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ABSTRACT
To model the hydrodynamic noise produced by an elastic ship hull or propeller excited by a turbulent
boundary layer, we need an efficient method to compute the acoustic scattering by an elastic body
surrounded by a fluid. In 3D, Boundary Element Methods (BEM) are used to reduce the computational
costs, for both the fluid and the elastic body. A natural way to compute the boundary integral
representation (BIR) of the sound pressure is to use formulations based on the free space acoustic
and elastic Green’s functions. However, since the turbulent flow along the elastic body is known
only statistically, the use of these Green’s functions would be too expensive. A remedy is to compute
a Green’s function adapted to the physical problem, thus satisfying the transmission conditions of
the fluid-structure problem. This so-called “tailored Green’s function” is determined by solving a
coupled acoustic-elastic problem with the BEM, and leads to a simplified BIR of the sound pressure
compatible with a stochastic source term. We first validate the computation of the tailored Green’s
function over a classic spherical geometry. Then we compare the scattering of multiple quadrupoles
by elastic or rigid NACA0012 profiles.

1. INTRODUCTION
When an immersed or partially-immersed structure moves in a fluid, a turbulent boundary layer

appears around the structure. In underwater acoustics, because of the fluid loading, most structures
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can not be considered as rigid and the elasticity of the structure has an effect on the acoustic scattering
(see, for example, [1]). In the past few decades, various methods have developed to study the turbulent
excitations over various types of obstacle. Many works introduce Green’s functions that are called
”tailored” to the considered obstacle, i.e that satisfy the transmission conditions of the fluid-structure
problem. However, most of them are obtained analytically, and are therefore tailored to simple
geometries such as steps [2] or hemisphere [3], or numerically over rigid geometries [4].
In this work, we propose to extend the concept of tailored Green’s functions to an arbitrary geometry
and to a complex coupling. In this aim, we develop a numerical method to determine a Green’s
function tailored to an elastic obstacle of arbitrary shape. We consider a coupled Boundary Element -
Boundary Element Method (BEM-BEM). It is an alternative to coupled finite element methods (FEM-
FEM or FEM-BEM) that require a mesh of the full 3D structure or CFD methods which are not very
well suited for low Mach - high Reynolds underwater acoustic studies ( [5], [6]).
The paper is divided as follows. First, we show the classical way to compute the boundary integral
representation (BIR) of the sound pressure using the free space acoustic and elastic Green’s functions.
It is compared to the BIR using a tailored Green’s function, and we show the interest of this last BIR
when the source is a turbulent excitation. Then, we determine the system of coupled boundary integral
equations leading to the numerical determination of the tailored Green’s function. This numerical
method is then validated over a classical simple sphere geometry. Finally, applications over an elastic
NACA0012 profile in water are shown.

2. BEM/BEM FORMULATION FOR A FLUID-ELASTIC PROBLEM
The inner domain is noted Ωs. It is an elastic solid of density ρs and of compressional and

shear speeds cp and cs with the associated wavenumbers kp and ks. The exterior domain is noted
Ω f . It is a fluid of density ρ f and speed c f , associated to the wavenumber k f . The coupled system is
excited by a source S located in the exterior domain. The unknown in the interior problem is the total
displacement noted u. The unknown in the exterior problem is the total pressure noted p. Figure 1
gives a schematic representation of the coupling, recalling the notations.

Figure 1: Schematic representation of the notations for a general fluid-structure coupling.

The total pressure in the exterior fluid domain is solution of the Helmholtz equation

(∆ + k2
f )p = −S in Ω f , (1)

and the total displacement is solution of the elastodynamic equation

ρsω
2u + divσ(u) = 0 in Ωs. (2)

with σ(u) the stress tensor. The 3 component vector unknown u and the scalar unknown p are
connected by two boundary conditions at the interface:

– Continuity of the normal stresses:

σ(u)(x).n(x) = t(x) = −p(x)n(x), ∀x ∈ Γ. (3)
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– Continuity of the normal displacements:(
∂p
∂n

)
(x) = ρ fω

2u(x).n(x), ∀x ∈ Γ. (4)

2.1. Boundary integral equations computed with the free field Green’s function
A natural way to compute the total pressure and the total displacement in each domain Ω f and

Ωs is to introduce the acoustic and elastic free field Green’s functions [7] known in closed form. They
lead to the following boundary integral representations.

