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Towards Better Middleware for Distributed

Computing

Abstract

Newmiddleware for distributed system is frequently released
by computer science laboratories. Each new proposal comes
with specific models of strategies to solve particular prob-
lems related to distributed computations. In our lab, prati-
cal studies on a variety of networks configurations (i.e. in
clusters, edge, IoT, etc) led us think about the design of a
middleware that would be practicable in the worst condi-
tions: high dynamics/mobility, heterogeneity, low security,
reliability, etc. Because less is more, such middleware could
then be used in any application setting. This paper describes
the inventive collection of intricate models for application
architecture, communication, computation, dynamics man-
agement, etc which can be found in the Idawi Open Source
Java implementation.
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1 Introduction

Distributed/parallel computing is difficult by nature. It dra-
matically augments the initial complexity of algorithms with
issues related to communications and concurrency. Also,
because distributed computing involves more hardware ele-
ments (computers, networks, etc), it leads to even higher risk
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of failures. Worse, concurrency problems are often counter-
intuitive, and the distributed nature of the computing envi-
ronment makes them harder to detect, understand and solve.
Because of this, the availability of middleware/frameworks
for distributed computing is of paramount importance.
In this context this article introduces the Idawi middle-

ware (see technical report [11]), which is built on the basis
of ideas not found in existing tools, in the objective of im-
proving the adequacy of distributed middleware to recent
applications/networks settings. Our initial motivation origi-
nates from applied Research projects conducted at I3S/Inria,
whose goals were to provide effective solutions to practical
distributed problems related to graph algorithms [15], net-
working [6], decentralised protocols [9] for MANETs and
more recently the IoT, etc. From the very beginning, the
design of Idawi has been driven the requirements of these
projects, as we quickly faced problems existing tools did
not solve. How make trial-and-errors working mode practi-
cable? How to trigger new deployments from previously de-
ployed nodes so as to deploy a tree of nodes? How to deal with
NATs/firewall? How to process streams/workflow of data in a
distributed way? How to monitor a remote execution? How to
interact with it in a synchronous way? We discovered that
these problems were most of the time correlated, as they all
involve the core application/communication/computations
models. We reckon they must be considered them as a whole
be solved by an unified set of solutions.
To this purpose Idawi does a synthesis of the tools men-

tioned hereinbefore, by gathering (and improving when pos-
sible) their good features in a comprehensive fresh one, and
it goes beyond by proposing effective solutions to problems
not tackled by existing tools. Among the numerous mid-
dleware solutions we looked at, ProActive has been a pri-
mary source of inspiration. Since it was developed in our
lab, meeting its authors was easy, so we could extensively
discuss the design choices they had made. Doing this really
helped us make thoughtful decisions when it came to Idawi.
As a result, Idawi is in many aspects different from other
tools, and it comes with unique features. More precisely, on
top of a fully decentralised architecture, it proposes a SOA-
like application model. Its design is mixed: it uses elements
of object/message/queue/component/service-based models
wherever they proved appropriate. It proposes elastic col-
lective and asynchronous communication and computation
models, augmented with facilities for doing synchronous
calls. It comes with automatised incremental deploymen-
t/bootstrapping of components/applications through SSH,
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operating even in the presence of firewalls/NATs, with a
REST-based web interface, and with a multi-thread compu-
tation engine. Finally it supports emulation. Many of these
features can be found in some grid middleware and in mod-
ern orchestration tools, but these do not offer the elasticity
intrinsically brought by decentralization.

Idawi is Open Source, and can be found at https://github.
com/lhogie/idawi.

