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Abstract. MPI’s low-level interface is prone to errors, leading to bugs
that can remain dormant for years. MPI correctness tools can aid in
writing correct code but lack a standardized benchmark for comparison.
This makes it difficult for users to choose the best tool and difficult for
developers to gauge their tools’ effectiveness. MPI correctness benchmarks,
MPI-CorrBench, the MPI Bugs Initiative, and RMARaceBench have
emerged to address this problem. However, comparability is hindered by
having separate benchmarks, and none fully reflects real-world MPI usage
patterns. Hence, we present MPI-BugBench, a unified MPI correctness
benchmark replacing previous efforts. It addresses the shortcomings of
its predecessors by providing a single, standardized test harness for
assessing tools and incorporates a broader range of real-world MPI usage
scenarios.MPI-BugBench is available at https://git-ce.rwth-aachen.
de/hpc-public/mpi-bugbench.
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1 Introduction

The Message Passing Interface (MPI, [13]) enables distributed computations
in high-performance computing (HPC). MPI, however, requires users to man-
ually specify details like datatypes or message tags, which is error-prone. This
complexity has led to dormant bugs only uncovered after several years [1, 3].

To address this issue, several MPI correctness tools have been developed
using static [1], dynamic [3, 7], or a combined analysis [15] to detect issues such
as process deadlocks or invalid argument values. While numerous correctness
tools exist, it is difficult to compare their performance in terms of error detection
capabilities objectively, implying the need for a standardized benchmark. A
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general evaluation framework is necessary for users to select the most suitable
tool for their particular MPI usage. It allows tool developers to measure their
tools’ capabilities against others effectively.

As a consequence, two MPI correctness benchmarks were introduced: MPI-
CorrBench (COBE, [10]) and the MPI Bugs Initiative (MBI, [9]). They offer a
collection of tests, ranging from small unit tests to mini-applications and covering
correct and erroneous usage of the MPI library. These tests enable the assessment
of the precision of correctness tools by comparing their output against expected
results. In addition, RMARaceBench (RRB, [16]) was created more recently. It is
a smaller test set focused on data races of MPI one-sided communication (RMA)
and other RMA programming models only.

However, separate benchmarks have created complications for both users
and developers. A unified benchmark is necessary for direct comparison and
evaluation. Additionally, benchmarks need to capture the diversity of real-world
MPI usage, which otherwise limits their effectiveness in guiding tool development
to address users’ practical challenges.

To investigate the real-world relevance of the existing benchmarks, we con-
ducted a study [4] comparing the MPI calls and their arguments present in COBE
and MBI with a dataset of real-world MPI usage [5]. While neither fully represents
real-world MPI usage, each benchmark has unique strengths (e.g., MBI’s coverage
of persistent operations and COBE’s of datatypes) that complement each other.

Hence, we developed a unified correctness benchmark, MPI-BugBench, to
improve tool comparability and real-world relevance. It combines the strengths
of COBE, MBI, and RRB, thereby improving coverage of real-world MPI usage
patterns. In summary, we make the following contributions:

– MPI-BugBench, a unified framework for consistent tool evaluation and
comparison, which combines the strengths of COBE, MBI, and RRB.

– A domain-specific MPI test generator that enables the creation of tests with
varying levels of error complexity, from basic misuse to granular real-world
scenarios or exhaustive error combinations.

– A comprehensive evaluation of three state-of-the-art MPI correctness tools,
MUST [3], ITAC [7], and PARCOACH [15], using MPI-BugBench.

The rest of the paper is structured as follows. In Sect. 2, we present existing
MPI correctness benchmarks and discuss our definition of real-world MPI usage.
Sect. 3 discusses our joint effort MPI-BugBench. In particular, we discuss our
MPI error classification and automatic MPI test generator, and reflect on our
approach’s real-world MPI coverage. In Sect. 4, we evaluate three state-of-the-art
MPI correctness tools using MPI-BugBench. Sect. 5 discusses limiting test
code generation to real-world scenarios (as opposed to exhaustive generation)
and the complications of classifying errors based on the output of correctness
tools. Finally, we conclude and outline future work in Sect. 6.
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2 Previous Work

In previous work [4], we evaluated COBE and MBI’s real-world applicability by
applying a feature-scoring method based on our previous MPI study [5] that
resulted in a dataset of 96 HPC codes (henceforth called HPC dataset). Our
scoring method assesses how closely the MPI usage patterns in these correctness
benchmarks reflect those found in the HPC dataset. Specifically, COBE covers
approximately 40% of the MPI usage observed in the HPC dataset, while MBI
covers around 30%.

