N

N

Digital Twins as the Keystone of the Design of

Distributed Systems
Luc Hogie

» To cite this version:

Luc Hogie. Digital Twins as the Keystone of the Design of Distributed Systems. CNRS. 2024. hal-
04878631

HAL Id: hal-04878631
https://hal.science/hal-04878631v1
Submitted on 10 Jan 2025

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-04878631v1
https://hal.archives-ouvertes.fr

Digital Twins as the Keystone of the Design of
Distributed Systems

Luc Hogie
luc.hogie@cnrs.fr
ORCID: 0000-0001-8044-5672
CNRS/I3S/Inria/Université Cote d’Azur

Summer 2024

Abstract

The design of distributed systems has relied of several strategies to rep-
resent and provide access to remote components: from explicit message-
passing, to transparent invocation of remote functions, stubs, Web-oriented
APIs, etc; new approaches being proposed as technology evolves. This pa-
per discusses the pros and cons of these strategies, and it proposes a new
approach called Idawi Digital Twining System (IDST) for the design of
distributed applications, which relies on the concept of digital twin. It
explains how IDST takes advantages of the intrinsic properties of dig-
ital twins, and which are its positive impacts on (the development of)
distributed applications. Finally its describes the IDAWI framework for
distributed computing, which serves as an Open Source Java reference
implementation for IDST.

1 Introduction

Distributed/parallel computing is inherently difficult, as communications and
concurrency dramatically increase the complexity of design of systems as well
as the opportunity of failures. Worse, concurrency problems are often counter-
intuitive, and the distributed nature of the computing environment makes them
harder to detect, understand and solve. Because of this, the availability of
libraries/frameworks for distributed computing is of paramount importance.

2 Existing tools
Thanks to its simplicity and robustness, MPI remains—even today—the most

popular framework for scientific computing. ProActive [5], MPI, JXTA, JMS
(Jakarta Messaging API), ActiveMQ [8], JGroups [2], RMI, Akka, JavaCa&La



(JCL) [7], GoPrime [4], ParallelTheater [13], ActorEdge [1], and EmbJXTA-
Chord [3], are either commercial/Research tools coming with effective solutions
to some of the problems of distributed computing. In the contexts of per-
vasive/edge/mobile computing, VANETS, the IoT, etc, recent works consider
decentralization.

3 The problem: dealing with remote entities

In a distributed system, entities (components, objects, functions, etc) live in
different address spaces. For this reason they cannot refer to each other via
(process-scoped) pointers/references: a distributed referencing system is needed.

In many systems, remote entities are represented by numerical or textual
identifiers. In this approach there is no way for the compiler to assist the
developer and verify its source code, as the numerical of textual IDs representing
remote things have no semantics a compiler can manipulate: they are just values.
This approach has the following pros and cons.

On the one hand, a significant advantage of this approach is that it makes
distribution explicit: remote calls can be clearly seen in the source code of ap-
plications. The developer can then have a clear idea of when his application will
use the network, allowing him to minimize as much as possible communications,
which are a common bottleneck in distributed applications.

On the other hand, the natural—elegant—constructs of the programming
language cannot be used to refer to remote things. This tends to obfuscate the
source code to make the code prone to bugs. A naming system based on types
is always desirable as it offers much more security and consistency of the code.

Object-oriented programming proposes an elegant solution to the problem
of referring to remote entities, by associating them to specific types, and forc-
ing their local counterpart to be of this same type: both the remote entity
and its local stubs follow the same specification (they extend the same class).
The code for stubs, which is generated automatically by a preprocessor, imple-
ments bidirectional communication with the remote object. The business im-
plementation must be provided by the developer. This approach has interesting
properties. First, it takes full advantage of OO designs (relying on abstraction,
polymorphism, inheritance, and encapsulation), ensuring enhanced readability
and maintainability, extensibility, code reuse, and reduced development time.
Second, it provides distribution transparency. A stub can then be used as a
placeholder for the remote object it refers to. Consequently, algorithms manip-
ulate stubs just like they would do with business objects. Transparency seems
highly profitable at first glance, but it actually exhibit two major drawbacks:

First, by hiding distribution, it hides its inherent cost. When invoking a
method on a stub, there is no indication whatsoever that the invocation will
not only entail a jumps in memory like this happens for any method invocation,
but also and bi-directional synchronous network communication. From a more
technical perspective, while invoking a local implementation take just a few
nanoseconds, adding a network communication on the fastest local networks



today is more of the order of a millisecond (in the order of 103 slower). This
performance problem is not visible in the source code. Transparency then tends
to produce too high-level and largely inefficient code.