Total pressure - Exterior problem. In the fluid domain, the integral representation of the solution
of Equation 1 with the free field Green’s function writes:

p(x) =
∫
Ω f

S (y)G0(x,y)dy +
∫
Γ

(
p(Z)∂nZG0(x,Z) −G0(x,Z)∂nZ p(Z)

)
dΓZ, (5)

where

G0(x,y) =
eik f |x−y|

4π|x − y|
. (6)

Introducing the double and single layer potentials which, to any function ϕ(Z) defined for any Z ∈ Γ,
associate the functions:

(D fϕ)(x) =
∫
Γ

∂nZG0(x,Z)ϕ(Z)dΓZ and (S fϕ)(x) =
∫
Γ

G0(x,Z)ϕ(Z)dΓZ,

we obtain

p(x) = P(0)(x) + (D f p)(x) −
(
S f
∂p
∂n

)
(x), (7)

where P(0) =

∫
Ω f

S (y)G0(x,y)dy.

Total displacement - Interior problem. In the elastic domain, the fundamental solution (Green
tensor) is given by [8]

Uk
i (x,y) =

1
k2

sµ

[(
δqsδik − δqkδis

) ∂
∂xq

∂

∂ys
Gs(x,y) +

∂

∂xi

∂

∂yk
Gp(x,y)

]
, (8)

where

Gα(x,y) =
eikα |x−y|

4π|x − y|
, (9)

α = p or s, referring to the compressional or shear wavenumbers. Introducing Tk
i (x,y) =

σ(Uk
i )(x,y) · n defined by

Tk
i (x,y) =

[
λδi jδkl + µ

(
δihδ jl + δ jhδil

)] ∂
∂yl

Uk
i (x,y)n j(x), (10)

where λ and µ are the Lamé coefficients, the elastodynamic boundary integral equation is then, for
x ∈ Ωs and k = 1, 2 and 3,

uk(x) =
∫
Γ

[
Uk(x,Z) · t(Z) − Tk(x,Z) · u(Z)

]
dΓZ. (11)
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To fit the previous notations, we introduce the layer potentials Ds and Ss defined by

(Dk
sϕ)(x) =

∫
Γ

Tk(x,Z) · ϕ(Z) dΓZ and (Sk
sϕ)(x) =

∫
Γ

Uk(x,Z) · ϕ(Z) dΓZ, (12)

and Equation 11 then writes

uk(x) = −(Dk
su)(x) + (Sk

st)(x). (13)

System of boundary integral equations. As indicated by Equation 7 and Equation 13, to compute
the total exterior pressure in Ω f and the total displacement in Ωs, their values must be first computed
on Γ first. Using the traces on Γ of each operator, we deduce the coupled boundary integral equation
system, verified on Γ 

( I
2
− D f

)
p + S f

(
∂p
∂n

)
= P(0) on Γ,(uk

2
+ Dk

su
)
− S k

st = 0 on Γ for k = 1, 2, 3,
(14)

where Ds and S s are the trace of Ds and Ss and D f and S f those of D f and S f . Using the boundary
conditions Equation 3 and Equation 4, we can write the system verified by the total exterior pressure
p and the total displacement u

( I
2
− D f

)
p + ρ fω

2S f (u.n) = P(0) on Γ,(uk

2
+ Dk

su
)
+ S k

s (pn) = 0 on Γ for k = 1, 2, 3.
(15)

The main drawback of Equation 15 is that when considering multiple sources S (leading to multiple
P(0)), this integral equation has to be solved again for each new source. Moreover, for turbulent
sources P(0) is only known in a stochastic way, and the usual statistical solution is determined thanks
to the ensemble average < pp∗ > of Equation 5. These two points lead to high computational costs
when considering Equation 5. To avoid such unnecessary costly procedures, a useful alternative is to
compute a tailored Green’s function as presented in the next section.

