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HIGHER LIE THEORY IN POSITIVE CHARACTERISTIC

VICTOR ROCA I LUCIO

ABSTRACT. The main goal of this article is to develop integration theory for absolute partition
L∞-algebras, which are point-set models for the (spectral) partition Lie algebras of Brantner–
Mathew where infinite sums of operations are well-defined by definition. We construct a Quillen
adjunction between absolute partition L∞-algebras and simplicial sets, and show that the right
adjoint is a well-behaved integration functor. Points in this simplicial set are given by solutions to
a Maurer–Cartan equation, and we give explicit formulas for gauge equivalences between them.
We construct the analogue of the Baker–Campbell–Hausdorff formula in this setting and show it
produces an isomorphic group to the classical one over a characteristic zero field.

We apply these constructions to show that absolute partition L∞-algebras encode the p-adic
homotopy types of pointed connected finite nilpotent spaces, up to certain equivalences which
we describe by explicit formulas. In particular, these formulas also allow us to give a combina-
torial description of the homotopy groups of the p-completed spheres as solutions to a certain
equation in a given degree, up to an equivalence relation imposed by elements one degree above.
Finally, we construct absolute partition L∞ models for p-adic mapping spaces, which combined
with the description of the homotopy groups gives an algebraic description of the homotopy
type of these p-adic mapping spaces parallel to the unstable Adams spectral sequence.
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INTRODUCTION

Historically, Lie algebras emerged in correspondence with groups, as the natural structure
on the tangent space at the identity of a smooth manifold endowed with a compatible group
structure. In this analytic case, Lie’s third theorem establishes a correspondence between sim-
ply connected Lie groups and finite dimensional Lie algebras over R. The universal way to
recover a such a Lie group from its Lie algebra is via the exponential map, which converges
in some range and becomes a local isomorphism. The Baker–Campbell–Hausdorff formula
appears as the universal way to turn the exponential into a group morphism (as it defines a
group structure) and is given by

BCH(x,y) = x+ y+
1
2
[x,y] +

1
12

[x, [x,y]] −
1
12

[y, [x,y]] + · · · ,

for any two elements x,y in a Lie algebra g. This universal formula is an infinite sum which
only involves iterated brackets of x and y with fractional coefficients. We will refer to this
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procedure as the integration of the Lie algebra g. In the case of Lie groups and Lie algebras over
R, one relies on the topological properties of the real numbers to make the exponential and the
Baker–Campbell–Hausdorff formula converge. See [Ser65] for an account of these results.

A purely algebraic formulation of this correspondence can be stated over a general field k of
characteristic zero by imposing nilpotency conditions that make these sums finite. Via this pro-
cedure, one can get two equivalences. A group theoretic one, between the categories of finite
dimensional nilpotent Lie algebras over the rationals Q and torsion free radicable nilpotent
abstract groups. And a geometric one, between the categories of k-unipotent algebraic groups
and finite dimensional nilpotent Lie algebras over k.

Higher Lie theory in characteristic zero. This integration procedure, which is at the heart of
classical Lie theory, admits a generalization at the homotopical level, and this opens the door
for what can be called higher Lie theory. If one considers differential graded (dg) Lie algebras, it
is natural to consider them up to quasi-isomorphism. Their homotopy category (or ∞-category
in modern terminology) is equivalent to the homotopy category of derived infinitesimal defor-
mation problems. This statement, now a theorem by Lurie and Pridham [Lur11a, Pri10], gives
a precise meaning to the old idea that "deformation problems are encoded by Lie algebras", a
principle stated by Drinfeld, Deligne and many others, and which goes back to the work of
Kodaira–Spencer [KS58] and Gerstenhaber [Ger64]. See, for instance, [Toë17, CG21] for more
on this subject.

This means that the integration of a dg Lie algebra should not be a group, but an ∞-groupoid,
and moreover the ∞-groupoid of the deformation problem it encodes, where points are given
by infinitesimal deformations, paths by equivalences between deformations, and so on. A first
general approach to the integration of dg Lie algebras is given by the seminal work of Hinich in
[Hin01], using methods from Sullivan [Sul77]. A refined version of the integration procedure
was constructed by Getzler in [Get09] for nilpotent L∞-algebras (homotopy Lie algebras). The
key point is that now, if one views a nilpotent Lie algebra as a nilpotent L∞-algebra in degree 0
and applies Getzler’s functor to it, one gets a simplicial set which is isomorphic to the classifying
space of the abstract group produced by the Baker–Campbell–Hausdorff formula.

Another approach to integration is given by the work of Robert-Nicoud and Vallette in [RNV20].
Using operadic methods, they gave a tractable description of Getzler’s functor. These meth-
ods also allowed them to construct higher Baker–Campbell–Hausdorff formulas: they showed that
any horn-filling problem in the integration ∞-groupoid is solved by explicit infinite sums in-
volving the higher brackets, which generalise the classical Baker–Campbell–Hausdorff. Thus
the integration procedure produces an ∞-groupoid which is not only a homotopy type, but
that can be considered a group up to homotopy in an algebraic sense. Finally, the author gener-
alized these results to the case involving curvature in [RiL24] by considering curved absolute
L∞-algebras, a new type of algebraic structures where all formal sums of operations are well-
defined by definition and which includes nilpotent examples by default.

