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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Fish Species Distribution Models are 
improved by adding new connectivity 
indices.

• Barriers and dispersal limitation shape 
non-diadromous fish distribution.

• For most species, high connectivity is 
linked to higher probability of presence.

• Indices accounting for ecological zona
tion are relevant for all but two species.
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A B S T R A C T

The ongoing biodiversity crisis is especially severe in freshwater habitats. Anthropized watersheds, such as the 
Seine-Normandie basin in France, are particularly affected by human interference. The study of fish species 
distribution in watersheds often relies on environmental drivers such as land use or climate. Yet, fish are also 
exposed to river connectivity constraints, such as dams, that are understudied despite their potential impact on 
fish dispersal. For this study, we investigated the role of local and whole-basin longitudinal connectivity in fish 
distribution. We designed connectivity indices based on river network characteristics and specific mobility for 33 
species and included these indices in species distribution models, taking into account habitat suitability, to 
quantify their role in species distribution. Keeping the best index for each species, an average of 29 % – and up to 
57 % – of explained fish distribution, depending on species, was tied to connectivity. We found that high con
nectivity often had a significant and positive linear effect on species presence probability. Using a scoring system 
across multiple indices, we found connectivity indices that took local context into account (e.g. the ecological 
zonation of the river) performed consistently better than others. Indices that took only dispersal limitation into 
account scored higher for 12 species, while barriers, alone, were the most important constraint for 10 species, the 
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remaining 11 being associated with both. This work points to fragmentation as a cause for lower likelihood of 
presence for many non-diadromous river fish species. It highlights the importance of considering both physical 
and functional connectivity constraints in fish distribution and provides additional insights for river management 
and restoration.

1. Introduction

Freshwater ecosystems, especially watercourses, are among the most 
diverse ecosystems in terms of species richness (Dudgeon et al., 2006). 
However, they are also among the most threatened (Collen et al., 2014; 
Costa et al., 2021), jeopardized by anthropic pressures such as flow 
modification, habitat destruction or water pollution (Dudgeon et al., 
2006). These alterations indirectly lead to the modification of nitrogen 
and carbon cycles (Vitousek et al., 1997) and riverscapes (Haidvogl, 
2018), causing overall shifts, and often declines, in composition and 
richness of freshwater communities (Alric et al., 2021; Tison-Rosebery 
et al., 2022).

An important pressure put on watercourses, linked to human inter
ference, is the spatiotemporal modification of connectivity (Zeigler and 
Fagan, 2014; Crook et al., 2015) – where connectivity is defined as the 
uninterruptedness of rivers. In riverine ecosystems, connectivity is 
generally considered along four dimensions: longitudinal (i.e., along the 
trajectory of watercourses), lateral (i.e., from the limit of the floodplain 
to the middle of the channel), vertical (i.e., from atmosphere to 
groundwater) and temporal - through seasonal and multi-year variation 
(Ward, 1989). Human activities impact all four dimensions (Birnie- 
Gauvin et al., 2020). Connectivity loss and habitat fragmentation are 
associated with extinction debt and loss in riverine ecosystem functions 
(Haddad et al., 2015) and have been linked to lower fish density and 
richness in rivers (Borthagaray et al., 2020; Radinger and Wolter, 2015). 
They are a limiting factor for fish distribution (Manfrin et al., 2020; 
Trigal and Degerman, 2015). Longitudinal connectivity in particular can 
be understood at different geographic scales, from a single reach to a 
whole drainage basin, leading to multiple conceptual frameworks for the 
conception of connectivity metrics in river networks (Amoros and Bor
nette, 2002; Cote et al., 2009; Pascual-Hortal and Saura, 2006).

Crucially, fish communities are especially negatively influenced by 
the loss of longitudinal connectivity (Shao et al., 2019) due to the 
presence of human-made barriers, such as weirs, dams, navigation in
frastructures and power plants (Barbarossa et al., 2020; Sun et al., 
2022). Other barriers include water pollution phenomena, like deoxy
genation, linked to industrial activities and discharges from wastewater 
treatment plants (Dickey, 2021). Barrier infrastructures are widespread 
in European basins (Belletti et al., 2020; Duarte et al., 2021), leading to 
highly disconnected rivers with changes in sediment transport, flow and 
river depth (Schmutz and Moog, 2018), and available habitats (Horváth 
et al., 2019). The River Continuum Concept (Vannote et al., 1980) 
predicts a continuous longitudinal zonation of rivers, reflecting a 
gradient of physico-chemical conditions which shapes fish communities 
(Huet, 1954; Verneaux, 1977). This continuum is further impacted by 
the interruption of natural sediment transport dynamics, jeopardizing 

riverine ecosystems (Mergou et al., 2012).
Another distinction can be made between structural connectivity, 

which is concerned with physical obstacles and networks, and functional 
connectivity, which takes into account the interaction between species 
functional traits and their environment (Mimet et al., 2013). Fish 
dispersal is limited by specific functional capacity for dispersal 
(Radinger and Wolter, 2014; Skalski and Gilliam, 2000) and circum
scribed by the dendritic structure of rivers regarding upstream or 
downstream movements (Fagan, 2002). High dendricity multiplies 
dispersal opportunities (Altermatt, 2013), consequently, it is often used 
as a proxy to measure connectivity in rivers (Cote et al., 2009; Perkin 
and Gido, 2012). Barriers especially represent major structural hurdles 
for dispersal, as they hinder longitudinal connectivity, alter fish com
munities and cause species extirpations, for example by preventing ac
cess to breeding and feeding grounds and preventing recolonization 
(Barbarossa et al., 2020; Fagan, 2002; Granzotti et al., 2018). Both ca
pacity for dispersal and crossing of obstacles are linked to fish size and 
observable anatomical characteristics (Radinger and Wolter, 2014), as 
well as related behavioral traits, such as spawning migration (Brönmark 
et al., 2014; Comte and Olden, 2018).

The influence of barriers on fish distribution in rivers is prominently 
discussed with diadromous species since obstacles block upstream 
migration to suitable breeding grounds and have a tremendous impact 
on species preservation in watersheds (Merg et al., 2020). Non- 
diadromous species are comparatively less studied. Yet, these fish 
constitute the overwhelming majority of freshwater species - about 109 
fish species in France dwell in freshwater, and only 18 of them are 
diadromous (Keith et al., 2020). Including non-diadromous species in 
our understanding of the role of connectivity on river fish distribution is 
thus essential if we are to protect fish biodiversity in anthropized 
watersheds.

Niche modeling within fish species distribution models (SDMs) 
usually relies mainly on hydrological, physicochemical and meteoro
logical gradients and riparian land use characteristics (Bucklin et al., 
2015; Foley et al., 2005), since these are crucial aspects of habitat 
suitability (Ai et al., 2013). This approach ignores the effects of dispersal 
limitation and the potential role of longitudinal connectivity constraints 
in fish distribution (Bruneel et al., 2018), which are likely to impact non- 
diadromous fish distribution.