2 Existing tools

Existing middleware for distributed computing (like ProAc-
tive [5], MPI, JXTA, JMS (Jakarta Messaging API), ActiveMQ
[8], JGroups [2], RMI, and Akka) is most often tailored to
grids, clouds or clusters. With the advent of Mobile Ad hoc
Networks (MANETs), the IoT (Internet of Things), Delay
Tolerant Networks (DTNs), Edge computing, VANETs, etc,
middleware now needs to take into serious consideration
the development of applications for networks involving mo-
bile devices. Indeed existing middleware was not designed
to operate on these networks, and it poorly accommodates
their intrinsic properties. To solve this problem, more flexible
models and elastic tools have been proposed by Researchers,
like JavaCà&Là (JCL) [7], GoPrime [4], ParallelTheater [14],
ActorEdge [1], and EmbJXTAChord [3]. But in spite of their
numerous good features, in particular their wise use of de-
centralization as a solution to dynamics/mobility, these Re-
search tools are often designed to solve particular scientific
problems, which make them hardly usable out-of-the-box in
projects involving practical distributed computations. Adapt-
ing one of them would be a cumbersome work that has no
guarantee of success, as their source codes, when they are
fully available, are always very hard to embrace. To increase
difficulty, there is no consensus on the tool that is the most
appropriate to start this work from.

3 Adequacy to experimentation

Proposition: middleware for distributed computing should
facilitates experimentation.
Interestingly, we found out that no tool was designed

for experimentation, which brings its lot of specific require-
ments. In particular, Researchers and engineers usually work
in a trial and errors mode from their favorite Integrated De-
velopment Environment (IDE). At the design/tuning stage,
they do countless small adjustments in their source code
and run many new executions to see their impact. In or-
der to facilitate this daunting work, the middleware needs
to be able to deploy and bootstrap distributed applications
very quickly, and it needs to be well integrated to the IDE
so that remote code can be easily dealt with at runtime. In
this regard, having transparent and on-the-fly reporting of
messages/errors is crucial, as working with distributed logs
is not the right way to go, even if it is still a very common
practise today.

4 A structuring application model

Proposition: middleware for distributed computing should
impose applications a common architectural pattern.

The application model of Idawi relies on the Service Com-
ponent Architecture (SCA) style of programming. SCA de-
fines that functionality is brought by services/endpoints in
components. components are first-class citizens in Idawi.
They represent business entities, and in most situations
(where emulation is not used) every device hosts a com-
ponent that represents it in the component-system. Compo-
nents self-organize as an overlay network. In this overlay,
two given components are neighbours if they have direct
interactions. Any two components can be neighbours unless
the underlying network infrastructure prevents it. This may
happen in the presence of NATs/firewalls, or because of in-
herent constraints of wireless technologies such as limited
range, hidden nodes, etc. Two non-neighbours must rely on
intermediary nodes which then behave as routers. Routing
policies are defined by optional routing services.
In Idawi, components are atomic, meaning that a single

component cannot be split on several nodes. Distribution is
brought by specific services dedicated to network messaging:
transport services (OSI layer 2) and routing services (OSI layer
4).

Such a structuring model forces distributed applications
to conform to a certain organization defined by a specific
OO model, which ensures consistency of source codes, sig-
nificantly reduces the risk of design errors (for most design
work is into the framework), and it enables the addition
of high-level functionalities such as deployment and service
discovery.

Components expose their functionality via services. A ser-
vice is an object within a host component. It holds data and
implements functionality about the specific concern it is
about. Also service hosts queues which enable them to re-
ceive messages. Services are the standard way to incorporate
functionality in an Idawi system. An application is defined
by a set of services. System-level functionality is also brought
by specific builtin services like the routing service that in-
ternally maintains routing tables and its public API enables
other services (hence applications) to obtain topological in-
formation like distances between components, paths to reach
them, etc.
In turn, services expose functionality endpoints. An end-

point is a piece of code that can be triggered remotely from
any other one in the system. Just like services, endpoints are
identified by their class. Technically, an endpoint is described
by an inner class of its service class. Its ID (class) then holds
the ID of its host service. endpoints constitute the only way
to execute code in an Idawi system. When the code of an
endpoint is started, it is fed by an input queue of messages.
This endpoint can start/feed new endpoints, as well as it can
send messages to others (already running) endpoints.

https://github.com/lhogie/idawi
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Proposition: middleware for distributed computing should
take maximum profit of compilers to strengthen the codeWhen
most middleware uses strings to identify things, Idawi takes
advantage of Javameta-class system by using top-level classes
as identifiers whenever possible. Since classnames are stati-
cally checked by the compiler (string content is not), doing
this eliminates the risk of using undefined IDs. Then any
service is identified (within its host component) by its imple-
mentation class.