Rational homotopy theory. The story of dg Lie algebras is also related to rational homotopy
models for spaces. Using them, Quillen constructed the first rational models for simply con-
nected spaces in [Qui69]. While later Sullivan constructed simpler to compute rational models
dg commutative algebras in [Sul77], these two approaches are not unrelated. The relationship
between these two types of models is called Koszul duality. This duality links dg commuta-
tive algebras and dg Lie algebras, and it is also at the heart of why dg Lie algebras encode
infinitesimal deformation problems.

It is a modern insight of [BFMT20], and [RNV20] in the L∞ case, that integration theory can
help simplify Quillen’s original approach and give a direct construction of Lie models for
spaces. This was also generalized to curved absolute L∞-algebras in [RiL24], where they were
shown to provide rational models for non-necessarily pointed nor connected finite type nilpo-
tent spaces.
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Problems in positive characteristic. Over a field k of positive characteristic, the correspon-
dences between groups and Lie algebras largely break down. Neither the exponential nor the
Baker–Campbell–Hausdorff formula are fully defined, as they involve fractional coefficients
with factorial denominators.

The tangent space at the identity of an algebraic group still has a Lie structure, and even an
extra operation which makes it a p-restricted Lie algebra, see [Jan03, Section I.7]. However, there
is no way in general to recover a group only from the data of its tangent p-restricted Lie algebra.
Furthermore, two different algebraic groups, even two k-unipotent algebraic groups, can have
the same p-restricted Lie algebra, as for example the additive group Ga and its Frobenius
kernel αp. And many aspects of the classical theory of Lie algebras break down in positive
characteristic, see [SF88].

There is a partial group theoretic correspondence achieved by Lazard in [Laz54]. It establishes
an equivalence of categories between the category of nilpotent p-restricted Lie algebras with
order pn and nilpotency class c and the category of finite abstract p-groups with order pn and
nilpotency class c, if c < p. The key ingredient is to use the fact that the prime divisors of
the denominator of the weight n coefficients in the Baker–Campbell–Hausdorff formula only
involve primes ⩽ n. Nevertheless, as Lazard points out in his introduction: "On the other
hand, although the study of the relationship between groups and Lie algebras is still very
incomplete, we can nevertheless estimate that Lie algebras will prove insufficient, even for the
study of p-finite groups. We should therefore investigate whether other algebraic structures
could be used to construct new categories of groups."1

One of the main ideas of this paper is to try to fix these problems by replacing the notion of Lie
algebras with homotopically meaningful analogues in positive characteristic. Thus, instead
of trying to generalize Lie theory to a positive characteristic setting, we focus on generalizing
higher Lie theory, with the goal that a better behaved version of classical Lie theory might also
emerge in this framework.

Deformation theory and partition Lie algebras. While classical Lie theory breaks down over
a positive characteristic field, the notion of derived infinitesimal deformations does not. And
it still makes sense to ask whether their homotopy theory is equivalent to the homotopy the-
ory of some algebraic structure. This question was first settled by Brantner and Mathew in
[BM19]: they proved that the ∞-category of such deformation problems is equivalent to the∞-category of algebras over a monad, which they called partition Lie algebras. Let us mention
that in positive characteristic, there are two possible notions of derived infinitesimal deforma-
tions, either defined in terms of simplicial commutative algebras or in terms of E∞-algebras,
which are commutative up to homotopy algebras, and each is equivalent to a different type of
partition Lie algebras. We will only be working with E∞-infinitesimal deformation problems
and their equivalent (spectral) partition Lie algebras in this paper —the adjective spectral will
mostly be omitted from now on.

Since we want concrete algebraic objects to work with, we will consider point-set objets which,
considered up to quasi-isomorphisms, give back the ∞-category of partition Lie algebras.
Brantner, Campos and Nuiten showed that algebras over a class of operads do provide us
with these pointed-set models in [BCN21]. We make a specific choice for these point-set mod-
els for two main reasons: this choice allows us to directly apply the results of [GRiL23a], the
second is more involved and explained in Subsection 2.7. Let us give an explicit description of
these point-set models, which we call partition L∞-algebras. We consider a differential graded
k-vector space h endowed with a family of operations

1"D’autre part, si l’étude des relations entre groupes et algèbres de Lie est encore très incomplète, on peut es-
timer néanmoins que les algèbres de Lie se révéleront insuffisantes, même pour l’étude des p-groupes finis. Il
conviendrait donc de rechercher si d’autres structures algébriques pourraient permettre la construction de nou-
velles catégories de groupes." —Page 105, line 13 of [Laz54].
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{
l
(σ0,··· ,σr)
n : g⊗n −→ g

}
,

where l(σ0,··· ,σr)
n is of degree −r− 1, for all n ⩾ 2, and all r+ 1-tuples of permutations in Sn,

where r ⩾ 0 and σi ̸= σi+1 for 0 ⩽ i ⩽ r − 1. The relations satisfied by these operations
are described in Appendix A. One should understand these operations and these relations as
witnessing the fact that h is endowed with a bracket lid2 (−,−) which satisfies the Jacobi relation
and is (anti)-symmetric only up to higher homotopies, see Remark 1.3 for more details.