Our goal is to assess the relative contribution of connectivity in the 
explanation of non-diadromous fish species distribution compared to an 
environmental niche modeling approach that is agnostic to dispersal 
limitation and connectivity. Our specific aims are to: (i) develop and test 
a set of connectivity indices that take into account physical barriers, 
species-specific mobility characteristics and geomorphological local and 
whole-basin context of rivers, (ii) quantify the relative importance of 
connectivity in fish species distribution compared to habitat-related 
effects, and (iii) understand the relationship between connectivity 
constraints and fish distribution across different species and geograph
ical scales. To address these aims, we built species distribution models 
for 34 fish species in the Seine basin (France) and nearby coastal rivers, 
in response to habitat-related variables and to a set of connectivity 
indices designed to study various connectivity constraints, both physical 
(e.g. obstacles, locks) and functional (i.e. linked to phenological traits).

Temperate-stream fish in the study area constitute a morphologically 
and ecologically diverse group of organisms (Keith et al., 2020). Smaller 
species tend to be more sedentary and incapable of overcoming some 
obstacles to dispersal, as do more bottom-dwelling species. Bigger in
dividuals are more mobile (Radinger and Wolter, 2014), and some 
potamodromous species move along river networks over long distances. 

Abbreviations

ACI Adjusted Connectivity Index
DS, MS, US, HW Downstream, Midstream, Upstream, 

Headwaters
RCI Reach Connectivity Index
SDM Species distribution model
ZCI Zonation-sensitive Connectivity Index
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We hypothesize that connectivity generally plays an important role in 
fish species distribution and that individual species may respond 
differently to connectivity, as shown by Van Puijenbroek et al., 2021, 
doing so depending on specific functional characteristics. For instance, 
highly potamodromous species might be highly sensitive to fragmenta
tion; inversely, some more sedentary species, less likely to require lon
gitudinal movement during their life cycle, might respond poorly to 
longitudinal connectivity in models. Additionally, we expect species to 
respond differently to our indices depending on the properties of these 
indices. For example, species with high dispersal capacity might respond 
more strongly to indices which include barriers because these structures 
might affect their life cycles, often preventing feeding or breeding from 
occurring. We designed a set of connectivity indices that account for 
connectivity at different geographical scales: the indices that align with 
scales closest to the species’ home range size are expected to perform 
better than the others. We hope to highlight precise ways in which the 
bespoke design of connectivity indices might help improve the under
standing and prediction of fish distribution.

2. Methods

2.1. General context

2.1.1. Study area
The Seine-Normandie administrative basin in Northern France 

(Fig. 1) includes the Seine basin (about 80 % of the 95,000 km2 surface 
area) and coastal rivers in Normandy. Inhabited by 18.5 million people, 
13 million (70 %) of them within the Parisian Metropolitan Area, the 
region is mostly composed of lowlands (Fig. 1a). The current climate in 
the area is classified as Cfb – oceanic climate with warm summers – 
under the Köpper-Geiger Climate Classification (Kottek et al., 2006) 
over the whole basin (Strohmenger et al., 2024), with annual rainfall 
between 590 and 1300 mm. The Seine basin has been subjected to 
several works of agricultural drainage (Derex, 2001), channelization 
and construction of barriers. Several large-size dams located in the up
stream part of the Seine watershed (the Grands Lacs de Seine) were built 
to limit the impact of major floods in the Paris urban area and sustain 
minimal discharges during droughts (Agence de l’Eau Seine-Normandie, 
2019).

2.1.2. Network and barrier data
We used the single-strand PIREN-Seine river network for spatial 

processing (Silvestre, 2024). The ROE database - Référentiel des Ob
stacles à l’Ecoulement (eng: Database of Flow Obstacles) (OFB, 2024), 
collected by the French Government Office for Biodiversity, provided 
information on obstacles (dams, weirs, sluices). Over 13,000 obstacles 
have been identified in the area (Fig. 1b). Heights for these obstacles 
were informed for 65 % of the obstacles in the ROE database. We esti
mated the height of the remaining 35 % by random forest regression 
(Breiman, 2001) using barrier type, state of deterioration, geographical 
factors, and river characteristics as predictors (see Appendix A). With an 
explained variance of 27.7 %, the quality of height information is thus 
less precise for one-third of known obstacles. It appeared better to use 
these estimates than removing these obstacles from our dataset.

2.1.3. Fish data
Fish data were retrieved from electrofishing sampling conducted 

between 2000 and 2020 (Observatoire des Poissons Seine-Normandie). 
Each sample was associated with a study site, date of sampling, and 
species count of individuals. The dataset is spread across 2145 study 
sites (Fig. 1c), for an average sampling density of one study site per 18 
km of river and includes 5056 sampling events. Thirty percent of sites 
have been sampled at least twice, and up to 22 times. The observations 
were aggregated in study sites (Fig. 1c) so that detection in at least one 
sample is counted as a presence. We proceeded this way to increase the 
likelihood of non-detections being true absences (when multiple 

samples were linked to the same study site) and to prevent pseudo- 
replication in predictor datasets. The basin is among the most 
intensely sampled in Europe (Rodríguez-Rey and Grenouillet, 2022) and 
counts 59 species of fish. For the purposes of this study, 34 species were 
selected (see Appendix B for a full list and selection criteria). We should 
note that one species (Telestes souffia, Risso, 1827) was later excluded 
from analysis due to unreliable model outputs, as explained in Section 
3.1. Electrofishing was conducted following different protocols: i) either 
by boat or on foot - depending on river size; ii) to the full extent of 
planned depletion (i.e. population estimate by retaining fish after elec
trification, see Harris et al., 2016) or partially; and iii) through a single 
or multiple-pass depletion. We used a factor of sampling intensity to 
account for this disparity in sampling effort (see Appendix C for details).

2.2. Species distribution model predictors

Environmental predictors, used to provide a baseline descriptor of 
fish distribution in our models, were mainly related to hydro
climatology, river morphology, land-use, and riparian characteristics 
(Radinger et al., 2017) (full list available in Appendix C). We used 
seasonal air temperature and precipitation averages from the France- 
wide SAFRAN atmospheric reanalysis (Vidal et al., 2010), available on 
an 8 by 8-km regular grid, which were subsequently aggregated, from 
2000 to 2020. Thermal peak - or the mean water temperature of the 30 
hottest consecutive days - was estimated by 100 random forest re
gressions based on climatic, hydrologic and watershed characteristics 
following Beaufort et al. (2022) (average explained variance of 77.7 % - 
see Appendix D). Hydrological regimes and annual minimal monthly 
discharge with a 5-year return period were obtained from inverse dis
tance weighted geographical interpolations of daily river streamflows 
retrieved from the HydroPortail (Leleu et al., 2014). Pluriannual average 
of oxygen, nitrate and ammonium concentration were obtained through 
simulations produced by the pyNuts-Riverstrahler model for 2017–2021 
(Renaud et al., 2024).