The relatively low scores of these benchmarks can be attributed to their
creation predating our MPI study. Previous studies, e.g., [8], primarily focused on
MPI function calls without considering parameter usage patterns. These patterns
provide a more detailed understanding of how users interact with MPI, such as
determining the most common datatypes in collective operations.

In Sect. 2.1, we provide a brief overview of the correctness benchmarks COBE,
MBI, and RRB. We elaborate on our scoring algorithm in Sect. 2.2. It serves as
the guideline for designing MPI-BugBench’s test code generator described in
Sect. 3.

2.1 Correctness Benchmarks

MPI-CorrBench COBE [10] contains 510 small-scale C language tests, including
202 correct and 308 incorrect codes. In particular, the correct test cases have
been extracted from an MPI library implementation test set. The incorrect
codes, on the other hand, have been hand-written. Each incorrect test contains
a brief description of the error. COBE also includes well-known (C/C++) HPC
mini-apps where the authors manually introduced specific errors. In COBE,
erroneous arguments, erroneous program flow, and mismatching arguments across
communication calls are the key error types.

The MPI Bugs Initiative MBI [9] contains 1668 C language codes, including 682
correct and 986 incorrect codes. To generate these test cases, MBI uses a template
engine. Templates for the various MPI categories contain placeholder tokens that
get replaced by (in-)correct usage of MPI calls to generate the final test case.
Each test defines a header that describes the intent of each code and specifies
how to execute and evaluate it. In MBI, the errors are categorized by the scope
in which they can arise: (a) single call (invalid parameter), (b) single process
(resource leak, request lifecycle, and local concurrency), and (c) multi processes
(parameter matching, message race, call ordering, and global concurrency).

RMARaceBench RRB [16] focuses on different data race test cases for the remote
memory access (RMA) models MPI RMA, OpenSHMEM [14], and GASPI [2]. It
consists of 107 different small-scale C codes targeting MPI RMA, of which 43
are correct and 64 are incorrect. Like MBI, the test cases are semi-automatically
generated based on code templates, covering different combinations of RMA
communication and synchronization methods. The errors are categorized into
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(a) local concurrency issues, i.e., a user-specified local buffer of an RMA operation
is accessed before completion, (b) global concurrency issues, i.e., concurrent
conflicting RMA accesses from different processes are not correctly synchronized,
(c) incorrect atomicity, i.e., the atomicity semantics of MPI RMA are violated,
and (d) hybrid races in combination with threading via OpenMP.

2.2 MPI Feature Usage Analysis

In a previous study [5], we developed a static code analysis toolchain that (a) ex-
tracts MPI calls and their arguments, (b) applies an MPI feature classification
(closely following the MPI standard’s categorization), and (c) cross-references
MPI argument handles across detected function calls, see Listing 1.

1 MPI_Datatype struct_type; // Opaque type handle
2 // Construct struct type:
3 MPI_Type_create_struct(num_members, block_length,
4 offsets, member_types, &struct type);
5 MPI_Type_commit(&struct type); // Make MPI aware of struct type
6 MPI_Send(buffer, 1, struct type, ...);

Listing 1: Example of constructing a struct type. We need to consider arguments
of MPI functions to deduce that the send operation uses the struct datatype.

This resulted in a dataset of MPI usage at an argument granularity for 96
real-world MPI codes. We use this dataset to assess whether the existing MPI
correctness benchmarks and MPI-BugBench reflects real-world MPI usage. In
the following, we describe our scoring workflow for this assessment developed in
our previous study [4].

