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A variational approach to empirical mode estimation

Tâm Le Minh1, Julyan Arbel1, Florence Forbes1

1 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France

Abstract. Mode estimation, which locates the values at which a probability distribu-
tion is maximal, is a critical task in statistical analysis, with applications spanning inverse
problems, clustering, and image analysis. While traditional methods focus on single-mode
detection, identifying multiple modes is often essential for capturing the data underlying
structure. We introduce empirical Natural Variational Annealing (eNVA) that can achieve
this task for distributions possibly only available through samples. eNVA is an extension of
the recent Natural Variational Annealing (NVA) optimization framework. Using the flexi-
bility of a variational formulation, eNVA accommodates variational distributions within the
exponential family and generalizes the Gaussian mean-shift algorithm. Furthermore, the
multiple mode estimation challenge can be tackled efficiently with our eNVA-GM variant,
using Gaussian mixtures (GM) as variational distributions and allowing adaptive search
strategies, such as temperature annealing, to balance exploration and exploitation princi-
ples. Insights demonstrate the robustness and versatility of eNVA in addressing complex
multimodal problems.

1 Introduction

Consider a smooth and bounded distribution p supported on the entire space Rd, with a
finite number of maxima:

{x∗
1, . . . ,x

∗
I} = argmax

x
p(x).

The multimodal estimation problem aims to locate the multiple modes of p. Estimating the
mode of a distribution is a fundamental problem in statistical analysis, with many appli-
cations in inverse problems, clustering (Chacón, 2015), and image segmentation (Carreira-
Perpiñan, 2006). In many of these applications, identifying multiple modes, rather than
just one, provides significant advantages. For instance, in Bayesian inverse problems, the
diversity of modes of a posterior distribution can help improve the decision-making process.
In clustering and image segmentation, identifying multiple modes allows for the detection
of distinct groups or regions within the data, enabling better partitioning and representa-
tion of complex structures. In our knowledge, despite the long history of mode-estimation,
most approaches are designed to locate a single mode of a distribution.
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When a closed-form expression of p is available, modes can be determined by traditional
optimization, locating the maxima of p seen as a function. In this work, we address
empirical multiple mode estimation, considering the case where p is not explicitly available,
but only through some of its samples.

Early methods, that have been designed to estimate modes from samples, consist in
identifying intervals or regions where samples concentrate (Chernoff, 1964; Dalenius, 1965;
Venter, 1967; Sager, 1978). These methods offer computational simplicity and robustness
as they avoid any commitment to an intermediate, possibly imperfect, step of density
estimation. However, their performance can depend on the choice of the geometric con-
struct used to define the regions of high data concentration, and their extension to multiple
modes or local modes presents additional challenges. By construction, they also lack the
additional information about the distribution provided by density-based methods.

Alternatively, other methods estimate the mode by first approximating the density
function and subsequently identifying the point where the estimated density achieves its
maximum, going back to a standard optimization task. Examples of these approaches
include kernel density estimation (KDE, Parzen, 1962), nearest-neighbor density estimation
(Loftsgaarden and Quesenberry, 1965), orthogonal series expansions (Kronmal and Tarter,
1968), log-concave density estimation (Samworth, 2018), and Bernstein polynomials (Liu
and Ghosh, 2020). These methods are particularly valuable because they provide not only
the mode but also a comprehensive representation of the distribution, including its potential
multimodal structure. For example, they can explore multiple density modes across varying
levels of smoothing (Minnotte and Scott, 1993; Chaudhuri and Marron, 1999). However,
this broader focus, suitable for multimodal estimation, comes at the expense of increased
computational complexity, particularly in high-dimensional settings.

A third class of methods are mean-shift algorithms (Fukunaga and Hostetler, 1975;
Comaniciu and Meer, 2002; Carreira-Perpiñan, 2007; Genovese et al., 2016; Arias-Castro
et al., 2016). They perform gradient ascent on the KDE to locate modes. While rooted in
KDE theory, these algorithms estimate only the density derivatives, avoiding the compu-
tational burden of estimating the entire density function. By exploiting the landscape of
the KDE, mean-shift methods offer a simpler and more efficient alternative to the previ-
ous methods. However, the choice of bandwidth crucial for the performance of mean-shift
and density-based algorithms. An inappropriate bandwidth can introduce significant bias
or cause the algorithm to converge to local modes, similar to many gradient-based opti-
mization methods, ultimately hindering the detection of global modes. While considerable
work has been done on bandwidth selection (Comaniciu, 2003; Chacón and Monfort, 2014)
and adaptive bandwidth strategies (Chen et al., 2008; Zhao et al., 2009), mean-shift al-
gorithms still lack inherent mechanisms for simultaneously exploring the search space to
solve multimodal estimation problems.

Recently, the natural variational annealing (NVA) framework (Le Minh et al., 2025)
has emerged as a gradient-based optimization method based on variational approximations
of Gibbs measures (3). By temperature annealing, NVA effectively controls the sharpness
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of the Gibbs measures, regulating the exploration-exploitation trade-off. The flexibility
of the variational search distribution makes NVA particularly well-suited to multimodal
optimization. Notably, the use of mixtures enables the simultaneous tracking of multiple
modes, offering a robust solution to the multimodal estimation problem.