Proposition:middleware for distributed computing should
be flexible on thread usage Unlike ProActive active objects
which have their own control thread, Idawi uses a common
a pool of threads, for the sake of performance and scalability.
This approach also used by actor systems (like Akka). Doing
this, components have no threads associated to them. Exe-
cutions requests are submitted to the entire pool, whose the
first available thread will satisfy. This implies that multiple
executions of endpoints for a single service may execute in
parallel. In this situation where there may be concurrent
access to the service data, it is desirable that this data em-
ploys lock-free data structures, so as to reduce the use of
locks. Idawi does not provide implementation of such data
structures as the standard Java library already features a
good variety of them, and there exist third-party libraries
dedicated to that.

5 A message-based communication model

Proposition: middleware for distributed computing should
make communication explicit and as much flexible as possible.

At the lowest layer of Idawi, (running) endpoints commu-
nicate by explicitly sending/receiving messages of a bounded
size. Sending a message is always an asynchronous (non-
blocking) endpoint. It provides no guarantee of reception.
A message has a probabilistically unique random 64-bit nu-
merical ID. It carries a content (which can be anything), the
target service/queue IDs, the route it took so far, and op-
tional routing-specific information. When a message reaches
its destination service, it is delivered into its target message
queue. Queue are then fetched by endpoints, in a synchronous
fashion.
A message queue is a thread-safe container of messages

exposing the following blocking primitives: 𝑠𝑖𝑧𝑒 () gets the
number of messages currently in the queue; 𝑔𝑒𝑡 (𝑡𝑖𝑚𝑒𝑜𝑢𝑡)
retrieves and removes the first message in the queue, waiting
until the timeout expires if the queue remains empty; and
𝑎𝑑𝑑 (𝑡𝑖𝑚𝑒𝑜𝑢𝑡) adds a message in the queue, waiting until
timeout expires if the queue was full. Using finite timeout
ensures that no dead-locks will occur in the system.

6 A many-to-many collective computation

model

Proposition: middleware for distributed computing should
consider group computation as the default paradigm.

Most existing solutions rely on the Remote Procedure
Call (RPC) model, in spite of its limitations to a client/server
endpoint, its inability to provide progress information, tem-
porary results, nor to process streams of data, etc. To over-
come these problems Idawi defines an innovative computing
model, based atop the communication model from which it
benefits the collective approach.

It defines a special message called the exec message, which
carries the name of the endpoint to be executed. Within the
recipient address, the name of the target queue is chosen
randomly by the sender of the exec message. On reception,
the target service creates this queue on-the-fly and puts the
exec message into it. This queue will be used as the input
queue for this new execution of the endpoint.

Example applications of collective computing include fault-
tolerant distributed computing, resource discovery, oppor-
tunistic computing, etc, querying of distributed databases,
etc.

The exec message may carry input data, and further mes-
sages may come later, carrying extra input data. This enables
a running endpoint to receive unbounded input at runtime.
In most cases the input queue will be fed by the caller of
the endpoint. However, any other component may obtain in,
and use it to feed the endpoint. Then, just like any queue,
the input queue can be fed by multiple sources.
An endpoint can produce output (intermediary results,

final result, warnings, exceptions, progress information, etc)
at any time by sending messages. In most cases, output will
be sent to the sender of the exec message. To receive output
messages, the caller creates a new local queue, called the
return queue that aims at storing messages from the running
endpoint. This message queue can play the role of a future.
Once again, other running endpoints may obtain the address
of the return queue, and send directly messages to it. This
enables composition of services and workflows.

From a programmatic point of view, The 𝑒𝑥𝑒𝑐 () primitive
makes it easy the remote execution of endpoints. It takes
as input the address of the endpoint to execute, an optional
address of the return queue, as well optional initial input
data. Just like sending a message (which it does behind the
scene), calling 𝑒𝑥𝑒𝑐 () is asynchronous, but synchronicity
can be achieved by invoking synchronous primitives on the
return queue (by using the 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 algorithm for example),
as described hereinafter.