2.2. Total pressure computed with the fluid-structure tailored Green’s function
Let G be the Green’s function defined in Ω f tailored to the coupled problem, and uG the

associated total displacement in Ωs. G and uG are both solutions of Equation 1 to Equation 4 with
p→ G, u→ uG and S → δ, leading to the following coupled problem:

(∆ + k2
f )G = −δ in Ω f

ρsω
2uG + divσ(uG) = 0 in Ωs

σ(uG).n = −Gn on Γ
∂G
∂n

= ρ fω
2uG.n on Γ

(16)

Equation 5 holds for any Green’s function and we can write for x ∈ Ω f

p(x) =
∫
Ω f

S (y)G(x,y)dy +
∫
Γ

p(Z)
∂G(x,Z)
∂nZ

−G(x,Z)
∂p(Z)
∂nZ

dΓZ. (17)

However, the main interest of the choice of G is that it leads to a surface integral equal to 0. To see
this, we first recall that in Ωs:
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 ρsω
2u + divσ(u) = 0,

ρsω
2uG + divσ(uG) = 0.

(18)

Multiplying the first line by uG and the second line by u, then integrating over Ωs, we get∫
Ωs

divσ(uG)u − divσ(u)uG = 0. (19)

After an integration by parts and noting that σ(uG)u = σ(u)uG because of the symmetry properties of
the elastic constitutive equation, we get the reciprocity relation∫

Γ

−(σ(u).n)(uG.n) + (σ(uG).n)(u.n) = 0. (20)

Finally, using the boundary conditions in Equation 3, Equation 4 and Equation 16 gives∫
Γ

p
∂G
∂n
−G
∂p
∂n
= 0. (21)

Therefore, the tailored Green’s function G leads to

p(x) =
∫
Ω f

S (y)G(x,y)dy. (22)

The main advantage of Equation 22 against Equation 5 is obvious: we no longer need to invert
a boundary integral equation system when the source is changed. Once G is determined, we can
directly compute p for any source S . This formulation is therefore more convenient for statistical
studies linked to turbulence. Now that we have defined such a tailored Green’s function, we show
how to compute it.

3. DEFINITION AND COMPUTATION OF THE TAILORED GREEN’S FUNCTION
The goal is to write G and uG versus the acoustic and elastic free field Green’s functions, which

are known analytically. Since uG is a solution of Equation 2, we use Equation 11 with u→ uG, which
can be written ∀x ∈ Ωs

(uG)k(x) =
∫
Γ

Uk(x,Z) · [σ(uG)(Z).n(Z)] − T k(x,Z) · uG(Z)dΓZ. (23)

In the same way, since G is solution of the Helmholtz Equation 16, we use Equation 5 with S → δ
and p→ G, which can be written ∀(x,y) ∈ Ω f ×Ω f

G(x,y) = G0(x,y) +
∫
Γ

G(x,Z)
∂G0(y,Z)
∂nZ

−G0(y,Z)
∂G(x,Z)
∂nZ

dΓZ. (24)

We can therefore write a system close to Equation 15, verified by G and uG on the boundary Γ:
( I
2
− D f

)
G + ρ fω

2S f (uG.n) = G0 on Γ,(
(uG)k

2
+ Dk

suG

)
+ S k

s (Gn) = 0 on Γ
. (25)

We see that the computation of the tailored Green’s function G does not depend on the source. It
depends on G0, the geometry and the physical characteristics of the media. Therefore, for a fixed
geometry and fixed coupling parameters, the computation of G remains the same for any source.
This, again, lays the emphasis on the benefits of using G instead of G0 when an obstacle is excited by
a turbulent flow. A direct resolution of Equation 25 can lead to numerical issues. Indeed, going back
to Equation 25, each term of the system is of rough estimate orders
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O (1) O

(
ρ fω

2
)

O
(

1
ks

)
O

(
1
ρsω2

)  , (26)

which, at 100 Hz and for aluminum bronze in water gives O (1) O
(
109

)
O

(
10−1

)
O

(
10−10

)  . (27)

Thus, the second line of the matrix is much smaller than the first and Equation 25 revealed to be ill-
conditioned. A direct resolution of the system does not give an accurate result. A remedy, presented
in [9], is to introduce a change of unknowns such that

us
G = ρ fω

2uG,

which leads to the system
( I
2
− D f

)
G + S f

(
us

G.n
)

= G0 on Γ,(
(us

G)k

2
+ Dk

sus
G

)
+ ρ fω

2S k
s (Gn) = 0 on Γ.