We described land use using the THEIA land cover data (Thierion 
et al., 2021; Fig. 1b), using QGIS version 3.22.3 (QGIS Development 
Team, 2024). We did so across two complementary scales: 1) sub
catchment and 2) local (Sliva and Dudley Williams, 2001). Subcatch
ment scale land use was obtained through subcatchment shapefiles from 
the Seine-Normandie water agency, and intersected with THEIA land 
use cover categories in the following groups: Impermeable Surfaces 
(Urban) - Water Surface - Semi-Natural Vegetation (Forests) - Grass
lands, Annual Crops, Vineyard and Orchards (Agriculture). Riparian 
vegetation and floodplain lentic freshwater cover were obtained by 
intersecting strip-shaped buffers (100-m wide, not counting river width, 
3-km long, 500 m downstream and 2500 m upstream). The covariates 
related to reach characteristics (River straightness, Elevation, Catch
ment area, Slope) were obtained from the SYRAH-CE (Valette et al., 
2012) and PIREN-Seine hydrographic network datasets (Silvestre, 
2024). We applied a Principal Component Analysis (PCA) on all the 
quantitative environmental covariates except for connectivity indices 
and used five PCA axes (summing up to 85 % of the covariates variation) 
as distribution model predictors (see Appendix C for details).

2.3. Constraints to longitudinal connectivity

2.3.1. Fish traits and capacity for movement
Obstacle crossing and dispersal events of fish occur due to spawning, 

migratory and feeding behavior within biological cycles. Both obstacle- 
related and dispersal-related components of connectivity constraints 
depend on anatomical characteristics of fish, namely average length (L) 
and caudal aspect ratio (AR = h2/s, see Fig. 2). Data on average body 
length was obtained from Baudoin et al. (2014), Keith et al. (2020), and 
complementary material (see Appendix B). Caudal fin aspect ratio was 
calculated from photographs taken from fishbase.org (Froese and Pauly, 
2023) and the French National Museum of Natural History website 
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Fig. 1. Study area, the Seine-Normandie basin. A: Subcatchments and land use on the basin; B: The Seine-Normandie river network and its tallest dams (>5 m); C: 
Spread of the 2145 study sites. Source of land cover data and imaging: THEIA dataset (Thierion et al., 2021).
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(Muséum national d’Histoire naturelle, 2021) processed through a 
freeware raster graphics editor (paint.NET 4.3.1, latest version available 
https://www.getpaint.net/). We used these measurements to estimate 
jumping height and capacity for dispersal for each species (Radinger and 
Wolter, 2014). A graphical summary of the methodological steps to the 

calculation of connectivity constrains and their integration in connec
tivity indices can be found on Fig. 2.

2.3.2. Obstacle permeability and fish dispersal
We considered obstacle crossing asymmetrically (upstream and 

Species anatomical traits Network, obstacle data

Dispersal probability Probability of crossing

Length

Collection of 
predictors

PCA* of envir. 
predictors + 

factors
-Hydroclimate
-Land use
-Geography
-Water quality
-Riparian info
-Sampling int.

27 connectivity indices
see Table 1

Obstacle height 
estimation

GLM* : presence/absence ~ (connectivity +) PCA* axes + factors

Water temperature 
estimation

33 sp.

Fish occurrence data

Downstream bias correction : 
Adjusting by centrality or Centrality zonation 

TSS* of models with VS. without 
connectivity

TSS* increase 
with connectivity

Model 
performance by 
species

PseudoR² Portion of explained deviance of connectivity 
(variable importance)

Scoring of index properties (Borda)
-PCA* of index 
properties & species
-Link to functional 
characteristics

P
R
E
D
I
C
T
O
R
S

A
N
D

I
N
D
I
C
E
S

G
L
M

A
N
A
L
Y
S
I
S

Source Distance (km)

h² s

2.1.2 2.1.2

2.2

2.1.3

2.2

2.2

2.3.1

2.3.2 2.3.2

2.4

2.4

2.5.1

2.5.2

2.5.22.5.2

2.5.2

2.5.3

Aspect
Ratio

*GLM : Generalized Linear Models; PCA : Principal Component Analysis; TSS : True Skill Statistic

Fig. 2. Graphical summary of the method used for connectivity index calculation and model analysis. Presentation of modeling steps from anatomical characteristics 
to obstacle crossing and dispersal kernels, and their integration into reach-specific connectivity indices, to TSS gain and variable importance associated to con
nectivity. Dispersal kernels based on Radinger and Wolter (2014), index calculation based on Baldan et al. (2022). On the top-right corner of each box is the section 
number in which additional information can be found.
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downstream) and determined crossing probabilities for each obstacle 
and species. For upstream crossing, we relied on jumping height as 
expressed in Meixler (2021), compared to obstacle height, to determine 
obstacle crossing. We followed Baudoin et al. (2014) both for functional 
grouping of fish with respect to obstacle crossing and for information on 
downstream crossing. A full explanation of obstacle crossing probability 
calculation can be found in Appendix E.

To model the dispersal capacity of fish, we opted for leptokurtic 
kernels for their closeness to the natural dispersal patterns of fish 
(Skalski and Gilliam, 2000), through a distribution function F of distance 
d (in m) from the source population (Eq. (1) below) (Radinger and 
Wolter, 2014): 

F(d) = 0.66 •
1

̅̅̅̅̅̅̅̅̅̅̅̅̅
2πσ2

stat

√ • e
−

d2

2σ2
stat +0.33 •

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2πσ2

mob

√ • e
−

d2

2σ2
mob (1) 

with σstat and σmob two standard deviation parameters within normal 
distributions, calculated through the {fishmove} R package (Radinger 
and Wolter, 2014), which represent the static and mobile components of 
fish populations and depend on caudal fin aspect ratio, specific average 
body length (L), Strahler stream order and the time frame considered for 
dispersal (Radinger and Wolter, 2014). The time frame was fixed for all 
species at seven years (Radinger and Wolter (2014) preconize the use of 
leptokurtic dispersal kernels for very long durations).

2.4. Connectivity indices

2.4.1. Reach connectivity index family (RCI)
To obtain build a set of 27 connectivity indices that combined 

different connectivity constraints (see Table 1 below), we adapted 
functions from the R package {riverconn} (Baldan et al., 2022) on R 
version 4.3.1 (R Core Team, 2023), which allowed for the use of lep
tokurtic dispersal kernels (R codes available upon request). {riverconn} 
uses a graph created from a directed river network (Erős et al., 2012) 
composed of N vertices (confluences, barriers, springs and estuaries) and 
N-1 edges with assigned permeability and weights (wi). The package 
calculates factorized probabilities of connectedness Iij, based on Rodeles 
et al. (2021) between every couple of reaches i and j (Eq. (2)): 

Iij = cijBij (2) 

where cij is the obstacle permeability (i.e., probability of crossing) and 
Bij, the raw dispersal probability based on dispersal kernel calculation, 
between reach i and reach j. This method allows us to create three 

different types of indices, depending on if they take i) both constraints 
into account, ii) only dispersal (Iij = Bij) or iii) only obstacles (Iij = cij). 
Reach Connectivity Indices (RCIs, Eq. (3)) correspond to the probability 
of connectedness between all edge pairs: 

RCIi =
∑n− 1

j=1
Iij

wj

W
(3) 

where Iij are the probabilities of connectedness from reach i to reach j, 
and W is the sum of custom weights wj that allow accounting for habitat 
suitability differences of the receptor reach j. In the case of RCI indices, 
wj are considered constant across all reaches.