Main results. From now on, we work over a field k without any further assumption. The first
main goal of this paper is to develop the integration theory of absolute partition L∞-algebras,
which are, roughly speaking, partition L∞-algebras in which all formal power series of the
structural operations explained before have a well-defined image by definition. This algebraic
framework is convenient as integration theory involves many different infinite sums of oper-
ations (Maurer–Cartan equations, Baker–Campbell–Hausdorff type formulas, etc). Otherwise,
one needs to make sense of these infinite sums by imposing complete filtrations or nilpotency
conditions. Although we will not emphasize this in this introduction, we will also allow curva-
ture, as it is necessary in some arguments to work in this more general framework. In order to
do so, we build upon the ideas introduced in [RiL24] and heavily rely on the positive charac-
teristic homotopical operadic calculus developed by Le Grignou and the author in [GRiL23a].
In particular, these absolute algebras appear because they are the Koszul dual notion of E∞-
coalgebras.

Using these methods, we construct an adjunction

sSet∗ abs Lπ∞-algqp-comp
L∗

R∗

⊣

between the category of pointed simplicial sets and of absolute partition L∞-algebras. The key
ingredient is to first consider the explicit E∞-coalgebra structure on the cellular chains functor
Cc
∗(−) constructed by Berger and Fresse in [BF04]. And then to push-forward this functor along

the complete bar-cobar adjunction that links coalgebras over a suitable model for the E∞ op-
erad and absolute partition L∞-algebras. On trivial absolute partition L∞-algebras (otherwise
known as chain complexes), this adjunction coincides with the Dold–Kan correspondence.

In this adjunction, the functor R∗ is the integration functor we were looking for. We use the
results of [GRiL23a] to transfer the model structure on E∞-coalgebras where weak equiva-
lences are given by quasi-isomorphisms to qp-complete absolute partition L∞-algebras along
the complete bar-cobar adjunction, which then becomes a Quillen equivalence. Asking for
qp-completeness is a small technical assumption that amounts to requiring that the topology
induced by a canonical filtration is separated. For this model structure, the adjunction L∗ ⊣ R∗
becomes a Quillen adjunction, where we endow pointed simplicial sets with the Kan–Quillen
model structure. The following result which roughly states that R∗ is a well-behaved integra-
tion functor directly follows.

Theorem A (Theorem 2.6).
(1) For any qp-complete absolute partition L∞-algebra g, the simplicial set R∗(g) is a Kan complex.

(2) Let f : g ↠ h be a degree-wise surjection of qp-complete absolute partition L∞-algebras. Then

R∗(f) : R∗(g) ↠ R∗(h)

is a fibration of simplicial sets.

(3) The functor R∗ preserves weak equivalences. In particular, it sends any filtered quasi-isomorphism
f : g ∼−→ h of qp-complete absolute partition L∞-algebras to a weak-homotopy equivalence of
simplicial sets.
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Let g be a qp-complete absolute partition L∞-algebra and let us omit certain subtleties con-
cerning infinite sums in this introduction for simplicity’s sake. Leveraging the explicit nature
of the formulas in [BF04], we can give a combinatorial description of the simplicial set R∗(g).
The 0-simplices of R(g) are given by Maurer–Cartan elements, which are defined as elements α
in degree 0 which satisfy the following equation∑

n⩾2

lidn(α, · · · ,α) + dg(α) = 0 .

We also completely characterize 1-simplices in R(g) by explicit formulas, which correspond
to gauge equivalences between Maurer–Cartan elements. This allows us to describe π0(R(g)),
that is, the set of Maurer–Cartan elements up to gauge equivalence; when g encodes a derived
deformation problem, this set is the set of deformations up to equivalences and gives back
the underlying classical deformation problem. In this direction, we show that under a certain
homotopy completeness condition on a partition L∞-algebra, we can present at the point-set level
the derived deformation problem it encodes via our integration functor, see Proposition 2.40.

We also describe the higher homotopy groups πk(R(g), 0) at the Maurer–Cartan element 0 by
explicit formulas. An element ε of g in degree k ⩾ 1 is a representative element if it satisfies the
following equation:

dg(ε) +
∑
n⩾2

∑
w∈E(n)k.n−1
wj(1)=idSn

(−1)jklwn (ε, · · · , ε) = 0 ,

where jk = (k− 1)n(n−1)
2 and where the sum runs over all (k.n)-tuples of permutations w =

(σ0, · · · ,σk.n−1) such that for all 1 ⩽ j ⩽ k, the k-tuplewj = (σj.n, · · · ,σj.(n+1)−1) evaluated at
1 is the identity permutation of Sn. Two representative elements ε1 and ε2 are interval equivalent
if there exists an element φ in g of degree k + 1 which links the two elements via explicit
combinatorial formulas, see Definition 2.22 for more details.

Theorem B (Theorem 2.23). Let k ⩾ 1. There is a canonical natural bijection

πk(R∗(g), 0) ∼= rep(gk)/ ∼int ,

between the k-th homotopy group of R∗(g) at the Maurer–Cartan 0 and the set of representative elements
of degree k in g up to interval equivalence.

