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Abstract—Several MPI correctness benchmarks have been
proposed to evaluate the quality of MPI correctness tools. The
design of such a benchmark comes with different challenges,
which we address in this paper. First, an imbalance in the
proportion of correct and erroneous codes in the benchmarks
requires careful metric interpretation (recall, accuracy, F1 score).
Second, tools that detect errors but do not report additional
information, like the affected source line or class of error, are
less valuable. We extend the typical notion of a true positive with
stricter variants that consider a tool’s helpfulness. We introduce
a new noise metric to consider the amount of distracting error
reports. We evaluate those new metrics with MPI-BugBench, on
the MPI correctness tools ITAC, MUST, and PARCOACH. Third,
we discuss the complexities of hand-crafted and automatically
generated benchmark codes and the additional challenges of non-
deterministic errors.

Index Terms—Correctness Benchmark, Correctness Tools,
Metrics, Error Reports

I. INTRODUCTION

Recently, MPI correctness benchmark suites [1]–[4] have
been proposed as standardized test harnesses for MPI correct-
ness tools [5]–[7]. These suites contain small-scale tests that
include both correct and erroneous uses of the MPI library,
such as illegal value ranges of MPI arguments, deadlocks, and
data races. As a result, they are beneficial for both correctness
tool developers and users. Developers can evaluate their tools’
feature support and performance against other solutions, while
users can determine the best tool for their practical needs.

However, assessing MPI correctness tools with these bench-
marks presents unique challenges due to inherent ambiguities
in tool error reporting, where reports may be unclear about the
nature and origin of errors. Furthermore, traditional evaluation
metrics based on binary classification can be misleading,
mainly because of an imbalance between the number of
erroneous and correct test cases. Thus, evaluating error reports
requires considering multiple factors, including (i) source
location accuracy, (ii) error description clarity, (iii) and the
presence of extraneous information or noise. This noise in-
cludes correctly identified errors accompanied by multiple
non-existent ones, adding unnecessary complexity for the user.

Additionally, the design of correctness benchmarks intro-
duces further complexities, requiring trade-offs between hand-

crafted and automatically generated test cases. Also, the non-
deterministic nature of evaluating MPI and hybrid MPI + X
models, like MPI+OpenMP or MPI+CUDA [8], [9], poses
significant challenges in accurately detecting and reporting
errors. This work analyzes these complexities and proposes
solutions and strategies for more effective evaluation of cor-
rectness tools. In Section II, we discuss the ambiguity of
binary classification for correctness benchmarks and introduce
new metrics for an in-depth analysis of the helpfulness of
error reports. We evaluate MPI-BUGBENCH (MBB) [10]
with those new metrics in Section III. Section IV explores
the intricacies of benchmark design, such as automatic test
generation, weighing the benefits and drawbacks of existing
approaches. In Section V, we address the challenges associated
with non-deterministic behavior in MPI and hybrid MPI + X
programs.

II. CORRECTNESS BENCHMARK CLASSIFICATION

Evaluating a correctness analysis tool with a correctness
benchmark can be seen as a binary classification problem. For
an incorrect code, a correctness tool either finds the designated
error (True Positive: TP) or misses it (False Negative: FN).
Similarly, for a correct code, a tool either wrongfully detects an
error not present (False Positive: FP) or correctly determines
the code to be error-free (True Negative: TN).

In terms of a correctness benchmark however, there are
several challenges when using the standard evaluation met-
rics, like precision ( TP

TP+FP ), recall ( TP
TP+FN ), accuracy

( TP+TN
TP+TN+FP+FN ) or F1 score ( 2TP

2TP+FP+FN ). Evaluation
metrics such as the F1 Score can be misleading on unbalanced
data sets [11].

Additionally, it may be ambiguous if a given error report
from a correctness tool actually represents a true positive. One
question here is: “Should a rather vague report that points out
that there is some error, but is otherwise not helpful for a
programmer to understand and fix the issue be considered as
a true positive (TP)?”