2.4.2. Adjusted connectivity index family (ACI) and zonation-sensitive 
connectivity index family (ZCI)

The RCI naturally favors the largely undammed downstream reaches 
that are directly connected to many parts of the network leading to a 
spatial bias in the study of headwater species. To compensate for this 
bias, we calculated a set of adjusted indices. The downstream to up
stream gradient was approached using Betweenness Centrality 
(Freeman, 1977) of reaches, a value independent of fish species, noted as 
Ci. For every reach i, betweenness centrality is the number of shortest 
paths passing through said reach in a graph, which in the case of den
dritic networks, exponentially increases with downstreamness (see Ap
pendix F for a visual representation of the centrality bias in base RCI). 
We first calculated an Adjusted Connectivity Index (ACI, Eq. (4)) as 
follows: 

ACIi =
RCIi

log(Ci + 1) + 1
(4) 

In order to investigate connectivity within a natural longitudinal 
zonation of the river, we then created a set of Zonation-Sensitive Con
nectivity Indices (ZCI) centered around seven zones, mimicking the 
seven Strahler order values in the network. These zones (Downstream 1 
and 2, Midstream 1 and 2, Upstream 1 and 2, and Headwaters) are 
intended to reflect even categories of upstreamness within the river 
network, linked to successive biotic communities within a river con
tinuum. We replaced the constant RCI weights wj (see Eq. (3)) by a 
choice of seven lognormal and exponential functions of betweenness 
centrality (see Appendix F for an example, and curves related to 
betweenness centrality categories).

2.5. Species distribution model analysis

2.5.1. Building GLMs
To test the effect of connectivity indices on fish distribution while 

accounting for environmental effects, we used binomial generalized 
linear models (GLMs; R package {stats}, R Core Team (2023)) for each of 
the 33 species and 17 index types (i.e. 891 models) an ran cross- 
validations with ten subset-train-test sequences – 75 % of sites 
devoted to training. Linear and quadratic effects were tested. To char
acterize the role of individual connectivity indices on fish species, we 
also retrieved GLM coefficients and p-values of raw linear and quadratic 
terms of connectivity indices and classified the significant relationships 
as: i) positive linear effect; ii) negative linear effect; iii) quadratic effect.

2.5.2. Model performance and importance of connectivity
We assessed model performance with two criteria: the True Skill 

Statistic (Allouche et al., 2006) and Mc Fadden’s Pseudo-R-squared 
(Smith and McKenna, 2013). Threshold for presence and absence in 
predicted sets was determined through the maximization of TSS values 
(Manel, 2001). We calculated the gain in TSS of models that included 
connectivity compared with those that did not and tested the signifi
cance of the difference through Wilcoxon one-sample tests (‘wilcox.test 
()’ function in {stats} R package) with a p-value threshold of 0.05. TSS 
and PseudoR2 were considered simultaneously to gather information 

Table 1 
List of the 27 connectivity indices built and used in this paper with their prop
erties depending on the connectivity constraints considered (whether physical 
barriers alone, or functional dispersal limitation alone, or both), and of the 
notations used for our longitudinal zonation strategy.

Index 
Notation

Family of 
indices

Properties Zonation strategy Corresponding 
hypothesis

RCI-D Reach (3 
indices)

barriers none Connectivity is 
best expressed at a 
whole-basin scale

RCI-L dispersal
RCI-LD both
ACI-D Adjusted 

(3 indices)
barriers ACI =

RCI
log(C + 1)

(where C is 
Centrality)

Connectivity is 
most usefully 
described when 
adjusted to 
centrality

ACI-L dispersal
ACI-LD both

ZCI-D Zonation- 
sensitive 
(3 × 7 
indices)

barriers Seven Zonations 
(see Appendix F) 
used as a weights 
factor in RCIs

Connectivity is 
best understood 
within the 
longitudinal zones 
of the watershed

ZCI-L dispersal
ZCI-LD both

For ZCI.
Seven zones: DS1/2-MS1/2-US1/2-HW.
DS = Downstream / MS = Midstream / US = Upstream / HW = Headwaters.
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both on model skill and explanatory power, which are not necessarily 
correlated. PseudoR2 values scale between 0 and 1 and are considered 
satisfactory above 0.2 and very good above 0.4. We also assessed the 
relative importance of our connectivity indices and other predictors 
based on the percentage of deviance explained by individual predictors 
(McCullagh and Nelder, 1999) as calculated by the function ‘impor
tance.glm()’ from the R package {tornado} (Carnell, 2023). For a 
graphical overview of our analyses, please refer to Fig. 2.

2.5.3. Index properties and species functional response
In order to investigate functional relationships between index 

properties and species response, we relied on the Borda preferential 
scoring system (Reilly, 2002). Through the ranking and scoring of 
indices for each species in terms of explained deviance, we obtained 
information about the performance of index properties. The resulting 
values were analysed through PCAs (separated between significant 
positive, negative and polynomial relationships) to highlight groups of 

Fig. 3. Model and index performance. a: Boxplot of base model SDM TSS values for all species; red squares show non-native species. b: Boxplot of PseudoR2 values 
across connectivity indices for all species. c: Boxplot of TSS gain due to connectivity indices (TSS of connectivity-sensitive SDMs - TSS of base SDM) across indices for 
all species; * indicates connectivity-sensitive models with significantly higher TSS values (p-value<0.05, see Appendix I for full values); (− ) indicates significantly 
negative values; blank is non-significant. d: Boxplot of values of connectivity relative importance (explained deviance) across indices for all species.
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species with similar response to connectivity and look for ecological and 
functional explanations (e.g. if the “barrier-sensitive” index property 
scores well for some species, we can infer a link between barriers and 
said fish distribution and study these species to find common traits).

3. Results

3.1. Base SDM and species response to environmental predictors

When studying the importance of environmental predictors in base 
models (i.e. without connectivity), the Strahler index, the altitudinal 
gradient and hydrological regions showed to be consistently more 
important than other predictors in most species (Appendix G). The 
minnow (php) and bleak (ala) were especially sensitive to the riparian 
vegetation gradient while the water temperature was important for the 
bleak (ala), burbot (lol) and spined loach (cot). The bullhead (cop) was 
most sensitive to the ammonium pollution gradient, the chub (sqc) and 
grayling (tht) to hydrological regime, and the stone loach (bba) and 
rainbow trout (onm) to minimal discharge. Strahler order, altitudinal 
gradient and hydrological region accounted altogether for at least 45 % 
and up to 82 % of the explained variation of species distribution. The 
sampling bias factor explained an average of 4 % and up to 15 % of the 

model deviance depending on the species and was most prevalent in the 
spined loach (cot), sunbleak (led) and pike (esl).

Prediction performance of the base model (i.e., with no connectivity 
index added) varied widely depending on species (TSS up to 0.53; 
Fig. 3a). The souffia (code: tes) was not retained further into our analysis 
because its relative abundance and restricted distribution created un
reliable modeling outputs. Species with highest prediction performance 
were in the majority native to the study area, the gudgeon (gog), chub 
and bleak (ala), while non-native species tended to be linked to lower 
performance, especially the grayling (tht), catfish (amm) and rainbow 
trout. PseudoR2 values showed a medium to high goodness of fit, except 
for sticklebacks (gaa and pux), sunbleak, bullhead (cop), rudd (sce), 
rainbow trout and carps (cax and cyc), for which it fell below 0.2 
(Fig. 3b). Overall TSS and PseudoR2 values were weakly correlated (r2 

~ 0.14).

