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WELL-POSEDNESS OF A TIME
DISCRETIZATION SCHEME FOR A

STOCHASTIC P-LAPLACE EQUATION
WITH NEUMANN BOUNDARY

CONDITIONS

Caroline Bauzet, Kerstin Schmitz, Cédric Sultan
and Aleksandra Zimmermann

Abstract. In this contribution, we are interested in the analysis of a semi-implicit time
discretization scheme for the approximation of a parabolic equation driven by multiplica-
tive colored noise involving a p-Laplace operator (with p ≥ 2), nonlinear source terms
and subject to Neumann boundary conditions. Using the Minty-Browder theorem, we are
able to prove the well-posedness of such a scheme.
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§1. Introduction

1.1. Statement of the problem and assumptions

Let (Ω,F , (Ft)t≥0,P) be a stochastic basis with the usual assumptions on its filtration (Ft)t≥0
‡,

T > 0 and D be a bounded open domain of Rd where d ≥ 1. Having in mind applications in
solid mechanics for the future (through the study of a p-Laplace perturbation of the stochastic
nonlinear parabolic differential inclusion studied in [2]), we consider in this introductory
work the Moreau-Yosida approximation of the maximal monotone operator ∂I[0,1] (see, e.g.,
[1, 6]), denoted by (ψε)ϵ>0 in the sequel, where for any ϵ > 0, ψε : R → R is defined for all
v ∈ R by

ψε(v) = −
(v)−

ε
+

(v − 1)+

ε
=


v

ε
, if v ≤ 0,

0, if v ∈ [0, 1] ,
v − 1
ε

, otherwise.

(1.1)

‡i.e., (Ft)t≥0 is right continuous and F0 contains all negligible sets of F .
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Then, for a fixed parameter ϵ > 0, we are interested in the following problem:
duϵ +

(
∆N

p uϵ + ψε(uϵ)
)

dt = G(uϵ) dW(t) + (β(uϵ) + f ) dt in Ω × ]0,T [ × D

uϵ(0, ·) = u0 in Ω × D

∇uϵ · n = 0 on Ω × ]0,T [ × ∂D

(1.2)

where ∆N
p uϵ = − divx (|∇uϵ |p−2∇uϵ) + |uϵ |p−2uϵ is the p-Laplace operator (with p ≥ 2) as-

sociated to homogeneous Neumann boundary conditions,W is a (Ft)t≥0-adapted Q-Wiener
process (for a given operator Q defined in the sequel), G, β, f and u0 are given data, and n
denotes the unit normal vector to ∂D outward to D.

Before stating the considered assumptions on these data, let us precise the stochastic
framework. We will call PT the predictable σ-field on ΩT

† defined by ΩT = Ω× ]0,T [. By a
slight abuse of notation, for any separable Banach space X and 1 ≤ r < ∞, we will denote the
space of predictable, r-integrable mappings u : ΩT → X by Lr(ΩT ; X), i.e., the measurability
of u ∈ Lr(ΩT ; X) is understood as the predictable measurability, and in particular u is a
random variable with values in Lr(]0,T [ ; X). Additionally, we fix a separable Hilbert space
U such that L2(D) ⊂ U, a non-negative symmetric trace class operator Q : U → U satisfying
Q1/2(U) = L2(D), and an orthonormal basis (e j) j of U made of eigenvectors of Q with
corresponding eigenvalues (λ j) j ⊂ [0,∞[. At last, the separable Hilbert space of Hilbert-
Schmidt operators from L2(D) to L2(D) is denoted by HS(L2(D)). Within this stochastic
framework, we consider the following hypotheses on the data:

(H1): u0 ∈ L2
(
Ω; L2(D)

)
is F0-measurable and verifies 0 ≤ u0(ω, x) ≤ 1, for almost all

(ω, x) ∈ Ω × D.

(H2): G : L2(D)→ HS
(
L2(D)

)
is such that for any v ∈ L2(D) and all j ∈ N, G(v)

(
Q1/2(e j)

)
=

g j (v) where g j : R → R is continuous and supp g j ⊂ ]0, 1[ for all j ∈ N. Moreover, it
is supposed that there exists Lg ≥ 0 such that for all r, s ∈ R,

∞∑
j=1

∣∣∣g j(r) − g j(s)
∣∣∣2 ≤ Lg|r − s|2.