Current correctness benchmarks follow a unit-test-like de-
sign, with only one explicit error per test case. This design
is particularly useful to determine if correctness tools support
different MPI features, as they can be tested independently. It



is also valuable for developing a correctness tool, as small-
scale unit tests can be used to debug correctness tools. Nev-
ertheless, the issues discussed in this paper can be applied to
different designs of correctness benchmarks (e.g., benchmarks
with more complex test cases and multiple errors per test case).

A. Evaluation Metrics on Imbalanced Data Sets

Today, the usefulness of tools is evaluated by standard
metrics like recall, accuracy, and F1 score. It is known that
those metrics can be misleading for imbalanced data sets [11],
where there are more positive (in our case erroneous) examples
than negative (in our case correct) ones. For example, when
many positive (erroneous) cases exist, a tool with a recall of 1
could be a perfect tool or just one that always reports an error.
In this case, a tool that always predicts “error” would also
achieve relatively high precision, as the number of negative
(correct) cases to “challenge” the tool’s hypothesis is rather
limited. As the F1 score is the harmonic mean of recall and
precision, this will also lead to a high F1, although such a tool
that always predicts “error” is not of very high quality.

Unfortunately, an MPI correctness benchmark is naturally
unbalanced. The reason is that for every correct MPI us-
age, multiple different errors can be made. Consider an
MPI_Send, for example: Passing NULL as the buffer argu-
ment is a different error than specifying a too large number of
elements to be sent. This means that a correctness benchmark
is biased towards favoring tools that overestimate the errors
present. For example, in MPI-BUGBENCH, only ≈ 20% of
test cases are correct (negative) examples.

It is important for a tool’s usefulness that it does not report
many false positives, as the tool’s users will then spend time
understanding an error where there is none. Additionally, this
may lead to tool users ignoring certain warnings, even if those
errors really occur this time. More than precision as the key
indicator is needed in this case because it is biased towards
overestimation, as explained above. Therefore, we propose
to always include the specificity ( TN

TN+FP ) or the inverse
“false positive ratio” as one of the key factors in evaluating a
correctness tool’s quality.

B. Ambiguity of Evaluating Error Reports

Calculating the metrics mentioned in Section II-A requires
that true positive (TP), true negative (TN) as well as false
negative (FN), and false positive (FP) are clearly defined. If a
tool only reports “Error” or “No Error”, these metrics can be
clearly defined without ambiguity. While there may be at least
some value in such a judgment from a correctness tool, as it
tells the developer that they need to look into an issue further,
it is not very helpful, in our opinion. In order to fix the issue,
the application programmer first needs to understand what the
actual error is, and a message just consisting of “Error” is
not helpful in that regard.

The exact classification of error reports as “helpful” for
fixing the error may be subjective, though. Therefore, a
standardized evaluation of the correctness tool’s error reports
in a benchmark has several challenges related to the ambiguity

of error reports. For example: Is “deadlock” an appropriate
error description, or should a deadlock be considered as the
symptom, e.g., of a message tag mismatch error? Therefore, a
fair, standardized classification of error reports is challenging.

We consider three aspects of “helpful” error reports: source
location, error description, and noise.

a) Source Location: As one marker for a “helpful” error
message, we suggest including the source code line of at least
one of the involved MPI functions in the error description.
The source location information allows developers to quickly
identify which part of the codebase they need to investigate
to understand and in turn, resolve the issue. In terms of a
standardized benchmark, the information on the source code
line has the additional advantage of being rather unambiguous.
Only when some MPI calls are missing, it may be ambiguous
where the programmer should look to find the error. As no
single MPI call exists in isolation however, we suggest that
a correctness tool points to the other MPI call that provokes
the error. For example, when using a non-blocking operation
with a missing call to MPI_Wait1, the missing MPI_Wait
has no clear position in the source code, but the non-blocking
operation that starts the request has a well-defined location.