(28)

This leads to the new rough estimates
O (1) O (1)

O
(

1
ks

)
O

(
ρ f

ρs

)  ≈
 O (1) O (1)

O
(
10−1

)
O

(
10−1

)  . (29)

Then, Equation 28 is well-conditioned and is used to compute (G,uG) on the boundary Γ. The
computation of the tailored Green’s function in the fluid thanks to Equation 24 takes two steps. The
first is to determine G and uG on the boundary of the elastic structure, with Equation 28. The second
step is then to compute G in all the fluid volume Ω f thanks to Equation 24. In the next section, we
present numerical validations of Equation 28 and of Equation 24.

4. NUMERICAL VALIDATION OF THE COMPUTATION OF G OVER AN ELASTIC
SPHERE

Analytical solution of the tailored Green’s function. In order to validate our numerical
implementation to solve Equation 28 and Equation 24, we need a reference solution. Such a reference
solution exists in the simple case of a spherical obstacle. For Ωs a sphere of radius a, the tailored
Green’s function for the coupled fluid-structure problem can be explicitly determined, adapting [10],
thanks to a modal expansion on the spherical Bessel functions basis:

G0(x,y) =
ik f

4π

∞∑
n=0

(2n + 1) fn

 jn(k f rx)hn(k f ry) ry > rx,

jn(k f ry)hn(k f rx) a < ry < rx,
(30)

with fn defined, for x = (rx, θx, ϕx) and the same for y, by

fn(θx, θy, φx, φy) =
∞∑

m=0

(2 − δm0)
(n − m)!
(n + m)!

cos
[
m(φx − φy)

]
Pm

n (cos θx)Pm
n (cos θy). (31)

In presence of an elastic sphere, the Green’s function becomes G = G0 + Gs with the scattered field
Gs of the form
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Gs(x,y) =
ik f

4π

∞∑
n=0

(2n + 1)cn fnhn(k f rx)hn(k f ry). (32)

Only cn remains to be determined, which is done thanks to the boundary conditions given in
Equation 16. In [11], ways to determine cn are given for a spherical elastic obstacle in the case of a
plane wave excitation. The determination of cn remains the same here, only the plane wave excitation
is replaced by G0. Note that we are only interested in G but uG can also be determined analytically.

Numerical validation over elementary cases. To validate the numerical procedure, we use the
code COFFEE developed at POEMS6. We consider a sphere of radius a = 1 m associated to a
mesh with 2 886 nodes and 5 768 elements. It is filled with plastic of density ρ = 1 800 kg.m−3,
compressional sound speed cp = 2 400 m.s−1 and shear sound speed cs = 1 560 m.s−1. The source y is
placed at (0, 0, 2 m), the observer x at (0, 0, 10 m) and the frequency varies from 20 to 700 Hz. Results
on figure 2 show a perfect agreement between analytical and numerical computations.

(a) Real part (b) Imaginary part

Figure 2: Comparison between numerical and analytical Green’s function tailored to an elastic sphere.
The sphere is of radius a = 1 m and filled with plastic such that ρs = 1 800kg/m3, cp = 2 400m/s,
cs = 1 560m/s. The source y is placed at (0, 0, 2 m) and the observer x at (0, 0, 10 m).

