon(®)
introduced before Lemma [4.7] For w € UMon(®) we define

Ty, (UMon(®) /) = (T UMon(®)) /=1 (86)

(84)

(85)

where [w]y is the equivalence class of w for ~y and we declare that f =U g if there exists
v € Nat(®, ®) such that idg + ev : ® = ®, is a monoidal natural isomorphism (®.,w+€f) =
(®e,w + €g) in Cc which is unital, i.e. vy x) = v(x,1) =0 for all X € C.

Lemma 4.11. The linear map descends to an isomorphism
Ty (Mon(®)/~) = Ty, (¢ (Mon(Ide) /~) & Ty, ey (Mon(Ide) /~) & Tip(e)y,, (UMon(®)/~v)
which can be rewritten as

Hiy(®,¢) = Hiy (C) ® Hyy (C) @ Tip)y (UMOD(®)/NU)' (87)
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Proof. The first isomorphism follows immediately by applying the proof of Lemma [£.7] to the
category C. and looking at tangent spaces. Here are some details for convenience. Let f,g €
TsMon(®) be such that f =, g. Due to item 2 of Lemma there is a monoidal natural
isomorphism idg + €v : (R, ¢ + €f) = (R, ¢ + €g) in C.. Using the maps p, from we get
monoidal natural isomorphisms p}(idg+ev) : (Ide,, pi(¢)+€Tepi(f)) = (Ide., pi(@)+eTypi(g)),
and hence Typ;(f) =4 Typi(g) for i = 1,2 again due to item 2 of Lemma . Although we do
not need them, the explicit expressions are of course

VX EC, p’l(id®+6U)X :idX—i-E’l)(X,l), pé(id®—|—61})X :idX‘i‘eU(l,X)'
Similarly, using the map P’ from (79) we get a unital monoidal natural isomorphism
P'(idg + €v) : (@, P(¢) + €T4P(f)) = (®¢, P(¢) + €TyP(g))

and hence TyP(f) Eg( 8 TsP(g). Although we do not need it, here is its explicit expression:

VX, Y c C, P/(ld(g) + EU)(X7y) = idX@Y + E(U(X7y) — U(X,l) X ldy — ldX (029 U(Ly)).
It follows that Ty F from descends to a linear map

ToF : [fls = ([Top1(Hpato): [Top2(Flpacs)s [TsP()lp(e))

where [ ]s (resp. [ |p,(4)) denotes the equivalence classes for =4 (resp. =) and | ]g( %)
is the equivalence class for the relation Eg( ¢ on the subspace Tps) UMon(®). Its inverse is

constructed similarly from (TsF)~*. This proves the first isomorphism.
To prove (87)), note first that for all « € Mon(Id¢) we have an isomorphism of cochain spaces

Yn>0,  Cpy(lde, ) > Chy(lde,e), f— (™) lof (88)

where o = (a()?l) x, € Aute(X1®...0X,))

.....

x.cc 18 the iterated monoidal structure as in (133)
with in particular a® = o and e is the trivial monoidal structure given by ex, x, = idx,gx,

It is left to the reader to check that commutes with the DY coface maps. Combining
with we get

T (Mon(Ide) /~) = Hiy(F,a) — Hiy(Ide, €) = Hpy (C).
Now follows from the first claim of the lemma by taking o = p;(¢) and o = pa(9). O]

Remark 4.12. For n = 2, the isomorphism can be deduced from the fact Mon(Id¢) has
the structure of a group if we define the composition by (a0 8)xy = axy o fxy. Hence for
any a € Mon(Id¢) there is a bijection L, : Mon(Id¢) = Mon(Id¢) given by Lo (8) = a o .
Moreover it is easily seen that if 5 ~ 5 then L,(8) ~ Lo(5") and thus L, descends to a

bijection Mon(Id¢)/~ — Mon(Id¢)/~. Taking infinitesimal versions in C. at the point e we
deduce that T.Mon(Id¢) = T,Mon(Id¢) and T} (Mon(Ide)/~) = Ts)(Mon(Idc)/~).

By and Proposition [4.§ we have a map B : Mon(®) — Br(C). In the category C, write
as usual B(¢ + €f) = B(¢) + €T4B(f). Then B(¢) + €T,B(f) € Br(C.), which is equivalent
to TyB(f) € TppBr(C). As a result there is a linear map TyB : TyMon(®) — T g Br(C)
given by

VX, Y €C, TyB(f)xy = gb(_y{l),(lyx) o (fx)w1) — fora)ax) o B(@)xy). (89)

34



Lemma 4.13. 1. Let ¢ € Mon(®) and f,g € TyMon(®). If f =4 g then TyB(f) = TyB(g).
2. Let ¢ € Br(C). Fort € T.Br(C) letid ® t ® id be the natural isomorphism with components
<1d Rt R id)(Xl,Yl),(Xg,Yg) = iXm X tyl’X2 X idyz. Then id Rt R id € Tid®c®idMon(®).

3. Let ¢ € Br(C) and take ¢ =1id ® ¢ ® id € UMon(®). Then for all f € T,UMon(®) we have
id® TyB(f) ®id =]

4. As a result if ¢ € UMon(®) there is an isomorphism of vector spaces

Ty (UMon(®)/~v) — Tp)Br(C),  [fI5 = ToB(f) (90)
where [ |3 is the equivalence class for the relation = from and TyB(f) is defined in (B9).

Proof. 1. If f =, g then ¢+ €f ~ ¢ + g in Mon(®.). Hence by item 1 in Proposition we
have B(¢ + ef) = B(¢ + €g), which by definition implies B(¢) + €TyB(f) = B(¢) + €T, B(g).
2. By item 2 in Proposition there is a map M : Br(C) — Mon(®) given by M(c) =
id ® ¢ ®1id. The result follows by applying this map to the category C.. Namely, if t € T .Br(C)
then ¢ + et € Br(C.). Hence M(c+ €et) = id® c®id + €id ® t ® id € Mon(®,) and then
id RIR id € Tid®c®idM0n(®).

3. A preliminary remark is in order about our assumption on ¢: for an arbitrary choice
of € UMon(®) the statement would not make sense because id ® TyB(f) ® id belongs to
TiaeB(s)eid UMon(®) instead of T,UMon(®). But for ¢ = id®c®id it holds B(¢) = ¢ and thus
the statement makes sense. Now let us prove it. By assumption, ¢+¢f and ¢p+€eid®@T,B(f)®id
belong to UMon(®.). Thus by the proof of item 3 in Proposition applied to C. we know
that the natural transformation

uxy) = (@ +ef)x1),my) = idxey +efix1),0y) XY - X QY

(where we used that ¢(x 1),1,y) = idxgy due to the particular form of ¢) is a unital monoidal
natural isomorphism (®6, d+eid®@TyB(f) ®id) = (®€, ¢+ef). Hence id® T, B(f) ®id Eg
by definition (see below (86])).

4. By item 3 in Proposition we have [¢]y = [id ® B(¢) ® id]y. Hence the spaces
T4, (UMon(®)/~v) and Tjae(s)sid, (UMon(®)/~y) are canonically isomorphic by the same
argument as in . Thus without loss of generality we can assume that ¢ = id®c®id for some
¢ € Br(C). In this case item 3 shows that the inverse to is given by t — [[d ® t ® id]g. O

Combining Lemmas and we obtain:

Theorem 4.14. For all ¢ € Mon(®) there is an isomorphism of vector spaces

HI%Y(®7 ¢) - HJZDY(C) S H]%Y(C) D TB(¢)BT<C)

[f] +— ([af],[], T4B(f)) (91)

where || denotes cohomology classes, a’ and b’ are defined by a§(17X2 = qﬁ&l 1).(X2.1) O F(X1,1),(X2,1)

and b{ﬁ,yg = ¢(711,Y1),(1,Y2) o fayvi(Lys) Jor all X;,Y; € C and TyB(f) is defined in (89).

Proof. Recall that the isomorphism in Lemma is built from the isomorphism ({85)
followed by translation isomorphisms of the form applied to the first two components,
which explains the formulas for af and /. Hence the composition of the isomorphisms
and is given by [f] — ([a’], [b/], TpsB(T¢P(f))). But we have already noted in the proof
of Corollary 4.9/ that B o P = B. Hence (Tp5)B o TyP)(f) = Ts(BoP)(f) =Ty,B(f). O

We spell out Theorem [4.14] in the case where the monoidal structure ¢ of ® comes from a
braiding ¢ € Br(C) as defined in , i.e. » =1id ® ¢ ®1id, and deduce a dimension formula for
the space of infinitesimal braidings tangent to c:
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Corollary 4.15. Let ¢ € Br(C) be a braiding in C.
1. There is an isomorphism of vector spaces

H3,(®,id®c®id) — HEy(C)® HEy(C) ® T.Br(C)
[fl — ([e/], 0], 1))
f

where ax, . x, — f(X1,1),(X2,1), b{fl,YQ = f(1,Y1),(17Y2) and tﬁ},y = f(1,X),(Y,1) - f(Y,l),(l,X) CCX)Yy-
2. If C is finite as a k-linear category we have

dim T Br(C) = dim Hpy(®,id ® ¢ ® id) — 2dim Hgy(C) (92)

Proof. 1. Immediate from Theorem [£.14] Note that for ¢ = id ® ¢ ® id we have B(¢) = ¢
and the formulas for of, bf and t/ = Tiagezia B(f) are simpler because ¢(x, 1),(x,,1) = idx,@xs;
P1y1),(1y2) = ldyiey, and o1y a,x) = dyex.

2. By item 1 in Lemma the DY cochain spaces are finite-dimensional. Hence we can
consider the dimensions of the vector spaces in item 1 and we get the result. O]

In the next subsection we give a result for the computation of dim H3y (®,id ® ¢ ® id) through
relative homological algebra.

4.3 Adjunction theorem for ®

In this subsection we assume that C is a finite k-linear tensor category. The monoidal product
® = ®c¢ : C x C — C is k-bilinear (by assumption) and exact in each variable (because of
rigidity, [EGNO, §4.2]E[). Hence there exists a right-exact k-linear functor P : C X C — C such
that ® = P o X, where X is the Deligne product of finite k-linear categories [Del90L §5HZ|

The category C X C has a monoidal product defined by
(XiXY)® (XoXY;) =(X;® X)X (Y] ®Y5)

and extended as a bifunctor right-exact in each variable. Using the universal property of the
Deligne product, there is a contravariant endofunctor (—)" on C X C defined by

(XRY) =X"RYY.

Thanks to item 2 in Lemma , there are dinatural transformations (evM MY @ M —
1X 1>MeC®C and (coeVM AKX > M MV)Mecxc uniquely defined by evygy = evy Kevy
and coev ygy = coevy X coevy. This endows C X C with a left duality. Similar remarks apply
for right duality and hence C XIC is rigid. This implies that the monoidal product ®cgc is even
exact in each variable [EGNO] §4.2].

If ¢ is a monoidal structure for ®¢ then item 1 in Lemma (or rather its straightforward
generalization for natural transformations with several components) gives a monoidal structure
for P, which we still denote by ¢. It satisfies ¢x,xy;, xoRv: = P(x1,v1),(xs,v2) Dy definition. A DY
cochain f € CBy (P, ¢) is a natural transformation whose source and target look as follows on
the factorized objects of C X C

fxmyi. xomy,  X1QYV10X0Y,0..0X,0Y, 2 X1®..0X,071®...0Y,. (93)

By the straightforward generalization of item 1 in Lemmal[A.4] for natural transformations with
several components, these values determine f uniquely. It follows that:

6In [EGNQ] the field k is always assumed to be algebraically closed but this assumption is not necessary for
this property.

"We note as a side remark that if the ground field k is perfect then the factorization through the Deligne
product of a bifunctor exact in each variable is an exact functor [Del90, Prop. 5.13]. Thus if k is perfect then P
is actually exact.
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Proposition 4.16. The cochain complezes Chy (®c, @) and Chy (P, ¢) are isomorphic.

Proof. There is an isomorphism of vector spaces J" : CLy(P,¢) — Cpy(®,¢) defined by
J(f)xi¥0) (X Ye) = fxi@vi,.. x.my, for each n € N. The compatibility of (J"),en with the
DY differential is immediate. ]

From now on we fix a monoidal structure of the form ¢ = id ® ¢ ® id as defined in (81)),
where c is a braiding on C. This fixes a monoidal structure for P entirely defined by

2 . .
P)((l)gyl,XQ&YQ = 1d)(l ® CYLXQ ® 1dY2' (94)

We are in the situation (50)) with F' = P and C is replaced by C X C while D is replaced by C.
Our goal is to apply Adjunction Theorem (Thm. to the functor P. The coend

XeC

o = X'RX eCRC (95)

will play a key role; it exists by Corollary because the k-bilinear functor X : C x C — CXC
is exact in each variable [Del90, Prop.5.13]. Let jx : XV X X — & be the universal dinatural
transformation. Define a half-braiding A¥(7) : &/ ® — = — ® & by the commutative diagram

(XV®C) R (X ®Cy) exvie¥egyx  (C1 @ XY)R(Cy @ X)

C(XVRX)®(CIRG) T = ((RG) ® (XY R X) (96)
Jx®ideyme, l ey e, ®ix l
o @ (CLRCy) — (C1RCy) ® o
EIpYapies

for all X,C4,C5 € C. Here we use that ®cxe is exact in each variable, thus jx ® ide,xe, is a
universal dinatural transformation for the functor (X,Y) — (XVXY)® (C; K Cy). The values

)\(CJZRE;(C;) uniquely define A(?)(=) by item 1 in Lemma |A.4]

Remark 4.17. Note that there is a functor

LW CRC— Z(CRC), C1RCy— (C1RCy e, Rl | (97)
Hfors iR fo,

for any morphisms f; : C; — C! due to naturality of the braiding and its inverse in both
components. Consider the forgetful functor U : Z(C K C) — C X C satistying

Uo L) 6K = Idege o X .