In this paper, we start by recalling the main principles of the NVA framework. Then,
we extend it to mode estimation from probability distribution samples, combining the flexi-
bility of variational search distributions with the computational efficiency of gradient-based
methods. The resulting algorithm is called empirical NVA (eNVA). We show that Gaus-
sian mean-shift can be viewed as a special case of eNVA with an adaptive learning rate,
where the variational family consists of fixed-covariance Gaussian distributions. When the
covariance is not fixed, Gaussian eNVA can therefore be viewed as a mean-shift algorithm
with adaptive bandwidth. Finally, we further exploit NVA’s flexibility to derive a multi-
modal optimization algorithm based on Gaussian mixtures (eNVA-GM), highlighting its
potential for identifying multiple modes efficiently.

2 Natural variational annealing

In this section, we recall the key concepts of the Natural Variational Annealing (NVA)
framework for global optimization (Le Minh et al., 2025), which forms the basis of our
method. The NVA framework integrates three key concepts: variational optimization,
entropy annealing, and natural gradients. We will build the NVA framework from scratch,
explaining each concept sequentially. While our objective is to develop an optimization
algorithm to locate the mode of a function p, this section considers a general smooth
function f . We assume that f has a finite number of modes {x∗

1, . . . ,x
∗
I}.

2.1 Principle of variational optimization

Variational optimization is based on the lower bound for the global maximum:

Eq[f(X)] ≤ max
x∈Rd

f(x).

where the expectation is taken with respect to a probability distribution q. The variational
formulation of this problem rewrites it as maximizing this lower bound on the space of all
probability distribution P(Rd) on Rd, leading to

q∗ ∈ argmax
q∈P(Rd)

Eq[f(X)]. (1)

The solutions of problem (1) are directly related to the maximum of f , since they take the
form

∑I
i=1 ciδx∗

i
, where (x∗

i )i∈[I] are the modes of f , and (ci)i∈[I] are coefficients summing
to 1.
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However, this solution is singular. This motivates the introduction of an entropy penalty
term, which yields the modified optimization problem:

q∗,ω = argmax
q∈P(Rd)

Eq[f(X)] + ωH(q), (2)

where ω > 0 is a regularization parameter and H(q) := −Eq[log q(X)] denotes the entropy
of q. Unlike the original formulation, this penalized problem is strictly convex and admits
a unique solution, given by the Gibbs measure gω defined by

q∗,ω(X) = gω(X) :=
exp(f(X)/ω)∫
exp(f(X)/ω)dX

. (3)

The parameter ω, often referred to as the temperature by analogy with statistical physics,
governs the shape of the Gibbs measure. Gibbs measures exhibit two crucial properties:
they reflect the variations of f , and as ω → 0, they concentrate on the global modes of f .

2.2 Natural variational family and natural gradient optimization

To solve problem (2) for a fixed ω, the search space for the distribution q is often re-
stricted to a parameterized family, called the variational family. Let qλ be a distribution
parameterized by a vector λ. The constrained problem can be written as:

λ∗,ω ∈ argmax
λ

Eqλ [f(X)] + ωH(qλ). (4)

The solutions of this problem may not be unique, for any solution λ∗,ω, the resulting
distribution qλ∗,ω is a variational approximation of q∗,ω = gω, minimizing KL(qλ∗,ω ||gω).

For instance, consider the family of Gaussian distributions. A Gaussian density qλ can
be parameterized by its natural parameters λ = (Sµ,−S/2), where µ is the mean and
S is the precision matrix. This transforms the original problem into the maximization of
the objective function Lω(λ) := Eqλ [f(X)] + ωH(qλ), over the natural parameters of the
Gaussian distribution.

While simple gradient ascent procedures can optimize Lω, natural gradient ascent is
more efficient (Amari, 1998). Natural gradients account for the geometry of the parameter
space, indicating the direction of steepest ascent in the Riemannian manifold induced by
the Fisher Information Matrix (FIM) (Bonnabel, 2013). This makes natural gradients
independent from the parameterization and generally leads to faster convergence (Sato,
2001; Honkela et al., 2007). Natural gradient of Lω is:

∇̃λLω(λ) = F (λ)−1∇λLω(λ),

where F is the FIM. The natural gradient ascent update rule is then:

λt+1 = λt + ρt∇̃λLω(λ)|λt , (5)
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where ρt > 0 is the learning rate (or step size) at iteration t. The usual difficulty in
using natural gradients is the estimation of the FIM and its inversion, which are costly
or unfeasible in general. However, for exponential family distributions, the computation
of natural gradients with respect to natural parameters does not require the estimation of
the FIM and its inversion. Indeed, these natural gradients correspond to vanilla gradients
computed with respect to the expectation parameters M = E[T (X)], where T (X) denotes
the sufficient statistics:

∇̃λLω(λ) = ∇MLω(λ). (6)

In this paper, we are going to consider three variational families: 1) Gaussian distribu-
tions with fixed covariance, 2) Gaussian distributions, and 3) Gaussian mixtures. While
Gaussian mixtures do not belong to the exponential family, they belong to the more general
minimal conditional exponential family (MCEF, Lin et al., 2019), for which natural param-
eters can be defined and the natural gradients can be computed like for regular exponential
family distributions.