3.2. General contribution of connectivity to SDM performance

In terms of TSS, connectivity-sensitive SDMs – i.e., those that 
included connectivity indices – on average predicted species presence 
better than the base model (Fig. 3c). Predictive power was significantly 
higher than for the base model for all species except for the catfish, 

Fig. 4. Account of significant effects across species and indices. a: Count of indices (per species) for which significant effects were linear positive, linear negative, or 
exclusively polynomial (total number of indices is 27); b: Count of species (per connectivity index) for which significant effects were linear positive, linear negative, 
or exclusively polynomial (total number of species is 33).
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common carp, bitterling (rha), zander (sal) and Prussian carp. Including 
connectivity in our models caused an average gain of 0.023 TSS (0.043 
when keeping the best indices) and up to 0.180. We found an increase in 
TSS of at least 0.020 for all species except six (catfish, carps, rainbow 
trout, bitterling and zander), and an increase of at least 0.05 for eleven 
species.

3.3. Importance and effects of connectivity across fish species and indices

3.3.1. Relative importance and significance of connectivity indices
The relative importance of connectivity indices compared to other 

predictors varied according to species and index type but were above 
zero for all species (Fig. 3c). For the nase, spined loach, dace and burbot, 
some indices explained over 50 % of explained deviance, whereas for 
three-spined sticklebacks, the best-performing indices explained at best 
2.7 % of deviance. Across fish species, an average of 29 % – and from 2.7 
% up to 57 % – of explained fish distribution, was tied to the best- 
performing connectivity index (see Fig. 3d) versus other predictors. 
Overall, out of 891 index-species distribution relationships, 364 were 
significant. Linear and quadratic term significance for connectivity 
indices differed across species (Fig. 4a; see Appendix H for a full table of 
significance), but linear effects described the relationship between 
connectivity and fish presence more consistently. For six species, the 
spined loach (cot), nase (chn), bullhead, burbot, schneider (alb) and 
dace (lel), >20 out of 27 indices had significant effects, while the ruffe 
and common carp had no index with significant effect.

3.3.2. Performance of the different connectivity indices
Overall, the ACI index family (Adjusted Connectivity Index) per

formed the best, each index significantly explaining more species than 
all others. Additionally, these adjusted indices significantly explained 
the distribution of 23 species (Fig. 4b) and presented the best-scoring 
indices for 8 species (Fig. 5). The ZCI index family (Zonation-sensitive 
Connectivity Index; see Section 3.3.4) significantly explained the 

distribution of 30 species and presented the best indices for 26 species, 
across 21 indices with the most downstream and upstream zonations 
performing the best (both 9 species). The RCI family indices (i.e., non- 
adjusted Reach Connectivity Indices) presented the best indices in terms 
of importance for two species, the bleak (ala) and perch (pef) and 
significantly contributed to the distribution of 18 species in total. 
However, RCI did not rank first for any species in terms of Borda Scoring.

3.3.3. The influence of connectivity on the probability of fish presence
Across indices and fish species, effects of connectivity on fish pres

ence, when significant, were mostly positive (Fig. 4b), with 32 % of 
positive effects (against 5 % of negative effects and 3 % of polynomial 
effects, the remaining being non-significant). Negative effects were 
found especially for the pumpkinseed (leg), stone loach (bba), rainbow 
trout, roach (rur), ninespine stickleback and tench (tit). Polynomial ef
fects occurred in 14 species, including the zander (sal), for which it is the 
only significant relationship found. Very few species responded to only 
one index type, rather responding to multiple index families and indices 
within families.

3.3.4. Relationship between fish species response and connectivity index 
properties

Overall, we found no significant difference in importance between 
indices that took barriers into account (17.5 % average), and those that 
did not (18 % average). Similarly between indices that took dispersal 
into account (18 %) and those that did not (17 %). Indices that included 
only barriers scored better for nine species (e.g. bream [abb], bleak, 
barbel [bab]) (Fig. 5). Those that included only dispersal scored better 
for twelve species (e.g. stone loach, carps, pike), the remainder 
responding better to indices that took both constraints into account. The 
performance of the different zonation-sensitive indices across species 
often followed the fish ecological zonation from the source to the estuary 
with headwater and upstream ZCI (HW, US) performing best for some 
headwater species (e.g. three-spined stickleback, gudgeon, minnow) and 

Fig. 5. Scoring of all index properties on all index-species combinations. Grouped by species, scaled bar plots, legend of index properties on the bottom right (DS1 to 
HW: ZCI zonations; D: Dams taken into account, not dispersal; L: Dispersal taken into account, not dams; LD: Dams and dispersal taken into account).
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downstream ZCI (DS1, 2) performing best for some large river species (e. 
g. pike, bream, ruffe).

Twenty-seven fish species responded linearly and positively to con
nectivity indices and were used for PCA (see biplot in Fig. 6). This PCA, 
displaying the shape and strength of the responses of fish to index 
properties, allowed us to identify mainly four groups of fish with respect 
to their responses. Fish reacted to indices which included barriers (LD 
and D) differently than to those that did not (L), and so the first group, 
consisting of the crucian carps, burbot, spined loach, bullhead and 
topmouth gudgeon was driven by L indices as well as MS1-2, and US1-2 
zonations. The second group, consisting of the barbel, nase, dace, 
minnow, trout, chub, grayling, schneider and catfish was mainly driven 
by D and LD indices as well as DS1-2 and HW zonations. A third group, 
mainly driven by RCI and ACI indices instead of ZCI, consisting of the 
stone loach, three-spined stickleback, pike, silver bream, perch, pump
kinseed and sunbleak, and a fourth one, driven by midstream ZCI and, to 
a certain extent, L indices, consisting of the bream, rudd, gudgeon, 
bitterling and rainbow trout. Nine species responded linearly and 
negatively to connectivity indices and strictly polynomial relationships 
were found for fourteen species (the corresponding PCA graphs can be 
found in Appendix J).

4. Discussion

4.1. Base distribution models and species-specific responses

Ignoring connectivity, we showed that fish distribution was mostly 
driven by Strahler order, hydrological region and elevation. Strahler 
order and elevation are regularly retrieved as a good predictor of fish 
distribution (Gonzalez-Ferreras et al., 2016; Markovic et al., 2012) as 
Strahler order allows for distinction of river size categories, and eleva
tion is linked to a broader climatic gradient to which some fish are 
sensitive (Buisson et al., 2008). In the case of this particular study area, 
hydrological region and elevation are tied to basin geography and 
geomorphology. Fish species associated with the best model prediction 
performance were often the most widespread species in the basin 
because more occurrences allow for a more precise definition of the 
niche (Hernandez et al., 2006). Conversely, poorer model performance 
was mostly associated with non-native species, a persistent challenge in 
predicting non-native species distribution and expansion through SDMs 
(Rodriguez-Rey, 2019). This is in part due to the relative recency and 
localized nature of exotic introductions and the generalist ecology of 
many successfully introduced non-native species (Clavel et al., 2010). In 
fact, the prevalence of non-native fish in anthropized rivers like the 
Seine can be linked to a historical tendency for the release of non-native 
species (Lyach, 2022), which is to be contrasted with current practices 

Fig. 6. PCA biplot of importance scorings across connectivity index properties and fish species (positive relationships only, 27 species).
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which focus on species that are already present, a point discussed in 
Section 4.4.