In particular, for all v, w ∈ L2(D), we have

∥G(v) −G(w)∥2HS(L2(D)) ≤ Lg∥v − w∥2L2(D).

(H3): β : R → R is a Lβ-Lipschitz-continuous function (with Lβ > 0) such that, for conve-
nience, β(0) = 0.

(H4): f ∈ L2(ΩT ; L2(D)).

(H5): There exists (W j) j =
(
(W j(t))t≥0

)
j∈N∗

a sequence of independent, real-valued Wiener
processes with respect to (Ft)t≥0 and such that

∀t ≥ 0, W(t) :=
∞∑
j=1

√
λ je jW j(t) =

∞∑
j=1

Q1/2(e j)W j(t).

†PT := σ({Fs × (s, t] | 0 ≤ s < t ≤ T, Fs ∈ Fs} ∪ {F0 × {0} | F0 ∈ F0}) (see [19, p. 33]). Then, a mapping
defined on ΩT with values in a separable Banach space E is predictable if it is PT -measurable.
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In the following, let us write V = W1,p(D) endowed with the norm ||v||pV =
∫

D
(|∇v|p + |v|p) dx

and denote its dual space (W1,p(D))∗ by V∗. We are interested in a solution uϵ for Problem
(1.2) in the sense of the definition below:

Definition 1. A stochastic process uϵ ∈ L2(Ω; C (]0,T [ ; L2(D))) ∩ Lp(ΩT ; V) is a solution to
(1.2) if it satisfies

uϵ(t) − u0 +

∫ t

0
∆N

p uϵ(s) + ψε(uϵ(s)) ds =
∫ t

0
G(uϵ(s)) dW(s) +

∫ t

0
β(uϵ(s)) + f (s) ds

in L2(D) for all t ∈ [0,T ], and P-a.s in Ω, where the stochastic integral is defined as in [9,
Section 4.2].

1.2. State of the art and aim of the study

We study the existence, uniqueness and measurability of solutions to a semi-implicit Euler-
Maruyama time discretization scheme of a parabolic equation involving a p-Laplace operator
(with p ≥ 2), nonlinear source terms and subject to homogeneous Neumann boundary condi-
tions. On the right-hand side of the equation, we consider a multiplicative stochastic forcing
given by a stochastic Itô integral with respect to a Hilbert space valued Q-Wiener process.
The penalization term (ψε)ϵ>0 as well as the homogeneous Neumann boundary condition
are motivated by applications in solid mechanics, see, e.g., [11] and [17] for more details.
More precisely, our study can be seen as a first result towards the numerical analysis of a p-
Laplace-Allen-Cahn type equation with constraint extending the existing contributions [2, 3]
to the nonlinear setting. In the deterministic case, i.e., without the presence of the stochastic
force term, p-Laplace equations with Neumann boundary conditions are well-known. Non
exhaustively, let us mention [10] and the references therein.

In particular, it is well-known that the Dirichlet p-Laplace operator is not coercive on the
Sobolev space W1,p, and instead, the Neumann p-Laplace operator may be considered. In the
literature on stochastic PDEs, equations with p-Laplace type operators are usually addressed
with Dirichlet boundary conditions for different values of 1 < p < ∞. In the case of bounded
domains, let us mention [4, 13, 12, 22] and the list is far from being complete. A semi-implicit
Euler-Maruyama time discretization scheme for pseudomonotone SPDEs has been proposed
in [23] in the case of multiplicative noise and in [24] for additive noise.

On unbounded domains, let us mention [18, 16, 21] concerning p-Laplace equations sub-
ject to additive or multiplicative noise with homogeneous Dirichlet boundary conditions.

Only a few results on stochastic p-Laplace equation with Neumann boundary conditions
exist in the literature, see, e.g., [14, 8].