2.3 Entropy annealing

The process of controlling the temperature ω is known as annealing. As stated previously,
decreasing ω concentrates the Gibbs measure gω, therefore helping with identifying the
global modes of f in a global optimization problem.

The temperature can be controlled through a sequence (ωt)t≥1, called annealing sched-
ule, setting the value of ω at each iteration. Therefore, the update rule (5) is modified
to:

λt+1 = λt + ρt∇̃λLωt(λ)|λt . (7)

This is the NVA update rule.
At high ω, the Gibbs measure is smooth, promoting diversity by increasing the solu-

tion’s spread. As ω → 0, the Gibbs measure concentrates, and therefore the solution also
concentrates. For Gaussian distributions, the mean can be seen as a particle moving in
the search space. In this case, the temperature ω modulates the exploration of the search
space by the particle. Because ω = 0 leads to a degenerate solution where the covariance
matrix vanishes, ω → 0 also ensures that the mean converges to a mode.

Behavior of the Gaussian variational solution. To explain this, we remark that
with a fixed ω, Gaussian solutions with parameters (µ∗,ω, (S∗,ω)−1) must satisfy{

∇µKL(qλ || gω)|λ∗,ω = 0

∇S−1KL(qλ || gω)|λ∗,ω = 0
, (8)

where gω is the Gibbs measure defined by (3) and λ∗,ω = (S∗,ωµ∗,ω,−S∗,ω/2).
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If the covariance matrix is fixed, only the condition ∇µKL(qλ || gω)|λ∗,ω = 0 is needed.
We have

∇µKL(qλ || gω)|λ∗,ω = EN (µ∗,ω ,(S∗,ω)−1) [∇ξf(ξ)] = 0, (9)

so this implies possible solutions µ∗,ω are close to a global mode x∗
i of f .

When the covariance matrix is not fixed, the condition ∇S−1KL(qλ || gω)|λ∗,ω = 0 is
also needed. Since µ∗,ω remains in a neighborhood of x∗

i , This condition implies

(S∗,ω)−1 = −ωEN (µ∗,ω ,(S∗,ω)−1)

[
∇2

ξf(ξ)
]−1 −−−→

ω→0
0. (10)

Therefore, when the temperature decreases to 0, the optimal covariance matrices vanish to
0 and the mean converges to a (global or local) mode of f .

Importance of the annealing schedule. It is natural to wonder why one should use
an entropy penalty and annealing instead of directly solving the variational problem for
ω = 0, which is needed for convergence. The key reason lies in the role of the Gaussian
distribution’s spread, which determines the particle’s ability to explore the search space
effectively. The Gaussian mean, viewed as a particle, scans the landscape in its neigh-
borhood at each iteration and stays at the “mean” of the scanned area. Meanwhile, the
Gaussian covariance matrix acts as the scanning range, as described by condition (9). As
there can be as many local solutions satisfying (8) as the number of local modes of f , a
particle unable to reach a global mode may converge to a closer local one.

When ω is small, the Gibbs measure sharpens, narrowing the spread of the Gaussian
distribution. This makes the particle more likely to converge to the closest mode, regardless
of whether it is a local or global one. In contrast, a larger ω smoothens the Gibbs measure,
broadening the Gaussian’s spread. This allows the particle to scan larger regions of the
search space and detect global modes farther away. After sufficient exploration, ω can be
gradually decreased to enable the particle to converge to the highest-quality mode within
its reach.

This shows how the annealing schedule (ωt)t≥1 should be set. The initial temperature
must be large enough and should decrease slowly so that the Gaussian spread covers the
desired mode during the whole run. At the end of the run, the temperature should be
small enough to allow convergence of the particle to the mode. The optimal schedule is
problem-dependent, so trial-and-error can be used to choose one.

3 Applying NVA on samples: empirical NVA

In the previous section, we have introduced the NVA framework for global optimization.
Here, we describe its application to mode-estimation problems using a finite sample from
p. We call this empirical NVA (eNVA). In this section, we assume that p has a unique
mode x∗. The mode-estimation problem can be formulated as constructing a consistent
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estimator for x∗. We derive an algorithm based a Gaussian variational family, initially
with a fixed covariance matrix, and later in the general case. We also show how mean-shift
emerges as a special case of fixed-covariance Gaussian eNVA.

3.1 Fixed-covariance Gaussian eNVA

First, we investigate the variational family formed by the Gaussian distributions qλ with
fixed covariance S−1 = s−1I, parameterized by its natural parameter λ = sµ. The NVA
update rule derived from (7) and (6) is:

µt+1 = µt + ρts
−1∇µLωt(λ)|λt ,

where Lω(λ) = L0(λ) + ωH(qλ) and L0(λ) = Eqλ [p(X)]. To implement the update rule,
the gradient ∇µLω(λ)|λt must be computed.