4.2. The role of connectivity in the shaping of fish distribution

Connectivity indices improve our understanding of fish distribution. 
Our findings show that, in 31 species out of 33, longitudinal connec
tivity, through at least one index, contributes significantly to fish species 
once usual environmental constraints have been accounted for. This has 
already been amply demonstrated in diadromous species - eels, salmon, 
lampreys (Duarte et al., 2021; Nunn and Cowx, 2012). However, to our 
knowledge, this study enables us to finely demonstrate this relationship 
on an array of non-diadromous species for the first time: it highlights 
that river connectivity is a determinant of the distribution of most fish 
species and has to be considered in SDMs. The benefit of including 
longitudinal connectivity in species distribution models has been 
investigated in aquatic contexts, though with different methods for the 
calculation of connectivity and different geographical frameworks. In 
Branco et al. (2012), the use of metrics like a count of barriers upstream 
and downstream led to a minimal and generally non-significant impact 
of connectivity in non-diadromous fish distribution. However, the pre
sent study does corroborate the proportionally greater importance of 
environmental variables over connectivity indices in terms of impor
tance. Contrastingly, Van Looy et al. (2014) retrieved more significant 
results by employing both local and large scale dam-density and 
cumulation metrics, although the study in question used more general 
bioindication metrics in lieu of fish presence-absence data, preventing 
specific discussion of connectivity and fish distribution. Additionally, it 
does not take network structure into account in its conception of lon
gitudinal connectivity (Fullerton et al., 2010). Mahlum et al. (2014), 
used the Dendritic Connectivity Index as defined by Cote et al. (2009), 
which is conceptually closer to our indices than to barrier density, and 
similarly worked on a larger scale. Similarly to Mahlum et al. (2014), we 
find in most cases that connectivity remains a secondary predictor when 
compared to core environmental gradients and certain other anthropo
genic pressures, although certain models did in fact show a substantial 
portion of explained variability, leading to a substantial average of 29 % 
of explained distribution for our best-performing indices across our 
species, although they did not systematically come with a high increase 
in prediction performance. Thus, larger-scale approaches to the mea
surement of connectivity, in contrast to proximity-based indices like 
local obstacle density, can be valuable, which may in turn render large- 
scale studies of connectivity more feasible. Lacking from the examples 
above are both the introduction of specific dispersal capacity and dam 
permeability as introduced by Rodeles et al. (2021), and the finer ac
count taken of capacity for obstacle crossing and dispersal, which we 
argue allows us to achieve higher index performance and significance by 
distinguishing subtler nuances in the variations of longitudinal con
nectivity. Specifically, this paper used functionally informed (Skalski 
and Gilliam, 2000; Baudoin et al., 2014) and continuous information for 
both components, instead of strictly probabilistic - as in Clark et al. 
(1998), which was conceived for tree seedling dispersal and is often used 
in river fish as well - or binary, as presented in Baldan et al. (2022) for 
example. Significant gain in prediction performance was true for all but 
five species, but remained in the 2 to 5 % range in most cases (rising up 
to 20 %). These performances surely cement our expectations for con
nectivity indices as predictors in SDMs as mostly secondary, sometimes 
exceeding these expectations. However, one should take note that a 5 % 
increase in prediction performance in a 2000-site dataset can amount to 
up to an additional 100 study sites correctly predicted: this is considered 
a notable increase in the context of SDMs (Karger et al., 2023).

Among significant effects of connectivity indices in tested models, a 
majority were positive, indicating a co-occurrence of high connectivity 
reaches and increased fish species presence. Previous works studying the 
impact of river network connectivity tend to corroborate this result both 
through a modeling approach and on the field, as compiled for example 

by Shao et al., 2019. The negative impact of connectivity loss on fish 
presence is often associated with the impairment of movement for 
diadromous and potamodromous species, preventing breeding and 
feeding migrations caused by obstacles (Fullerton et al., 2010; Merg 
et al., 2020). This may ultimately lead to local extirpations (Fagan, 
2002; Kominoski et al., 2017) and changes in community structure. In 
contrast to potamodromous species, some resident species, less 
impacted by these phenomena, often had more contrasted responses to 
connectivity. We found six fish species for which it seemed to consis
tently impact fish presence negatively - all non-potamodromous except 
one, the roach, which occasionally engages in seasonal spawning and 
feeding migration (Brönmark et al., 2014). Investigating the causes of 
these relationships leads us to discuss a few complementary explana
tions: i) Methodology: With ZCIs, which accounted for the zonation of 
rivers, a high connectivity value can be linked to an absence (and vice 
versa) for species which simply do not dwell in corresponding zones (e.g. 
the pike, typically found in limnophilic habitats (Keith et al., 2020), is 
associated with a large amount of positive effects of connectivity for 
indices associated with zones where pike are often found, and negative 
effects for indices calibrated for upstream reaches). ii) Fish size: The few 
species that were associated with good model performance and signifi
cant negative effects of connectivity across indices were mostly small- 
bodied (roach, ninespine stickleback, stone loach, or pumpkinseed). 
Small size in freshwater fish is generally associated with a small home 
range size (Minns, 1995), and consequently with a lower likelihood of 
encountering a barrier given the mean distance between barriers 
(approximately 2.8 km). iii) Ecological preference: For example, this 
study recovered the stone loach as consistently negatively impacted by 
higher connectivity. According to Sun et al., 2022, stone loach pop
ulations were found to decrease following barrier removal perhaps due 
to a preference for fine sediments, which can accumulate close to dams. 
Inversely, the presence of other upstream small fish like the bullhead, 
which often dwell in riffle (Keith et al., 2020), is correlated positively to 
connectivity. Similarly, the ruffe favors eutrophic waters (Gutsch and 
Hoffman, 2016) and the pumpkinseed is a non-native generalist with 
important phenotypic plasticity (Keith et al., 2020; Mittelbach et al., 
1999), both species may be well-suited to low-connectivity reaches. iv) 
Stochastic effects: For larger, generalist or non-native species such as the 
Eurasian carp, positive occurrences in low-connectivity reaches can be 
linked to intrusions from human-made lentic aquatic habitats such as 
quarries, fisheries, canals (Britton et al., 2011) or because low- 
connectivity reaches are a refuge against competition or predation 
from species with greater connectivity requirements. This has not been 
consistently verified for river fish in impounded river reaches but has 
been widely documented both for freshwater fish in other anthropogenic 
water bodies (irrigation pipes and canals, rice paddies, quarry ponds, see 
Chester and Robson, 2013). We hypothesize that the very few cases 
where significant effects of connectivity on fish presence were quadratic 
may be due to the aforementioned phenomena occurring in subsections 
of the network leading to parabola-shaped responses for these species.