To the best of our knowledge, a semi-implicit Euler-Maruyama time discretization sche-
me for Problem (1.2) with Neumann boundary conditions has not yet been proposed in the
literature. The main result of this contribution is to prove the well-posedness as stated in
Proposition 1. Future work will be devoted to the convergence of the scheme as the time
discretization parameter and the regularization parameter ϵ tend towards 0 simultaneously, in
order to obtain existence of a solution to Problem (1.2) with the maximal monotone operator
∂I[0,1].
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§2. Semi-implicit time discretization scheme

2.1. Presentation of the scheme and main result
For M ∈ N∗, let 0 = t0 < t1 < . . . < tM = T be an equidistant subdivision of the interval
[0,T ] and let τ := T/M = tn+1 − tn for all n ∈ ⟦0,M − 1⟧. For a fixed ϵ > 0, we set uϵ,0 = u0.
Then our semi-implicit Euler-Maruyama scheme is constructed as follows: knowing for a
fixed n ∈ ⟦0,M − 1⟧ a Ftn -measurable random variable with values in L2(D), denoted by uϵ,n,
we search for a Ftn+1 -measurable random variable with values in V , labelled by uϵ,n+1, such
that P-a.s in Ω the following equality holds in L2(D)

uϵ,n+1 − uϵ,n + τ
(
∆N

p uϵ,n+1 + ψε(uϵ,n+1)
)
= G(uϵ,n)∆n+1W + τ

(
β(uϵ,n+1) + fn

)
, (2.1)

where ∆n+1W :=W(tn+1) −W(tn) and fn =
1
τ

∫ tn+1

tn
f (s) ds, for all n ∈ ⟦0,M − 1⟧.

Remark 1. Note that as uϵ,n is assumed to be Ftn -measurable, we have

G(uϵ,n)∆n+1W =

∫ tn+1

tn
G(uϵ,n) dW =

∞∑
j=1

G(uϵ,n)(Q1/2e j)
(
W j(tn+1) −W j(tn)

)
=

∞∑
j=1

g j(uϵ,n)
(
W j(tn+1) −W j(tn)

)
.

Since ∆n+1W takes values in the Hilbert space U and G(uϵ,n) ◦ Q1/2 is a Hilbert-Schmidt
operator from U to L2(D), the last infinite sum is a well-defined element of L2

(
Ω; L2(D)

)
.

The main result of this contribution is:

Proposition 1. Let us assume that Hypotheses (H1) to (H5) are satisfied, consider a fixed
parameter ε > 0, a fixed M ∈ N∗, define τ = T/M, tn = nτ (∀n ∈ ⟦0,M − 1⟧) and uϵ,0 =
u0. Then, for any given Ftn -measurable random variable uϵ,n taking values in L2(D) (where
n ∈ ⟦0,M−1⟧), under the assumption τ < 1

Lβ
, there exists a unique Ftn+1 -measurable random

variable uϵ,n+1 with values in V solving (2.1).

2.2. Proof of Proposition 1
The proof of Proposition 1 is based on Minty-Browder theorem, Pettis measurability theorem
and calls on an algebraic inequality from [5, Lemma 2.1., p.107] stated below in Lemma 2.
By denoting for any x, y in Rd, the euclidean norm of x by |x|, and the associated scalar
product of x and y by x · y, such a lemma reads as follows:

Lemma 2 (Algebraic inequality). For any p ∈ [2,+∞[ and any d ∈ N∗, there exists a constant
C(p) > 0 only depending on p such that

∀ζ, η ∈ Rd,
(
|ζ |p−2ζ − |η|p−2η

)
· (ζ − η) ≥ C(p) |ζ − η|p.

Let us assume that Hypotheses (H1) to (H5) are fulfilled, consider a fixed parameter ε > 0,
a fixed M ∈ N∗ and define τ = T/M satisfying the condition τ < 1

Lβ
. Denoting by (., .)L2(D)
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the scalar product in L2(D), we define the operator Aε,τ : V → V∗ by

⟨Aε,τ(u), v⟩V∗,V := (u, v)L2(D)+τ

∫
D

(
|∇u|p−2∇u · ∇v + |u|p−2uv + ψε(u)v − β(u)v

)
dx, ∀u, v ∈ V.

Since our scheme (2.1) can be rewritten as

Aϵ,τ(uϵ,n+1) = uϵ,n +G(uϵ,n)∆n+1W + τ fn,

our objective is to prove in a first step the invertibility of Aε,τ by using the theorem of Minty-
Browder in order to get the existence of uϵ,n+1 in V , and to show in a second step its Ftn+1 -
measurability thanks to Pettis measurability theorem.