Scoring MPI Usage For each MPI feature category, e.g., point-to-point (PtP)
operations, we calculate a percentage representing the proportion of (real-world)
MPI usage patterns that are covered by the correctness benchmark. To that
end, for this MPI usage pattern scoring, we consider: (1) The MPI call, (2) the
Datatype and Reduction Operator, (3) the Count (4) and if wildcards, such as
ANY TAG are used; (5) for collective operations, the root Rank is also important to
the usage pattern. To be counted towards usage scoring, for each individual MPI
call in the real-world dataset, the aforementioned aspects must be present in the
MPI correctness benchmark.

Additionally, the score for each usage pattern is based on its frequency in our
real-world dataset, as shown in Fig. 1. As the dataset contains operations with
varying arguments, a 100% score requires all operations for each MPI feature
category to be present with all arguments in the correctness benchmark. Consider
a dataset with six scatter operations and four broadcast operations. If all six
scatter operations fully match, but only one out of four broadcast operations
match (e.g., one uses MPI FLOAT and the others use MPI DOUBLE), the score of the
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benchmark would be 70% for collectives. The full details of this scoring workflow
are explained in [4]. The reasoning behind testing the same errors with several
distinct MPI usage patterns is further detailed in Section 3.2.

0 20 40 60 80 100
% Score Contribution

Other

RMA

Comm Group

Types

Topology

File

blocking
    PtP

non-blocking
PtP

Reduction Collective

Fig. 1: Weighting of MPI categories, adapted from [4]. Collectives and reductions
are predominantly used, followed by PtP operations. This indicates that correct-
ness benchmarks should focus on these categories first to improve their scoring.

3 Design of MPI-BugBench

In the design of MPI-BugBench (MBB), we adopted and expanded upon the
test code generation idea of the MPI Bugs Initiative while integrating the test
cases from MPI-CorrBench (COBE) and RMARaceBench (RRB). MBB contains
different unit tests with exactly one MPI usage error per test case. This allows
for a more fine-grained evaluation of a correctness tool, as one can individually
compare the tool’s performance for specific errors. The tools are evaluated in
a container-based infrastructure to ensure portability (see Section 4.2). In this
section, we first discuss the different types of errors we consider in Section 3.1,
while Section 3.2 discusses different instantiations of errors that can be generated.
The explanation of how the test cases are generated follows in Section 3.3.

3.1 Error Types Covered

Different kinds of programming errors in MPI may lead to different (non-
deterministic) failures at runtime. Both COBE and MBI provide similar clas-
sifications of such MPI programming errors. MPI-BugBench mainly adapts
the classification introduced by MBI. For detailed code examples of the different
error classes, we refer to COBE [10] and MBI [9].

In general, MPI errors can be categorized into three different categories:

1. Single call errors: These errors are only related to local MPI functions and
can be detected by only analyzing the parameters of a given MPI function.

2. Process-local errors: These errors often consist of an inconsistency between
the local context of a process and the parameters of a given MPI call in that
process. Thus, the detection of these errors requires analysis of local process
information.

3. Multi-processes errors: These errors result from the interplay of multiple
application processes, such as a deadlock.
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Single call errors

1. Invalid Parameters: This category contains invalid parameters in an MPI
call, such as a negative value for a rank.

Process-local errors

2. Resource Leak: Any improper destruction of MPI resources (e.g., datatype,
request, communicators) leads to a resource leak.

3. Initialization of MPI: Wrong initialization or finalization of MPI can lead to
errors, e.g., if messages are sent before MPI is initialized.

4. Request Lifecycle: Request lifecycle errors occur if, e.g., a wait to complete a
nonblocking operation is missing.

5. Local Concurrency: A local concurrency error occurs when a process accesses
a memory region asynchronously read or written by MPI. This type of error
is produced with nonblocking and one-sided communication. An example
would be using a message buffer before the nonblocking operation completes.

6. Epoch Lifecycle: An epoch lifecycle error occurs when MPI RMA operations
are wrongly synchronized by, e.g., mixing different RMA synchronization
modes (fences and locks) or performing an RMA operation outside an access
epoch.

Multi-processes errors

7. Message Race: Wildcard receive calls can lead to non-deterministic message
matching with potential senders, possibly leading to deadlocks.