Gradient expression. We define

∇µLω(λ) = g(λ) + ωγ(λ), (11)

where g(λ) := ∇µEqλ [p(X)] and γ(λ) := ∇µH(qλ).
Because qλ is a Gaussian distribution, we have γ(λ) = 0. For g(λ), we have

g(λ) = sEqλ [(X − µ)p(X)]. (12)

If p can be evaluated, then these gradients can be estimated through Monte Carlo approx-
imations by sampling X under qλ, but in our case, p is unavailable.

Alternatively, based on the fact that p is a probability distribution, we can write

g(λ) = sEp[(X − µ)qλ(X)].

Again, if we can sample from p, then we can also use a Monte Carlo approximation to
estimate g(λ). However, in our problem, we cannot directly sample from p, as we only
have a fixed sample X1:N = (X1, . . . ,XN ) with distribution p.

Empirical approximation. To circumvent this issue, we remark that L0(λ) can also
be written

L0(λ) = Ep[qλ(X)].

Therefore, it can be empirically approximated by

L̂0,N (λ) =
1

N

N∑
i=1

qλ(Xi) = EpN [qλ(X)],
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where pN is the empirical measure N−1
∑N

i=1 δXi . The approximation L̂0,N (λ) is in fact
the kernel density estimate (KDE) of p, with Gaussian kernel and bandwidth s−1. Since
X1:N is a i.i.d. sequence, the function L converges uniformly on all compact sets of Rd.

However, the KDE is biased and the consistency of µ̂N = λ̂N = argmax L̂0,N (λ) can
only be obtained if the bandwidth s−1/2 −→ 0. To derive sufficient conditions for consistency,
we define a sequence (sN )N≥1, modifying the Gaussian covariance matrix with the sample
size N . The following theorem gives sufficient conditions on sN for the consistency of µ̂N

as an estimator for x∗.

Theorem 3.1. If s−1
N −−−−→

N→∞
0 and Ns−1

N −−−−→
N→∞

+∞, then we have µ̂N
P−−−−→

N→∞
x∗.

Proof. L̂0,N (λ) is a kernel density estimate with Gaussian kernel, bandwidth s
−1/2
N , based

on the samples X1, . . . , XN . This result is a multivariate generalization of Theorem 3A of
Parzen (1962) on the consistency of the modes of kernel density estimates, ensuring that

the maximizers of L0,N (λ) are consistent for x∗ if s
−1/2
N −−−−→

N→∞
0 and Ns−1

N −−−−→
N→∞

+∞.

In practice, N is fixed and X1:n is a sample of fixed size, so the result means that s−1

should neither be too large nor too small to obtain a good estimator for x∗.

Gradient estimation. The empirical NVA (eNVA) framework consists in optimizing
L̂0,N instead of L0. This approximation introduces an error that vanishes when N becomes
large. In fixed-covariance Gaussian eNVA, the natural gradient can be estimated by

ĝ(X1:N ;λ) := ∇µL̂0,N (λ) =
1

N

N∑
i=1

s(Xi − µ)qλ(Xi), (13)

Finally, the following update rule can be used to implement a fixed-covariance Gaussian
eNVA algorithm:

µt+1 = µt + ρts
−1ĝ(X1:N ;λt). (14)

When ĝ(X1:N ;λt) is too costly to compute because N is too large, we can approximate

this estimator using B i.i.d. samples of pN , B ≤ N , denoted X
(b)
1:B. Sampling from pN

means sampling uniformly with replacement in the elements of X1:N . Finally,

ĝ(X
(b)
1:B;λ) =

1

B

B∑
i=1

s(X
(b)
i − µ)qλ(X

(b)
i ),

is unbiased for ∇µL̂0,N (λ), which ensure consistency of the natural gradient ascent.
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Algorithm. In fixed-covariance Gaussian eNVA, the entropy penalty has no effect, be-
cause it does not depend on the mean of the Gaussian, which is the only parameter to
optimize. Algorithm 1 gives an implementation when N is large and ĝ(X1:N ;λ) is too

costly to compute, therefore using the Monte Carlo approximation ĝ(X
(b)
1:B;λ) instead, as

described above. The hyperparameters are the number of iterations T , the number of
samples B used to compute the gradients, the covariance matrix s−1I of the Gaussian
distributions, the initial parameters θ0 = µ0, and the learning rate schedule (ρt)t∈[T ].

Algorithm 1: Fixed-covariance Gaussian eNVA

1 Given samples X1:n.
2 Set T , B, s, θ0, (ρt)t∈[T ].

3 for t = 0:(T − 1) do

4 Sample X
(b)
i

i.i.d.∼ U({X1, . . . ,Xn}), for i = 1:B.

5 Compute ĝ(X
(b)
1:B;λt).

6 Update µt+1 = µt + ρts
−1ĝ(X

(b)
1:B;λt).

7 end
8 return θT .