Second, because the functional interface is the same for stubs and business
objects, the programmer is tempted to think they behave the same. But there
exists a major difference in terms of behavior. As a matter of fact, when in-
voking the business object locally (via its native reference), mutable parameters
are passed to methods as references, and immutable ones are passed by value.
When invoking business methods via a stub, (de)serialization enters the scene,
and parameters get all passed by value, be they mutable or immutable. This
also applies to return values. Unfortunately, this difference of behavior is not
reflected by the source code. The developer must be aware of the nature (stub
or business object) of the instance it manipulates, so as to treat parameters and
return values differently. An intuitive solution to this problem is to dynamical-
ly /transparently create stubs to all mutable objects, and to transport these stubs
instead of the values of objects. Remote algorithms would then deal with stubs
of objects living on the same node/process from which the execution request
originates. Unfortunately doing this worsens the impact of transparency, in-
creases the amount of communication, thereby dramatically reducing the global
performance of applications.

4 The digital twin approach

4.1 Description

In this paper, we propose a novel design, called Idawi Digital Twining System
(IDTS), for distributed systems, which relies on the concept of digital twin
(DT). A DT is a model of a physical object. It evolves alongside its physical
counterpart, and it offers the ability to obtain information on it, and to simulate
it.

The main idea in IDTS is to represent, as well as refer to, remote so-called
“physical” objects as DTs. IDTS takes advantage of the very nature of the
physical object it considers: software objects. These are of the same nature as
DTs: they both are made of code. IDTS defines that a digital twin has the
same code as the real object. They only differ in the data they carry, and the
role they play. When queried, an object declared as the digital twin of another
object, can do several things:

e it can act like a stub, forwarding the query to the real object (optionally
caching the result locally);

e or if it has the necessary data and its host node has enough resources
available, it can execute the business code (optionally reporting its action
to the real object, and caching the result locally);

e or it can simulate the behavior of the real object (optionally reporting its
action to the real object, and caching the result locally);



e or it can return a previously cached value.

In addition to its natural conformance to the OO approach, as DT can serve
as a placeholder for the real object (it can actually even become the real object
if it obtains the necessary data), IDTS has a number of desirable impacts on
distributed systems, not found in existing designs:

e It makes them simpler (both in design and source code) by making local
and remote objects of the very same nature;

e It enhance their flexibility by natively providing query delegation, result
caching, and simulation;

e By enabling each node to simulate the distributed system (not just the
network), it can help applications to improve the management of resources,
hence their performance.

4.2 An use case: message broadcasting

In order to illustrate the advantages of being able to simulate locally in this
context, please consider the following use case: node needs to broadcast a mes-
sage into the network. To this purpose it needs to evaluating the best diffusion
strategy, which is a multi-objective problem aiming at (among others):

e minimizing network congestion;
e minimizing energy consumption;
e maximizing delivery rate.

In order to broadcast a message, every node has a set of so-called broadcast
services. Each of them comes with its own set of parameters. If we assume that
only one broadcasting algorithm is going to be used, mathematical analysis can
compute a Pareto front, which will permit the calibration of the values of each
parameter. But if we relax that unrealistic assumption, maths become way too
complex, and simulation becomes the only way to go. In a DT-based system,
the node will be able to simulate the broadcast process on its memory-local
network of DTs. In this simulation, the full diversity of behaviors found in the
physical system can be considered for further decisions on what to do..

Just like link-state routing protocols do, physical nodes disseminate topol-
ogy information across the network, but not only. Indeed “routing” is not our
sole concern. A framework for distributed computing must offer services for
resource/services discovery, among others. Then physical nodes must also send
structural and system information, like the services they offer, their computa-
tional/storage capabilities, their current load, etc. This information can then
be used to update individual physical nodes to update their local digital twins
of remote nodes so as their local view of their network environment remains as
accurate as possible. Accurate views can then be cleverly used by applications
to distribute at best.