8. Parameter Matching: Parameter matching corresponds to MPI calls matched
with incompatible arguments. An example is a collective operation, where
the processes do not agree on a root, which can result in a deadlock.

9. Call Ordering: Wrong ordering of MPI calls can lead to a call mismatch, e.g.,
when all processes call a receive operation before any process calls a send
operation, resulting in a deadlock.

10. Global Concurrency: Global concurrency errors occur if two or more processes
access the same memory region (at least one access is a write). An example
would be two concurrent MPI Put operations accessing the same memory
region at the target process.

3.2 Error Instantiations Covered

Apart from testing for different kinds of errors explained in Section 3.1, MBB
also tests for different instances of the same kind of error. For example, a
datatype mismatch between a double and an integer may result in a message
size mismatch. It may be more easily spotted by a correctness checking tool
than a different mismatch, resulting in the same message length (e.g., between
integer and unsigned integer). Therefore, MBB can be used to assess the
coverage of a tool regarding the different possible MPI errors supported and can



MPI-BugBench: A Framework for Assessing MPI Correctness Tools 7

additionally be used to assess the implementation quality regarding the reliability
of finding different instances of the same type of error.

Testing for all the possible instances of an error (e.g., wrongfully matching
each datatype with all other types) leads to a high combinatorial complexity. MBB
can generate over four million test cases when all combinations are considered
exhaustively.

Several studies like [5, 8] have shown that most applications only use a limited
subset of MPI functionality. Hence, testing a tool with all possible MPI usage
patterns is probably unnecessary. Furthermore, the study by Hück et al. points
out that derived MPI datatypes are more commonly used in point-to-point
operations than in collective operations [5].

In order to limit the number of cases generated and to facilitate a more efficient
evaluation of correctness tools, MPI-BugBench contains different coverage levels
to generate different sets of test cases gradually:

1. Basic cases: The basic cases include only one instance of an error (e.g., one
datatype mismatch).

2. Sufficient coverage: This level contains multiple instances of the “same”
kind of error, that should be sufficient to evaluate if specific MPI errors
are supported by a tool by containing multiple examples, covering all pos-
sible values for the mismatching parameters involved. In terms of datatype
mismatches, for example, for each MPI datatype, at least one mismatch is
included. In order to only include usage patterns that can be observed in
the real world, we refine this level into 2.1 “Sufficient coverage of real-world
patterns” and 2.2 “Sufficient coverage of all possible MPI usage pattern”.

3. Full Testcaseset: The full set contains all possible instantiations of an error.
In the case of datatype mismatches, all possible mismatches between all
possible MPI datatypes are included. Again, this level can be refined into
3.1 “Full coverage of real-world usage patterns” and 3.2 “Full coverage of all
possible MPI usage patterns” to include only usage patterns found in the
real world or all theoretically possible ones.

The number of cases generated for the five levels for point-to-point, collective,
and RMA operations is shown in Table 1.

In order to determine which usage patterns occur in the real world, MBB uses
the data set collected by Hück et al. [5], excluding the Fortran cases, as Fortran is
currently not part of MBB. MBB can also be used to generate test cases tailored
to a more limited set of use cases by replacing the complete real-world data set
with a different one, e.g., for one specific application.

3.3 Test Case Generation

MBB’s test generation builds upon the infrastructure of the MPI Bugs Initiative
and enhances it in several ways. The original test case generation infrastructure
relied on text replacement. We improved it to generate a variety of test cases
automatically based on test generator scripts. Each test generator is a Python
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Table 1: Number of test cases per feature.

Level 1 Level 2.1 Level 2.2 Level 3.1 Level 3.2

P2P 49 870 24,116 2,789 3,004,968
COLL 40 774 23,937 3,246 1,121,865
RMA 39 415 415 1,898 1898

Total 128 2,059 48,539 7,933 4,128,731

1 def generate(self, generate_level, real_world_score_table):
2 for func in mpi_send_funcs :
3 for buf_to_use in [ "NULL", 'MPI_BOTTOM', 'MPI_IN_PLACE']:
4 tm = get_send_recv_template(func, "mpi_irecv") # get a TemplateManager
5 for call in tm.get_instruction(identifier="MPICALL", return_list=True):
6 # send is executed by rank 1 in default template
7 if call.get_rank_executing() == 1:
8 call.set_arg("buf", buf_to_use) # set buffer to invalid value
9 call.set_has_error() # mark where the error is