3.2 Link to Gaussian mean-shift

The mean-shift procedure is a mode-finding algorithm that estimates the modes of a distri-
bution by performing gradient ascent on the KDE with a specified kernel and bandwidth
(Fukunaga and Hostetler, 1975; Carreira-Perpiñan, 2007). Here, we demonstrate that the
mean-shift algorithm with a Gaussian kernel is a particular instance of the Gaussian eNVA
with a fixed covariance matrix.

The KDE for the samples X1:N , using Gaussian kernel and bandwidth s−1/2, is given
by

p̂(ξ) =
1

N

N∑
i=1

qθi
(ξ),

where qθi
denotes the Gaussian density with natural parameters θi = (sXi,−s/2). The

mean-shift algorithm aims to find the stationary points of p̂, which means those satisfying

∇p̂(ξ) = − 1

N

N∑
i=1

s(ξ −Xi)qθi
(ξ) = 0.

To solve this, a fixed-point iteration is used to update the position of a particle µt+1 = f(µt)
where

f(µ) =

N∑
i=1

qθi
(µ)∑N

j=1 qθj
(µ)

Xi.
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The update rule can then be written as

µt+1 = µt +

N∑
i=1

qθi
(µt)∑N

j=1 qθj
(µt)

(Xi − µt),

= µt + ρ(λt)s
−1ĝ(X1:n;λt),

= µt + ρ(λt)s
−1∇µL̂ω,N (λt),

where λt = (sµt,−s/2), ρ(λ) = (
∑N

j=1 qλ(Xj))
−1 defines an adaptive step schedule and

ĝ(X1:n;λt) is defined as in (13).
This update is nearly identical to the fixed-covariance eNVA update (14), with the sole

difference being the adaptive learning rate ρ(λt). Therefore, Gaussian mean-shift can be
regarded as a special case of Gaussian eNVA. The bandwidth parameter in mean-shift plays
the same role as the covariance matrix in eNVA, and both share the same interpretation.

The behavior of both algorithms is very sensitive to the selection of s−1, which controls
the inherent error due to the KDE. In the eNVA context, large s−1 implies a particle
with a broader range; in mean-shift, it leads to a smoother KDE landscape, potentially
masking the undesired local modes. However, this comes at the cost of increased bias,
as the solution µ∞ may deviate from the true mode x∗. Similarly, a small s−1 results in
a narrower particle range in eNVA or a sharper KDE landscape in mean-shift, resulting
in convergence to undesired modes. An optimal value of s−1 exists that balances this
bias-variance trade-off, minimizing the bias while avoiding overfitting to local structures.

Now, we will see that the NVA framework can be used to automatically adjust s−1

during the algorithm. Removing the fixed-covariance constraint in Gaussian NVA enables
the covariance matrix to adapt via natural gradient ascent. In the mean-shift analogy, this
means that the bandwidth of the KDE is adaptive. This will enhance mode-estimation
performance, as starting with large s−1 and progressively reducing it as the algorithm
converges could favor convergence to the correct modes. We investigate this direction in
the next section, where we derive a general Gaussian eNVA algorithm.

3.3 General Gaussian eNVA

When S is not fixed, the Gaussian NVA update rules are:

St+1 = St − 2ρt∇S−1Lω(λ)|λt ,

µt+1 = µt + ρtS
−1
t+1∇µLω(λ)|λt ,

where

∇µLω(λ) = Eqλ [S(X − µ)Lω(λ)],

∇S−1Lω(λ) = Eqλ [(S(X − µ)(X − µ)TS − S)Lω(λ)].

To derive an algorithm, we need to compute gradients of the form∇µLω(λ) and∇S−1Lω(λ).
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Gradient expressions. In addition to (11), we define

∇S−1Lω(λ) = H(λ) + ωη(λ),

where H(λ) := ∇S−1Eqλ [p(X)] and η(λ) := ∇S−1H(qλ).
Because qλ is a Gaussian distribution, the gradient γ(λ) = 0 remains unchanged, and

η(λ) = S/2. The expressions of g(λ) and H(λ) are

g(λ) = Eqλ [S(X − µ)p(X)],

H(λ) =
1

2
Eqλ [(S(X − µ)(X − µ)TS − S)p(X)].

This yields

g(λ) = Ep[S(X − µ)qλ(X)],

H(λ) =
1

2
Ep[(S(X − µ)(X − µ)TS − S)qλ(X)].

Empirical approximation. As before, we use the samples to construct the empirical
approximation L̂0,N (λ) = EpN [qλ(X)]. However, when the covariance is not fixed, the

function L̂0,N (λ) cannot be maximized over Θ, the set of natural parameters of the form

λ = (Sµ,−S/2). This is because Θ is not compact and L̂0,N (λ) diverges to +∞ as
µ → Xi, for any 1 ≤ i ≤ N , and S−1 → 0. Consequently, unlike in the fixed covariance
case, there is no guarantee of obtaining a consistent estimator because S is unconstrained.
To address this issue in practice, we can impose a lower bound on the eigenvalues of the
covariance matrix by applying a damping correction after the natural gradient update:

St+1 → (S−1
t+1 + αNI)−1,

where αN > 0. This correction ensures that S−1
t+1 ≥ αNI. Whereas this damping strat-

egy departs from the NVA framework, it prevents the covariance matrix from becoming
too small. By doing so, L̂0,N (λ) remains bounded. When αN is small, the Gaussian is
concentrated near the mode x∗, which means S−1 is close its lower bound αN . There-
fore, sufficient conditions for consistency may be similar to the fixed-covariance case, i.e.