In essence, these formulas come from the explicit E∞-coalgebra structure on the reduced cellu-
lar chains on the k-sphere C̃c

∗(S
k). Similar formulas exist for the homotopy groups at the other

base points, determined by the unreduced cellular chains on the k-sphere. It is interesting
to point out that when k is a field of characteristic zero, this structure is homotopically triv-
ial; thus a representative element is just a cycle and interval equivalences reduce to common
boundaries. This coincides with Berglund’s theorem in [Ber15] which states that the homotopy
groups of the integration functor are given by the homology groups of the algebra.

By Theorem A, we know that R∗(g) is a Kan complex, thus a model for an ∞-groupoid. In-
spired by the work of [RNV20], we show that R(g) is in fact an algebraic Kan complex, where
all horn-fillers are characterized and given by explicit combinatorial formulas, see Proposition
2.30. In general, the remaining obstacle to fully compute these formulas is a full computation
of the E∞-coalgebra structure of the cellular chains on the n-simplexCc

∗(∆
n). We carry out this

computation in full detail for the case n = 2, which is the case that corresponds to the classical
Baker–Campbell–Hausdorff formula in [RNV20, Section 5.3], since it gives a formula for the
composition of paths in π1(R(g), 0), thus determines its group structure.

Let x and y be two representative elements in g1. The horn-filler product HF0(x,y) is given by
5



HF0(x,y) =
∑
m⩾0

∑
τ∈SCPTleft

m

∑
L01,12(τ)

α(τ; 01,··· ,12)γg (τ (x, · · · ,y, · · · , x, · · · ,y; x+ y)) ,

where the sum is taken over all "left-handed symmetric corked planar trees" with leaves la-
belled by either x, y or x+ y, according to the specific labelling of the tree. These trees have
vertices labelled by tuples of permutations and one sums over the composition along these
trees of the associated structure operations of g, applied to the labels of the leaves. See The-
orem 2.33 for more details on what left-handed symmetric corked planar trees are and how
these coefficients are defined. As an illustration, the first terms of this formula are given by

HF0(x,y) = x+ y− l(12)
2 (x,y) − l((123),(213))

3 (x, x,y) − l((132),(213))
3 (x, x,y)−

− l
((123),(231))
3 (x, x,y) − l((132),(231))

3 (x, x,y) + l((123),(132))
3 (x,y,y) + l((123),(312))

3 (x,y,y)

+ l
((123),(321))
3 (x,y,y) + l((213),(132))

3 (x,y,y) + l((231),(132))
3 (x,y,y)+

+ l
((123),(231))
3

(
l
(12)
2 (x,y), x,y

)
+ l

((132),(231))
3

(
l
(12)
2 (x,y), x,y

)
+ · · ·

In particular, all the coefficients in this sum are±1, hence it is well-defined in any characteristic.

Any absolute partition L∞-algebra can be restricted to an absolute L∞-algebra, see Subsection
2.7. An interesting case where this formula can be applied is given by nilpotent partition L∞-
algebras concentrated in degree 1, since their restriction gives a nilpotent Lie algebra seen as
an absolute L∞-algebra in degree 1 (we are working with shifted structures, otherwise it would
sit in degree 0). For examples, see Examples 2.36 and 2.47.

Theorem C (Theorems 2.34 and 2.45). Let g be a nilpotent partition L∞-algebra concentrated in
degree 1.

(1) The simplicial set R∗(g) is isomorphic to the classifying space of the group(
g, HF0(−,−), 0

)
,

which is a nilpotent group.

(2) If k is a field of characteristic zero, there is an isomorphism of groups(
g, HF0(−,−), 0

)
∼=
(
g, BCH(−,−), 0

)
,

between the nilpotent group obtained with the horn-filler product and the exponential group
obtained from the underlying nilpotent Lie algebra of g using the Baker–Campbell–Hausdorff
formula.

However, let us mention that unlike in characteristic zero, an absolute partition L∞-algebra
does not need to be concentrated in degree 1 to produce a classifying space, as can be seen
from Theorem B. The horn-filler product, applied to two representative elements still produces
a representative element which, up to interval equivalence, corresponds to their product in
the first homotopy group. There is a more general comparison statement given by Proposi-
tion 2.44, which says that under the appropriate induction/restriction functors, the integration
functor we have defined is naturally weakly equivalent to the one defined in [RiL24], and thus
to [Get09] and [RNV20] under the appropriate hypothesis. In particular, one can apply the in-
duction functor to any nilpotent Lie algebra in degree 1 and then apply the integration functor
constructed here: it gives a space weakly equivalent to the classifying space of its exponen-
tial group, where the product on the first homotopy group is determined by the formula for
the horn-filler product. Thus, in characteristic zero, equivalences mentioned before between
nilpotent Lie algebras and types of groups could be "translated" to equivalences with certain
nilpotent partition L∞-algebras, perhaps no longer restricted in degree 1. Understanding if
similar statements hold in positive characteristic shall be the subject of future research.
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Applications to p-adic homotopy theory. The second main goal of this paper is to apply the
constructions performed so far to the study of p-adic homotopy types, like [BFMT20, RNV20,
RiL24] in the characteristic zero case, using the left adjoint functor L∗. For that, we fix k to be
an algebraically closed field of characteristic p and we use Koszul duality to dualize Mandell’s
results in [Man01].