5 Reference implementation: the Idawi frame-
work

Ipawr [11][10][12] is a framework for decentralized computing on large heteroge-
neous dynamic networks. It aims at providing applications built atop of it with
appropriate communication and computation models, as well crucial services
like messaging, routing, service discovery, provisioning, deployment, etc. The
initial motivation for the design and implementation of a new framework was to
meet the technical requirements of the scientific experimentation of the COAT-
I/13S/Inria/CNRS Research group (2010-2020) in the contexts of its Research
projects on graph algorithms [14], networking [6], decentralized protocols [9],
etc. More specifically we needed software services for the deployment of work-
ers, their monitoring and the control of their jobs in progress.

In 2021, our production code turned into a Research platform when we
worked at making it effective at large scale (i.e. when a large number of com-
putational nodes are involved). In this context, the difficulties lied to node
failures, churn, mobility and heterogeneity arose naturally. In particular we
considered heterogeneity anywhere it can be encountered: on the hardware of
nodes (RAM, CPUs, disks, etc), and on the communications mediums (wired,
wireless). The latter aspect impacts deeply the communication strategies for
using wireless technologies inevitably leads to the presence of directed links into
the communication graph.

IpAawI is Open Source, released under Apache v2 licence and its source code
is publicly available at:

https://i3s.univ-cotedazur.fr/~hogie/idawi/

The very nature of the network we consider (i.e. large, dynamic and hetero-
geneous) relaxes most of the assumptions made by other frameworks. This led
us to rethink the design of most of our initial code. In this process, as much
as possible we look at the state of the Art of existing tools, and try to reuse
concepts, ideas, and codes.

5.1 What a component is: application model

The application model of IDAWT relies on the Service Component Architecture
(SCA) style of programming. SCA defines that functionality is brought by
services/endpoints in components. This is true at both business and system
levels. In IDAWI, components are atomic, meaning that a single component
cannot be split on several nodes. Distribution is brought by specific services
dedicated to network messaging: transport services (OSI layer 2) and routing
services (OSI layer 4).

Such a structuring model forces distributed applications to conform to a cer-
tain organization defined by a specific OO model, which ensures consistency of
source codes, significantly reduces the risk of design errors (for most design work
is into the framework), and it enables the addition of high-level functionalities
such as deployment and service discovery.



5.2 How do components communicate: communication/-
computation model

While the application architecture conforms to the OO approach, and despite
the OO philosophy would foster the use of remote method invocation (like it
is done in CORBA, ProActive, etc), for the sake of flexibility we opted for
an asynchronous message-passing communication scheme. Upon reception, a
message is delivered into its target queue, unless its content is an endpoint
execution request. Each time it is invoked, an endpoint is provided with a
queue it will consume. In turn, along its execution, an endpoint will optionally
generate new messages.

Each endpoint execution is assigned to an available thread from a pool. The
number of threads available to simultaneously running endpoints is not limited,
but they are reused as much as possible, so as to minimize thread overhead.

The coupled communication/computation models have been designed this
way so as to maximize flexibility: multicast makes it collective by nature; queues
enable both reactive (asynchronous), imperative (synchronous) programming,
as well as the implementation of many workflows.

5.3 Digital twins

As said hereinbefore Unlike stubs and business objects which constitute two
different implementations of the same business abstraction, components and
digital twins are essentially the same thing. They expose the same business
services whose endpoints have the exact same implementation. Within the
implementation, a component is considered to be a DT if it has a digital twin
service. Without this service, a component is considered to be a real object
and will always execute its business code. When this service is activated, the
component will behave like a DT, as described in Section 4.1. This behavior
can be further driven by business-specific information carried by messages.

6 Conclusion

The design of frameworks for distributed computing has been changing a lot
during the past 3 decades. OO modeling, SOA, and microservices architectures
have brought new concepts and possibilities which proved highly beneficial to
the development of distributed applications. We believe that, on top of these
paradigms, the notion of digital twin can play a major role in the design of future
distributed applications, and in particular at framework-level. Using digital
twins as placeholders for remote entities, along with message-passing, cumulates
the advantages of OO designs while getting rid of (some of) its drawbacks. In
order to demonstrate the implementability and effectiveness of this approach
from a programmatic point of view, we implemented it at the core of the IDAWI
framework.