α
1/2
N −−−−→

N→∞
0 and NαN −−−−→

N→∞
+∞, but the proof of such result is out of the scope of this

paper.

Algorithm. Algorithm 2 gives an implementation for Gaussian eNVA when N is large
and ĝ(X1:N ;λ) and Ĥ(X1:N ;λ) are too costly to compute, therefore using the Monte

Carlo approximations ĝ(X
(b)
1:B;λ) and Ĥ(X

(b)
1:B;λ) instead, where X

(b)
1:B is a sequence of
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size B consisting of i.i.d. elements sampled from {X1, . . . ,XN}, and

ĝ(X
(b)
1:B;λ) =

1

B

B∑
i=1

S(X − µ)qλ(Xi),

Ĥ(X
(b)
1:B;λ) =

1

2B

B∑
i=1

(S(X − µ)(X − µ)TS − S)qλ(Xi),

are unbiased estimators of ∇µL̂0,N (λ) and ∇S−1L̂0,N (λ).
The hyperparameters are the number of iterations T , the number of samples B used

to compute the gradients, the initial parameters θ0 = (µ0,S0), the learning rate sched-
ule (ρt)t∈[T ], the learning rate schedule (ωt)t∈[T ], and optionally, a lower bound for the
covariance matrix eigenvalues α, called a damping factor.

Algorithm 2: Gaussian eNVA

1 Given samples X1:N .
2 Set T , B, θ0, (ρt)t∈[T ], (ωt)t∈[T ], α (optional).

3 for t = 0:(T − 1) do

4 Sample X
(b)
i

i.i.d.∼ U({X1, . . . ,Xn}), for i = 1:B.

5 Compute ĝ(X
(b)
1:B;λt), Ĥ(X

(b)
1:B;λt).

6 Update

7 St+1 = (1− ωtρt)St − 2ρtĤ(X
(b)
1:B;λt),

8 St+1 = (S−1
t+1 + αI)−1, (optional)

9 µt+1 = µt + ρtS
−1
t+1ĝ(X

(b)
1:B;λt).

10 end
11 return θT .

Interplay between the annealing schedule and the damping factor. In fixed-
covariance Gaussian eNVA, the entropy penalty has no effect. However, in general Gaussian
eNVA, it plays a role in slowing the decay of S−1. Since S−1 controls the spread of the
Gaussian, the annealing schedule can be adjusted to maintain a large exploration range for
longer, by choosing a schedule that decays more slowly.

In the NVA theory, the annealing schedule ωt should converge to 0 to ensure that µt

converges to x∗, canceling all bias as discussed in Section 2.3. However, because the mode
of p is estimated from a finite sample, an error is introduced into the optimization process,
and µt will not converge exactly to x∗, even as ωt → 0. This error is analogous to the
one caused by the KDE in fixed-covariance Gaussian eNVA. It can only be optimized by
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ω∞ 0 > 0 0
α 0 0 > 0

S−1
∞ 0 ≈ −ω∞(∇2p(x∗))−1 ≈ αI

KDE error high optimizable optimizable

Table 1: The error due to the kernel density estimate on the estimation of the mode x∗ of
p can be optimized by adjusting the limiting covariance matrix S−1

∞ using ω∞ or α.

setting the limit S−1
∞ of the covariance matrix S−1

t , by analogy with the bandwidth of the
KDE.

The error can be optimized in two ways: by setting the damping factor α, or by
specifying a positive limit ω∞ for the annealing schedule ωt, which eliminates the need for
the damping step. These two approaches for controlling the KDE error are summarized in
Table 1.

4 Multimodal estimation with empirical NVA

In the previous sections, we have shown how NVA can be applied for mode estimation
of a sample using the eNVA algorithms and explored its connection with the well-known
mean-shift algorithm. In general, NVA provides a flexible framework in global optimization
through the choice of the variational family. This framework can be used for multimodal
optimization by choosing Gaussian mixtures. Building on these concepts, we derive the
eNVA updates for Gaussian mixtures to address multimodal estimation problems. In this
section, we suppose that p admits multiple modes {x∗

1, . . . ,x
∗
I}.

4.1 Special case of Gaussian mixtures

Parameterization and update rule. We choose the Gaussian mixture family with a
fixed number of components as the variational family. Although Gaussian mixtures are
not exponential family distributions, they can be formulated as a minimal conditional
exponential family (MCEF, Lin et al., 2019) with natural parameters. Specifically, they
are expressed as

qΛ =
K∑
k=1

πkqλk
,

where (πk)k∈[K] are mixture weights summing to 1, (qλk
)k∈[K] are the Gaussian components

with natural parameters, and

Λ = (log(π1/πK), . . . , log(πK−1/πK),λ1, . . . ,λK)

13



are the natural parameters of the MCEF.
The NVA objective is given by Lω(Λ) = L0(Λ) + ωH(qΛ), with L0(Λ) = EqΛ [p(X)].