We note that the functor L(H-(2) is right-exact, since it comes from the factorization through
the Deligne product of a bifunctor right-exact in each variable. Thus ¢/ o L(+)(-) is right-exact
as well, because U(g) = g for any morphism g. The definition of the Deligne product in the
form given in [EGNQ, Def. 1.11.1] then implies that I/ o L*)(7) = Idege, by uniqueness of the
factorization through X. It follows that Z/I(L(Jr)’(*)(f)) = f for any morphism f in C X C, and
hence LY (2)(f) = f. In particular, L*)(7) is exact and thus by item 2 of Corollary we
have (7, \(P0)) & L) (7).

8In the notations of this lemma we take A =B =C, D = C and F(C1,C2) = & ® (C1 K C2), G(C1,C2) =
(CLRCy) @ o, F(M)=o @ M, G(M) =M ® o .
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Theorem 4.18. Let C be a finite k-linear tensor category with monoidal product ® and c be a
braiding in C. Then

Hpy(®,id®@ c®id) = Hyy (CRC 1R L, (o7, X))

where id®c®id is the monoidal structure of ® = ®¢ defined in (81)) and (JZ/, )\(Jr)’(*)) € Z(CKC)
is the object o7 € CKC defined in endowed with the half-braiding .

Because of Proposition .16, Theorem is an application of Theorem [3.5|in the following
situation:

5
Z(CKC) L Z(Pid®c®id) (98)
Femce <—|>Ucm R Fp <—|>Mp
P

where id ® ¢ ® id is the monoidal structure on P. Therefore we only need to prove that
R(1) = (&, X")(D). Let us first recall the formula for the right adjoint R. Note that P(</) =

Ik Y XV® X by right exactness of P, with universal dinatural transformation P(x): XX —
P(47) (Corollary |A.2)); P(«7) is known as the Lyubashenko coend of C [Lyu95]|.

Lemma 4.19. The right adjoint R:C — CKXC of P is
XeC
R(W):(W®1)®;z{%/ (W& XV) R X (99)

on objects and R(f) = (f Xidy) ® idyy on morphisms.
Proof. The unit e : Idege = RP is given by
exmy - XKY (idx®coeVy)®idy\ (

d(xgy)R1®Jjy
B

XYY )RY =(XeY)R1) e (Y'KY) (100

(X®Y)X1)® o = RP(XKY).

By item 1 in Lemma [A.4] these values entirely determine e. The counit h : PR = Id¢ is
uniquely determined by the commutative diagram

WY oo o pa) = PR(W) (101)

\ lﬂl hw
idw ®eve
w

for all C, W € C. Here we use that the dinatural transformation idy ® P(jx) is universal since
® is exact in each variable. It is not difficult to check that e and h satisfy the zig-zag axioms
of an adjunction, which proves that P 4 R by [ML98, §VI.1]. O

Proof of Theorem[{.18. By Proposition[4.16|we compute Hpy (P) instead of Hfjy (®). We recall
that Lemma[A.4]ensures that a dinatural transformation labelled with objects in CXC is entirely
determined by its values on the objects of the form X XY. Also recall that P has the monoidal
structure given by P)(fl )gyh X,my, = 1dx; ® cy; x, ® idy,. For this proof it is more convenient to
use the description of Z(C K C) and Z(P) as categories of modules over the monads Zexe and
Zp defined as , see f for this monadic description. In this proof, we will often omit
the monoidal product symbol between objects in C, that is we write XY instead of X @ Y
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for X, Y € C. We also allow ourselves to not indicate the category to which the variables in a
coend notation belong to.

Recall that (&, \(P(7)) = L) (&) with the functor L) from (97). Now under the
isomorphism Z(C X C) & Zege-mod the functor L+ (7) becomes C) X Cy +— (O K Oy, ¢C1HC?)
where 9152 © Zoge (O BCy) = [Y(XVC1X) R (VYY) — €y K Cy s determined by the
commutative diagram (see (59))

(XVC'lX) X (YVOQY) (id xv ®ccy , x )R(idy v ®c;’1CQ)
= (XRY)V®((C1HC) @ ((XKY)

(XVXC) R (YVYCy)

(eVX ®idC‘1 )@(EVY ®id02 )

iSRE, (C1KCy) L

Zewe(C1 K Cy) C, X C,

3J1 qcllZCQ

for all X|Y € C. Hence since

XXY XXY,C
chc(,;zf)—/ (XV®YV)®,Q%®(X®Y)_/ XYY X)R(YVCY)  (102)

we have L) (5) (o) = (o, ¢”) where ¢7 : Zege(o) — o is defined by the following commu-
tative diagram for all X,Y,C € C

(dxv®cov x)H(idyv ®C;f,1c)

(XVC'VX) X (YVC'Y) (XVXCV) X (YVYC) (103)
ig(%Cy(CV®C)l l(eVX(X)ide)IZI(evy@idc)
Zexe(CV R C) o CVRC
Zcxc(jc)l l]'c
Zewe (<) of

Indeed we recall that j denotes the universal dinatural transformation of ./ and thus the left
column in ([103)) is the universal dinatural transformation of the right-hand coend in ((102)). For
further use we note that gives another expression for this dinatural transformation:

Zese(jo) 0 iy (CY R C) = iS5y () o (idxveyv ® jo ® idxmy ). (104)

We are ready to compare («7,q”) with R(1). Note first that the half-braiding on the unit
object 1 € Z(P) is just the identity: 1 ® P(—) — P(—) ® 1. It follows from that the
corresponding Zp-module structure 1 : Zp(1) — 1 is defined by ry o iﬁ(l) = evpy) for
all M € CXC. Now using the definition of evpy) in , which depends on the monoidal
structure of P, we see that ry is uniquely determined by the commutative diagram

P(XVRYY)® P(XRY) idxveoyxeidy  P((XV®X)R(YY@Y))

XV RYVRX®Y X' eXoVY'eY (105)
iixy(l) levx(@evy
XRY v v
Zp(1) = [* P(XVRYY) @ P(XKY) _ 1

for all X,Y € C. Then

R(1,r1) = (R(1), ((r1 Kidy) ®idy) 0 &)
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by and by definition of R on morphisms (Lemma (4.19)), where R(1) = &/ and
51 . chcR(]_) = chc(%) — RZP(]_)

is defined in general in . We have
XKY XRY,C
RZp(l):/ ((XVYVXY)&l)@)d:/ (XVYYXYCY)YRC

thus in order to describe &; it suffices to compute &; o z"j(%cy (o) o (id xvryv ® jo ®id ng) for all
X,Y,C € C because i55, (o ) o (id xvryY ®Jc®id ng) is the universal dinatural transformation

of Zewe (/) as noted in (104). According to (69), & o iy (<) is equal to

R(iixy(l)) © R(idXVYV ®h1 ® idXY) © R(P)@&w,mxxyyl O E(XVRYV)@a/ @(XKY)

where e and h are respectively the unit and counit of the adjunction P - R as defined in the
proof of Lemma .19 Thus it remains to compute

-1

R(idyvyv ® by ®idxy) o R(P)(?v)gyv7_!2{7x|gy> 0 e(xvrYV)ewe(xmy) © (Idxvryy ® jo ® idymy)

which we do in three steps. First by naturality of e, we have a commutative diagram

(XVRYY)® (CVKCO)® (XKY) id®jc®id
= (XVCVX)R (YVCY)

(XVRYV)® & ® (XRY)

e(XVCVX)IZI(YVCY)l CXVRYV)® o Q(XRY)

RP[(XVRYY)® (CVRC(C)® (X XY)]

- Y %
= (XVCVXYVCY)X1) ® o RP(1d®jooi) RP[(XVRYV)®@ & @ (XKY)]

Hence by (100) we find

E(XVRYV)@d/ @(XRY) © (idxvxyv ®Jjc ® idxxY)
= RP(idxvmyv ® jc @ idxmy) o (idxvevxyveyym @ jyvey)

o ((idXvaX & COQVyva) X idyvcy).
Next by naturality of P® we have a commutative diagram

RP[(XVRYY)® (CVKRC)® (X KY)| RP(dejosid)

— (XYCVXYVOY)R1) ® o RP[(XVRYY)® o @ (X KY)]

R<P)((3\)/®YV,CVIZC,X®Y)1l R<P)((3\)/IZY\/,@{,XXIY>71
R(XVYVC’VCXY) R(XVYVP(M)XY)
= ((XVYVCVCXY)R1)® &/ RdeP(ic)eid) = (XVYVP(#)XY)X1)® o

By definition of P in , by definition of the value of the functor R on morphisms and since
P® =id ® ¢ ® id we thus obtain

(3) ! : o
R <PXVIEYV,ﬂ,X&Y> © RP(ldXV®YV ®Jc & ldxgy)
= R(idxvyv ® P(jo) ® idxy) o [((idxv ® ¢y v ® idoxy) Ridy) @ id,/]
o [((idxvcv & C)_/iC,X & ldy) X ldl) X ld;y] .
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Finally if we apply the functor R(XVYY ® — ® XY) to (101) with W = 1 we obtain the
commutative diagram

R(XVYVCVOXY) —HEPUABY | p(xvy v P(o/)XY)

R(idxvyv®h1®idxy)
R(idx\/yv®evc®idxy) l Xvy

R(XVYVXY) = (XVYVXY K1) @ o

so that
R(idyvyv ® h1 ®idxy) o R(idxvyv @ P(jo) ®idxy) = [((idxvyv ® eve ® idxy) Kidy ) @ idy].
Putting these computations altogether and using , we conclude that

((r1 ®idy) ®idy) 0 & 0 iy () o (idxvmyv ® jo ®idymy) : (XY CVX)R (Y CY) — o
is equal to the following composition

((evy ®evy) Widy) ®idy] o [((idyv @ eyv x ®@idy) Kidy) ® id.]
o [( ldvav X eve ® lde) X 1d1> X ldd] [((idxv X C;\l/ycv X idcxy) X idl) X idgf}
o [((idxvev @ cyle x ®idy) Kidy) ® idy] o [idxvevyveyym @ jyvey]

[<1dXVC’VX &® COGVy\/cy> X idyvcy} .

By naturality of the monoidal product we can rewrite this as
jYVCY o (|:(6VX ®evy & idyvcvyvv) 9] (idXvav,X X idyyvcvyvv)
o (idXva K eve X idxyyvcvyvv) o (idXv X C;;CV X idCnyvayvv)
o (idxvcv & c}_/£®C,X ® idyyvovyvv) o (idXVCVX X COGVyvcy):| X idyvcy).

It is easy to simplify this formula if we represent it diagrammatically:

o
|

‘ jYV RCRYY | ;zi

) M@(\/

/// XV oV X Yv C

D OANCATED. ¢

XXX XXX

Yvce vy

where we used the zig-zag axiom for ev/coev and dinaturality of j. Comparing this result with

(103) and using ([104)) we see that

((7"1 & ldl) X ldgf) 51 o Z(}Z{IZ%C}/_(&Q/) o (idxvgyv (%9 jC ® idxgy)
=q7 0 i, () o (idxvmyv ® jo @ idxmy)
for all X XY € CKC and C € C. Since the dinatural transformation (zcgc(sz% )o (idyv ® je ®

1dM)>C€C wecse 18 universal we conclude that ((rl Xid;) ® 1d%) & =q7 O

Let us explain why the isomorphism in Theorem [4.18]is useful in practice. From now on
and until the end of this subsection, assume that the ground field k is perfect. Recall first a
well-known fact:
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Lemma 4.20. Let C, D be finite k-linear tensor categories. Then the functor
Z(C)X Z(D) - Z(CX D)
(Vo )R (W, oY) = (VRW, p" R p")  with (0" B p")xey = px K py!
s an equivalence of categories.

Proof. We use the isomorphism Z(C) & Zc-mod, see §3.2] By item 3 in Lemma [A.4] see

also (|160)), and exactness of X in each variable, we have

MeCXD XeC,YeD
Zcm(V&W):/ MV®(V&W)®M:/ (XVoVeX)K(YYeW®Y)

~ ( XECXV®V®X) X (/YEDYV@)W@Y) = Zo(V)R Zp(W) = (Ze B Zp)(V R W).

It follows that Zegp = Z¢e X Zp. We conclude thanks to Corollary (which uses the assump-
tion on the ground field k to be perfect):

Z(C) X Z(D) = (Zc—mod) X (ZD—II]Od) = (Zc X Zp)—mod = chp—mod = Z(C X D)
It is easy to see that the composition of these equivalences equals the proposed functor. O

Under the equivalence of Lemma [£.20] the object from Theorem becomes
XeC
Z(CRC) > (o, N / (XY, exv )R (X, cZl) € Z(C) R Z(C)

and then (recall Theorem [3.3):

xec
Hpy (©,1d ® ¢ ® id) = ExtZ eymz ) ene (1 X 1,/ (XY, exv ) K(X, C,1X>> - (1006)

These are relative Ext spaces associated to a Deligne product of adjunctions. Such adjunctions
are discussed in Appendix [C| In particular, by item 1 in Proposition [C.4] one can deduce a
relatively projective resolution of 1K1 € Z(C)X Z(C) from a relatively projective resolution of
1e Z(0C).