b) Error Description: While including the correct source
code location in the error description is valuable, it may not be
sufficient on its own. In order to quickly understand the error,
a helpful error description is important. A helpful error report
must accurately identify the present error rather than distract
users with incorrect assumptions by the tool. Here, however,
no standardized automatic measurement of “helpfulness” is
possible. As discussed above, it is subjective to determine at
what point an error description can be considered helpful. This
means that it is not feasible for a standardized benchmark to
define which error descriptions are helpful. But a standardized
correctness benchmark can define certain classes of errors, like
“Invalid Parameter” (e.g. a negative target rank for sending a
message) or “Local Concurrency” (e.g. a write to the message
buffer while a non-blocking operation is in progress). In order
to determine if a tool’s error report points the user in the
right direction, one can match the error description of the tool
with the error categories defined by the correctness benchmark.
However, this may require some effort when evaluating a
new version or a completely new tool with the correctness
benchmark. MUST, for example, is able to produce 111
different error descriptions, that need to be matched to the
corresponding error classes in the correctness benchmark.

c) Noise: Another aspect of ambiguity when utilizing a
standardized benchmark is considering an error report, where
a tool points out multiple errors, even though only one error
is present in the test case. One may argue that a standardized
benchmark should only check the first error reported, as other
errors may be “follow-up” errors that are resolved when
the first error is fixed. In our opinion, however, a high-
quality correctness tool should only report the actual present

1or other means of completing the non-blocking request



errors and should not clutter the error report with additional
misleading errors that are actually not present.

We, therefore, define the “noise ratio” as the ratio of
“not-helpful reports” over all error reported in the tools
output, with “helpful” being measured with the aspects of
source location and error description, as discussed above. For
example, a tool may report a given error for both involved
processes, but an unrelated different error is additionally (and
wrongfully) reported for process 0. In this case, the “noise
ratio” is 1

3 as one error reported was misleading.

We therefore propose different aspects of scrutiny when
calculating the metrics mentioned in Section II-A, with a
high quality correctness tool fulfilling all aspects:

• TPbase : Any error is reported.
• TPline : The error report contains correct source line

information.
• TPclass : The error report points to an error of the correct

class.
• TPclass line : The error report points to an error of the

correct class as well as includes correct source line
information.

Depending on the level of scrutiny, an error report is only
considered true positive (TP) for calculating the metrics dis-
cussed in Section II-A, when it fulfills all relevant criteria.
Otherwise, it is considered a false positive (FP) for calculation
of the metrics discussed in Section II-A, as, in our opinion,
a not helpful report distracts from the actual errors present in
the same way a false alarm would.

III. HELPFULNESS OF ERROR REPORTS

Figure 1 shows the helpfulness of the errors reported by the
correctness tools MUST [5], ITAC [7] and PARCOACH [12],
evaluated with MPI-BUGBENCH (MBB) [10]. The different
aspects of helpfulness visualized in Figure 1 are explained
in Section II-B. An error report can contain a description of
the appropriate error class (blue in Figure 1), the source code
line of an erroneous MPI call (green in Figure 1), or both
(hatched blue and green in Figure 1). If it contains neither
the appropriate error class nor appropriate source code line
information, it is considered not helpful (red in Figure 1). For
each tool we manually defined a mapping from the tools’ error
descriptions to the corresponding error classes of MBB.

While the correctness tools are not perfect, we see that most
error reports can be considered helpful. The majority of reports
contain an appropriate error description alongside correct
information on the affected source code location. PARCOACH
(Figure 1c) does not support point-to-point communication.
Therefore, most error reports are not helpful for this category.
The blue part of P2P corresponds to reports that contain the
right error class (CallOrdering) but wrongfully assumes an
error with collective operations instead of the erroneous point-
to-point operation. ITAC (Figure 1a) sometimes gives not-
helpful reports alongside: “Error: Unknown Error”. We note
that this evaluation only looks at the helpfulness of errors
actually reported, in the case where errors are expected. The

errors that were not found at all, as well as errors reported,
although no errors are expected, can not be observed in the
figures.

(a) Helpfulness of error reports by ITAC.
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(b) Helpfulness of error reports by MUST.
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(c) Helpfulness of error reports by PARCOACH.
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Fig. 1: Helpfulness of error evaluated on MPI-BUGBENCH.
COLL and P2P represent codes misusing collective and point-
to-point communications. RMA represents codes with errors
when using the MPI-RMA feature. ALL gathers codes using
the three features but also other features such as datatypes.