Theorem D (Theorem 3.5). Let X be a pointed connected finite type nilpotent simplicial set. The unit
of adjunction

ηX : X ∼−→ R∗L∗(X)

is an Fp-equivalence.

The relationship between these models and Mandell’s work then becomes akin to the relation-
ship that links Quillen’s models using Lie algebras and Sullivan’s models using commutative
algebras in rational homotopy theory. However, it should be noted that we first consider abso-
lute partition L∞-algebras up to transferred weak equivalences from E∞-coalgebras and not
up to quasi-isomorphisms, and thus that with these weak equivalences, they present the same
underlying ∞-category as their Koszul dual E∞-coalgebras. This is consistent with Lurie’s
result in [Lur11b] which states that cochains on spaces are formally étale over a positive char-
acteristic field: indeed, up to comparison results, this entails that the models considered here
are in fact acyclic.

Nevertheless, we can leverage Theorem B to define another notion of weak equivalence on
absolute partition L∞-algebras, which is this time transferred from pointed simplicial sets via
the adjunction L∗ ⊣ R∗. We show that absolute partition L∞-algebras admit a model struc-
ture with these equivalences in Theorem 3.22 and that the resulting ∞-category is a coreflec-
tive ∞-subcategory of that of E∞-coalgebras. Since these equivalences coincide with quasi-
isomorphisms in degrees ⩾ 1 when k is a field of characteristic zero, the question remains on
whether the ∞-category described by this model structure is the ∞-category of algebras over
some ∞-categorical monad in general.

A new combinatorial description of the homotopy groups of the p-completed spheres. Let
Sm be the m-sphere and let (Sm)Fp

denote its p-completion. Then it follows from Theorem D
that, for every k ⩾ 1, there is a an isomorphism of groups

πk((S
m)Fp

, ∗) ∼= πk(R∗L∗(S
m), 0) ,

and it follows from Theorem B that these latter homotopy groups admit a description in terms
of representative elements of degree k in L∗(S

m) up to interval equivalences. See Theorem
3.17 for the general statement. In this case, the absolute partition L∞-algebra L∗(S

m) can be
fully determined: as a graded vector space, it admits a basis given by symmetric rooted trees
with leaves labelled by the single generator of C̃c

∗(S
m) by Lemma 1.11, and all the terms of

the differential can be computed by Lemma 2.19. The structural operations act by grafting the
corresponding trees. So computing representative elements and determining when they are
interval equivalent reduces to a purely combinatorial problem, albeit not an easy one.

This gives a new way to try to compute these homotopy groups, which are at the heart of
algebraic topology. Furthermore, it should be possible to plug these equations into a computer,
using for instance the Python computer package developed in [MM21]. Finding representative
elements by hand is not obvious, and thus pushing the computational aspects of these results
is beyond the scope of the present paper.

Mapping spaces. Finally, using the theory of mapping coalgebras developed by Le Grignou
in [Gri22, Gri24], we construct models for p-adic mapping spaces. Note that we work in the
more general curved setting to get unpointed mapping spaces.
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Theorem E (Theorem 3.27). Let g be a qp-complete curved absolute partition L∞-algebra and let X
be a simplicial set. There is a weak equivalence of Kan complexes

Map(X,R(g)) ≃ R (hom(Cc
∗(X), g)) ,

which is natural in X and in g, where hom(Cc
∗(X), g) denotes the convolution curved absolute partition

L∞-algebra. Furthermore, it is possible to replace the cellular chains Cc
∗(X) by the homology H∗(X) to

obtain a smaller model, meaning that there is a weak equivalence of Kan complexes

Map(X,R(g)) ≃ R (hom(H∗(X), g)) ,

which is now only natural in g.

So when one takes g to be a model for the p-completion of a space Y, Theorem E gives a
model for the mapping space of X into the p-completion of Y, without any hypotheses on the
source. To the best of our knowledge, this is the first "algebraic" model for such mapping
spaces, which were extensively studied in relationship with the Sullivan conjecture in [Mil84,
Car91, LS86, Lan92]. These authors usually work at the level of power operations, that is, they
compute the homotopy type of such mapping spaces using the unstable coalgebra structure on
the homology of spaces, either by spectral sequences arguments (the unstable Adams’ spectral
sequence of Bousfield and Kan in [BK71]) or by algebraic construction at that level (Lannes’
T -functor). The model constructed in Theorem E can be thought of as a lift from the power
operations level to the "algebraic" level of some of these constructions. In particular, applying
Theorem B to the convolution algebra hom(H∗(X), g) gives a combinatorial presentation of the
information in the unstable Adams’ spectral sequence.

Acknowledgments. It is my pleasure to thank Lukas Brantner, Ricardo Campos, Mario Fuentes
Rumí, Najib Idrissi, Brice Le Grignou, Joost Nuiten, Daniel Robert-Nicoud, Jérôme Scherer,
Bruno Vallette and Felix Wierstra for stimulating conversations about these and related topics.
I would also like to thank Jérôme Scherer for useful comments on a draft version.