Remark 4.21. There is also a less straightforward and somewhat shorter proof of Lemma [4.20
using a result of Laugwitz-Walton [LW22, Th.4.17] which states that a factorizable category A
containing a factorizable topologizing (i.e. closed under direct sums and taking subquotients)
subcategory £ is necessarily braided tensor equivalent to & X X where X is the Mueger’s
centralizer of £ and it is also factorizable. In their paper the ground field k is assumed to be
algebraically closed (and thus in particular perfect). We apply this theorem to A = Z(C X D)
which contains mutually transparent copies of Z(C) and Z(D), therefore Z(C X D) is braided
tensor equivalent to Z(C) X Z(D) X X for some factorizable X'. Comparing the Frobenius—
Perron dimensions of both categories we conclude that Z(C X D) is braided tensor equivalent
to Z(C) X Z(D).

Finally, by combining , and we find:

Corollary 4.22. Let C be a finite k-linear tensor category over a perfect field k and ¢ € Br(C)
be a braiding on C. Then with

= / XEC(XV, exv ) R(X,c7l) € Z(C)R Z(C) (107)

we have
It is important in practice to note that both relative Ext spaces can be computed from a relatively

projective resolution of 1 € Z(C), thanks to item 1 in Proposition .
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4.4 The end formula for tangent space to a braiding

Here, we use the Kiinneth formula in item 1 of Prop. to rewrite the first term in in
terms of the ‘standard’ adjunction between Z(C) and C, i.e. involving only relative Ext ) c.
We first recall that the Nakayama functor N : C — C on a finite k-linear category C = A-mod,
for a finite dimensional k-algebra A, is given by N = A* ® 4 — where A* is the co-regular A-
bimodule. We note that up to isomorphism N does not depend on the algebra A realising C
[FSS20]. Following [F'SS20, eq. (3.52)], we then have a lemma turning a coend to an end:

Lemma 4.23 ([ESS20]). Let C be a finite k-linear category and N : C — C be the Nakayama
functor. We have the following isomorphism in C°? X C:

xec ~
/ XXX XEN(X) , (109)
XeC

where by X we denote the object X considered in the opposite category COP.

If the category C is furthermore rigid monoidal, we have a natural isomorphism [FSS20),
Lems. 4.10 & 4.11]:

N=D'®(-)", (110)
where D is the distinguished invertible object of C defined as the socle of the projective cover
Py of 1. We call C unimodular if D = 1. Recall also that C is pivotal if the double dual
functor (—)¥V is monoidally isomorphic to the identity functor. Furthermore, using [FSS20),
Prop. 3.24 (ii) & Thm. 4.14], see also [Hu78| in the Hopf algebra case, one can show that the
Nakayama functor N is isomorphic to the identity functor if and only if the finite tensor cate-
gory C is pivotal and unimodular.

By Lemma [4.23] applying the equivalence functor (—)¥ K Ide : C°° K C — C K C to both
sides of (109), we see that the object </ in can be rewritten as the following end

o XY RN(X) , (111)
XeC

with N given in (110). In the case C is pivotal and unimodular, & = [, _, XV K X.

Proposition 4.24. Let C be a finite k-linear tensor category over a perfect field k and with a
braiding ¢ € Br(C), and N : C — C be the Nakayama functor. Then

Hpy(®,id® c®id) = GB /X . Exts ey e (1, (XY, exv)) ® EthZ(C),C <17 (N(X), C:,lN(X))> ;
itj=n" A€
(112)
with N from (110). In particular, if C is pivotal and unimodular, we have

Hiy(®,id ® ¢ @ id) g/ Homz(e) (1, (XY, exv -)) @ ExtZe) o (1, (X, cZly))
XeC

@/X CExtQZ(C),C(l, (XY, exv,—)) @ Homz o) (1, (X, cly)) (113)
€
S5 /)\( c EthZ(C),C(]" (X\/’ CX\/7_)) & EthZ(C),C(17 (X, C:,lX)) .

€

Proof. We first recall Remark stating that the DY cohomology coefficient I' from ({107)) is
the image of &7 under the exact functor L(H)(=) from C X C to Z(C) X Z(C) which sends the
first X component using the braiding and the second component using the inverse braiding. It
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is furthermore easy to check that L(+)() is a strict tensor functor. Then using (I11]), I can be
rewritten as

= /XEC(XV,(;XV,) R (N(X), ¢yix) - (114)

Combining with ((106)) and that an end can be pulled out of 2nd argument of the Hom functor
and thus out of 2nd argument of the relative Ext functor, we get

Hy(®,id ® ¢ ®id) 2 /

. EXtZ{(C)&Z(C),C&C (]_ X1, (XV’ CX\/yf) X (N(X), C:’lN(X))>
S

I

a /X CExtiZ(C),C(1,(XV,cXV,_))@Extfz(c),c@,(N(X),c:}N(X))), (115)
€

i+j=n

where in the second line we used the Kiinneth formula (item 2 in Prop.|C.4)). This gives (112)),
while ((113)) is an immediate consequence of this result and that N is isomorphic to the identity
when C is pivotal and unimodular, recall (110]). O

Let Proj(C) be the full subcategory of projective objects in C, then by a version of the
statement in item 2. of Lemma where the projective generator is replaced by Proj(C) we

have an isomorphism
Xec

PeProj(C)
K(X,X) = / K(P,P)
where K : C°® x C — C X C is any k-bilinear functor right exact in the second variable. Now,
for the choice K =Ko ((—)" x Id¢) we have that

PeProj(C)
,efg/ PV®P’:“/ PYRN(P) . (116)
PeProj(C)

Let Px denote the projective cover of a simple object X in C. Recall that the socle of the
projective cover Pj is isomorphic to the distinguished invertible object D, or equivalently we
have

P/ = Ppv . (117)

It is clear that the socle of Py’ is given by 1Y 2 1. Using that P)’¥ & Py, no pivotality is needed
here, we see from (110]) that N(P,) = DY ® P; = Ppv = P)/. Combining these facts, we get

HOIIlc(].,P)\é) = k(stl = HOIIlc<1, N(Px)) . (118)

Recall furthermore that for braided C the functor L* : C — Z(C) associating for half-braiding
the braiding in C or its inverse is faithful, while its image is a full subcategory. Using (118)) we
therefore get

Homg(c) (]_, (P)\é, CP)\é7—)> = k5X21 = Homz(c) (1, (N(Px), C:,lN(PX))> . (119)
Together with (116)), we thus get the following corollary of Prop. [4.24k

Corollary 4.25. Let C be a finite k-linear tensor category over a perfect field k with a braiding
¢ € Br(C), and D is the distinguished invertible object of C. Then H}y(®,id ® ¢ ® id) is given

by replacing erc by fXGij(C) in (112). In particular, using (119), (110) and (117), we get
H]?)Y(®7 id ®c® 1d) = EXt2Z(C),C<1a (PD\/’ CPD\/,—) S (PDV7 C:,IPD\/ ))

@ /IDGP (C) EXt}Z(C)vc(l’ <PV’ CPva)) ® EXt%(C),C (17 (Dv ® PVV? C:}D\/®P\/\/)) . (120)
TOj
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Finally for pivotal C, the end formula for dimension of the tangent space to the braiding c is

dim T.Br(C) = dim Extlz(c%c(l, (PY,cpv ) ® Extlz(c)’c(l, (DY ® P, cj}Dv®P))
PeProj(C)

+ dlm EXtQZ(C),C(17 (PD\/, CPDV,*) @ (PD\/; c:}PD\/ ))
— 2dim Ext% e (1,1) . (121)

We note that while the P’s involved in the relative Ext’s in ((120))-(121)) are projective in C,
their images (P, cp_) € Z(C) are in general not projective neither relative projective.

5 Finite-dimensional Hopf algebras

Let H be a finite-dimensional Hopf k-algebra where k is a field, with unit 1z, coproduct
A:H — H®H, counit € : H — k and antipode S : H — H. Then the category H-mod of
finite-dimensional H-modules is a finite tensor category.

Our first goal is to specialize Theorem to C = H-mod by describing the object
(o, A7) as a module over D(H)®? where D(H) is the Drinfeld double, see Proposition .
Moreover, spaces of infinitesimal braidings in H-mod are isomorphic to Zariski tangent spaces
of the affine variety of R-matrices in H®2. Therefore, the dimension formula and the
end formulas in §4.4] give dimension formulas for these Zariski tangent spaces, see and
Remark This allows us to easily compute the dimension of tangent spaces for the example
H = By, := AC* x C|Z/27Z], see .

Our second goal, achieved in §5.3] is to make explicit the Adjunction Theorem in the
case of restriction functors H-mod — K-mod for a (possibly twisted) Hopf subalgebra K. As
an example we compute in the DY cohomology of B ;-mod — Bj-mod.

The following notations and facts will be heavily used in the sequel. First, it is well-
known that the antipode is an anti-isomorphism of bialgebras. We use Sweedler’s notation
without summation sign: A(h) = hY @ h®. As usual we write h()) @ h® @ h®) instead of
ROD @ MR @ B = BN @ hAOW & K@) ete. The coreqular actions >, < of H on the dual
vector space H* are defined by

VhW € H, YfeH, (hof))=fIh), (fah)(l)= f(hi). (122)

We denote by (H*)°P the vector space H* endowed with the product i) = (¥ ® p) o A
and the coproduct defined by 1) ()@@ (y) = ¢(xy). The Drinfeld double of H is the vector
space D(H) = (H*)°® ® H endowed with the product defined by the following conditions. The
subspaces (H*)°? ® 1 and ¢ ® H are subalgebras of D(H); hence we simply write ¢ (resp. h)
instead of p ® 1 (resp. € ® h). Then we have ph = ¢ ® h and

VheH Voe H® hp=(h¥>paShM))n?. (123)

There is a well-known isomorphism of categories Z(H-mod) = D(H)-mod: if (V,p)
Z(H-mod) then the H-module V' can be promoted to a D(H)-module by letting ¢ - v
(p®idy) o pg(v® 1g) for all ¢ € H*P and v € V. Conversely if V' is a D(H )-module then a
half-braiding p: V ® — = — ® V is defined by px(v®z) = h; - @ h* - v where (h;) is a basis
of H with dual basis (h').

If A is an associative k-algebra and B C A is a subalgebra we have a restriction functor
Resp : A-mod — B-mod and an induction functor Ind4 : B-mod — A-mod, Ind3(X) =
A ®p X, where -mod denotes the category of finite-dimensional modules. They are of course

Il m
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adjoint functors: Indj - Ress. Hence there is a monad T4 = (T4, u4,na) on B-mod with
underlying functor T4 (X) = Resp Ind4(X) which is A ® X viewed in B-mod, multiplication

(1) x : TATH(X) = A®p (A®p X) = (A®p A) ©p X U488, A op X = TA(X)

and unit (n3)x : X 148514%, A @p X for all X € B-mod.

5.1 Tangent space to an R-matrix

Recall that an R-matrix for the Hopf algebra H is an invertible element R € H ® H such that
Vhe H, RA(h)=Ah)R (124)
(A ® ld> (R) = R13R23, (ld ® A)(R) == R13R12 (125)
with usual notations (see e.g. [Kas95, §VIIL.2]).

Lemma 5.1. Let R € H® H be any element which satisfies (125). Then
R is invertible <= (e®1d)(R) = (id®¢)(R) = 1p. (126)

Proof. For “=" see e.g. [Kas95, Th. VIIL.2.4]. For the converse implication, write R = R} @ R?
with implicit summation. Then

1y @ 1z = S(RI'W)RI® @ R? = S(R})R! ® R?R? = (S ®id)(R)R

and thus R has a left inverse. Similarly 1y ® 1y = R(id ® S7')(R) and thus R has a right
inverse. Since H ® H is associative, the left and right inverses are equal. O

Let {h;} be a basis of H and R = Z” x; jh; @ hy with z; ; € k. It is clear that the conditions

(124), (125) and (126]) on R are equivalent to polynomial equations among the x;; (actually
only linear and quadratic equations). Hence

RMat(H) = {R € H® H | R is an R-matrix}

kdim(H)2

can be seen as an affine algebraic variety in . Moreover we have the well-known bijection

(see e.g. [Kas95l, Prop. XIII.1.4])
Br(H-mod) — RMat(H), c— R, = T(CHJ—[(].H ® 1H))

where 7(z ® y) = y @ x and H is the regular module. Conversely given an R-matrix R € H®?
one has the braiding ¢ on H-mod defined by cﬁ’y (z®y) = T(R' (x ®y)) This bijection yields
an identification of tangent spaces

T .Br(H-mod) — Tg RMat(H), t—=7(tau(ly @ 1)) (127)
where T.Br(H-mod) is from Definition {4.1] and
VYheH, TA(h) =A®MT
TrRMat(H) = { T € H*?* | (A ®id)(T) = Ti3Ra3 + Ri3Ts3 (128)
(ld ® A)(T) - T13R12 -+ R13T12

is the Zariski tangent space (the conditions (¢ ® id)(7) = (id ® )(T') = 0 are automatically
fulfilled).
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Remark 5.2. The elements defined in (128)) are in isomorphism with the infinitesimal R-matrices
considered in [ABSW24]: T € H®? satisfies [ABSW24|, Def. 2.1] if and only if RT satisfies (128)).

Let P : (H-mod) X H-mod = (H ® H)-mod — H-mod be the usual monoidal product,
which is the pullback by the coproduct A : H -+ H® H. Fix R = R} ® R? € RMat(H). By
item 2 in Proposition [4.8] the natural transformation

PRy X10Y10X0Y, - X19X,0Y10Y,

129
T QY QTR Y2 x1®Rf-mg®R}-y1®yg ( )

is a monoidal structure for P. As for braidings on H-mod, we can describe the DY complex of

(P, ¢f) purely in terms of the algebra H. Recall the shape of DY cochains of P in . Let
V" be the subspace of elements u € H®?" such that

VheH,  (®p, Y ®hH))u=u(®" h?) (130)

where the big tensor products go from left to right, i.e. AV @ h*t) @ ... @ h™ @ ™. For
u € V" and X;,Y; € H-mod we define

.....

where u - w is the tensor-wise action of u on w and
Un(x1®y1®...®a:n®yn) =10 .. 0T, QY1 Q... R Yp.