6.1 Flexible computation facilities

Proposition: middleware for distributed computing should
provide a flexible API for computation, supporting synchronous
and asynchronous calls, and group-computation by default
So as to enables the design of implementation of a large

variety of communication/computation scheme, a middle-
ware should provide a highly flexible dedicated API. The
𝑐𝑜𝑙𝑙𝑒𝑐𝑡 algorithm introduces an higher-level approach by
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proposing an asynchronous/reactive/event-driven API on
top of synchronous API of queues.
Its design is inspired by the iterator API in the HPPC li-

brary [? ], and by the streamAPIs in the Java standard library.
More precisely, in order to enable an efficient way to iterate
over a container of primitive values, HPPC iterators do not
return "boxed" objects, instead they return a single same
object, called cursor which carries (as one of its attribute)
the primitive value of the current element in the iteration
process. Following the elegant style of functional program-
ming, the stream API of Java proposes a way to iterate over
the elements in a stream by each time invoking a user code
written in the form of a lambda.

The 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 algorithm employs these two ideas to what it
does: enabling the iteration over message lists. Every time a
new message is discovered in a queue, the algorithm calls a
business code provided by the developer. Instead of receiving
a reference to the current message, this code receives as input
a reference to the collector itself (which stands as its "cursor"),
whose current state provides the (modifiable) list of messages
collected so far as well as technical information on how the
algorithm performs (timings). The collector also exposes its
parameters, which can be altered on-the-fly. This enables a
deep control of the runtime of the 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 process.

The parameters of the 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 algorithm are the following:
• 𝑒𝑛𝑑𝐷𝑎𝑡𝑒 indicates the deadline at which the algorithm
will stop waiting for new messages

• 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 the longest tolerated duration when waiting
for the next message

• 𝑠𝑡𝑜𝑝 a boolean value for stopping the 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 process
before 𝑒𝑛𝑑𝐷𝑎𝑡𝑒

• 𝑏𝑙𝑎𝑐𝑘𝐿𝑖𝑠𝑡 a set of components whose messages are
simply ignored

• 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 set if progress messages should be
delivered

• 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝐸𝑟𝑟𝑜𝑟 set if error messages should be delivered
• 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝐸𝑂𝑇 set if EOT messages should be delivered

In order to illustrate the use of the 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 () algorithm, let
us consider a few examples. Let 𝑞 be a queue of messages.
The following call to the 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 algorithm prints every single
messages until the queue expires.

1 q . c o l l e c t ( c −> System . out . p r i n t l n ( " new message : " + c .
messages . l a s t ( ) ) ) ;

This second example only obtain the three first messages:
2 q . c o l l e c t ( c −> {
3 System . out . p r i n t l n ( " new message : " + c . messages .

l a s t ( ) ) ;
4 c . s t op = c . messages . s i z e ( ) == 3 ;
5 } ) ;

Third, let us consider a toy example in which each recep-
tion of a message alters the 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 parameter by imposing
that the next message needs to arrive at least as fast as the
current one.

6 q . c o l l e c t ( c −> {
7 i f ( c . messages . s i z e ( ) > 1 ) {
8 var newMsg = c . messages . l a s t ( ) ;
9 var prev iousMsg = c . messages . l a s t ( 1 ) ;
10 c . t imeou t = newMsg . r e c e p t i o nDa t e − prev iousMsg

. r e c e p t i o nDa t e ;
11 }
12 } ) ;

This last example obtains data frames from many source
components and reconstructs the𝑚𝑒𝑟𝑔𝑒 data stream out of
them, by paying attention to not duplicate frames. A frame is
assumed to have an ID and to carry data. This collect process
stops when 1000 frames have been received.

13 var r e c e i v edF r ames = new HashSet <Long > ( ) ;
14
15 q . c o l l e c t ( i n i t i a l D u r a t i o n , i n i t i a l T im e o u t , c −> {
16 var f = ( Frame ) c . messages . l a s t ( ) . c on t en t ;
17
18 i f ( ! r e c e i v edF r ames . c o n t a i n s ( f . i d ) ) {
19 r e c e i v edF r ames . add ( f . i d ) ;
20 p ipe . w r i t e ( frame . da t a ) ;
21 }
22
23 c . s t op = r e c e i v edF r ames . s i z e ( ) == 1 0 0 0 ;
24 } ) ;
25 }

The 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 algorithm is the essence of Idawi. It uses many
concepts the framework relies on, it gives full access to the
platform functionality via a coherent interface. The rest of
this article will explain the techniques which have been
employed to translate the behavior of the 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 algorithm
to the world of Web services.