Step 1: Existence of uϵ,n+1

• Firstly, we show that Aε,τ is coercive. By the monotonicity of ψε, the Lipschitz conti-
nuity of β, the fact that ψε(0) = β(0) = 0, and the assumption τ < 1

Lβ
, one gets that for

any u in V ,

⟨Aε,τ(u), u⟩V∗,V = ∥u∥2L2(D) + τ

∫
D

(|∇u|p + |u|p + ψε(u)u − β(u)u) dx

≥ (1 − τLβ) ∥u∥2L2(D) + τ ∥u∥
p
V

≥ τ ∥u∥pV ,

and, since p ≥ 2, one obtains that
⟨Aε,τ(u), u⟩V∗,V
∥u∥V

→
∥u∥V→+∞

+∞, hence that Aε,τ is

coercive.

• Secondly, we prove that Aε,τ is strictly monotone. For any u, v ∈ V such that u , v,
owing again to the monotonicity of ψε, the Lipschitz continuity of β, the assumption
τ < 1

Lβ
, and the application of Lemma 2, we have:

⟨Aε,τ(u) − Aε,τ(v), u − v⟩V∗,V
= ⟨Aε,τ(u), u − v⟩V∗,V − ⟨Aε,τ(v), u − v⟩V∗,V

= (u − v, u − v)L2(D) + τ

∫
D

[
(ψε(u) − ψε(v)) (u − v) − (β(u) − β(v)) (u − v)

]
dx

+ τ

∫
D

[(
|∇u|p−2∇u − |∇v|p−2∇v

)
· ∇(u − v) +

(
|u|p−2u − |v|p−2v

)
(u − v)

]
dx

≥ (1 − τLβ) ∥u − v∥2L2(D) + τ
(
C(p) ∥∇(u − v)∥pLp(D) +C(p) ∥u − v∥pLp(D)

)
≥ τ C(p) ∥u − v∥pV ,

which leads to the strict monotonicity of Aε,τ.

• Thirdly, we show that Aε,τ is hemicontinuous. To this end, we prove the stronger
property of demicontinuity for Aε,τ, i.e., that for all u ∈ V , for any (uk)k∈N ⊂ V such
that uk →

k→+∞
u in V , then

∀w ∈ V, ⟨Aε,τ(uk), w⟩V∗,V →
k→+∞

⟨Aε,τ(u), w⟩V∗,V .
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We consider u in V and (uk)k∈N ⊂ V , such that uk →
k→+∞

u in V . Then we have in

particular uk →
k→+∞

u in Lp(D) and ∇uk →
k→+∞

∇u in (Lp(D))d. Note that, since ψϵ and β

are Lipschitz continuous, one gets that for any w ∈ V , as p ≥ 2,

(uk, w)L2(D)+τ

∫
D

(
ψε(uk)−β(uk)

)
w dx →

k→+∞
(u, w)L2(D)+τ

∫
D

(
ψε(u)−β(u)

)
w dx. (2.2)

Let us now focus on the analysis of the demicontinuity of the operator ∆N
p : V → V∗

defined for any u in V by ∆N
p u = − divx(|∇u|p−2∇u) + |u|p−2u. By applying the reverse

Lebesgue dominated convergence theorem (see [7, Th. 4.9, p. 94]), there exist g0, g1 ∈

Lp(D) such that, up to a not relabeled subsequence of (uk)k∈N,

(i) uk →
k→+∞

u a.e. on D and ∇uk →
k→+∞

∇u a.e. on D.

(ii) for all k ∈ N and a.e. in D, |uk | ≤ g0 and |∇uk | ≤ g1.

Thus, by (i), a.e. in D, |uk |
p−2uk →

k→+∞
|u|p−2u and |∇uk |

p−2∇uk →
k→+∞

|∇u|p−2∇u. More-

over, as p ≥ 1, by (ii) one obtains that for all k ∈ N and a.e. in D,∣∣∣|uk |
p−2uk

∣∣∣ ≤ gp−1
0 and

∣∣∣|∇uk |
p−2∇uk

∣∣∣ ≤ gp−1
1 .