Conventions. Let k be a field. In this paper, we will work with two different base categories.
The standard base category of differential graded (dg) k-modules, and the lager base category
of pre-differential graded (pdg) k-modules. A pre-differential graded k-module is the data of a
graded k-module together with a degree −1 endomorphism. We work with the homological con-
vention in both cases. Differential graded k-modules are a full subcategory of pre-differential
graded k-modules. Both categories form symmetric monoidal categories endowed with the
tensor product of graded k-modules together with the Koszul sign rule, where the unit is
given by k concentrated in degree 0. We will omit the prefix k when referring to k-modules
from now on.

Let C be a category and let W be a class of arrows in C. We will denote C [W−1] the ∞-category
obtained by localizing C at W. When working at the ∞-categorical level, limits and colimits
should be understood as meaning homotopy limits and colimits. Given a Quillen adjunction
between model categories, we will add the prefixes L or R for the left (resp. right) derived
functors.

1. ABSOLUTE PARTITION L∞-ALGEBRAS

The goal of this section is to introduce absolute partition L∞-algebras. They are the absolute
analogues of partition L∞-algebras, which are explicit point-set models for the (spectral) parti-
tion Lie algebras introduced in [BM19]. Roughly speaking, absolute types of algebras are types
of algebraic structures where infinite sums of structural operations have a well-defined image
by definition. For an introduction to this type of algebraic structures, we refer to [RiL22].
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1.1. Explicit models for partition Lie algebras. Formal moduli problems, defined over Ar-
tinian E∞-algebras, encode infinitesimal deformations in the context of spectral algebraic ge-
ometry, see [Lur18b, Part IV]. Brantner–Mathew showed in [BM19] that the ∞-category of such
formal moduli problems is equivalent to the ∞-category of algebras over an ∞-categorical
monad; these algebras are called (spectral) partition Lie algebras. Later, Brantner–Campos–
Nuiten proved in [BCN21] that this ∞-category admits presentations by point-set models lo-
calized at weak equivalences. The goal of this subsection is to introduce a particular choice of
point-set models; this choice is motivated by the homotopical operadic calculus developed in
[GRiL23a] and also by considerations explained in Subsection 2.7.

Let us denote by E the the dg Barratt–Eccles operad of [BF04] and by Enu its reduced version
(meaning Enu(0) = 0). The operadic bar construction BEnu of Enu forms a conilpotent dg
cooperad. Its linear dual (BEnu)∗ is a dg operad, which is isomorphic to Ω(Enu)∗, the cobar
construction on the linear dual cooperad of Enu.

Definition 1.1 (Partition L∞-algebra). A partition L∞-algebra (h,γh,dh) amounts to the data of
a dg module (h,dh) together with a dgΩ(Enu)∗-algebra structure

γh :
⊕
n⩾1

Ω(Enu)∗(n)⊗Sn
h⊗n −→ h .

Notation 1.2. If there is no ambiguity, we will often drop the adjective spectral when referring
to ∞-categorical partition Lie algebras or to their point-set models, as we will not deal with
the simplicial version in this paper. We will also refer to partition L∞-algebras as Lπ∞-algebras
sometimes.

The data of the structural morphism γh is equivalent to the data of a family of operations{
l
(σ0,··· ,σr)
n : h⊗n −→ h

}
,

where l(σ0,··· ,σr)
n is of degree −r− 1, for all n ⩾ 2, and all r+ 1-tuples of permutations in Sn,

where r ⩾ 0 and σi ̸= σi+1 for 0 ⩽ i ⩽ r − 1. These operations are subject to relations,
imposed by the differential of the operad Ω(Enu)∗. This differential is partially determined by
the cooperad structure (Enu)∗, which is quite hard to compute; we refer to Appendix A for
more details.

REMARK 1.3. Notice that a shifted L∞-algebra is the data of a family of symmetric operations{
ln : h⊙n −→ h

}
of degree −1, for all n ⩾ 2, which satisfy some compatibility conditions. In a partition L∞-
algebra, the structural operations are no longer symmetric. Operations labelled by r+ 1-tuples
of distinct permutations in Sn can be interpreted as higher coherences for this lack of sym-
metry of the operations lidn , labelled by the identity permutations. Notice, however, that these
homotopies compute derived invariants and not derived coinvariants.

Proposition 1.4 ([BCN21, Proposition 4.34]). The category of partition L∞-algebras admits a cofi-
brantly generated semi-model structure determined by the following classes of morphisms

(1) weak equivalences are given by quasi-isomorphisms,
(2) fibrations are given by degree-wise epimorphisms,
(3) cofibrations are determined by the left-lifting property.