4.3. Linking connectivity index properties and species-specific response

Correcting for local context improved connectivity indices. The three 
families of connectivity indices tested in our study, allowed us to test the 
effect of correction by centrality in index performance in fish distribu
tion models and compensate for a centrality bias in RCI. We bring ample 
evidence that correction by betweenness centrality, both through a 
simple adjustment as in ACIs and through longitudinal zonation as in 
ZCIs, greatly improved connectivity importance (averaging 11 %) and 
model power (an average of one, and up to seven additional points for 
the grayling), invalidating our RCI-hypothesis in most cases.

ACIs ranked best overall in terms of significant species coverage and 
performed well for most species, suggesting that considering the local 
context of connectivity within the large-scale dendritic network would 
greatly improve index performance. However, in some cases, ZCIs 
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performed better than ACIs, especially for the spined loach, bullhead, 
pumpkinseed and topmouth gudgeon. These species are small, non- 
potamodromous, and can be found in most river types except the rea
ches closest to the estuary. They all responded significantly to most 
indices, but especially downstream and midstream indices. We can hy
pothesize that ZCIs are be especially appropriate for these resident 
species either because contrarily to larger species, they might find 
themselves isolated between barriers in midstream reaches and be 
recovered as mainly midstream species or because the ACI is most useful 
for upstream reaches. The complementary performances of ACI and ZCI 
indices show that both a large-scale approach and a small-scale 
component of connectivity, dendricity and obstacles are needed to 
study the role of connectivity in fish distribution in diverse communities, 
although ZCI must be handled with warranted precaution due to their 
purposefully limited geographical scope. Previous studies generally 
pointed the importance of local context over large-scale connectivity for 
river fish (Mahlum et al., 2014; Van Looy et al., 2014) with the first 
arguing that the importance of connectivity in models is scale- 
dependent and the second investigating the importance of scale 
through dam-density metrics designed for different scales, using fish 
community bioindicators as response variables (Oberdorff et al., 2002), 
finding local context to be particularly important to understand the 
importance of connectivity on fish community structure. Our ACIs allow 
for a large-scale study of connectivity with greater relevance through a 
correction for the local context.

When examining the relative scoring of indices that do or do not take 
barriers and dispersal capacity into account, 23 species scored higher 
with indices that included barriers (either alone or in tandem with 
dispersal), leading us to conclude that barriers cannot be discarded as 
shapers in the current distribution of fish in rivers. These findings align 
with earlier works conducted at different scales that showed barriers as 
the main drivers of freshwater fish distribution and diversity (Shao et al., 
2019; Birnie-Gauvin et al., 2020; Anas and Mandrak, 2021). The Seine- 
Normandie basin, our study area, happens to be very densely dammed, 
which makes it especially subject to fragmentation. However, very large 
dams (over 5 m high) are scarce (72) in the study area and are mostly 
restricted to specific areas in the basin (Southern Coastal Normandy, 
Morvan Mountains). As was corroborated in other geographical contexts 
(Baumgartner et al., 2022), large barriers do not seem to be the main 
focus of connectivity loss and its impact on fish distribution, implying 
that approaches taking smaller obstacles are essential to understanding 
the impact of connectivity constraints on fish distribution. In the process 
of restoring connectivity through the prioritized and thoughtful removal 
of barriers in the context of a durable restoration of riverscapes (Basak 
et al., 2021), small and mid-size obstacles are to be considered outright. 
Barrier prioritization methods such as the one developed by Baldan 
et al., 2022 can provide information on the most impactful dams for 
removal and connectivity restoration. Beyond fish conservation efforts, 
barrier removal is often linked to increased resilience and the 
improvement of local environmental conditions (Abbott et al., 2022; 
Kornis et al., 2015).

Through the study of index properties and their scoring, we were 
able to link index performance to network properties and fish functional 
traits, understood as specific characteristics of fish which interact with 
their environment. Dispersal was an essential component of longitudinal 
connectivity for 25 species. Thus, we show that even in long timespans, 
functional and behavioral limitations in dispersal are due to shape fish 
distribution alongside environmental gradients and barriers (Radinger 
and Wolter, 2015). Refering to our PCA output, we found that fish from 
the first group (the burbot, bullhead, spined loach, topmouth gudgeon) 
reacted strongly to midstream and upstream indices, and to indices 
which only take dispersal into account. These species are indeed found 
in these reaches (Keith et al., 2020), the burbot is potamodromous, and 
directly impacted by dams, but already restricted in the study area to a 
few suitable areas, presumably less disconnected, all other species are 
small and sedentary, and presumably less impacted by dams. Relatedly, 

the second group (barbel, nase, dace, minnow, brown trout, schneider, 
chub and catfish) was driven by downstream indices as well as all 
indices that include obstacles. All species listed except the catfish are 
potamodromous and therefore more likely to be impacted by the pres
ence of dams. This could be explained by the prevalence of heavily 
dammed rivers or large obstacles in highly dowstream or central reaches 
(e.g. navigational locks) and the least central reaches (e.g. weirs on 
streams), compared with more intermediary reaches, which is consistent 
with our study area, though not true in all studied rivers. The third group 
was correlated to RCI and ACI, suggesting these species are more sen
sitive to large-scale than small-scale approaches for connectivity.

Both the third and fourth groups, interestingly, were represented by 
a majority of species which either i) routinely use peripheral habitats for 
feeding and spawning like the pike, gudgeon, sunbleak, bitterling, and 
both breams (Tales et al., 1996) or ii) consistently inhabit lentic habitats 
and backwaters within the floodplain (Keith et al., 2020; Sun et al., 
2022) like the pumpkinseed, perch, rudd, bitterling, three-spined 
stickleback and stone loach. Relatedly, the first and second group spe
cies are generally not found in backwaters and use main river channels 
for spawning and breeding. This pattern has few exceptions (namely the 
rainbow trout and bleak on one side, and the catfish, topmouth gudgeon 
and crucian carp on the other). This suggests that species that are 
laterally and less longitudinally mobile for feeding, breeding or both, as 
well as those who often dwell in lentic habitats, might be sensitive to 
longitudinal connectivity in different ways, observable through this kind 
of analysis. Investigating lateral habitat use in fish species and its links to 
longitudinal dispersal and response to connectivity was not considered 
for this study, but might constitute an elucidating complementary study 
given the impact of lateral connectedness on fish conservation (Manfrin 
et al., 2020). The current predictors intended to represent lateral con
nectivity (floodplain forest and water cover), which did not reflect fish 
species use of peripheral habitats in terms of relative importance, may 
then have to be redesigned with multiscale and functionally-sensitive 
properties in mind, akin to longitudinal connectivity indices. An inter
esting perspective might be to investigate the potential for resilience in 
the context of anthropized watersheds and its hypothetical links to the 
ability of fish to exploit peripheral habitats. Functional links to con
nectivity like lateral habitat use incite us to push for further research on 
the subject of functional traits. Further analyses of specific responses to 
connectivity with different datasets would also allow to identify func
tional groups of dispersal and response to connectivity, potentially 
useful for instance in metacommunity analyses (Jeliazkov and Chase, 
2024).