Since g0, g1 ∈ Lp(D), then g
p−1
0 , g

p−1
1 ∈ Lp′ (D) where p′ = p

p−1 , and therefore, by
Lebesgue’s dominated convergence theorem,

|uk |
p−2uk →

k→+∞
|u|p−2u in Lp′ (D) and |∇uk |

p−2∇uk →
k→+∞

|∇u|p−2∇u in
(
Lp′ (D)

)d
. (2.3)

A priori, the convergence of (|uk |
p−2uk)k∈N and of (|∇uk |

p−2∇uk)k∈N may be only for a
subsequence. But for any subsequences (|ukl |

p−2ukl )l∈N and (|∇ukl |
p−2∇ukl )l∈N respec-

tively, we may extract a subsequence (kl j ) j∈N such that for any j ∈ N, (i) and (ii)
hold true, which is enough to obtain (2.3) for the whole sequences (|uk |

p−2uk)k∈N and
(|∇uk |

p−2∇uk)k∈N.
Next, for any w in V , making use of the divergence theorem, we get

⟨∆N
p (uk), w⟩V∗,V =

∫
D
− divx

(
|∇uk |

p−2∇uk

)
w + |uk |

p−2ukw dx

=

∫
D
|∇uk |

p−2∇uk · ∇w dx +
∫

D
|uk |

p−2ukw dx

→
k→+∞

∫
D
|∇u|p−2∇u · ∇w dx +

∫
D
|u|p−2uw dx

= ⟨∆N
p (u), w⟩V∗,V . (2.4)

Finally, (2.2) combined with (2.4) give us the demicontinuity of Aε,τ, and afterward its
hemicontinuity.

• Fourthly, owing to the coercivity, hemicontinuity, and strict monotonicity of the op-
erator Aε,τ, one is able to apply the Minty-Browder theorem (see, e.g., [20, Theorem
2.14, p.38]), which allows us to affirm that Aε,τ is invertible, of inverse operator A−1

ε,τ.
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Consequently, by setting uϵ,0 = u0 and tn = nτ, ∀n ∈ ⟦0,M − 1⟧, then for any given
Ftn -measurable random variable uϵ,n taking values in L2(D) (with n ∈ ⟦0,M−1⟧), there
exists a unique element uϵ,n+1 in V , such that P-a.s in Ω,

uϵ,n+1 = A−1
ε,τ

(
uϵ,n +G(uϵ,n)∆n+1W + τ fn

)
.

and finally uϵ,n+1 solves (2.1), a priori in V∗, and a posteriori in L2(D) thanks to the
regularity of the data.

Step 2: Ftn+1 -measurability of uϵ,n+1 : Ω→ V

In the following, let A−1
τ,ϵ|L2(D) be the restriction of A−1

τ,ϵ to L2(D). Our objective is to prove
the measurability of A−1

τ,ϵ |L2(D) : L2(D) → V which will lead us to the Ftn+1 -measurability of
uϵ,n+1 : Ω→ V . Indeed, assuming that the above claim holds true, denoting the class of Borel
sets of L2(D) by B(L2(D)) and the class of Borel sets of V by B(V), respectively, and setting
for any n ∈ ⟦0,M − 1⟧, vn = uϵ,n +G(uϵ,n)∆n+1W + τ fn, one gets that for allA ∈ B(V),

(uϵ,n+1)−1(A) = (A−1
τ,ϵ |L2(D) ◦ vn)−1(A) = v−1

n

((
A−1
τ,ϵ |L2(D)

)−1(A)
)
∈ Ftn+1 ,

since
(
A−1
τ,ϵ |L2(D)

)−1(A) ∈ B(L2(D)) and vn : Ω→ L2(D) is Ftn+1 -measurable.
From Pettis measurability theorem (see [15, Th 1.1.6, p. 5]), since V is separable, in or-
der to prove the measurability of A−1

τ,ϵ|L2(D) : L2(D) → V , it is sufficient to show its weak
measurability, i.e., that for all v ∈ V∗, the application ϕv : L2(D)→ R defined by

ϕv(w) = ⟨v, A−1
τ,ϵ|L2(D)(w)⟩V∗,V , ∀w ∈ L2(D),

is measurable. To do so, we will prove the weak continuity of A−1
τ,ϵ |L2(D) by showing that for

every sequence (h j) j∈N ⊂ L2(D) converging strongly to some element h in L2(D), we have

⟨v, A−1
τ,ϵ |L2(D)(h j)⟩V∗,V →

j→+∞
⟨v, A−1

τ,ϵ |L2(D)(h)⟩V∗,V

for any fixed v ∈ V∗. This will give us directly the continuity of ϕv and subsequently its
measurability.
Hence, we consider (h j) j∈N ⊂ L2(D) and h ∈ L2(D) such that h j →

j→+∞
h in L2(D). Then for

any j ∈ N, setting u j = A−1
τ,ϵ|L2(D)(h j), by application of Aτ,ϵ we arrive at the following equality

in V∗:
u j + τ

(
∆N

p u j + ψε(u j) − β(u j)
)
= h j. (2.5)