10 # set an appropriate description for the error:
11 tm.set_description("InvalidParam-Buffer-" + func, # short description
12 "Invalid Buffer: "+buf_to_use) # long description
13 yield tm

Listing 2: Illustration of the test-case generation function for invalid buffer errors.

class that implements a generator function. The infrastructure will execute all
applicable generators to produce the test case set. The user can target a specific
MPI version or feature, with the effect of cases not fitting the user’s criteria being
discarded.

In particular, Listing 2 shows the generation of an invalid buffer error. In
line 4, a default point-to-point template is instantiated. Then, the generate

function needs to find the call where the buffer argument should be replaced
with the invalid one. Line 5 of Listing 2 iterates over the send and receive call
of the default template, while line 7 selects the send call. The MPICall object
allows setting an invalid buffer argument (line 8). Line 9 marks the erroneous
MPI call for later evaluation. The only thing left for the generate function is to
set an appropriate error description in line 11 of Listing 2, before yielding the
instantiated TemplateManager to the generation infrastructure. The generation
infrastructure will then generate the resulting erroneous code (illustrated in
Listing 3) into a file for later compilation and execution with a correctness tool.
The Python yield construct turns the function into a generator. Iteratively calling
the function returns different errors. In the example of Listing 2, multiple different
invalid buffer argument errors are created for all flavors of MPI point-to-point
send functions. The arguments to the generate function limit the generated
instantiations of an error, as it may lead to redundancy to test for all possible
circumstances where an error can occur, as explained in Section 3.2.
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1 // Description: Invalid Buffer: NULL // header is shortened
2 int main(int argc, char **argv) {
3 // init MPI and setup rank variable
4 int *buf = (int *)calloc(10, sizeof(int));
5 if (rank == 0) {
6 MPI_Irecv(buf, 10, MPI_INT, 1, 0, MPI_COMM_WORLD, &mpi_request_0);
7 MPI_Wait(&mpi_request_0, MPI_STATUS_IGNORE); }
8 if (rank == 1) {
9 /*MBBERROR_BEGIN*/ MPI_Send(NULL, 10, MPI_INT, 0, 0,

10 MPI_COMM_WORLD); /*MBBERROR_END*/ }
11 // free and finalize
12 }

Listing 3: Excerpt of one error code produced by the generator shown in Listing 2.

4 Evaluation of Correctness Tools

This section first discusses the real-world coverage of the generated test cases in
Section 4.1. We then evaluate three state-of-the-art MPI correctness tools using
the generated test cases in Section 4.2.

4.1 Real-World Applicability

MPI-BugBench’s approach vastly improves its real-world applicability when
considering the coverage level 2.1, as described in Section 3.2. The real-world
applicability, as explained in Section 2.2, is illustrated in Fig. 2. High coverage of
the most relevant real-world usage pattern is obtained in most categories, with
an overall coverage score of more than 75%. MBB has surpassed the original
works of MPI-CorrBench and MPI Bugs Initiative in all categories. The current
lack of coverage for the Types category is explained in a surprisingly high number
of conversion functions like Type f2c, which our benchmark currently does not
cover as Fortran is not supported. For the other category, the lack of coverage
is mostly due to MPI I/O which is currently not covered by MPI-BugBench.
Nevertheless, the most important aspects of real-world MPI usage are covered,
which also can be seen in Table 2, where the overall coverage scores are compared
between the three benchmarks.

We note that using a higher generation level of MBB does not further increase
the coverage score. The reason is that the coverage score only counts if a usage
pattern is included at least once. As explained in Section 3.2, the idea of coverage
level 2.1 is that each usage combination is part of at least one instance of every
applicable error. However, not all erroneous combinations are tested to allow for
a more efficient tool evaluation.