Acknowledgments I am grateful to all of those with whom I have had the
pleasure to work since the beginning of this project, and especially to Master’s
students Valentin Mascaro and Sami Joudet.

References

[1]

Austin Aske and Xinghui Zhao. An actor-based framework for edge com-
puting. In Ashiq Anjum, Alan Sill, Geoffrey C. Fox, and Yong Chen, edi-
tors, Proceedings of the 10th International Conference on Utility and Cloud
Computing, UCC 2017, Austin, TX, USA, December 5-8, 2017, pages 199—
200. ACM, 2017.

Bela Ban. Adding group communication to java in a non-intrusive way
using the ensemble toolkit. Technical report, Citeseer, 1997.

Filippo Battaglia and Lucia Lo Bello. A novel jxta-based architecture for
implementing heterogenous networks of things. Comput. Commun., 116:35—
62, 2018.

Mauro Caporuscio, Vincenzo Grassi, Moreno Marzolla, and Raffaela Miran-
dola. Goprime: A fully decentralized middleware for utility-aware service
assembly. IEEE Trans. Software Eng., 42(2):136-152, 2016.

Denis Caromel, Alexandre di Costanzo, and Clément Mathieu. Peer-to-peer
for computational grids: mixing clusters and desktop machines. Parallel
Comput., 33(4-5):275-288, 2007.

David Coudert, Luc Hogie, Aurélien Lancin, Dimitri Papadimitriou,
Stéphane Pérennes, and Issam Tahiri. Feasibility study on distributed sim-
ulations of BGP. CoRR, abs/1304.4750, 2013.

Leonardo de Souza Cimino, José Estevao Eugénio de Resende, Lu-
cas Henrique Moreira Silva, Samuel Queiroz Souza Rocha, Matheus
de Oliveira Correia, Guilherme Souza Monteiro, Gabriel Nata de Souza Fer-
nandes, Renan da Silva Moreira, Junior Guilherme de Silva, Matheus
Inacio Batista Santos, André Luiz Lins de Aquino, André Luis Barroso
Almeida, and Joubert de Castro Lima. A middleware solution for integrat-
ing and exploring iot and HPC capabilities. Softw. Pract. Ezp., 49(4):584—
616, 2019.

Nicolas Estrada and Herndan Astudillo. Comparing scalability of message
queue system: Zeromq vs rabbitmq. In 2015 Latin American Computing
Conference, CLEI 2015, Arequipa, Peru, October 19-23, 2015, pages 1-6.
IEEE, 2015.

Luc Hogie. Mobile Ad Hoc Networks: Modelling, Simulation and Broadcast-
based Applications. (Réseaux Mobile Ad hoc : modélisation, simulation et
applications de diffusion). PhD thesis, University of Luxembourg, 2007.



[10]

[11]

Luc Hogie. IDAWI: a decentralised middleware for achieving the full po-
tential of the iot, the fog, and other difficult computing environments. In
Proceedings of Middle Wedge 2022 ACM International workshop on middle-
ware for the Edge. Collocated with ACM/IFIP/USENIX Middleware 2022,
Québec, Canada. ACM, 2022.

Luc Hogie. A service-oriented middleware enabling decentralised deploy-
ment in mobile multihop networks. In Proceedings of FMCIoT 2022 Inter-
national Workshop on Architectures for Future Mobile Computing and In-
ternet of Things. Collocated with 20th International Conference on Service-
Oriented Computing (ICSOC 2022), Sewvilla, Spain. LNCS, 2022. To be
published.

Luc Hogie. A Decentralized Web Service Infrastructure for the Interoper-
ability of Applications in Multihop Dynamic Networks. In CloT 2023 -
6th Conference on Cloud and Internet of Things, pages 211-218, Lisbon,
Portugal, March 2023. DNAC, IEEE.

Libero Nigro. Parallel theatre: An actor framework in java for high perfor-
mance computing. Simul. Model. Pract. Theory, 106:102189, 2021.

Thibaud Trolliet, Nathann Cohen, Frédéric Giroire, Luc Hogie, and
Stéphane Pérennes. Interest clustering coefficient: a new metric for di-
rected networks like twitter. J. Complex Networks, 10(1), 2021.