Proof. Follows from the fact that the underlying dg S-module of Ω(Enu)∗ is cofibrant in the
tame model structure of dg S-modules. We refer to [BCN21, Chapter 4] for more details. □

The category of Lπ∞-algebras, localized at quasi-isomorphisms, presents the ∞-category of par-
tition Lie algebras in the sense of [BM19].
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Theorem 1.5 ([BCN21, Theorem 4.47]). There is an equivalence of ∞-categories

Lπ∞-alg [Q.iso−1] ∼−→ AlgLieπ(Modk) ,

between the ∞-category of partition L∞-algebras localized at quasi-isomorphisms and the ∞-category
of (spectral) partition Lie algebras in the ∞-category of dg modules.

REMARK 1.6. Let O be an E∞-operad, that is, any S-projective resolution of the operad Com.
Then dg (BO)∗-algebras admit a semi-model structure, which localized at quasi-isomorphisms
also presents the ∞-category of partition Lie algebras. For instance, the surjections operad also
provides us with point-set models for partition L∞-algebras, as in [BCN21, Definition 4.46]. As
to why we do not work with this particular model, see Subsection 2.7.

REMARK 1.7. As a particular case of the results in [GRiL23b], one can directly show that the ∞-
category of formal moduli problems defined over E∞-algebras is equivalent to the ∞-category
of this point-set version partition L∞-algebras localized at quasi-isomorphisms, without re-
sorting to their ∞-categorical definition.

1.2. Absolute partition L∞-algebras. In this subsection, we introduce the absolute version of
partition L∞-algebras. These can be considered the positive characteristic analogues of the
absolute L∞-algebras introduced in [RiL24]. Absolute types of algebras appear when one con-
siders algebras over the dual cooperad instead of algebras over the operad; here we consider
algebras over the cooperad BEnu. We also give an explicit algebraic description of this struc-
ture.

Definition 1.8 (Absolute partition L∞-algebra). An absolute partition L∞-algebra g amounts the
data (g,γg,dg) of a dg BEnu-algebra.

REMARK 1.9. For the definition of an algebra over a cooperad, introduced in [GL22], see for
instance [GL22, Section 3], [RiL22, Section 1] or [GRiL23a, Section 3].

Let us make this definition more explicit. An absolute Lπ∞-algebra structure on a dg module
(g,dg) amounts to the data of a structural morphism

γg :
∏
n⩾1

HomSn

(
BEnu(n), g⊗n

)
−→ g ,

which satisfies the following conditions: it is compatible with the differentials and it satisfies
the associativity condition of an algebra over a monad, which is given by the left-hand side
endofunctor. Unlike algebras over an operad, this monad involves a product over the arity
instead of a direct sum.

Lemma 1.10. Let (g,dg) be a dg module. There is an isomorphism of dg modules∏
n⩾1

HomSn

(
BEnu(n), g⊗n

)
∼=

∏
n⩾1

Ω(Enu)∗(n)⊗Sn
g⊗n ,

natural in g.

Proof. There is an isomorphism of dg modules

HomSn

(
BEnu(n), g⊗n

)
∼=
(
Ω(Enu)∗(n)⊗ g⊗n

)Sn ,

since BEnu(n) is a degree-wise finite dimension bounded below dg module. Furthermore,
there is an isomorphism(

Ω(Enu)∗(n)⊗ g⊗n
)Sn ∼= Ω(Enu)∗(n)⊗Sn

g⊗n ,

given by the norm map, sinceΩ(Enu)∗(n) is a quasi-free dg Sn-module for alln ⩾ 0 (meaning it
is a degree-wise free Sn-module). See [GRiL23a, Section 1.2] for more details on quasi-freeness.

□
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A symmetric rooted tree is a rooted tree where vertices have at least two incoming edges and
where each vertex v is labelled by a (rv + 1)-tuple (σ0, · · · ,σrv) of permutations σj in SIn(v),
where In(v) is the number of incoming edges of v and rv is an integer rv ⩾ 0. We ask that
σi ̸= σi+1 for all 0 ⩽ i ⩽ rv − 1. The degree deg(τ) of a symmetric rooted tree τ is given by

deg(τ) :=
∑

v∈V(τ)

rv + 1 ,

where V(τ) is the set of all vertices of τ. We denote SRTδ the finite set of symmetric rooted
trees of degree δ, where δ ⩾ 0. The arity of a symmetric corked rooted tree is the number of
leaves. We denote by SRTδ

n the set of symmetric rooted trees of degree δ and of arity n. In
summary, these are rooted trees labelled by elements in the Barratt–Eccles operad; they form a
vector basis of the S-module BEnu(n).

We will denote by c(σ0,··· ,σr)
n the n-corolla labelled by (σ0, · · · ,σr). Weight one symmetric

rooted trees are given by n-corollas labelled by a single permutation σ in Sn. The only sym-
metric rooted tree of weight (and of degree) 0 is the trivial tree of arity one with zero vertices.

Lemma 1.11. Let g be a graded module with a basis {gb | b ∈ B} . The graded module∏
n⩾1

Ω(Enu)∗(n)⊗Sn
g⊗n

admits a vector basis given by formal power series of linear combinations of symmetric rooted trees with
leaves labelled by the basis elements of g. That is, elements of the form∑

n⩾1

∑
δ⩾0

∑
τ∈SRTδ

n

∑
j∈Iτ

λ
(j)
τ τ

(
g
(j)
i1

, · · · ,g(j)in

)
,

where Iτ is a finite set, λτ is a scalar in k and (i1, · · · , in) is in Bn. Here τ(gi1 , · · · ,gin) refers to the
symmetric rooted tree τ with input leaves decorated by the elements τ(gi1 , · · · ,gin). The homological
degree of τ(gi1 , · · · ,gin) is given by

∑
j deg(gij) − deg(τ), where deg(τ) is the degree of τ defined

above.