TABLE I: The noise ratio of errors reported (i.e., the ratio of
misleading error reports in addition to the helpful ones com-
pared to the overall number of error reports) only considers
test cases where errors are expected. Lower is better.

MPI feature ITAC MUST PARCOACH
ALL 0.19 0.08 0.25
RMA 0.32 0.00 0.43
P2P 0.31 0.11 1.00

COLL 0.08 0.06 0.11

Table I shows the noise ratio of the observed error reports.
The noise ratio is determined as the ratio of misleading error
reports compared to the overall number of errors reported. For
this purpose, a misleading error report is one that contains in-
correct information about either the error class or the affected
source code line. We see that MUST has a very low noise ratio,
and most error reports are rather helpful in finding the issue.
Again, the lack of support for point-to-point communication
errors explains PARCOACH’s large noise ratio.

IV. COMPLEXITY OF CORRECTNESS BENCHMARKS

When designing a correctness benchmark, the complexity
necessary for creation and evaluation should also be taken
into account. In general, two approaches exist: hand-crafted
test codes [1], [4], [13] and automatically generated ones
[2], [10]. Automatically generated codes have the advantage
of potentially covering a wider range of usage patterns, as
codes for one error can be generated for all possible usage
patterns. As we described in [14], this allows for better
real-world applicability of correctness benchmarks, as all the
relevant usage patterns can be covered, not only a few hand-
selected ones. On the other hand, hand-crafted codes have the
advantage of enabling new test cases from other contributors
to be more easily integrated. As automatically generated codes
offer the possibility to test the tool to find one error in
several different usage patterns, they are better at assessing
the implementation quality of a tool. This helps correctness
tool developers to “stress-test” their implementation with many
different examples of the same error in different circumstances,
fostering a more reliable implementation.

Generating many different test cases for a thorough eval-
uation of a tool may, however, lead to a high runtime of
the evaluation. For a small set of hand-crafted test cases, it
may be possible to manually verify whether the correctness
tool found the error and produced a helpful report. Although
this still is a subjective evaluation process, it alleviates some
challenges discussed in Section II-B. For a more extensive
set of codes, a manual evaluation is not feasible. In MPI-
BUGBENCH, we tackled the trade-off between hand selected
and auto-generated test cases by introducing different genera-
tion levels, with generation level 0 essentially equivalent to a
set of hand-crafted codes. For a quick overview of the tool’s
capabilities, fewer test cases may be sufficient, but a thorough
test of the tool’s implementation can only be facilitated with
automatically generated codes.

V. CHALLENGES OF NON-DETERMINISM

Some programs may only show errors in specific execution
paths. For example, all codes in MBB first check if they are
launched with a sufficient number of processes and abort if
not. In that case, a dynamic correctness checking tool would
not report any error as the observed MPI usage is correct in
this context. While it may be unfair to expect a dynamic tool
to flag such not observable errors, these tests can showcase
the potential of static tools to detect all possible errors, even
if they are not observed in a single execution.

Apart from errors that are deterministically not observ-
able, complex distributed programs have several possibilities
for non-deterministic behavior, especially when considering
MPI+X programming models, like MPI+OpenMP, as also
investigated in [3]. This leads to challenges regarding the
correctness of the application, as all possible interleaving of
the operations performed by the different processes or threads
should be correct. For non-deterministic errors, however, the
erroneous behavior may not be observable, depending on the
interleaving of the processes involved, the MPI implementa-
tion used, compiler optimizations or input parameters.