The update rule for the parameters of the mixtures is :

Λt+1 = Λt + ρt∇̃ΛLωt(Λ)|Λt . (15)

By converting the natural gradient into a vanilla gradient with respect to the expectation
parameters, and then using the chain rule, we obtain

Sk,t+1 = Sk,t −
2ρt
πk,t

∇S−1
k
Lωt(Λ)|Λt ,

µk,t+1 = µk,t +
ρt
πk,t

S−1
k,t+1∇µk

Lωt(Λ)|Λt ,

vk,t+1 = vk,t + ρt∇πk
Lωt(Λ)|Λt ,

where vk = log(πk/πK), for k ∈ [K − 1].

Gradient computation and estimation. Like for Gaussian NVA, the gradients needed
for Gaussian mixture NVA can be written as:

∇πk
Lωt(Λ) = fk(Λ) + ωφk(Λ),

∇µk
Lωt(Λ) = gk(Λ) + ωγk(Λ),

∇S−1
k
Lωt(Λ) = Hk(Λ) + ωηk(Λ),

where fk(Λ) := ∇πk
L0(Λ), φk(Λ) := ∇πk

H(qΛ), gk(Λ) := ∇µk
L0(Λ), γk(Λ) := ∇µk

H(qΛ),
hk(Λ) := ∇S−1

k
L0(Λ) and ηk(Λ) := ∇S−1

k
H(qΛ).

The entropy gradients can be expressed as expectations with respect to component
distributions:

φk(Λ) = −(Eqλk
[log qΛ(X)]− EqλK

[log qΛ(X)]),

γk(Λ) = −πkEqλk
[∇X log qΛ(X)],

ηk(Λ) = −πkEqλk
[∇2

X log qΛ(X)],

These gradients can be estimated using Monte Carlo approximations φ̂k(X
(k)
1:B;Λ), γ̂k(X

(k)
1:B;Λ)

and η̂k(X
(k)
1:B;Λ) based on i.i.d. samples X

(k)
1:B from qλk

.
For the gradients of L0(Λ), an empirical approximation is used like in previous sections.
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Specifically,

f̂k(X1:N ;Λ) =
1

N

N∑
i=1

(qλk
(Xi)− qλK

(Xi)),

ĝk(X1:N ;Λ) =
πk
N

N∑
i=1

Sk(Xi − µk)qλk
(Xi),

Ĥk(X1:N ;Λ) =
πk
N

N∑
i=1

(Sk(Xi − µk)(Xi − µk)
TSk − Sk)qλk

(Xi).

Algorithm. Algorithm 3 gives an implementation for Gaussian mixture NVA (eNVA-

GM) when N is large and f̂(X1:N ;Λ), ĝ(X1:N ;Λ), and Ĥ(X1:N ;Λ), are too costly

to compute, instead using the Monte Carlo approximations f̂(X
(b)
1:B;Λ), ĝ(X

(b)
1:B;Λ) and

Ĥ(X
(b)
1:B;Λ), where X

(b)
1:B is a sequence of size B consisting of vectors sampled i.i.d. from

the elements of X1:n.
The hyperparameters are the number of iterations T , the number of samples B used

to compute the gradients, the number of components K used in the Gaussian mixture, the
initial parameters θ0 = (π1, . . . , πK−1,µ1, . . . ,µK ,S1, . . . ,SK), the learning rate schedule
(ρt)t∈[T ], the learning rate schedule (ωt)t∈[T ], and a lower bound for the covariance matrix
eigenvalues α.

4.2 Interpretation of eNVA-GM as a multimodal optimization algorithm

Multiplicity of search distributions. In Gaussian NVA, the fitted Gaussian distribu-
tion behaves like a single particle moving on the landscape of p according to the natural
gradient dynamics. Similarly, when using a mixture of Gaussian distributions, each com-
ponent of the mixture can be interpreted as a particle exploring the landscape. This
multiplicity allows to estimate multiple modes, with the K components acting as search
agents. However, using Gaussian mixture NVA differs fundamentally from running multi-
ple instances of Gaussian NVA in parallel. Unlike independent particles, the components
of the mixtures are coupled through the entropy penalty, which governs their dynamics
involving the whole mixture.

Role of the entropy penalty. The entropy term in the variational objective promotes
dispersion of the mixture. This has a double effect: it induces a repulsive force between the
components, encouraging them to separate and avoid collapsing into the same mode, and
it forces individual components to spread by increasing the eigenvalues of their covariance
matrices. The repulsive effect of the entropy penalty plays a crucial role in preventing
multiple components from converging to the same mode. The intensity of this repulsive
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Algorithm 3: Gaussian mixture eNVA (eNVA-GM)

1 Given samples X1:N .
2 Set T , B, K, θ0, (ρt)t∈[T ], (ωt)t∈[T ], α.

3 Compute (vk,0)k∈[K−1] = (log(πk,0/πK,t))k∈[K−1].

4 for t = 0:(T − 1) do

5 Sample X
(b)
i

i.i.d.∼ U({X1, . . . ,Xn}), for i = 1:B.
6 for k = 1:K do

7 Compute γ̂k(X
(k)
1:B;Λt), η̂k(X

(k)
1:B;Λt).