5. APPLICATION TO A NACA0012 PROFILE IN WATER
We consider now a more complex geometry consisting of a NACA0012 profile of aluminium

bronze (ρ = 7 640 kg.m−3, cp = 4 400 m.s−1, cs = 2 350 m.s−1), of chord c = 0.2 m and width
L = 0.45 m, embedded in water. In the following, the profile is associated to a mesh of 2 582
nodes and 5 160 elements. We want to model the industrial configuration of a profile excited by a
turbulent boundary layer. The Lighthill equation models the turbulence as a continuous distribution of
quadrupoles [12], and we choose the simplified configuration of a discrete distribution of quadrupole
sources. For one quadrupole, it corresponds to take S = ∂yi∂y jδ(x − y) and thus to take an incident
pressure of the form

Ψinc(x,y) =
∂2G0(x,y)
∂y1∂y2

, (33)

where yk is kth coordinate of y. We consider here a lateral quadrupole but the study can be extended
to a longitudinal quadrupole. The total field resulting from excitation Ψinc is

Ψ(x,y) =
∂2G(x,y)
∂y1∂y2

. (34)

6https://uma.ensta-paris.fr/soft/COFFEE/
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Since Gs = G −G0 is the scattered field generated by G0, the scattered field resulting from excitation
Ψinc is

Ψs(x,y) =
∂2Gs(x,y)
∂y1∂y2

. (35)

We suggest to focus on two configurations: (i) a trailing edge and (ii) a leading edge excited by one or
multiple quadrupole sources. In each configuration, we first focus on the influence of the distance of
the source on the resulting field. Then, we compare the field scattered by an elastic profile to a rigid
profile.

Trailing edge noise. First, we consider quadrupole sources located downstream of the trailing edge
and we study the influence of the distance of the source on the resulting field. The observer x rotates
around e3, at a radius Rx = 100 m and we consider three different source positions (see fig. 3). The
frequency is set such that k1 = 0.1 m−1 ( such that k1c = 0.02 << 1). Fig. 4 shows the comparison of
the directivity diagrams for the three different source positions exciting an elastic aluminium bronze
profile. We see that the closer the source is, the larger the magnitude of the scattered field is and
thus quadrupole sources are more active when close to the obstacle surface. This confirms that the
scattering due to turbulent boundary layers must not be ignored ( [13], [14]). Moreover, we see that
as the source moves away from the edge, the free field becomes dominant and therefore the total field
recovers its quadrupolar directivity.

Figure 3: Quadrupole sources behind the trailing edge: ya = (0.3c, 0, 0), yb = (1.8c, 0, 0) and yc =

(4.3c, 0, 0), with c = 0.2 m. The dimensions are note scaled on the figure.

(a) Total Field (b) Scattered field

Figure 4: Comparison between the total and scattered fields obtained for three different positions of
the source y. The sources are placed such as in fig. 3, the observer rotates around e3 at Rx = 100 m and
the frequency is set such that k1 = 0.1 m−1 (k1c = 0.02). To help results visualization, the amplitude
of the scattered field obtained for sources at yb and yc are multiplied by 25, 50 or 500. The free field
|Ψinc|, plotted on the total field directivity diagram, is obtained when there is no profile.

Next, we look at the influence of elasticity on the scattered field. The source is located behind the
trailing edge at ya = (0.3c, 0, 0). To simplify the results interpretation, the frequency is higher than
previously and set such that k1 = 4.2 m−1 ( such that k1c = 0.84 ≈ 1). The observer rotates again
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around e3, with a radius Rx = 100 m. Figure 5 shows a comparison between the directivity diagrams
obtained for an elastic profile of aluminium bronze and for a rigid profile. We see that an elastic edge
reduces the scattered field resulting from a quadrupole excitation, as expected in [1].

Figure 5: Comparison between the scattered field obtained with an elastic (filled line) and rigid
(dashed line) profile. The source is placed downstream of the trailing edge at ya = (0.3c, 0, 0), the
observer rotates around e3 at Rx = 100 m and the frequency is set such that k1 = 4.2 m−1 (k1c = 0.8).