4.4. Limitations of this study

While converting electrofishing data into a working dataset, a few 
assumptions were made, namely i) non-detection over repeated samples 
constituted true absences and ii) a single detection was equated to 
prolonged presence, despite possible instances of punctual release (e.g. 
for fishing purposes). Fish species most likely to be released in rivers (e. 
g. trout, pike and other popular species for angling) are already wide
spread in the basin. Thus, by selecting only species detected on a large 
amount of sites, the few voluntary introductions remain less prominent 
in model training. We assume the unwelcome effects of these presum
ably rare events, i.e. a falsification of their range in the study area that 
impacts model results in a significant way, are unlikely to occur. Like 
any observation data, our dataset has probably been the subject of some 
sampling bias due to the different protocols used and imperfect detec
tion. The sampling method was highly variable along rivers, as small 
headwater brooks allow for on-foot electrofishing, which is a much more 
exhaustive sampling method, whereas larger rivers require the use of a 
boat and a generally lower realized sampling intensity. However, the 
depth (over twenty years) and quality of the data collection (with 75 % 
of the data collected through near exhaustive electrofishing) probably 
compensated for this error, rarest species were excluded, and our models 
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took this sampling heterogeneity into account through a bias factor 
which was recovered as important across species. Similarly, our barrier 
dataset was the result of intensive data collection which is still ongoing 
today, which implies no guarantee of the completeness of the dataset, 
although the highest obstacles were presumed to be already known. 
Retrieval of other predictors followed several collection pathways, from 
independent regression (water temperature) to interpolation (hydro
logical variables) and gathering from several pre-existing datasets. 
Additionally, we used certain physical and geographical predictors such 
as elevation and Strahler order. These are not environmental predictors 
and thus must be considered with caution in niche models, but their use 
was nonetheless indispensible, as i) the environmental variables they are 
often proxies for (e.g. stream velocity, primary production) could not be 
obtained and ii) they represent an important part of explained devaince 
for most species (>15 % for 25 species for the first PCA axis which in
cludes elevation and 30 species for Strahler order). Some of these pre
dictors were partially or fully correlated with environmental variables, 
which was successfully taken into account by our PCA analyses. As for 
our connectivity indices we chose to use average body length and caudal 
fin aspect ratio as the main factors for obstacle crossing and dispersal. 
These tools were useful for most species, but lose some accuracy for a 
few edge cases like small species with high capacity for jumping, which 
were managed by categorical length averages, and large Eurasian carps, 
which cannot jump despite their size. Uncertainty linked to individual 
predictors, not assessed directly in this paper, nonetheless must be kept 
in mind. The choice of GLMs and the restriction to relatively simple 
predictors for this paper emerged from a compromise between model 
complexity (including nine environmental predictors, plus models 
repeated for 27 indices times 33 species) and model interpretability. If 
prediction had been the goal, more sophisticated models, machine 
learning and ensemble modeling, for example, would have led to higher 
performance and TSS values.

5. Conclusions

The significant impact of connectivity in species distribution models 
at the scale of a large anthropized watershed points to the importance of 
barriers, habitat fragmentation, and specific capacity to disperse along 
dendritic networks as crucial agents in the distribution of a majority of 
freshwater fish species in the Seine Basin. Our indices, designed to take 
into account morphological predispositions of fish to barrier crossing 
and dispersal, provided a significant explanation for fish distribution. 
Thus, this study presents a reproducible framework for the design and 
calculation of connectivity indices, which may provide further under
standing of the complex relationship between river fish and connectivity 
constraints in future studies and render large-scale studies of the influ
ence of longitudinal connectivity on fish distribution more feasible. In 
most species, high connectivity, as defined in these indices, seemed to be 
linked to a higher likelihood of presence, which seems to corroborate 
other approaches that highlight the beneficial effect of connectivity on 
fish and other river organisms. The negative responses of a number of 
smaller species to higher connectivity values are often explained by 
specific preferences and traits, and should not be neglected. In any case, 
major takeaways of this study are: i) retaining both barrier crossing and 
dispersal capacity should be the default choice in considering longitu
dinal connectivity constraints for river fish, both when creating reach 
connectivity metrics within the framework of species distribution 
modeling and when considering restoration of ecosystem functions and 
fish communities in direct field applications; ii) taking into account a 
measure of upstreamness or centrality into connectivity indices when 
working on watershed scale should be considered– we recommend the 
use of ACI-like methods (adjusted reach connectivity indices) as they 
were shown to be relevant for most species studied, and the use of finer 
local context ZCI-like methods if needed; iii) considering the topical 
question of connectivity, fish distribution and species conservation, and 
the mounting proof of its importance in shaping communities, a broader, 

multi-scale investigation of the relationship between fish species and 
connectivity is urgently needed to preclude preventable loss. A better 
understanding of the complex functional relationship between connec
tivity constraints and river fish species, for example, body size or the 
influence of lateral habitat use, may help create practical groupings of 
species for which conservation and restoration measures may be strat
egized. Finally, it is important to state that, in a context of rapid climate 
change, which has already caused (Comte et al., 2013) and is due to 
cause the move of fish communities under environmental pressure, the 
conservation of longitudinal connectivity, and its restoration, may be 
crucial in safeguarding some species from rarefaction and extirpation. 
Operations, like the prioritzed and thoughtful removal of barriers, and 
the restoration of riverscapes, as recommended for example in the Eu
ropean Water Framework Directive, can represent one of the many op
erations necessary to minimize the consequences of climate change on 
freshwater ecosystems (Branco et al., 2014; Thieme et al., 2021). Up
stream of these examples of concrete actions, this study explores new 
tools to assess connectivity loss in rivers, focusing on the conservation of 
river fish: one can hope these tools may help the broader community of 
researchers to achieve a better understanding of the vulnerability of fish 
communities in rivers and, as the window for action against ecological 
collapse keeps on shrinking, contribute to reduce the severity of its 
effects.
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References

Abbott, K.M., Zaidel, P.A., Roy, A.H., Houle, K.M., Nislow, K.H., 2022. Investigating 
impacts of small dams and dam removal on dissolved oxygen in streams. PloS One 17 
(11). https://doi.org/10.1371/journal.pone.0277647.
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Horváth, Z., Ptacnik, R., Vad, C.F., Chase, J.M., 2019. Habitat loss over six decades 
accelerates regional and local biodiversity loss via changing landscape connectance. 
Ecol. Lett. 22 (6), 1019–1027. https://doi.org/10.1111/ele.13260.

Huet, M., 1954. Biologie, profils en long et en travers des eaux courantes. Bulletin 
Français de Pisciculture 175, 41–53. https://doi.org/10.1051/kmae:1954001.

Jeliazkov, A., Chase, J.M., 2024. When do traits tell more than species about a 
metacommunity? A synthesis across ecosystems and scales. Am. Nat. 203 (1). 
https://doi.org/10.1086/727471.

Karger, D.N., Saladin, B., Wüest, R.O., Graham, C.H., Zurell, D., Mo, L., Zimmermann, N. 
E., 2023. Interannual climate variability improves niche estimates for ectothermic 
but not endothermic species. Sci. Rep. 13, 12538. https://doi.org/10.1038/s41598- 
023-39637-x.

Keith, P., Poulet, N., Denys, G., Changeux, T., Feunteun, E., Persat, H., 2020. Les poissons 
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