Condition (130]) is equivalent to the H-linearity of f¥ gy,  x my,- Moreover the naturality of
this collection of morphisms is immediate because tensor products of morphisms in H-mod
commute with the action of u. Hence we get f* € CB (P, ¢™). The map

V' — ORy(P¢T), ue f° (131)

1111

the regular module. Under this identification, the DY differentials in degree 1 and 2 are
Slu)=(1®R®1)-(1®1®u) - Apggr(u) - (1®R21)+(1®R®1)- (u®1®1),
Pu)=(1eR RV o109 RP ©1)-1910u) - (Ayen ©id5)(u) - (1© R 1%%)

+ (12 @ Apen) () - (1P @R 1) - (10 RV e1oRPeR2e1) (ulol)
where Ager(z®y) = 20 @ yM @ 23 @ 42,

Let Z(A(”*l)(H)) be the centralizer of the image of the iterated coproduct A™=Y : H —
H®". Forh € Z(A"V(H)) and any X1,..., X, € H-mod let act}  y be the representation

.....

ofhe H® on X; ®...® X,. This defines a natural transformation act® : (—)®" = (—)®". Tt
was observed in [Dav97, Prop. 8] (also explained in [FGS24, §5.3]) that the linear map

Z(APD(H)) =5 Oy (H-mod), h s act” (132)

is an isomorphism of vector spaces whose inverse is g — gg. g (1%"). Under the identifications

(131]), (132) and (127) the isomorphism from Corollary becomes

H2y(P,6%) 5 H2y(H-mod)®2 @ TzRMat(H)
] — ([(dg ® )2 (u)], [(e ®idy)®?(w)], TY)

where T = (e ®1d5 ®¢)(u) — 7((idy ® e®? ®idp)(u)) R with 7(z ® y) = y @ z. In particular:
dim TrRMat(H) = dim H3y (P, ¢") — 2dim Hjy(H-mod). (133)

The next result is Theorem for C = H-mod, i.e. we describe the coefficient (szf , )\(+)’(_))
in this case. It gives an efficient way to compute the dimension of the vector space H2y (P, ¢™)
thanks to homological algebra:
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Proposition 5.3. Let R € H®? be an R-matriz, P be the monoidal product on H-mod and ¢
be the monoidal structure of P defined in (129). Then

Hpy (P, o) = Exth e, nen(k ¥k, HY)
where the vector space H* is endowed with the D(H)®*-module structure given by
Vaa, fb€ D(H), V¢ € H*, (aa® Bb) ¢ =L ()b <S¢ (a)a) (134)
where we define

(D (HP - H, o (id® a)(R) (135)
() (H) - H, B~ (Baid)(R™) (136)

and we use the coregqular actions ((122]).

Recall that D(H) = H*P @ H and we write aa instead of o ® a, see for the product.
There is an obvious isomorphism D(H ® H) = D(H)® D(H) given by (a®)(a®b) — aa® Bb
where the linear form a® 5 € (H® H)*°? is defined by (a® 5,z ®y) = («, x><ﬁ y> in the sequel
we use this identification. We also note that the maps ¢*) defined in - are algebra
maps which extend to algebra maps D(H) — H given by aa +— () (a)a and ﬁb — L) (B)b
respectively.

Proof. Write R = R} ® R? € H®? and recall that the braiding in H-mod is cxy(z ® y) =
R? y® R} - x. Tts inverse is c;(}y(y ®@x)=S(R}) -x® R?-y. Also recall that XV is the vector
space X* endowed with the H-action defined by (h- f)(z) = f(S(h) - z) for all f € X* and
x € X. The coend for C = H-mod

XeH-mod
of = / XYR X € (H-mod) ® (H-mod) = (H @ H)-mod

is the vector space H* endowed with the (H ® H)-action (a®b)-1 = b>1p<S(a), see e.g. [FSS12,
App. A]. Tts universal dinatural transformation jx : XV XX — H* is given by (jx(xXz),h) =
X(h-z). Note in particular that any ¢ € H* can be written as ¢ = jy () W 1) where H is the

regular module. Let us compute the half-braiding )‘vxv(v VCH @ (VRW) - (VRW) @ H
defined in (96]):

Naiw (¥ @ (v R w)) = AR 0 (jr @ idvaw) (¥ B 1) @ (v & w))
= (idygw ® ju) o (cpvy K cWH)(W ®v) K (1y @ w))
= (idvaw ® ju) [(R}-v®@ (¥ <aS(R}))) K (S(R)) - w® RY)]
= (idvaw ® ju) [(R} - v R S(R})-w) ® (< S(R;)) K R7)]
= (R} vXS(R)) w)® (R2I>w<15(Rz1))

Through the isomorphism Z((H ® H)-mod) = D(H)®*-mod recalled at the beginning of ,
the half-braiding A(*):(=) is equivalent to the action of D(H)®2 on H* given by

(e ®Bb) - = (a®@ B@idy) o N ((a @ b) - @ (1 R 15))
= (a® B @idg) o Ay, (b1 4 S(a)) ® (1g R 1y)) = a(R)B(S(RY)) R34 < S(a)S(RY)

which is the claimed formula. O

48



Remark 5.4. Recall that Hp, (P, %) can be also computed via the Kiinneth type formula (112))
or Corollary if the ground field k is perfect. Let us explain their ingredients in the Hopf
case:

1. The distinguished invertible object D is the one-dimensional H-module given by the
character a=! : H — k where « is the so-called modulus defined by

¢ - h=a(h)d
and ¢! € H is the left co-integral of H, see [EGNO], Prop. 6.5.5]E|

2. The Nakayama functor N given in (110)) is then induced by the automorphism on H that
sends h € H to a(hV)S?(h?).

3. Let X € H-mod, then under the equivalence Z(H-mod) = D(H )-mod recalled just below
(123), the object (XY, cxv ) is the vector space X* endowed with the action defined by
((aa) - f,2) = (f, St (a)a)z) for all f € XV, a,a € D(H) and z € X, and with
() defined in (I35)). Similarly (X,cZ'y) is the vector space X endowed with the action
(Bb) -z = () (B)b-x for all B,b € D(H) and x € X, and with /(=) defined in (T36)).

The advantage of the formulas (112]) or (121]) is that the ends are taken over projective objects,
recall Corollary 4.25] When H has only a few isomorphism classes of simple objects, one can
expect that these ends are easy to calculate. This is demonstrated in the example H = By, in

below.

5.2 Example: tangent R-matrices for B, = AC* x C[Z/2Z]

Let k be a strictly positive integer and By, be the C-algebra generated by g and x; with 1 <1 < k
modulo the relations

T = —x, g = —19, =0, ¢°=1. (137)

(2

The monomials z{' ...z g%+ with e; € {0,1} form a basis, so that dim(By) = 2F1. Tt is
a Hopf algebra with coproduct A(x;) = 1 ® z; + 2, ® g, Alg) = g ® g, counit £(z;) = 0,
e(g) = 1 and antipode S(z;) = gx;, S(g) = ¢g. This algebra can be seen as a generalization of
the 4-dimensional Sweedler’s Hopf algebra.
It is clear that By, is pivotal with the pivot given by g, i.e. S?(—) = g(—)g~!. Furthermore,
By, is unimodular for even k, i.e. the distinguished invertible object is D = 1, while for odd k&
the object D = DV is described by the character & = a~!, recall Remark 5.4, where « is zero on
all z;’s and —1 on g. Let us denote the projective cover of such a one-dimensional Bi-module,
for all k, by P_.
The element
R0:e+®1+e,®g:1®e++g®e,EBk®Bk (138)

where e, = % satisfies (Rg)> =1 ® 1 and is a triangular R-matrix.

Our main goal is to describe the Zariski tangent space T, RMat(By) defined in (128)). We
first compute its dimension using the end formula (121]).

Write (27" ... z;"g+1)* for the basis elements of B} which are dual to the monomial basis of
By.. Recall from [GHS23|, §5] that B;°" is generated by the elements y; = o — (2;9)* (1 <i < k)
and h = 1* — g* modulo the relations

9We note that our conventions on the distinguished invertible object D are opposite to those in [EGNO]
Sec. 6.4].
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Hence the Drinfeld double D(By) = B’ ® By, has the generators x;, g, y;, h modulo the relations
(1137)), (139) and the mixed relations given in [GHS23, eq. (5.7)] that we will not need here.

We will use a ‘minimal’ relatively projective resolution P of the trivial D(Bj)-module C
constructed in [GHS23, §5], see also [FGS24, §6.1.2]:

P=(0+—C+— S(CHRC, +— SHCH@C_+— S*(CH)@Cy+—...) (140)

where C. = B;°" f are projective covers in Bj-mod corresponding to the idempotents f, =
1ih , equipped addltlonally with the trivial action of the generators z; and g acting as h, which
makes them also D(By)-modules. The spaces S"(CF) of homogeneous polynomials of degree n
in £ commuting variables, of dimension (Hz_l), are just multiplicity spaces in . For what
follows, we do not use explicit form of the differentials of P, so we omit them.

Proposition 5.5. 1. We have
dim TRORMat(Bk) = k’2.

2. Recall that the R-matriz Ry € B}?Q gives the monoidal structure ¢T for @ defined in (129)).
Then we have
(%”L:_l) if n is even

d. Hn Ro —
1m DY<®’ ¢ ) {O an 15 odd

Proof. Let
L : Bymod — Z(Bj-mod) = D(By)-mod, X — (X, ) = (X, (cf*y)™)

which by item 3 of Remark is the pullback along the morphism ¢*) = ¢(=) . D(B,) — By
from , where the equality is due to the symmetric R-matrix . In particular we see
that the y;’s act by 0 on any L(X) while the z;’s act on L(X) as they do on X. The situation
is opposite for the modules C4 appearing in : the x;’s act by 0 while the action of the y;’s
is free. This immediately shows that Hompg,)(Cs, L(X)) = Hompg,)(C+, Soc[L(X)]) where
Soc denotes the socle. As a consequence, using the resolution we see that the relative
Ext spaces satisfy:

Ext7, (Br), ((C L(X )) Ext7, (By), ((C Soc[L(X )]) )

We thus see that the term in the 2nd line of is canceled by the 3rd line because
Soc[L(Pp)] = C. For what concerns the end in the 1st line, only one term corresponding
to P = P_ gives a non-zero contribution, which is S1(C*)®2. Clearly there are no extra linear
relations coming from dinaturality, and we are left with S*(C*)®? whose dimension is k?.

2. Recall Corollary and denote by Bj-pmod the subcategory of projective Bi-modules,
which has only two isoclasses of indecomposables (the projective covers of the characters e
and «). By arguments similar to the previous item we immediately calculate

Hpy(®,id®@c@id) = /P Extig,,5, (C, L(P)) ® Ext}, 1 5 (C, L(D @ P))

l+j:7’L EBk—med
> Gpeven @D SH(CY) @ F(CF) 22 6 evenS"(C*) | (141)
i+j=n

where we observed that for even n, as for n = 2 above, and each (i, j) only one P term (out of
two) in the corresponding end gives a non-zero contribution equal to S*(C*) ® S7(C*), while for
odd n there is always one tensorand in each end which is zero, so the total space is zero. [
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The use of the end formulas (§4.4) gave a fast proof of the previous proposition. But
for completeness we still find it relevant to give another proof which uses the isomorphism
HI (2, ¢M0) = EXt?Z)(Bk)W,B,‘?Z((C X C, B;) from Proposition . Let us then describe the

D(By)®*-module structure on B;:
Lemma 5.6. Let wy = (z1...25) ® (21 ... 249)". The elements ' ...z >wy with e; € {0,1}
orm a basis of Bf. In this basis, the action of D(B;,)®? on B} associated to Ry (Prop. |5.5) is
k k
given by
(z; @1) - (27 .. 2 pwy) = Faf' ... afbz > wy,
(1@a;) - (27 .. .2 pwy) = zaf .. x> wy,
(i ®@1) - (2f ..o pwy) =(1®@y,) - (2f .. 2 pwy) =0,
(g@1)- (27 ...afpwe) = (h®@1)- (2 .. 2f pws) = (=D 2P . 2P b wy,
(1®g) (2 ...ap¢pws) =(1@h) - (a7 ... 2P pws) = (=) 2P o wy

where |e| = 2% e;.
Proof. Note that

N (AL xi’“gt) (—1)= i dittes (8. al e .xi’“gt)*.

for all e;,d;,t € {0,1}. Hence
l‘? N .ka > (1'1 N -xkgt)* ( 1)s(e)+t|e|< 1— —e1 x}lﬂ ekgt)

where s(e) = S e, S (1 —¢;) and |e| = 325 ¢;. As a result

Jj=t+1
1‘? N ka bWy = (_1)3(6) ((xi—el 'Tllc ek) + (_1>|e|($}—el - .xi—(ikg)*)

whence the claim about the basis. The formula for the action of 1 ® x; is obvious since
(1®a)- -9 =ar1. The formula for the action of 1 ® g follows from g>wy = Fwy. Next we
have

(z1...28)" aS(x;) = (—DF 2y .. 2l apg) = 2o (21 2g),

(z1...79)" < S(x;) = (=)o 2 ) = e (2. a)”

)

and thus wy < S(x;) = Fx; > we. Since the actions > and < commute, we get the formula for
the action of z; ® 1. It is easy to check that g>wy = +wy and wi < g = £(—1)*w., which
imply the formulas for the actions of 1 ® g and g ® 1 respectively. Finally we have (()(h) = ¢
and () (y;) = 0, which imply the formulas for the actions of 1®y;, 1®h, y;®1 and h@ 1. O

By item 1 in Proposition [C.4] the tensor product P X P of (140) with itself is a relatively
projective resolution of C X C € D(By)®*-mod, with the chain spaces in degree n given by

(PXP), EB SHCH @ S"THCH) @ (C(_yi BC_yn—i) -

We have to compute Hompp, o2 ((P@P)n, B*) Any ¢ € Hompp, )92 (CsXCy, By), for s,t = =+,
is entirely determined by its value on f, X f,. Since z; ® z; acts by 0 on C; X C; for all 1, j,
these generators also act by 0 on ¢(f, X f,), which forces

O(fRF)=Aro..apbwy + Ay oxp > we
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for some Ay € C. The actions of the generators ¢ ® 1 and 1 ® g impose

so(Ff.RF) = (D iz ... oppwy — (—DFA_zy .o w_ = to(F, R £,).