4.2 Evaluation of Correctness Tools

We use MPI-BugBench to evaluate three active MPI correctness tools relying
on different techniques to detect errors: ITAC (v2021.3), MUST (v1.10.0), and
PARCOACH (v2.4.0). Intel Trace Analyzer and Collector (ITAC) [7] profiles
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Fig. 2: Comparison of real-world applicability of MPI Correctness Benchmarks.
MBI (orange) denotes the MPI Bugs Initiative. COBE (blue) denotes MPI-
CorrBench. MBB (green) denotes MPI-BugBench with coverage level 2.1. We
used the methodology proposed by Hück et al. [4] for evaluation, without including
the Fortran codes in the real-world dataset (see Section 2.2).

Table 2: Total real-world coverage score. The scoring is described in Section 2.2.

Erroneous (%) Correct (%) Total (%)

MBB coverage level 2.1 74.94 51.15 74.97
MBB coverage level 1 28.45 19.85 28.74

COBE 25.61 47.85 51.68
MBI 28.32 28.32 28.32

and analyzes MPI programs to check their correctness. It intercepts MPI calls
and generates trace files that can be analyzed to understand the program’s
behaviors. MUST [3] detects different kinds of MPI errors such as deadlocks,
type mismatches, or invalid arguments during the execution. For extended type
correctness checks of user-specified buffers, it relies on TypeART [6] and LLVM
14. PARCOACH [15, 19] detects collective and one-sided operation misuse with
a static/dynamic approach. It emits warnings for potential errors found at
compile-time and verifies these potential errors during the execution of programs.
PARCOACH’s static analysis is based on LLVM 15. In this section, we only used
the static analysis of PARCOACH.

We use coverage level 2.1 of MBB that generates roughly 2000 test codes. The
experiments used the MBB infrastructure in a Docker image based on Debian
12, which contained all tool dependencies. The MUST container uses MPICH
4.0.2, the PARCOACH container uses Open MPI 4.1.4, and the ITAC container
uses Intel MPI 2021.12.
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Since some tests may crash or hang up in a deadlock, we specified a timeout
of 120 seconds for each test execution. To speed up the overall runtime of
the benchmark, the MBB infrastructure supports parallel test execution. We
performed the evaluation on a cluster node with 96 cores, using a pool of 16
runners so that 16 tests could run in parallel. This leaves enough spare cores to
start additional tool processes, as required by MUST. On the described setup,
the execution of the tests requires 2 minutes for PARCOACH, 27 minutes for
ITAC, and 58 minutes for MUST. PARCOACH is the fastest tool, as its static
analysis does not execute the tests.

Result Categorization The resulting tool output of each test is classified into
exactly one of the following categories:

– True Positive (TP): Error reported on an erroneous test case.
– True Negative (TN): No error reported on a correct test case.
– False Positive (FP): Error reported on a correct test case.
– False Negative (FN): No error reported on an erroneous test case.
– Compilation Error (CE): The test case could not be compiled with the tool.
– Runtime Error (RE): The tool execution on a correct test case crashed or

ran into a timeout (here: 120s)

A compilation error (CE) may occur when the tool does not support all MPI
calls in the test, e.g., due to an outdated MPI library compatibility. An execution
is classified as runtime error (RE) when the execution on a correct test case
crashes or runs into a timeout without any error report. If the tool falsely reports
an error on a correct test case and the execution crashes or runs into a timeout,
this still counts as FP. Thus, an issued error report always takes precedence for
FP in the classification over a runtime error (RE). Further, an execution on an
erroneous test cases is never classified as runtime error, because the test may
crash or timeout itself, independently of the tool.

Tool Results Table 3 shows the results of each tool for all tests on coverage
level 2.1. The first part of the table shows the aforementioned classification of
test executions for the different tools. The rest of the table gives the following
derived metrics, as also defined by MBI:

– Coverage Cov = 1− CE
Total tests , Conclusiveness Cc = 1− CE+RE

Total tests

– Specificity S = TN
TN+FP , Recall R = TP

TP+FN , Precision P = TP
TP+FP

– F1 Score F1 = 2·P ·R
P+R , Overall Accuracy OA = TP+TN

Total tests

Coverage and conclusiveness demonstrate the robustness of a tool, i.e., the
ability to compile and draw a diagnostic on codes. Specificity, recall, precision,
and F1 score are standard metrics used to evaluate tools. Specificity measures
the ability to avoid identifying errors in correct codes, while recall measures
the ability to find existing errors. Precision is the confidence in TN results, and
F1 score is the overall bug-finding quality. Finally, overall accuracy gives the
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Table 3: Tool evaluation against MPI-BugBench on coverage level 2.1. The
best results are in bold.