8 Sample X
(k)
i

i.i.d.∼ N (µk,t,S
−1
k,t ), for i = 1:B.

9 Compute ĝk(X
(b)
1:B;Λt), Ĥk(X

(b)
1:B;Λt).

10 Update

11 Sk,t+1 = Sk,t − 2ρtπ
−1
k,t (Ĥk(X

(b)
1:B;Λt) + ωtη̂k(X

(k)
1:B;Λt)),

12 Sk,t+1 = (S−1
k,t+1 + αI)−1,

13 µk,t+1 = µk,t + ρtπ
−1
k,tS

−1
k,t+1(ĝk(X

(b)
1:B;λt) + ωtγ̂k(X

(k)
1:B;Λt)).

14 end
15 for k = 1:(K−1) do

16 Compute f̂k(X
(b)
1:B;Λt), φ̂k(X

(k)
1:B;Λt).

17 Update vk,t+1 = vk,t + ρt(f̂k(X
(b)
1:B;Λt) + ωtφ̂k(X

(k)
1:B;Λt)).

18 end

19 end
20 Compute (πk,T )k∈[K] from (vk,T )k∈[K−1].

21 return θT .
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ω∞ 0 > 0 0
α 0 0 > 0

S−1
k,∞ 0 ≈ −ω∞(∇2p(x∗

i ))
−1 ≈ αI

KDE error high optimizable optimizable
Repulsion error 0 yes 0

Table 2: Errors on the estimation of a mode x∗
i of p, depending on the covariance matrix

lower bound α and whether the annealing schedule goes to 0. We assume that the k-
th component mean µk,t of the search mixture converges to x∗

i . The repulsion bias exists
when ω∞ but its magnitude is problem-dependent. The error induced by the kernel density
estimate always exists, but it can be optimized by adjusting the limiting covariance matrix
S−1
k,∞ using ω∞ or α.

effect is regulated by the temperature parameter, controlling the relative weight of the
entropy penalty in the objective function.

Importance of annealing and damping. The entropy penalty introduces two sources
of errors. The first one is similar to the KDE error in Gaussian NVA, concerning the
covariance matrices. If the covariance matrices do not shrink to 0, as is the case when a
positive temperature is maintained, then the optimal parameters Λ∗,ω maximizing Lω(Λ),
can yield component means (µ∗,ω) that deviate from the true modes of p. This deviation
becomes more pronounced as ω increases. The second source of error arises from the
repulsive effect induced by the entropy penalty, which pushes the component means apart,
introducing a bias by driving them away from the modes their target modes.

Table 2 summarizes the impact of the limit of the annealing schedule and the damping
factor on the two types of errors. While the KDE error cannot be completely avoided,
it can be minimized by tuning the limit of the annealing schedule ω∞ and the damping
factor α. In contrast, the repulsion bias due to the entropy penalty can only be completely
eliminated when ω∞ = 0. Unlike in Gaussian eNVA, where the KDE bias-variance trade-off
could be optimized independently using ω∞ or α, in eNVA-GM, ω∞ is required to cancel
the repulsion bias, leaving α as the only parameter to mitigate the KDE error.

The repulsion bias can be acceptable if it is small relative to the KDE error. For in-
stance, if the mixture components are sufficiently well-separated while maintaining positive
covariance matrices, the entropy of the mixture is less sensitive to the distances between
component means and much more dependent on their individual covariance matrices. In
such cases, the repulsion force between component means can be negligible. However, this
scenario is not guaranteed, justifying the necessity of a damping step to manage these two
errors effectively.
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5 Conclusion

This paper introduces empirical natural variational annealing (eNVA), as a new frame-
work for empirical mode estimation, with applications in both unimodal and multimodal
problems. By extending the natural variational annealing (NVA) framework, eNVA effec-
tively provides a mechanism to balance exploration and exploitation through temperature
annealing, while maintaining the computational efficiency of natural gradient-based up-
dates. In unimodal cases, Gaussian eNVA generalizes the Gaussian mean-shift algorithm,
incorporating more sophisticated search strategies.

The Gaussian mixture eNVA (eNVA-GM) is particularly suited for addressing multi-
modal problems. It leverages the diversity of mixture components promoted by an entropy
penalty to track multiple modes in complex landscapes. The coupling between compo-
nents through the entropy penalty distinguishes eNVA-GM from parallel mode estimation
methods, ensuring better exploration of the search space.

Further work includes developing adaptive annealing schedules to optimize the search
and the bias-variance trade-off induced by the kernel density estimation and the mixture
entropy term. In addition, the flexibility of eNVA given by the choice of the variational
family can be exploited to develop scalable versions of eNVA to investigate new applications
in high-dimensional contexts.
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