Testing (2.5) with u j ∈ V yields the following energy estimate for any δ > 0

||u j||
2
L2(D) + τ||u j||

p
V ≤

1
2δ
||h j||

2
L2(D) +

δ

2
||u j||

2
L2(D) + τLβ||u j||

2
L2(D).

By choosing δ > 0 such that 1 − δ
2 − τLβ ≥ 0, we get ||u j||

p
V ≤

1
2δτ ||h j||

2
L2(D), which proves the

boundedness of (u j) j∈N in V . Consequently, there exists u ∈ V such that, up to a not-relabeled
subsequence, (u j) j∈N converges weakly towards u in V , and as p ≥ 2, by compact embedding
of V in Lp(D) we also have, up to a not-relabeled subsequence, strong convergence of (u j) j∈N
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towards u in L2(D). Moreover, by continuity of β and ψϵ , we then get the strong convergence
in L2(D) of (β(u j)) j∈N and (ψϵ(u j)) j∈N towards β(u) and ψϵ(u), respectively.
Additionally, denoting the conjugate exponent of p by p′, since∥∥∥|u j|

p−2u j

∥∥∥
Lp′ (D) = ||u j||

p−1
Lp(D) and

∥∥∥|∇u j|
p−2∇u j

∥∥∥
(Lp′ (D))d =

∥∥∥∇u j

∥∥∥p−1
(Lp(D))d ,

one gets that (|u j|
p−2u j) j∈N and (|∇u j|

p−2∇u j) j∈N are bounded in Lp′ (D) and (Lp′ (D))d, respec-
tively. Consequently, there exist y ∈ Lp′ (D) and z ∈ (Lp′ (D))d that are weak limits (up to
not-relabeled subsequences) respectively of (|u j|

p−2u j) j∈N in Lp′ (D) and of (|∇u j|
p−2∇u j) j∈N

in (Lp′ (D))d. Using all these weak and strong convergences in (2.5), we obtain that for any
v ∈ V , ∫

D
uv dx + τ

∫
D

(
− divx z + y + ψϵ(u) − β(u)

)
v dx =

∫
D

hv dx, (2.6)

and taking v = u in (2.6) provides the following energy equality

∥u∥2L2(D) = −τ⟨− divx z + y, u⟩V∗,V − τ(ψϵ(u), u)L2(D) + τ(β(u), u)L2(D) + (h, u)L2(D). (2.7)

In parallel, testing again (2.5) by u j leads to

||u j||
2
L2(D) + τ⟨∆

N
p (u j), u j⟩V∗,V + τ(ψϵ(u j), u j)L2(D) − τ(β(u j), u j)L2(D) = (h j, u j)L2(D),

and passing to the superior limit with respect to j, one arrives at

∥u∥2L2(D) = −τ lim sup
j→+∞

⟨∆N
p (u j), u j⟩V∗,V − τ(ψϵ(u), u)L2(D) + τ(β(u), u)L2(D) + (h, u)L2(D). (2.8)

From (2.7) and (2.8), one deduces

lim sup
j→+∞

⟨∆N
p (u j), u j⟩V∗,V = ⟨− divx z + y, u⟩V∗,V

Therefore, by Minty’s monotonicity argument, we can affirm that ∆N
p (u) = − divx z+ y. Back

into (2.6), we then obtain the following equality in V∗

u + τ
(
∆N

p (u) + ψϵ(u) − β(u)
)
= h,

which leads to u = A−1
τ,ϵ |L2(D)(h).

At last, fixing v ∈ V∗, owing to the strong convergence of (u j) j∈N = (A−1
τ,ϵ|L2(D)(h j)) j∈N towards

u in V , we may now conclude that

lim
j→+∞
⟨v, A−1

τ,ϵ |L2(D)(h j)⟩V∗,V = lim
j→+∞
⟨v, u j⟩V∗,V = ⟨v, u⟩V∗,V = ⟨v, A−1

τ,ϵ |L2(D)(h)⟩V∗,V

and we get back the weak continuity of the operator A−1
τ,ϵ |L2(D) : L2(D)→ V , which completes

the proof of Proposition 1.
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