Leading edge noise. As previously, we first study the influence of the distance of the source on the
resulting field. A source is placed at three locations upstream of the leading edge (see fig. 6). The
observer rotates around e3 at Rx = 100 m and the frequency is set such that k1 = 0.1 m−1 (k1c = 0.02).
Fig. 7 shows the comparison of the directivity diagrams for the three different sources. The same
comments can be made as previously. In particular the closer to the surface the quadrupole source is,
the larger the magnitude of the resulting fields. The difference of amplitude between Fig. 7 and Fig. 4
(almost 2 times higher for the leading edge than for the trailing edge) is due to the geometry of the
edge [15].

Figure 6: Quadrupole sources behind the leading edge: y′a = (−0.3c, 0, 0), y′b = (−1.8c, 0, 0) and
y′c = (−4.3c, 0, 0), with c = 0.2 m.

Our goal is now to show the capacity of our method to take into account a more complicated type of
source. The leading edge of the profile is excited by a volume of turbulence defined such as in figure 8.
We consider a simplified deterministic turbulence description made of quadrupole sources randomly
placed in the turbulence volume, easier to consider than the deterministic forcing models under study
in the past ( [16], [17]). We consider N=10 quadrupole sources and the total field resulting from the
multiple quadrupole excitation is

Ψ =

N∑
j=1

∂2G(x,y j)

∂y j
1∂y

j
2

e−iϕ j , (36)

with ϕ j random phase angles applied to source at y j, in order to consider incoherent excitations. In
the same way, the scattered field is

Ψs =

N∑
j=1

∂2Gs(x,y j)

∂y j
1∂y

j
2

e−iϕ j . (37)
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(a) Total Field (b) Scattered field

Figure 7: Comparison between the total and scattered fields obtained for three different positions of
the source y at the leading edge. The sources are placed such as in fig. 6, the observer rotates around
e3 at Rx = 100 m and the frequency is set such that k1 = 0.1 m−1 (k1c = 0.02). For visibility issues,
the amplitude of the scattered field obtained for sources at yb and yc are multiplied by 50 or 500. The
free field is plotted on the total field directivity diagram.

With this configuration, we see the interest of computing a tailored Green’s function: only one
computation of the boundary integral equation system (Equation 28) is needed for all the 10 sources.
Then, 10 boundary integral representations (Equation 24) are computed, but computing Equation 24
is much less expensive than solving Equation 28.

(a) View from the side (b) View from above

Figure 8: Schematic representation of the turbulence volume, modeled by a finite number N of
quadrupole sources, located at y j, j = 1, . . . ,N. c=0.2 m and L=0.45 m. The dimensions are not
scaled on the figure.

Figure 9 shows a comparison between the scattered field Ψs obtained when the profile is elastic
(aluminium bronze) and when it is rigid. The observer rotates around e3 at Rx = 100 m and the
frequency is set such that k1 = 4.2 m−1 ( such that k1c = 0.84). As for one source, we see that
the leading edge noise due to multiple quadrupole excitation is reduced when the profile is elastic
compared to when it is rigid. This is in agreement with the results for trailing edge noise.

6. CONCLUSION AND PERSPECTIVE
We propose a BEM-BEM coupling method to determine a Green’s function tailored to an elastic

structure embedded in a fluid. We have shown that the computation of the tailored Green’s function



Proceedings of INTER-NOISE 2024

Figure 9: Comparison between the scattered field -Equation 37 - of an elastic profile (filled line) and
a rigid profile (dashed line) excited by N=10 quadrupole sources randomly placed in the turbulence
volume described in fig. 8. The observer rotates around e3 at Rx = 100 m and the frequency is set such
that k1 = 4.2 m−1 ( such that k1c = 0.84).

does not depend on the source type and its use is therefore well suited to the study of a stochastic
turbulent excitation. The computation of the tailored Green’s function is validated over the simple
geometry case of a sphere. Then, to show the capability of the method, applications over an elastic
NACA0012 profile are shown, where the profile is excited either by a single quadrupole source or
by a simplified deterministic turbulence volume. The results over the elastic profile are compared to
those over a rigid one and are satisfying. The use of numerical tailored Green’s functions will be
considered in further investigations with more complex turbulence models.
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