7 A Web interface to the 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 algorithm

Proposition: middleware for distributed computing should
provide extensive Web monitoring and HTTP-based control
systems.

For the sake of interoperability with other tools and of the
controllability by an human operator, services should be ex-
posed to the Web via services conforming to Web standards,
using standard Web technologies. This is done by a specific
built-in service whose it is the specific concern.

Web services endpoints in other systems usually work in
a RPC fashion: their input data are carried by the URL that
triggered them, similarly to a function/method that accepts
a list of parameters, and they respond (a result or an error)
in the form of a JSON document. Idawi departs from this
idea. The aim of its Web interface is to reflect the endpoint of
its native services, and in particular to translate the "stream
of messages"-oriented behavior of the 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 () algorithm to
the Web. Thus, it enables to:

• process streams of data
• trigger any endpoint on any component
• feed it on-the-fly
• obtain responses as they get delivered
• terminate it
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Each service is identified by a specific URL path. The path
specifies the target components, as well as the ID of the end-
point which is to be invoked on these components. Once the
service is running, it can be fed on-the-fly via POST by a
stream of data. Responses then are obtained by using an ad
hoc protocol called Idawi Web Protocol (IWebP) over Server
Side Events (SSE). Because there may be multiple responses
coming from multiple components, or because components
may not reply as expected, the question of service termina-
tion arises. Idawi solves it by specifying the termination
condition in the URL of the Web service.

8 Distributed digital twin

Proposition: in a distributed system, the concept of digital
twin is highly adequate as a paradigm for representing remote
nodes and interacting with them

In a distributed system, entities (components, objects, func-
tions, etc) live in different address spaces. For this reason
they cannot refer to each other via (process-scoped) pointer-
s/references: a distributed referencing system is needed.
In many systems, remote entities are represented by nu-

merical or textual identifiers. In this approach there is no
way for the compiler to assist the developer and verify its
source code, as the numerical of textual IDs representing
remote things have no semantics a compiler can manipulate:
they are just values. This approach has the following pros
and cons.

On the one hand, a significant advantage of this approach
is that it makes distribution explicit: remote calls can be
clearly seen in the source code of applications. The devel-
oper can then have a clear idea of when his application will
use the network, allowing him to minimize as much as pos-
sible communications, which are a common bottleneck in
distributed applications.
On the other hand, the natural—elegant—constructs of

the programming language cannot be used to refer to re-
mote things. This tends to obfuscate the source code to make
the code prone to bugs. A naming system based on types is
always desirable as it offers much more security and consis-
tency of the code.
Object-oriented programming proposes an elegant solu-

tion to the problem of referring to remote entities, by associat-
ing them to specific types, and forcing their local counterpart
to be of this same type: both the remote entity and its local
stubs follow the same specification (they extend the same
class). The code for stubs, which is generated automatically
by a preprocessor, implements bidirectional communication
with the remote object. The business implementation must
be provided by the developer. This approach has interesting
properties. First, it takes full advantage of OO designs (rely-
ing on abstraction, polymorphism, inheritance, and encapsu-
lation), ensuring enhanced readability and maintainability,

extensibility, code reuse, and reduced development time. Sec-
ond, it provides distribution transparency. A stub can then
be used as a placeholder for the remote object it refers to.
Consequently, algorithms manipulate stubs just like they
would do with business objects. Transparency seems highly
profitable at first glance, but it actually exhibit two major
drawbacks:

But by hiding distribution, it hides its inherent cost. When
invoking a method on a stub, there is no indication what-
soever that the invocation will not only entail a jumps in
memory like this happens for any method invocation, but
also and bi-directional synchronous network communication.
From a more technical perspective, while invoking a local im-
plementation take just a few nanoseconds, adding a network
communication on the fastest local networks today is more
of the order of a millisecond (in the order of 103 slower). This
performance problem is not visible in the source code. Trans-
parency then tends to produce too high-level and largely
inefficient code. Also, because the functional interface is
the same for stubs and business objects, the programmer is
tempted to think they behave the same. But there exists a ma-
jor difference in terms of behavior. As a matter of fact, when
invoking the business object locally (via its native reference),
mutable parameters are passed to methods as references, and
immutable ones are passed by value. When invoking busi-
ness methods via a stub, (de)serialization enters the scene,
and parameters get all passed by value, be they mutable or
immutable. This also applies to return values. Unfortunately,
this difference of behavior is not reflected by the source code.
The developer must be aware of the nature (stub or business
object) of the instance it manipulates, so as to treat param-
eters and return values differently. An intuitive solution to
this problem is to dynamically/transparently create stubs to
all mutable objects, and to transport these stubs instead of
the values of objects. Remote algorithms would then deal
with stubs of objects living on the same node/process from
which the execution request originates. Unfortunately do-
ing this worsens the impact of transparency, increases the
amount of communication, thereby dramatically reducing
the global performance of applications.

Idawi Digital Twining System (IDTS) lies on the idea that
digital twin (DT) are adequate to the manipulation of dis-
tributed elements. A DT is a model of a physical object. It
evolves alongside its physical counterpart, and it offers the
ability to obtain information on it, and to simulate it.
The main idea in IDTS is to represent, as well as refer to,

remote so-called “physical” objects as DTs. IDTS takes ad-
vantage of the very nature of the physical object it considers:
software objects. These are of the same nature as DTs: they
both are made of code. IDTS defines that a digital twin has
the same code as the real object. They only differ in the data
they carry, and the role they play. When queried, an object
declared as the digital twin of another object, can do several
things:
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• it can act like a stub, forwarding the query to the real
object (optionally caching the result locally);

• or if it has the necessary data and its host node has
enough resources available, it can execute the business
code (optionally reporting its action to the real object,
and caching the result locally);

• or it can simulate the behavior of the real object (op-
tionally reporting its action to the real object, and
caching the result locally);

• or it can return a previously cached value.
In addition to its natural conformance to the OO approach,

as DT can serve as a placeholder for the real object (it can ac-
tually even become the real object if it obtains the necessary
data), IDTS has a number of desirable impacts on distributed
systems, not found in existing designs:

• It makes them simpler (both in design and source code)
by making local and remote objects of the very same
nature;

• It enhance their flexibility by natively providing query
delegation, result caching, and simulation;

• By enabling each node to simulate the distributed sys-
tem (not just the network), it can help applications
to improve the management of resources, hence their
performance.

8.1 An use case: message broadcasting

In order to illustrate the advantages of being able to simulate
locally in this context, please consider the following use case:
node needs to broadcast a message into the network. To this
purpose it needs to evaluating the best diffusion strategy,
which is a multi-objective problem aiming at (among others):

• minimizing network congestion;
• minimizing energy consumption;
• maximizing delivery rate.

In order to broadcast a message, every node has a set of so-
called broadcast services. Each of them comes with its own
set of parameters. If we assume that only one broadcasting
algorithm is going to be used, mathematical analysis can
compute a Pareto front, which will permit the calibration of
the values of each parameter. But if we relax that unrealistic
assumption, maths become way too complex, and simulation
becomes the only way to go. In a DT-based system, the node
will be able to simulate the broadcast process on its memory-
local network of DTs. In this simulation, the full diversity of
behaviors found in the physical system can be considered
for further decisions on what to do..
Just like link-state routing protocols do, physical nodes

disseminate topology information across the network, but
not only. Indeed “routing” is not our sole concern. A frame-
work for distributed computing must offer services for re-
source/services discovery, among others. Then physical nodes
must also send structural and system information, like the
services they offer, their computational/storage capabilities,

their current load, etc. This information can then be used to
update individual physical nodes to update their local digital
twins of remote nodes so as their local view of their network
environment remains as accurate as possible. Accurate views
can then be cleverly used by applications to distribute at best.