Tool
Errors Results Robustness Usefulness

OA
CE RE TP TN FP FN Cov Cc S R P F1

ITAC 75 0 1386 358 13 228 0.96 0.964 0.95 0.82 0.99 0.92 0.85

MUST 0 9 1153 359 7 532 1 0.996 0.96 0.68 0.99 0.81 0.73

PARCOACH 0 0 594 271 104 1091 1 1 0.72 0.35 0.85 0.50 0.42

Ideal tool 0 0 1685 375 0 0 1 1 1 1 1 1 1

CE: Compilation Error, RE: Runtime Error, TP: True Positive, TN: True Negative, FP: False
Positive, FN: False Negative, Cov: Coverage, Cc: Conclusiveness, S: Specificity, R: Recall, P:
Precision, F1: F1 Score, OA: Overall Accuracy

proportion of correct diagnostics for all tests when considering compilation and
runtime errors. The last row of the table gives the results of an ideal tool.

PARCOACH and MUST compile all test cases and, therefore, have a coverage
of 1. ITAC comes with Intel MPI that currently does not support MPI 4.0 features
such as partitioned communication. Due to undefined MPI functions, this leads
to compilation errors (CE) for those test cases. With MUST, 9 executions on
correct tests resulted in runtime errors (RE) that are related to the internal
type verification. It does not consider less frequently used data types such as
MPI DOUBLE INT or MPI 2INT correctly. ITAC did not crash or timeout on any
test. Since PARCOACH analyzes the codes only statically, it also cannot have
any runtime errors.

ITAC has the best classification results of the tools, with an overall accuracy
of 0.85 and an F1 score of 0.92. MUST achieves a similarly high precision of 0.99
compared to ITAC but detects fewer issues overall leading to a recall of 0.68.
Still, the F1 score of MUST is 0.81. PARCOACH is focused on a small subset of
errors, in particular collective operations. Thus, it returns many false negatives
and has low scores for most of the metrics, resulting in an F1 score of 0.50.

Fig. 3 illustrates the tool results individually for the different MPI features.
MUST and ITAC perform similarly for the P2P and Collective tests. Both tools
have a larger number of false negatives (FN) because they fail to detect issues
in erroneous test cases containing less frequently used MPI calls or data types.
Since PARCOACH focuses on error detection in collective operations, it performs
well on those tests, but falls short on the P2P tests. For the RMA test cases,
MUST only detects invalid parameter errors. ITAC detects invalid parameter and
additionally epoch lifecycle errors. Both tools do not detect local concurrency
or global concurrency errors in RMA. Only PARCOACH detects some of the
RMA local concurrency issues but also detects such issues in correct test cases,
leading to some false positives (FP). An extension of MUST [17] to check for
local and global concurrency errors in RMA programs has not been integrated
into the current release and thus has not been tested. Similarly, PARCOACH
implements a dynamic analysis [18, 19] for RMA that significantly improves the
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Fig. 3: Tool evaluation using MPI-BugBench including a breakdown for each
MPI feature category.

detection quality on local and global concurrency errors in RMA, but has also
not been tested in our infrastructure. For both MUST and PARCOACH, we plan
to integrate and incorporate those extended RMA analyses in future work.

We compared the results shown in Table 3 on coverage level 2.1 with those
on coverage level 1. The derived metrics show similar results on both levels.
Nevertheless utilizing level 2.1 does reveal some additional shortcomings of the
tools, that cannot be uncovered by using only coverage level 1. An example are
the runtime errors (RE) of MUST when utilizing less frequently used datatypes,
as these runtime errors are not present, when testing MUST only with coverage
level 1. As these cases are rare however, they do not significantly impact the
overall scoring of the tools. This means that the tools do support a broad range
of real-world usage patterns, with some errors in some rather rare cases.