Our MPI-only error classification of MPI-BUGBENCH [10]
already has three non-determinism errors: Message race, local
concurrency, and global concurrency. An example of a mes-
sage race error due to an MPI wildcard receive is shown in
Figure 2. A high quality correctness checking tool may be
able to distinguish between a code that was correct in one
specific interleaving and a code that is actually correct (in
all possible interleavings). In order to test this, a correctness
benchmark should therefore be designed in a way that some
executions are very likely to produce the error, while others
are unlikely to do so. Currently, all incorrect codes in MPI-
BUGBENCH have an error that is expected to be always
“observable”. In the future, we want to extend MBB to test for
the tool’s ability to detect the non-deterministic errors. This
will require further refinement of the evaluation metrics, to
account for tools that always, occasionally, or never report a
non-deterministic error. Also, some erroneous usages of MPI
result in undefined behavior, e.g., data races. In those cases,
the compiler is allowed to completely change the behavior,
potentially in a way that no error is observable. This inherent
challenge in testing tools with undefined behavior ultimately
cannot be solved by a correctness benchmark.

The considerations regarding non-determinism are
also important for other correctness benchmarks such as
DataRaceBench [13], especially, as most erroneous cases of
DataRaceBench result in undefined behaviour [15].

P0 P1 P2
MPI_Send(P1) MPI_Recv(*) MPI_Send(P1)

MPI_Recv(P0)

Fig. 2: MPI example with non-deterministic behavior: If the
message of P2 matches the wildcard receive first, then the
execution runs through. If the message of P0 matches the
wildcard receive first, the execution deadlocks.



VI. CONCLUSION

This paper addresses the different challenges of designing
correctness benchmarks, namely imbalanced test sets, ambigu-
ity in the evaluation of error reports, complexity of the test case
generation, and evaluation of non-deterministic errors, using
MPI-BUGBENCH as an example. Current MPI correctness
benchmarks consist of more incorrect than correct codes. This
imbalance should be considered with care, as metrics like
accuracy favor tools that report more errors, including false
positives. To quantify the helpfulness of tool error reports,
we proposed new metrics that consider the reported error
source location, error class, and the number of unrelated
error reports (noise). The evaluation of ITAC, MUST, and
PARCOACH against MPI-BUGBENCH shows that most error
reports help identify and fix errors. MUST achieves the highest
number of helpful reports with roughly 97%, while ITAC and
PARCOACH achieve roughly 88%. However, there is still
room to improve the feedback quality for all tools.

Non-deterministic errors in MPI programs are another chal-
lenge, requiring refined evaluation metrics. In future work,
we plan to incorporate tests in MPI-BUGBENCH where the
error is not always observable and verify if a tool always,
occasionally, or never reports such errors. The considerations
in this paper are not limited to MPI and can also apply to
other correctness benchmarks like DataRaceBench [13].

ARTIFACT DESCRIPTION

This section gives details on how to reproduce
the results presented in the paper. The experiments
are based on the MPI-BUGBENCH, available at
https://git-ce.rwth-aachen.de/hpc-public/mpi-bugbench
(commit 986f0fff5ed72dfb4975d2b2f40e55c6ce214e4f).

MPI-BUGBENCH contains three Docker images that auto-
matically install each tool with their dependencies. We use
python scripts to compile and execute all codes, analyze tools
feedbacks and generate metrics. To build and run a docker
image (<tool> should be replaced by parcoach, must or itac):
docker build -f Dockerfile.<tool> -t mbb:latest .

docker run -v ‘pwd‘:/MBB -it mbb:latest bash

cd /MBB

Once in the docker image and in the MBB folder, level 2
codes can be generated with the command
python3 MBB.py -c generate --level 2

Then you can run a tool on the codes with the command
python3 MBB.py -c run -x <tool> -t <timeout in

sec> -l <logs dir> -n <number of workers>

<timeout in seconds> gives the time limit when
executing a code, <logs dir> is the path where log
files will be saved, and <number of workers> is the
size of the pool of workers that execute the tests in par-
allel. For the experiments of this paper, we used a time
limit of 120 seconds and 16 workers. As executing the
three tools on all codes takes several hours, all tools re-
sults can be found in https://git-ce.rwth-aachen.de/hpc-public/
mpi-bugbench-results/-/tree/main/logs-20240723-151721.

After downloading our results or generating them as de-
scribed above, statistics of a tool can be collected with
python MBB.py -l <logs dir> -x <tool> -c csv

Figure 1 in Section III is generated with the command
python MBB.py -l <logs dir> -x <tool> -c plots
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