9 On decentralization

Proposition: middleware for distributed computing should
impose no form of centralization to atop applications, yet en-
abling the design/implementation of centralized application
when desired by the designers of the applications.

In the contexts of pervasive/edge/mobile computing, VANETs,
the IoT, etc, recent tools consider decentralization. Indeed in
these environments, no assumption can be made on dynam-
ics, especially on mobility. Decentralization is required in
situations in which no infrastructure is available, when de-
vices cannot be trusted, etc. Then devices must self-organize
with each other, communicate with other devices in their
radio range, or with the the neighbors they trust, in a decen-
tralised fashion to provide theminimal functionality required
to distributed computations.
On one hand, a middleware should not prevent applica-

tions built on top of it to resort to centralization. Further, for
the sake of completion, it should provide helpers to achieve
centralization. On the other hand, it should not impose ap-
plication any form of centralization.

9.1 Node identification

Proposition: , from a general point of view, nodes’ID should
be generated randomly, and that the responsibility of providing
"friendly names", should be delegated to atop applications,
which would drive their management according to their own
needs.

If decentralization has many good properties, it also brings
new issues. In particular arises the question of how to iden-
tify the component when no central trusted directory is
available. Idawi assumes that components are identified
by a random value they generate on their own, and whose
length ensures acceptable statistical unicity.

9.2 Encryption

that encryption should be considered anywhere it proves
useful in a distributed system, so as to enhance not only local
node security but also the global behavior of the system.

A unique feature in Idawi is to use this random identifier
as a public key for decrypting messages outgoing messages.
Identifiers are then generated locally, in a decentralized man-
ner, by the key-pair generators of asymmetric ciphers. An-
other unique feature is that before fowarding a message,
nodes add their own layer of encryption (using their own
private key) to the message. This augments encrypted com-
munication (à-la SSH) by route validation: being able to
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decrypt a message guarantees that it took the same route as
the one it advertizes.

10 Reference implementation: the Idawi

framework

Idawi [12][10][13] is a framework for decentralized com-
puting on large heterogeneous dynamic networks. It aims
at providing applications built atop of it with appropriate
communication and computation models, as well crucial ser-
vices like messaging, routing, service discovery, provisioning,
deployment, etc. The initial motivation for the design and
implementation of a new framework was to meet the tech-
nical requirements of the scientific experimentation of the
COATI/I3S/Inria/CNRS Research group (2010-2020) in the
contexts of its Research projects on graph algorithms [15],
networking [6], decentralized protocols [9], etc. More specif-
ically we needed software services for the deployment of
workers, their monitoring and the control of their jobs in
progress.

In 2021, our production code turned into a Research plat-
formwhenweworked at making it effective at large scale (i.e.
when a large number of computational nodes are involved).
In this context, the difficulties lied to node failures, churn,
mobility and heterogeneity arose naturally. In particular we
considered heterogeneity anywhere it can be encountered:
on the hardware of nodes (RAM, CPUs, disks, etc), and on
the communications mediums (wired, wireless). The latter
aspect impacts deeply the communication strategies for us-
ing wireless technologies inevitably leads to the presence of
directed links into the communication graph.
The very nature of the network we consider (i.e. large,

dynamic and heterogeneous) relaxesmost of the assumptions
made by other frameworks. This led us to rethink the design
of most of our initial code. In this process, as much as possible
we look at the state of the Art of existing tools, and try to
reuse concepts, ideas, and codes.

All of the concepts presented hereinbefore are implemented
in Idawi.

11 Conclusion

The design of frameworks for distributed computing has
been changing a lot during the past 3 decades. OO modeling,
SOA, and microservices architectures have brought new con-
cepts and possibilities which proved highly beneficial to the
development of distributed applications. that, in addition to
these paradigms, the use of digital twins to represent node
and simulate the network, the use of random identifiers as
keys for encryption/decryption, flexible stream-oriented ex-
ecution models can play a major role in the design of future
middleware for distributed applications.
In order to demonstrate the implementability and effec-

tiveness of theses approaches from a programmatic point

of view, we implemented them all at the core of the Open
Source Idawi framework.
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