Summarizing the results, the three tested state-of-the-art tools ITAC, MUST,
and PARCOACH show a good coverage on real-world usage patterns. For some
less frequently used MPI features, the tools sometimes do not detect errors
correctly or crash. With MBB, we provide a test set that should motivate tool
developers to improve their tool’s classification quality by also considering corner
cases that are still relevant in real-world MPI programs.

5 Discussion

Compared to the previous benchmarks COBE, MBI, and the focused benchmark
RRB, the test cases of MPI-BugBench are guided by a dataset of real-world
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MPI usage. Although, MPI-BugBench can generate all possible erroneous MPI
usage combinations, we only generate a limited subset for our evaluation. As
discussed in previous work [4], a high coverage score does not indicate rigorous
testing. The coverage score only counts MPI usage patterns; it does not account
for the possible erroneous usage of any particular pattern. Hence, our scoring is
merely a guide for generating test cases with MPI usage patterns of real-world
relevancy. Furthermore, MPI-BugBench combines all error types included in
COBE and MBI to encompass as many MPI error combinations as possible. To
that end, the number of erroneous combinations must be balanced against the
time required to execute those tests. In our opinion, MPI-BugBench is well
suited to find this balance with the different test generation levels included.

Another critical point is evaluating the tool’s feedback: Are the tool’s error
messages helpful in pointing out the root cause of an error? In this work, the
evaluation discussed in Section 4.2 only checks whether the tool reported an
error on a test case or not. It does not verify the usefulness of the error report.
From our perspective, there are two aspects that contribute to the usefulness of
a tool. First, the correct error class should be reported by the tool. For example,
if a tool reports a data race on a test case that contains a deadlock, then this
error report is not useful at all. Further, if the error report does not include the
affected source code lines, users have to locate the root cause of the error on their
own which is not applicable to larger codes. Moreover, since the tools’ output is
not standardized, it may be difficult to argue whether the expected error was
actually discovered. Nevertheless, MBB facilitates in-depth analysis of the origin
of the error by marker comments pointing to the location of the erroneous MPI
usage in the generated test cases. This work focuses on how real-world usage
data can guide the test cases, but we plan to add a tool’s feedback analysis like
in [11, 12].

6 Conclusion

In this work, we introduce MPI-BugBench, a unified benchmark for assessing
MPI correctness tools. It consolidates previous efforts, offering a standardized test
harness that mirrors real-world MPI usage in HPC codes. Utilizing a test code
generator, MPI-BugBench creates tests with varying levels of error complexity,
covering basic misuses to exhaustive error combinations. This allows for detection
of bugs in the tools implementation for some more rarely used cases.

We evaluate three state-of-the-art MPI correctness tools using 2,060 generated
codes. These test codes cover 75% of MPI usage patterns identified in 96 HPC
codes, doubling the coverage compared to previous MPI correctness benchmarks.
The test code generator produces test codes, which can be correctly compiled
and run by the static and dynamic correctness tools without (unexpected) issues.
The dynamic tools ITAC and MUST have a relatively high degree of real-
world applicability with an overall accuracy of about 85% and 73%, respectively.
PARCOACH is limited in focus and only performs well on collective operations
and some RMA features. However, it has a clear advantage regarding run time,
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as it only utilizes static analysis without the need for the actual execution of the
tests.

For future work, we plan to extend MPI-BugBench with a more detailed
tools report analysis to analyze the helpfulness of the error messages given by the
tools, in particular the reported error type and source code lines. Although 80%
of real-world usage patterns are already covered by MPI-BugBench, we further
want to expand the scope of our correctness benchmark suite by incorporating
currently not covered MPI features such as MPI I/O. Another way to increase
the scope of MPI-BugBench is to include Fortran test cases. Additionally,
we want to add the hybrid OpenMP+MPI errors from COBE alongside other
MPI+X programming models. We also want to incorporate more complex error
cases, such as nondeterministic instances of errors, that depend on the input
parameters.

In summary, MPI-BugBench serves as a comprehensive and unified bench-
mark reflecting actual MPI usage in HPC environments. The infrastructure is
available at https://git-ce.rwth-aachen.de/hpc-public/mpi-bugbench.
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