Thus s =t, sAy = (—1)*A, and sA_ = (—=1)*"!\_. The generators 1 ® y; and y; ® 1 act freely
on C; X C, and they act by 0 on B}, while the generators 1 @ hand h® 1 act as 1 ® g and g®1
both on Cs W C; and on B;. Hence these generators do not give further constraints on ¢. As a
result
Nf.—x... o >w_ if s=t
HomD(Bk)®2(CS IX Ct? BZ) = {fs -fs «Tl mk,‘ w( )ks I S

ifs#t

where for s = t we mean that the Hom space is one dimensional and spanned by this map.
Hence

@, S (CF) ® S"~H(CF) = S"(C?*) if n is even
Hom p 5,102 (P K P),,, BY) = { Yi=
D(By)® (( ) k) {0 if n is odd
and item 2 in Proposition follows. Item 1 in Proposition [5.5] can then be deduced from

(133), since by [GHS23, Th.5.1] we know that dim H2y (Bj-mod) = #&H.

We note that the space of obstructions Hgy (P, $f°) is 0, hence any infinitesimal deformation
of the monoidal structure of (P, ¢™) can be lifted to arbitrary degrees in h. By applying
Corollary to such deformations, one can expect to get deformations of Ry in arbitrary
degrees in h as well. In the next proposition we describe the space of infinitesimal deformations
of Ry and their eventual analytic versions, which form a k*-parameter family of genuine R-
matrices. By [PV99] this is the complete list of R-matrices on By (here we provide a more
compact form of their expression).

Proposition 5.7. 1. The following elements form a basis of T gr, RMat(By):
Ro(mi @ 2;9), (1< i,j < k).

2. For all A = (\ij)1<ij<i € C* the element

k k
R)\ = Ro exp(Z )\@j T, ® .’ng) = Ro H (1 ®1+ >\i,j z; & xjg)

2,j=1 1,j=1

is an R-matriz in By,. They satisfy Rx4, = RARoR,,.

Proof. 1. Let X;; = x; ® ;g and T;; = RoX;;. It is easily seen that X;; € Z(A(A)), and
hence that T; ;A(a) = A°(a)T;,; for all a € By,. Note that

(A ® id) (Xi,j) = gZ(Xi,j>13 + (Xi,j)23v (R0)23g2(Xi,j)13 = (Xi,j)13<R0>23 (142)
where g» = 1 ® g ® 1 and for the second equality we use ge+ = +e. Thus
(A ®id)(T;;) = (Ro)13(Ro)2392(Xi )13 + (Ro)13(Ro)23(Xi )23 = (T5,5)13(Ro)23 + (Ro)13(T5 ;)23

The equality (id ® A)(T;;) = (Ti;)13(Ro)12 + (Ro)13(Li ;)12 is obtained similarly. Hence the
k* elements T; ; satisfy the linear conditions in which define Ty RMat(By). Moreover
they are linearly independent (because the elements z; ® x;¢ are linearly independent and R,
is invertible), and since dim Tz, RMat(By) = k* they form a basis.

2. The elements X;; = x; ® ;g commute with each other and are nilpotent of order 2, which
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gives the second equality for Ry. The last claim is also due to the commutation of the elements
X ;. Now using (142) and the fact that go(X; ;)13 commutes with (X ;)23 we get

(A ®@id)(Rx) = (Ro)is(Ro)as [ [ (1% + Nijga(Xij)is + Aij(Xij)as)

ij=1

K
= (Ro)13(Ro)as [ [ (1%% + Aijga(Xij)1s) (1% + Xy j(Xi)2s)

ij=1
k k
= (Ro)1s(Ro)as [ (1%% + Aijga(Xijhs) [ (1% + Xij(Xi;)2s)
i,j=1 t,j=1

= (Ro)13 H (1®3 + )\i,j<Xi,j)13)(RO)23 H (1®3 + Ai,j(Xi,j>23> = (Rx)13(Rx)2s-

i,j=1 4,j=1
The computation for (id ® A)(Ry) is similar. O

Remark 5.8. 1. We have dim Hpy (P, ™) = dim H3y (P, $7°) for all A € C**. The proof of this
equality uses Proposition [5.3| exactly as we did above for A = 0. Let (B;)x be the coefficient for
Ry, which is B} as a vector space for all X. The action of BY? on (Bj)x equals that on (Bj)o
as it does not depend on the R-matrix. Note that y,,(x,,e_) = 1 and y,, is equal to 0 on all
the other elements x° ... z5*es. Hence ((F)(y;) = — anzl AmiTy and £ (y;) = 251:1 AmiZom,
where we used the formula Ry' = (S®id)(Ry). Also (&) (h) = g. As aresult the action of y;®1
(resp. 1 ®y;) on (Bj)a is equal to the action of — 257,:1 Am.iTmg @ 1 (resp. me:l Amil @ T)

and the action of h® 1, 1 ® h are equal to the actions of g ® 1, 1 ® g. Repeating the arguments
which were used for A = 0, we find that Hompp,)e2 (CS X C;. (BZ)A) is the same for all \’s.

2. We deduce from the previous item and that dim T g, RMat(By) = k2 for all A € C¥*.
This also immediately follows from [PV99] who proved that RMat(By) = M (C). Neverthe-
less note that our arguments do not require the knowledge of the whole RMat(H) to get the
dimension of tangent spaces.

5.3 DY cohomology of twisted restriction functors

Recall the notations introduced at the beginning of §5| A Drinfeld twist for H is an invertible
element J = s; ® t; € H®? (with implicit summation) such that

SZ‘Sg-l) X ti8(2) (% tj = S5j & Sitgl) & tlt(z) and 8(8i)ti = SiE(ti> =1.

J J

Then there is a new Hopf algebra H, called the twist of H, which is H as an algebra with the
same counit but with new coproduct A; and antipode S given by

Ay(h) = JAMR)TY,  Sy(h) = uypS(h)u;!

where

with the notation J!' =3; ® t;. We write
Aj(h) = RV & b2

to distinguish between Sweedler’s notations for A and for Aj.
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Let K be a Hopf subalgebra of H;; it means in particular that K is endowed with the
coproduct A ;. As an associative algebra K is a subalgebra of H and thus we have the restriction
functor F' = Res? : H-mod — K-mod. The twist .J gives a monoidal structure on F:

FIX)@ F(Y) = F(X®Y), TRy~ (5-2)® (- y). (144)

Let F; be the restriction functor F endowed with this monoidal structure, which we will denote
by Ff). Our goal is to describe all the arrows appearing in the diagram for F; and give
the statement of the adjunction theorem (Thm. for the DY cohomology of F;.

Remark 5.9. Note that F;(XV) and F;(X)Y are both X* as a vector space but they are endowed
with different actions of K. Indeed, if ¢ € F;(XV) then (k- ¢,x) = (p,S(k) - ) while if
© € Fy(X)Y then (k- p,x) = (p,Sy(k)-z). It follows from the definition of S; that there is an
isomorphism of K-modules

dx : Fy(X)Y = F;(XV), o= o(uy-7?) (145)

where p(uy-?7) € X* is defined by z — @(uy - ) with u; from (143]). The collection d =
(dx)xeH-moa 1S @ natural isomorphism. The element u; satisfies

which is equivalent to the commutation of the following diagram for all X,Y € H-mod:

V. ((F§2))Y,X>V_1
_—_—

Fi(X)Y ® F; (Y)Y ~ (F;(Y)® Fy(X)) F;(Y ® X)Y
FJ(X\/) ® FJ(YV) (F§2))xv,yv FJ(XV ® Y\/) ~ FJ((Y ® X)V))

We first give a representation-theoretic description of the monad Zp,, defined in general in
3.2l Let H;™ be the dual vector space H* endowed with the product ¢y = (¢ ® @) o A,
and with the usual coproduct (A(p),h ® h') = p(hh'). Then the restricted duality pairing
c: K®H;® -k, k®p— (k) is a skew-pairing:

a(kk' ) = p(kk') = oD (k)@ () = o (k, o) o (K, o),
ok, o) = (p9)(b) = w(kD)p(K?7) = o (0, k7)o (3, KDV).

Thus we can form the quantum double D(H;®, K') of the skew-paired Hopf algebras K and
H7P, see e.g. [KSI9T, §8.2]. As a vector space it is H;”® ® K. Its product is such that H;°® and
K are subalgebras; thus we write @k instead of ¢ ® k. Moreover

ko = (k7> a8, (kM) k@ (147)

where > and < are the coregular actions defined in (122)). The algebra D(H ", K) is actually a
Hopf algebra with coproduct Apgror k) (k) = eMED @ g2,

*0p
Since K is a subalgebra of D(H ", K) we have the induction-restriction monad ’]I‘?H" oK)

on K-mod as defined in general in the introduction of §5 Note that
D(H}P K) L *0p _ *0p ~ *Op

where the action of K on the vector space H* ® X is

ke(por)= (k9> paS;(kM7)) @ k@7 .z (148)
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because of the formula (147), while the action of H} is by left multiplication on the first
tensorand. The multiplication H;® @ H;® ® X — H;® ® X of this monad simply reduces to

*0 *op

the multiplication in H;", and thus we write "7 " instead of ,uflz,(H" K, Similarly the unit of
D(H K) . . . P D(H’" K)
Ty is given by = — € ® x, so we denote it by "7 instead of 7, .

We introduce a notation which will be used in the proof of the next proposition. If X is
a (finite-dimensional) H-module then for any x € X and ¢ € X* we can form the matriz

X
coefficient M¥ € H* defined by
X
Vhe H MZ2(h)=ph-x). (149)

X X X X
They satisfy M"% = M# < S(h) and M7 = h> M¢ because the action of H on X" is defined
by (h-¢)(x) = ¢(S(h)z).

(HP K)

Proposition 5.10. The monads Zp, and ']I‘g are equal.

Proof. Recall that Zg, (V) = fXGH_mOd Fj(XY)®@V ® F;(X) for all V € K-mod. Consider the

dinatural transformation

V) (X eV e X)) 5> TR" W)y = v e v (150)

X
pRUVT— (Mfau;')@v
with notations from (T49) and (143). Note by (T48) that i%’(V) is a K-linear morphism:

z'f(J(V)(k (p@ver) = ’ing(V)(kf,l) @ kDT @ kB )
X X
= (Mk( )T qu;l) ® A E - (k(3)" > M? < S(k(l)J)u;1) 2 T

E®) .

X
= (k(3)J >M? < u;lSJ(k(l)J)) k@7 v =k (V)p@ve ).

We claim that 7 (V) is universal. Indeed take any dinatural transformation gy : F;(XV) ®
V ® F;(X) — W. Let H be the regular H-module and defineg: H;" ® V — V by gla®v) =
gH((a Quy) @V ® 1H). For all h € H the right multplication by h gives a H-linear map
rp : H — H. Then by dinaturality of ¢

gula®@v®h) = gﬂ(a ® v ®rh(1H)) = gH(r;;(a) RUR 1H) = gH((hDa) RUR 1H)
=g((hrau;’) ®v) = a((ﬁ% auy)®v) =goi (V)(a®v®h).

Hence gy = g o ig"(V) and since H is a projective generator of H-mod we conclude that

gx = goiy’ (V) for all X € H-mod by item 2 in Lemma|A.1| This proves that Zp, = TI?(H;OP’K)

as functors. To compute the multiplication of Zx, note that the general definition of i® in (55)

applied to (150) reads

F1,(2) Y<p -1 Xw -1
ixy (V)(e@yv@uverey)=(M;u; )® (M qu;") @ wv.

Thus by the general definition of ?%s in ([56]) we have

Y X
' (Mf QMY ® v) — 1 o iREP (V) (p(us?) @ Plus?) @@ T @ y)
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_ Z?@Y(V) o ((F}2)>Y\/7X\/ ® idy ® <F52))X,Y) (g&(uJ'?) RUY(u;r?) @ver® y)
=iy (V) (0(usS(5:)7) @ h(usSE) ) ®v e 2 ®1; - y)

=iy (V) (p(tiu (2) 7)®¢(suj)7)®v®s] Tt y)
XY ) X
=0T KR g ((Mif o 1) 0 0,) ®0= <M5Mz> o
where the third equality uses and the fourth equality uses . Ifwetake X =Y =H
and z = y = 1y this yields ,uZFJ(gp RYRV) =P Qv =" (p ® w ® v), as desired. Finally

D(H};™ K)

it is readily seen that the units of Zp, and T coincide. O

As a byproduct, we have an isomorphism of k-linear categories
Z(Fy) = Zp,-mod = D(H}°", K)-mod.

Explicitly, for (V, p) € Z(F}) then in particular V' is a K-module and it becomes a D(H;?, K)-
module if we define the action of H}™ by ¢-v = (¢ ®idy)(pu(v® 1)) where H is the regular
module. Conversely for V' € D(H, sop , K)-mod then V is a K-module by restriction and the
formula px(v®@z) = h; -z @ h - v for all X € H-mod, v € V and = € X gives a half-braiding
for V relative to F;, where {h;} and {h'} are dual bases of H and H*.

For K = H, F = Id and J = 1, Proposition m gives Zgmod = Th ) where D(H) is
the Drinfeld double of H and we simply recover the well-known 1somorphlsm Z(H-mod) &
ZHg-moa-mod = D(H)-mod. Hence in the present situation the diagram becomes

Fy
D(H)-mod L D(H®, K)-mod (151)
R
Ind <—|> Res Ind <—|) Res
Fy
e —
R

where Res and Ind are the restriction and induction functors. Recall a well-known easy fact:

Lemma 5.11. Let A, B be finite-dimensional k-algebras and f : A — B be an algebra mor-
phism. The right adjoint of the pullback functor f* : B-mod — A-mod is W — Homy (f*(B), W)
equipped with the action defined by (b-~)(b') = v(b'b) for allb € B and V' € f*(B).

Hence the right adjoint R of F; is the coinduction functor
R(W) = Homg (H, W)

where H is endowed with the left multiplication of K and the action of h € H on g € R(W)
is defined by (h - ¢)(h') = g(h’h). On morphisms R is given by pushforward. The functors F);
and R are defined in general in in the present situation they take the following form:

Proposition 5.12. Recall diagram (151)) and the notations J = s; @ t; and uy = $;S(t;).
1. There is a morphism of algebras

T:D(H?P, K)— D(H), ok t;(t;>0<s;)5;k. (152)

The pullback functor Y* : D(H)-mod — D(H;, K)-mod is equal to Fy.

2. Let (W, ») € D(H, K)-mod, where = denotes the action. We have R(W) = Homy (H, W)
equipped with the action of D(H) given by

Vi € H, ((ph)- f)(H) = (tjt§2>h’<3> >4 S(sih’(l))u;1> . f(sjt§1>h'<2>h) (153)

for all ph € D(H) and f € Homg(H,W). On morphisms R is given by pushforward.
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Proof. 1. Recall the general definition of lifted functor in (23]). To describe /FVJ we must compute
for all V' € H-mod the map (v : Zp, F;(V) = F;Zgmoa(V') defined in . Denote by

X
ix(V): XVeVeX - HPQV, pues— M,

the universal dinatural transformation for Zy.mea(V) = H*® ® V. Note that Zp, F;(V) =

TR (V) = HY @V and Fy Zpwea(V) = FyTR (V) = H*P @ V as vector spaces.

We have
Gr(p®0v) = (v oiff (Fs(V)) ((pauy) @ v @ 1y) = Fr(ig(V)) o (FY)xv v x (di(p) @ v @ 1y)
= F;(iu(V)) <(90<IUJS(§¢)) ® 13 ) LYY > (ffz)t > p<usS(s;)) ®f§1)§j v

where the first equality is a trick based on the regular representation and (150|) while the second
uses the definition of ¢y. Hence if (V,-) € D(H)-mod (where - is the action of D(H) on V)

then F,(V,-) = (V, =) where the action = of ok € D(H}®, K)onveVis
kv = zf)zj > e < UJS(gi)> fgl)Ejk v=27 (fj > @< uJS(@-)EE”) Sik v
= tl(%] >pd Si)gjk V= T(@k) -V

where in the second equality we used (123|) while in the third equality we used that S (§i)f§1) ®

%Ez) = u}lsi@)ti which easily follows from the defining properties of J = s;®t; and the definition
of uy in (143). As aresult zsv = Y(z)-v for all z € D(H;’®, K). In particular if V = D(H) is
the regular representation we obtain that Y is a morphism of algebras:

T(zy) = T(zy) - Ipy =xy=lpm) === (y = 1D(H))
=T (@)Y(y) - Lo = Y(z)T(y).

2. One could use and to compute R. But thanks to Lemma we know directly
from the previous item that the right adjoint of F; is given by

R(W) = Hom pg=or o) (T*(D(H)), W)

where the D(H )-module structure on R(W) is (z - g)(y) = g(yz) for all g € R(W) and z,y €
D(H). A straightforward computation shows that ph = [ @5 pa S(sz)qu}sjt W, for
any ph € D(H). Hence if g € R(W) we have g(ph) = (t5t; £ )D @ A S(s)u;") =g(s;t (l)h) by
D(H’®, K)-linearity. This shows that g is entirely determined by its values on H C T*(D(H))
and gives an isomorphism of vector spaces

Hom ppror i) (Y*(D(H)),W) = Homg(H,W), g+~ glu.
Let f € HomK(H, W) and write f = g‘H7 then
(123)
= <tjt§2)h/(3) > S(h’(l))s(si)u}l> -g(sjtgl)h/@)h)
(LK 5 p 0 S D)) « £ (st ON )

which is the announced formula. O
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Note by definition of A; that

sih'W @ s;t VW@ @ P = (1@ J) (id @ A)(J) (id @ A) (A(R))
= (id @A) (A1) (1@ J) (i[de A)(J) = KD @ K@ stD @ h'@ogil?

i .

Hence using moreover the definition of S; we can rewrite formula ((153)) as follows:

((ph) - £) () = (KO8 o o 0 S(s)uz Sy 07)) = f (W @75;60R)

In this form it is readily seen that Homg (H, W) is stable by the action of D(H).

Remark 5.13. It is non-trivial to check that Y is a morphism of algebras directly from its
definition in ((152)). In the case K = H this is done in [MO99, §2.2]; they moreover show that,
as a Hopf algebra, D(H) is isomorphic to a twist of D(H).

By Theorem (or more precisely (68))) and Proposition [5.12}
Corollary 5.14. We have

Hpyy (Fy) = Exthn (]k, Homy (H, ]k))

where in its first instance the ground field k is endowed with the trivial D(H )-module structure
while Homy (H,k) = {f € H*|Vk € K, f<k =¢(k)f} has the D(H)-module structure given

by

{(h) - £, ") = @(S(s:h" DYyt W@ f (5,800 h) (154)
forall f € H*, ph € D(H) and ' € H.

Fxample 5.15. Assume that K is a Hopf subalgebra of H, so that we can choose J = 1® 1.
Then the action of D(H) = (H*)°® ® H on Homg (H, k) in Corollary reduces to

(e@h)-f=hef,  (p®1)-f=vu)fS(pe) (155)

where @1y fS(p(2)) is the product of (), f and S(¢)) = @) oS in (H*)°P. In particular for
K =k (the ground field) then F; = U : H-mod — vecty is the fiber functor and Hy (U) =
Hpy (H-mod; k, H*) where the vector space H* has the D(H )-module structure (I55). This
last case was obtained in [GHS23| §4.3] by a different method.

Ezample 5.16. Let R = R! ® R? € H®? be an R-matrix for H, with implicit summation on i.
Recall that R™! = (S ® id)(R) and consider

J=(10SR))e R 1), J'=12R)e(Re]l).
N — N—— N——— N——

Si t; Si ti

The element J is easily seen to be a Drinfeld twist for H ® H, so we have the twisted Hopf
algebra (H @ H);. The map ¢ : H — A(H) C (H ® H); identifies H as a Hopf subalgebra of
(H ® H),. Indeed ¢ is obviously an algebra morphism and is a coalgebra morphism thanks to
the twist:

AJ(L(h)) — JAH@H(h(l) ® h(z))Jfl — J(h(l)(l) @ hPW0 o L) & h(2)(2))J*1
=J(MY@r® @r® W)t =0 o h® @ @ bW = (hY) @ o (h?)

where the second equality uses that Apgp(r ® y) = 2V @ yM @ 22 @ y@ by definition of
a tensor product of Hopf algebras, the third is by coassociativity and the fourth uses that
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RA = A°PR. This yields a restriction functor F; : (H ® H)-mod — H-mod which has the
monoidal structure

(FO) . B EY) FGRY) o F((GRY) @ (HRY)
J X1XY71,XoXYs - :X1®1/1®X2®}/2 :X1®X2®}/1®}/2 )
IR QT2 @Yy — 11 ® (R 29) @ (R} - y1) @ yo

Let us apply Corollary to this monoidal functor:

where we identify D(H ® H) with D(H)® D(H) and g € Homy(H®? k) if and only if g(h(Vz®
h®y) = e(h)g(x @ y) for all z,y,h € H. The action (154) of ca ® Bb € D(H)®? on g €
Homp(H®? k) is given by

((aa® Bb) - g,z @ y)
— (a®8,S(s:(a @y M) (B @ S(RD) ;17 (2P @ y™)) (9,5t @Pa2y®0))  (15)
= <a, S(:B(l))RiRJQ-R? @ $(3)> <5, S(y(l))S(R}gS(R;))y(Sv <g, Rf(l)z(2)a ® S(R})y@)b>

where in the second equality we used that the element (143)) is u; = $;5(t;) = R? ® R} with
our choice of J. For any g € Hompy (H®? k) we can write g(z ® y) = g(zV ® 2 )S( (3))y)
9(1® S(z)y), whence an isomorphism of vector spaces

Hompy(H®? k) = Homy(H, k) = H*, g~ g(1®7?).
Let us compute the resulting D(H)®?-action on H*. Take ¢ € H*; then ¢ = g(1®7?) for some
g € Homy(H®? k) and from (156 we find
((aaw Bb) - g,1@y) = (o, REZE®) (8,5(yM)S (RLS(RD)y ) (v, S (RRE Va)y@b)
because g(z ® y) = 1(S(z)y). Elementary properties of R-matrices yield
RR:R!® @ RIS(R!) @ RIR!YW = RZR?VR? @ RLS(R!) @ R} ”R!
= R{R/R} ® Ry S(R;)S(R;) ® RIR}; = R; ® S(R}) ® RIR;
and it follows that
<(aa ® Bb) - 9.1 @y) = a(R})(B, S(y)S*(RHy™) (v, S(RI R}a)y?b)
a(B))(B, S(™)S(R)y™) (v, $(a) S(R) Rly@b) = a(B)B(S(RY)) (¥, S(a)S(R))yRb)
As aresult Hpyy (Fy) = Exth gyee e (kXk, H*) where H* is endowed with the D(H)®2-module
structure given by ((aa ® 8b) -, y) = a(R3)B(S(R})) (¢, S(a)S(R})yR?b). The monoidal

functor F’; is equal to (P, ¢R) defined in ([129)); hence this example gives another proof of
Proposition [5.3]

5.4 Example: restriction functor B;,;-mod — Bi-mod

Recall the Hopf algebra B, from §5.2 Take two strictly positive integers [,k and consider
the Hopf algebra B, generated by variables g, z1, ..., z;1x modulo the relations . The
subalgebra generated by ¢, x;y1,..., 71 is a Hopf subalgebra isomorphic to By. Hence the
restriction functor

F = ResB : Bjix-mod — Bi-mod
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is monoidal. Let us use Corollary and the relatively projective resolution (140) to compute
HYy(F). Note that here the Drinfeld twist J = s; ® ¢; is trivial: J =1® 1.

If f € Homp, (B4, C) then the commutation relations in Bj, and the Bj-linearity yield

Pl ity ) = ()Pl et (e
= 0py0 - Oppo(— 1)1 f (25 afY)

for all e;,p;,t € {0,1}, where |e| = S\ e, |p| = 2521 p; and 0 is the Kronecker symbol.
Hence

Homp, (Bysy, C) = spanc{ (27" ... 2{")" + (=1 (2" ... 2{g)" le1,...,e1 € {0,1}}

where * denotes dual vectors. Recall that the Drinfeld double D(B, ) is generated by x;, g Yis h
with 1 < ¢ < [+k modulo the relations given in [GHS23, §5]. Write |e1,...,e;) = (27" ...2)") +
(=Dl (a5 2] g) . According to the computations in the proof of [GHSZS, Lem. 5.9], the
action (155)) of D(B,4x) on these basis vectors is given by

g-ler,....e) = (—1)'6‘ le1, ... e, h-lei,...,e) = (—1)‘6‘ ler, ... e,

(—1)z§:i+1ef ler, .. 61,0 €01, ...,¢) ife;=1and 1 <i<I
Z; |617 . 7€l> - .
0 otherwise
yi - ler,...,e) =0.
In particular Homp, (B4, C) is generated by [1,...,1). From Corollary [5.14 and Theorem [3.3]

we have

Hpy (ReSBl+k) = Exti (C, Homp, (Bisx, C).)

Biyk)Biik

Consider the relatively projective resolution (140) for C € D(B;ij)-mod and the D(Bjy)-
modules Cy = Bl*igf with s = £, If p € HomD(BHk)(CS,HomBk (BHk,C)) then since z; acts
by 0 on Cs for all i we necessarily have ¢(f,) € C|0,...,0). Moreover hf, = sf, while

h-10,...,0) =10,...,0). Hence
HomD(BHk)(CJr,HomBk(BHk,(C)) = C, HomD(BHk,)(C_,HomBk(BHk,(C)) =0.

We deduce that

(k“fl"*l) if n is even

e (157)
0 if n is odd.

dim Hpjy <ResBl+’“> = {

A (Di)natural transformations in finite categories

Let k be a field. This appendix collects some facts about (di)natural transformations, coends
and Deligne product in finite k-linear categories. We include proofs for convenience.

Let C be a finite k-linear category. Recall that any such category is equivalent to the
category A-mod of finite-dimensional modules over a finite-dimensional k-algebra [EGNO/, §1.8].
A projective generator is a projective object P € C such that for any X € C there exists an
epimorphism e : P* — X for some n € N* [EGNO, §1.8]. Such a projective object is not
unique but a minimal choice is obtained by taking P = @221 P; where Py,..., P, are the
indecomposable projective objects of C up to isomorphism. Note that any X € C can be
written as a cokernel of a morphism « : P™ — P" for some m,n € N. Indeed since C is abelian
the epimorphism e : P* — X is the cokernel of some morphism g : Y — P". Now we cover Y
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by P™ - Y and let a : P — Y % pr. Then coker(a) = coker(3) = (X, e). We call the exact
sequence P™ -5 P" =5 X — 0 a projective presentation of X.

A functor is called right exact if it preserves cokernels. Item 2 in the next lemma is [KLOI,
Prop. 5.1.7] where it is stated for bifunctors exact in each variable; the only novelty here is to
note that their proof works under a much weaker assumption on the bifunctor.

Lemma A.1. Let C be a finite k-linear category. Denote by P a projective generator of C and
let D be a k-linear abelian category.

1. Let K,L : C — D be k-linear functors and assume that K is right exact. Then the linear
map

Nat(K,L) = {g: K(P) = L(P) |V ¢ € Ende(P), go K(p) = L(p)og}
fefp
1s an isomorphism of vector spaces.

2. Let K : C°® x C — D be a k-bilinear functor right exact in the second variablﬂ. Then for
any D € D the linear map

(158)

Dinat(K,D) = {g: K(P,P) = D |V ¢ € End¢(P), go K(¢®,idp) = go K(idp, )}

159
d— dp ( )

1s an isomorphism of vector spaces, where ©°P reminds that the morphism o is viewed in C°P.

Proof. 1. The inverse map to is constructed as follows. Let g : K(P) — L(P) which
satisfies the condition above. We first set fp = g. More generally for each n > 1 the object P"
comes equipped with morphisms j; : P — P™ and 7; : P" — P for all 1 <14 <n and we define
fpn =" jiogom. The family (fpn),en+ is natural in the full subcategory {P” |n € N*}
by the required property of g and by the matrix description of morphisms P™ — P". Now let
X € C and take a presentation P™ —3 P" -5 X — 0, so that (X, e) = coker(a). By the
universal property of a cokernel we obtain

K(a) K(e)

K(P™) K(P) K(X)
fpm O fpn O I fx
L(P™) = L(P") ——— L(X)

el

We must check that fy does not depend on the presentation of X. Let P o pr
X — 0 be exact. Then as above this gives a morphism f4 : K(X) — L(X) defined by
fi o K(e) = L(€') o fpw. Since P" is projective there exists v : P* — P™ such that e = ¢/ oy
and a short computation reveals that f5 o K(e) = fx o K(e). But note that K(e) is an
epimorphism because K is right exact, and thus fx = f%. As a result we have constructed a
family of morphisms (fx)xec. Naturality is proven by the same kind of arguments.

2. This is completely similar to the previous item; but for convenience of the reader we give
full details. The inverse map to is constructed as follows. Let ¢g : K(P, P) — D which
satisfies the condition above. We first set dp = g. More generally for each n > 1 the object P™
comes equipped with morphisms j; : P — P™ and m; : P" — P for all 1 <7 <n and we define
dpr =31 goK (ji, ;). The family (dpn)nen- is dinatural in the full subcategory { P" |n € N*}
by the required property of g and by the matrix description of morphisms P™ — P". Now let
X € C and take a presentation P™ -5 P" =5 X — 0, so that (X,e) = coker(a). Then

10Meaning that the functor K (C,—) : C — C is right-exact for all C € C.
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K (idx,e) = coker(K (idy,®)) by right-exactness of K(X,—) and the universal property of a
cokernel gives
K(idx,e)

K(X, pmy S0 ey pny K(X, X)
K(e,idpm)l/ O jK(e,idpn)

E(Pm, pm) K (idpn o) K(p", P") ) O Fdx
K(a,idpm)l/ O o

K(P™, P™) D

dpm

because the commutation of the left squares implies that dpno K (e, idpr) vanishes on K (idx, «).
The morphism dx does not depend on the projective presentation of X. For if P™ > P =
X — 0 is another presentation then we have d’y : K (X, X) — D defined by dy o K(idx,€¢') =
dpw 0 K(€',idp,). Since P" is projective there exists 7y : P* — P™ such that e = ¢/ 0y and we
find

diX o K(ldx, 6) = diX 9] K(ldX, 6,) o K(ldx,”)/) = dP"' o K(e’, idPn/) 9] K(ldX,"}/)
=dpy o K(idpw,7) o K(€,idpn) = dpn o K(7,idpn) o K(€',idpn)
= dPn o} K(e,idpn) = dX 0] K(idx,e).

But K(idx,e) is a cokernel, whence an epimorphism and it follows that dx = dx. Having

constructed a family of morphisms (d X) xec» We now prove its dinaturality. Let f: X7 — X
and take projective resolutions P™ % Pm -“3 X; — 0. By definition dx, o K (idx,e;) =
dpn; o K(e;,idpn; ). Since P™ is projective, there exists w : P" — P,, such that foe; = eyow.

As a result
dx, o K(idx,, f) o K(idx,, €1) = dx, o K(idx,, e2) o K (idx,,w)
== dpnz e} K(eg, idPng) e} K(ldX27W) = dpng o} K(idpnz,u)) o K(eg, idPnl)
=dpm o K(w,idpn) o K(eg,idprn) = dpm o K(ey,idpn) o K(f,idpm )
= dX1 © K(idX17 61) © K(fa idfml) = Xm o K(f7 iXm) © K(idx2, 61)

and we have the result because K (idy,, e;) is a cokernel and hence an epimorphism. ]

Corollary A.2. Let K : C°® xC — D be a k-bilinear functor right exact in the second variable.
Under the assumptions of Lemma[A., we have:

1. The coend fXEC K(X,X) exists in C.

2. Let F' : D — & be ak-linear right exact functor. Denote by i (resp. 1) the universal dinatural
transformation of K (resp. FK ). Then the comparison morphism  defined by

FE(X,X)
[YFPE(X,X) — F(J¥ K(X, X))

for all X € C is an isomorphism. Equivalently, F(i) is the universal dinatural transformation

of FK.
Proof. 1. This is the construction of [KLO1, Cor.5.1.8]. Recall that P denotes a projective

generator and let {a;}i<j<, be a basis of Ende(P). For each j consider u; = K(ay,idp,) —
K(idp,, o) and define

2 j=1 ujom;

E = coker |K (P, P)" K(P,P)
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where m; : K(P,P)" — K(P,P) are the canonical projections. By construction, the object
E comes equipped with an epimorphism ¢ : K(P, P) — F satisfying g o K(p,idp) = g o
K(idp, ¢) for all ¢ € End¢(P). Item 2 in Lemma then gives a dinatural transformation
ix : K(X,X) — E such that ip = g. Let dx : K(X,X) — D be any other dinatural
transformation. Then by dinaturality we have dp o (uy,...,u,) = 0 and the universal property
of a cokernel gives § : E — D such that dp = § oip. By item 2 in Lemma we deduce that
dx = doix for all X € C, proving that the pair (F,1) is the coend of K.

2. The functor F' preserves cokernels. Thus it immediately follows from the proof of the previous
item (where we saw that a coend can be constructed as a cokernel) that F'(i) is a universal

dinatural transformation. We can define a morphism w : F <fX K(X, X)) - [YFK(X, X)
using universality of F'(i): wx o F(ix) = lx for all X € C. Then w = (1. O

Now let A, B be finite k-linear categories and D be any k-linear abelian category. We denote
by P (resp. @) a projective generator for A (resp. B).

Corollary A.3. 1. Let K,L : A x B — D be k-bilinear functors and assume that K is right
exact in each variable. Then f — fpg gives an isomorphism of vector spaces between Nat(K, L)
and

{9: K(P,Q) — L(P,Q)| V¢ € Enda(P), V¥ € Ends(Q), go K(p,¥) = L(p,¥) 0 g}.

2. Let K : A°® x B°® x A x B — D be a k-multilinear functor right-exact in each variable and
let D € D. Then d— dpg gives an isomorphism of vector spaces between Dinat(K, D) and

Vo € Enda(P), V¢ € Endg(Q),
(P, P idp,idg) = d o K (idp,idg, ¢, 1)

where P and Y°P remind that the morphisms ¢ and ¢ are viewed in CP.

{d:K(P,Q,P,Q) >D| e

Proof. 1. Nat(K, L) is isomorphic to the subspace S C []yc 4 Nat(K (X, —), L(X, —)) consist-
ing of sequences (hy)xea such that

VY €B, VX, X €A Vo€ Homy(X,X'),  hyyoK(a,idy) = L(a,idy) o hx.y.

By Lemma , S is isomorphic to the subspace &' C [[y. 4 Homp (K(X, Q), L(X, Q)) con-
sisting of sequences (hx)xea such that

VX, X' € A Va € Homy(X, X'),  hy o K(a,idg) = L(a,idg) o hx
and VX € A, V¢ € Endg(Q), hx o K(idx,v) = L(idx, ) o hx.

Said differently &’ C Nat (K (—,Q), L(—, Q)) consists of natural transformations h such that
hx o K(idx,®) = L(idx, 1) o hx for all X € A and ¢ € Endg(Q). Another application of
Lemma gives the result.

2. Same argument. O]

Of course the statements of Corollary generalize to (di)natural transformations with an
arbitrary finite number of variables.

Denote by X the Deligne product of finite k-linear categories [Del90, §5], [EGNO, §1.11].
The indecomposable projective objects in A X B are the P; X (); where P, (resp. ;) is an
indecomposable projective object in A (resp. B). This is easily seen using that A4 = A-mod and
B = B-mod, where A and B are finite-dimensional k-algebras, so that AKX B = (A ® B)-mod.
Hence if P = €, P; (resp. Q = €P; @;) is the minimal projective generator of A (resp. B) then
P X @ is the minimal projective generator of A X B.
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Lemma A.4. 1. Let F,G : Ax B — D be k-bilinear functors right exact in each variable and
letF G:AXB — D be such that F = Fo® and G = G oX. The map

J : Nat(F,G) — Nat(F, G), J()xy) = fxay

18 an isomorphism of vector spaces.
2. Let H : A°? x B°® x (A x B) — D be a k-multilinear functor right-exact in each variable.

Let H : (AR B)°P x (AK B) — D be the k-bilinear functor right-ezact in each variable such
that H = H o (X x X). For any D € D, the map

I : Dinat(H, D) — Dinat(H, D),  I(d)x.y) = dxgy

18 an isomorphism of vector spaces.

3. Let H and H be as in the previous item and let U = f(X’Y)eAXBH((X, Y),(X,Y)) with
the universal dinatural transformation u € Dinat(H,U). Then the object U endowed with the
dinatural transformation I-'(u) is the coend of H.

Proof. 1. The functor F s right exact by definition. By item 1 in Lemma , any f €

Nat(F, G) is uniquely determined by frxo € Homp (F F(PXQ), (P&Q)) = Homyp (F(P,Q),G(P,Q)).

By item 1 in Corollary-for natural transformations with two components, any g € Nat(F, G)
is uniquely determined by g(pq) € Homp (F (P,Q),G(P, Q)) The result follows.

2. Same argument, but now using item 2 in Lemma ATl

3. Let d € Dinat(H, D) for some D € D. Then I(d) € Dinat(H,D) and by universal-
ity of w there exists ¢ : U — D such that I(d)xy) = ¢ o uxy) for all X,Y. Note
that I7'(¢ o u)xmy = ¢ o uxmy, which by the previous item is sufficient to conclude that
I Y(pou)=pol Yu). Hence d = ¢ o [ *(u), proving that I~!(u) is the universal dinatural
transformation. O

We allow ourselves to write the last item in Lemma [A.4] as
MeARB _ XeAYeB _
/ H(M,M):/ HXXY, XXY) (160)

to mean that it is enough to know the value of the universal dinatural transformation on the
“pure tensors” X XY € AKX B. This property was also proven in [FSS20} §3.4] with different
arguments.

B Normalization of cosimplicial complexes

Let X be a cosimplicial abelian group (or vector space), which we spell out explicitly for the
convenience of the reader:

e For each n € N we have an abelian group (or vector space) X™.

e For each n > 0 and 0 < i < n + 1 there are morphisms 97 : X" — X", called coface
maps, which satisfy 0;*'0p = op*1or | for all 0 <i < j <n+2.

e For cach m > 1 and 0 < i < n — 1 there are morphisms s? : X" — X" called

codegeneracy maps, which satisty s~ Lsn = g0t siq forall 0 <7 < j<n-—2.

e The following equalities are satlsﬁed forall0<i<n+land 0<j<n:

o ten, ifi<
idx, ifi=jori=j+1

opltst  ifi>j+1

ntlgn _
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The various relations between the maps 0 and s are called the cosimplicial identities. For
readability we often do not write the superscripts on 0 and s.

Let 6" = Y (—1)igr : X™ — X" then O(X) = (X° 2 X1 25 X2 2, ) s the

i=0
cochain complex of X. Define

n—1
N(X%) = X", N(X") = ﬂker(s?)CX" for all n > 1.
i=0

One checks easily using the cosimplicial identities that 6" (N(X™)) € N(X"'). Hence N(X)
is a subcomplex of C'(X), called the normalized cochain complex of X.

It is well-known that C'(X) and N(X) have the same cohomology. More precisely there
exists a morphism N : C(X) — C(X) of complexes which is the projection onto N(X) and
induces an isomorphism between the cohomology groups, see e.g. [Wei94, Th.8.3.8], [GJ99,
Th.1I1.2.4]. Actually the operation X — N(X) is part of a famous result called Dold-Kan
correspondence. This is mainly explained for simplicial chain complexes in the literature; in
this appendix we review the construction of the projector N for cosimplicial cochain complexes.
This is an adaptation of the discussion after Cor.111.2.3 in [GJ99]. Note that in deformation
theory the subcomplex N (X) corresponds to unit constraints on infinitesimal deformations (like
unitality of an infinitesimal product on an associative algebra). Applying N to a cocycle does
not change its equivalence class but gives an infinitesimal deformation which satisfies the unit
constraints.

Forn>1land 0<i<n-—1let
7 =idy, — O st
Here are easy consequences of the cosimplicial identities:
s;mT = {gylsj ij iz Y, — {gﬂ?_l i;zi

They readily imply the following key properties:

s;my...m =0 and 7y...7m'0; =0 foral0<j<i<n-—1. (161)
Lemma B.1. For all 0 <i <n—1 we have 6wy ... 70 =yt ation,
Proof. By induction on 7. The case ¢ = 0 follows from the cosimplicial identities. Assume that
the property is true for some ¢ — 1, with ¢ > 1. Then

n+1
n_n n _ _n+l ntlsn_n _ _n+l n+1gn n+1 n+1 7
g om =my om0t =y Lm0 — g E (—1)?0;0;s;
j=i

where we used the definition of 7} and (161]) for the second equality. Using the cosimplicial
identities we find

n+1 n+1 n+1 1+1
S (=100 = > (~1Y0;08i = Dis; »_ (=1)0; = O;s; (5" - Z(—njaj)
j=i j=i+2 j=i+2 j=0

i—1 i—1

= 61316" - Z(—l)]@sﬂ] = 8281571 - Z(—l)jﬁj@_lsi_l.

Jj=0 J=0
n+1 n+1 yvi—1 j _ : n,n n o _
But note that m5™ .. .7 > i(—=1)70; = 0 due to (161). Hence we obtain §"my ... 77" =
n+1 n+1cn n+1 n+1 n _ _n+l n+1_n+1gcn
7T0 oo 7T7,—1 5 - 7T0 P 7TZ 1 81816 — ﬂ-o o .. 7TZ—1 ﬂ-Z 5 . D
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Define
M=idy, and N"=x5...7 ;: X" = X"
Proposition B.2. The morphism N™ satisfy the following properties:
1. N™ is an idempotent, N"N™ = N, and is the projection onto N(X™).
2. The family of maps N = (N™)nen is a morphism of cochain complezes C'(X) — N(X).
3. Let x € X™ be a cocycle. Then N™(x) =z + 6" (v) for some v € X" 1.
Proof. 1. Tt follows from (161]) that s?A™ =0 for all 0 < i < n — 1 and hence
NNt =g ... N =af...70 o(d — 018, )N =7 ...t N =...=N".

For the same reason we see that N"(z) = z if z € N(X™).
2. Note from the cosimplicial identities that m;_10; = 0; — 9;_1. Combining this with Lemma
[B.1] we get
S"N™ = mptt s, = (=)t 1 (0, — Oni)
— (_1)n+1ﬂ_6z+1 N 'Wzir%ﬂz+lan+l _ Nn+15n

where in the second and fourth equalities we used (161)).
3. Note first the following formula, which is easily obtained from the cosimplicial identities:

i—1
5n_137; + Si(sn = (—1)18281 + Z(—l)]aj(Sl + Si—l)-
7=0

Combining it with (161)) and Lemma [B.1] we find

Ty =mg . mr (id = 9ys) = wg Loy (id — (=1)7(6" s + si6™))

. . 162
=m0 — (D) At sy — (=D)AL 50T (162)

Now we can prove by induction on i the following property: my...7"(z) = x + 6" !(v;) for
some v; € X" 1. The desired result is for i = n — 1. The case i = 0 follows directly from ([162):
my(x) = x — 0"so(x). Assume that the property is true for ¢ — 1 with ¢ > 1. Then we get from
(162)

o) = (@) — (=D A r s ()

=40 (vis — (-))'mg o si(x).
This gives a recursion formula for v;, with vy = —sp(x). O

Corollary B.3. The morphism of cochain complexes N is a quasi-isomorphism, i.e. it induces
an isomorphism between the cohomology groups: H*(C (X)) = H*(N(X)).

Proof. Let I : N(X"™) — X" be the canonical embedding. We have N"I" = id since N is the
projection onto N(X™). By item 3 in Proposition I"N™(z) is cohomologous to x. Hence
I™ is the inverse of N™ in cohomology. O

For low-degree cases we get (using the cosimplicial identities):

Nl =id — 8080, N2 =id — 8080 — 6181 + 8081,

163
N3 =id — 8080 — 6181 — 8282 + 8081 + 6182 + 80618082 — 8082. ( )

A straightforward computation using the cosimplicial identities and (161]) reveals that N =
T ...y (id + (=1)"s,6"). Hence if z € X™ is a cocycle then N™(z) = @y ... 70 _,(z). In

particular, thanks to the recursion formula at the end of the proof of Proposition [B.2] we find
that if z € X!, y € X2, z € X3 are cocycles then

Niz) =z, N*(y)=y—68so(y), N?(z)=2z+0(—s0(2)+ 51(2) — Dososo(z)). (164)
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C Deligne product of resolvent pairs

Assumption: In this appendiz, k is a perfect field. This holds for instance if char(k) = 0 or if
k is algebraically closed.

Recall the definition of a resolvent pair below and denote by X the Deligne product of
finite k-linear categories [Del90], [EGNOL §1.11]. Let A, A’, B, B’ be finite k-linear categories
and

A A’
F < —{> u F (—|> u'
B B’

be resolvent pairs such that & and U’ are k-linear. The functors U, U’ are exact by definition
of a resolvent pair. Thus the functor (X, X’) — U(X) K U'(X’) is exact in each variable. In
particular it is right exact and by universal property of the Deligne product we get a right
exact k-linear functor Y XU’ : AKX A" — B X B’ uniquely defined by (U XU ) (X K X') =
UX)RU'(X'). The functor Y KU’ is actually ezact due to our assumption on the ground field
[Del90, Prop. 5.13]. Since F and F’ have right adjoints, they preserve colimits and in particular
they are right exact. Hence there exists a right-exact functor FXF' : BRKB — AX A" defined
in the same way. Let us show that these two functors form a resolvent pair. In particular we
must check that U XU’ is faithful, which will follow from this lemma:

Lemma C.1. Let X, ) be abelian categories such that every object in X has finite length. Let
F: X — Y be an exact functor such that F(S) # 0 for all simple objects S € X. Then F is
faithful.

Proof. Let V € X be an arbitrary object. We prove that
VW e X, VfeHomy(V,W), F(f)=0 = f=0

by induction on the length of W. Recall that the image of a morphism f is im(f) = ker (coker( f ))
and thus F preserves images by exactness. First assume that W has length 1 and let f : V — W
with F'(f) = 0. Then W is a simple object and im(f) is a subobject, which by definition forces
im(f) =0 or im(f) = W. In the latter case we get F(W) = F(im(f)) = im(F(f)) = 0, contra-
dicting the assumption on F'. Hence f = 0. Now assume that W haslengthnandlet f : V — W
such that F(f) = 0. Take a simple subobject S C W and consider f : V Lw - W/S. Then
F(f) = 0 and since W/S has length n — 1 the induction hypothesis gives f = 0. It follows that

im(f) C S, which forces im(f) = 0 because again im(f) = S would contradict the assumption
F(S) # 0. O

Proposition C.2. 1. FXRF' is the left adjoint of UKU' and this adjunction forms a resolvent
pair.

2. If objects P € A, P' € A’ are relatively projective with respect to the adjunctions F 41U and
F' AU', then PR P’ is relatively projective with respect to the adjunction (F R F') 4 (UKU').
3. If morphisms f and f' are allowable with respect to the adjunctions F 4 U and F' 4 U,
then f X f' is allowable with respect to the adjunction (F X F') 4 (URXU’).

Proof. 1. Let n:1dg = UF and € : FU = Id 4 be the unit and counit of F 4 U, and 1/, &’ be
the unit and counit of 7' 4 U’. Define

(&) xmxe - X B X 25 (7)Y (X) R UF)(X) = (URU)FRF))(XRX),

(R Nymyr - (FREYURU)) (Y RY') = (FU)Y) R (FU)Y") 2% yRY”.
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By item 1 in Lemma these values define natural transformations n X 7' : Idgxs = (UK
U)NFRF)and eXe @ (FRF)UXRU) = Idaga. They are easily seen to satisfy the
unit/counit equations of an adjunction, proving that (F X F’) 4 (U XU’).

We already know that U XU’ is k-linear and exact. It remains to show that it is faithful. The
simple objects in AKX A’ are SX S’ where S and S’ are a simple objects in A and A’ (due to the
assumption that k is perfect, [Del90, Lem. 5.9]). Since U and U’ are faithful, we have U(S) # 0
and U'(S") # 0. Hence (U RU')(SK S") = U(S) KU'(S") # 0 and Lemma [C.1] applies.

2. By assumption P and P’ are direct summands of F(Y') and F'(Y”') for some Y € B and
Y’ € B respectively. Hence PX P’ is a direct summand of F(Y)XF'(Y') = (FRF)(Y KY’).
3. f:V — W is allowable means that there exists s : U(W) — U(V') such that U(f)osold(f) =
U(f). Similarly there is s’ such that U(f") o s’ cU(f") = U(f"). The morphism s X s’ satisfies

(URU)fRf))o(sBs) o (URU)fR[)) =URU)(fRf)
which proves that f X [’ is allowable. O

Recall from §2.3] that we denote by T-mod the category of modules over a monad T. From
Proposition 2.7/ about the monadicity of resolvent pairs we deduce the following fact, which for
monads deﬁned by algebras in monoidal categories is proven in [DSPS19, Prop. 3.8] also by a
monadicity argument:

Corollary C.3. Let T and T' be monads on B, B’ such that the underlying functors T, T" are
k-linear. Then the functor

(T-mod) X (T"-mod) — (T X T")-mod, (V,r)X (V',r")— (VRV' rXr)
1S an equivalence.

Proof. By item 2 in Proposition [2.7] and item 1 in Proposition we have resolvent pairs

T-mod T’-mod (T-mod) X (T"-mod)
Fr ( —{> Ur F < —|> Uy Fr®Fy (—{) Ur Ry
B B BX B

It is clear that the monad associated to (Fr X Fp) 4 (Ur K Uy) is TR T'. Since any resolvent
pair is monadic (item 1 in Proposition [2.7) we have the result. The proposed functor is just
the comparison functor in the case under consideration. O

We now discuss the resolutions and relative Ext groups associated to a Deligne product of
df ds dP d2
resolvent pairs. Let C = (Cp <— Cy <= ...) and D = (Dy <— D; <= ...) be chain complexes
of k-vector spaces. Then C ® D is defined as usual to be the chain complex

JC®D C®D S@D
Co ® Do < &— P CioD;

i+j=n

where dS*P (v ® w) = d°(v) ® w + (—1)"v @ d} (w) for all v € C; and w € D; and all ¢,j > 0
such that i + j = n, with the convention that dC = dP = 0. The Kiinneth formula computes
the homology of this tensor product from the homologies of the two factors:

Vn>0, H,(CeD)=  H(C (D) (165)

i+j=n
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where Hy(C) = coker(d§) and similarly for D and C ® D. For a short proof, see e.g. Problem
7.8.7 in [E411]. There is of course a completely similar Kiinneth formula for cochain complexes
and their cohomology.

If C and D are chain complexes in A and A’ respectively, we can define the chain complex
CXD in AKX A" as above, replacing ® by X in the definition of the chain spaces and of the
differential.

Proposition C.4. 1. If0+ V EPand 0 V' S P oare relatively projective resolutions

of Ve Aand V' € A, then 0+ VRV’ S PRP s a relatively projective resolution.

2. For allV,W € A and V!,W' € A" we have

Exta a0 g (V RV, W RW) = (B Extly 5(V, W) @ Extly, 5 (V/,W).

i+j=n

Proof. 1. By Proposition the sequence 0 <~ V XV’ «+— P X P’ is allowable and the chain
objects in P X P’ are relatively projective. For exactness, we can assume that A = A-mod
and A" = A’-mod for some k-algebras A and A’ [EGNO] §1.8]. Then AX A" = (A ® A’)-mod.
Objects (resp. morphisms) in A, A" and A X A’ are in particular k-vector spaces (resp. linear
maps), so it suffices to check exactness in vecty. This is classical: Kiinneth formula
ensures that P X P’ is exact at strictly positive degrees. The first terms sequence

/ d1Xid 5/ )P (idp &dll
0« VRV & poxpr (051453 )2 (501

(PR F)) @& (P XP). (166)

is exact as well by the formulas for images and kernels of tensor products of linear maps.
2. We use the notations from item 1. Recall that Ext% 5(V, W) is the cohomology of the cochain

complex Hom 4(P,W). The Hom’s are vector spaces because we work with linear categories.
By [EGNO) Prop.1.11.2] we have

Hom g (P R P, W K W’) = Homu(P, W) @ Hom_y (P, W)

and Kiinneth formula gives the result. O]
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