Proof. It follows by direct inspection from the description ofΩ(Enu)∗(n) in terms of symmetric
rooted trees, since it is the linear dual of BEnu. □

Let (g,dg) be a dg module. Let us describe the differential on the dg module∏
n⩾1

Ω(Enu)∗(n)⊗Sn
g⊗n .

It is given by the sum of three terms d1, d2 and d3. Let us describe their image on a symmetric
rooted tree τ(gi1 , · · · ,gin) with leaves labelled by elements in g; their images on a formal power
series of such trees is obtained by the formal sum of their images on each tree.

(1) The first term d1 is given by the sum

d1(τ(gi1 , · · · ,gin)) =
n∑
j=1

(−1)ϵ τ
(
gi1 , · · · ,dg(gij), · · · ,gin

)
,

where the sign ϵ =
∑j−1

k=1 |gik | is determined by the Koszul sign rule.

(2) The second term d2 is determined by its image on n-corollas c(σ0,··· ,σr)
n , as it corre-

sponds to the differential on (Enu)∗ (the linear dual of the differential in [BF04]). For
such a corolla, it is given by

d2

(
c
(σ0,··· ,σr)
n (gi1 , · · · ,gin)

)
=

r∑
i=0

(−1)i
∑
σ∈Sn

σ ̸=σi−1,σi

c
(σ0,··· ,σ,··· ,σr)
n (gi1 , · · · ,gin) ,

11



where the first sum is taken over all σ in Sn which are different from the permutation
σi−1 right before and the permutation σi right after, since σ is added in the i-th spot.
Equivalently, one can sum over all permutations σ in Sn and declare that any resulting
tuple with two equal consecutive permutations is sent to zero. The value on a general
tree τ(gi1 , · · · ,gin) is given by the sum over all vertices of τ of the above image, together
with the appropriate sign.

(3) The third term d3 is induced by the partial decompositions maps of partial cooperad
(Enu)∗. Applied to a corolla labelled by (σ0, · · · ,σrv), it gives a sum of symmetric rooted
trees with two vertices v(1) and v(2), labelled by all the possible partial decompositions
of the operation (σ0, · · · ,σrv) inside (Enu)∗. The corolla v(2) lies on the i-th input of v(1)

precisely when the partial decomposition ∆i has been applied to (σ0, · · · ,σrv).

In general, the term d3 is the sum over all the vertices of a symmetric rooted tree
of the previous rule on corollas. For more concrete formulas of the partial decompo-
sitions of (Enu)∗, see the Appendix A. All the previous sums involve signs which are
determined by the Koszul sign rule.

REMARK 1.12 (The norm isomorphism). Let us describe the isomorphism induced by the norm
map in Lemma 1.10. It is given by

N : Ω(Enu)∗(n)⊗Sn
g⊗n HomSn

(
BEnu(n), g⊗n

)
τ(g1, · · · ,gn)

∑
σ∈Sn

[
ev(g

σ−1(1),··· ,g
σ−1(n)

)(σ • τ) : σ • τ 7→ gσ−1(1) ⊗ · · · ⊗ gσ−1(n)

]
.

where ev(g1,··· ,gn)(τ) is a Dirac function which is zero everywhere, except on τ, where its value
is given by g1 ⊗ · · · ⊗ gn. This allows us to pass from one presentation to the other. For exam-
ple, this morphism is given on corollas labelled by w = (σ0, · · · ,σr) as:

N (cwn (g1, · · · ,gn)) =
∑
σ∈Sn

[
ev(g

σ−1(1),··· ,g
σ−1(n)

) (c
σ.w
n ) : cσ.w

n 7→ (gσ−1(1), · · · ,gσ−1(n))
]

,

where σ.w is given by (σ.σ0, · · · ,σ.σr).

Structural data. The structural data of an absolute Lπ∞-algebra structure thus amounts to the
data of a map of dg modules

γg :
∏
n⩾1

Ω(Enu)∗(n)⊗Sn
g⊗n −→ g ,

which sends any formal power series of the form∑
n⩾1

∑
δ⩾0

∑
τ∈SCRTδ

n

∑
i∈Iτ

λ
(i)
τ τ

(
g
(i)
i1

, · · · ,g(i)in

)
to a well-defined image

γg

∑
n⩾1

∑
δ⩾0

∑
τ∈SCRTδ

n

∑
i∈Iτ

λ
(i)
τ τ

(
g
(i)
i1

, · · · ,g(i)in

) ,

in the dg module g. This does not presuppose an underlying topology on g.

The elementary operations induced by the structural map γg are the following family of opera-
tions {

l
(σ0,··· ,σr)
n := γg

(
c
(σ0,··· ,σr)
n (−, · · · ,−)

)
: g⊗n −→ g

}
,

where l(σ0,··· ,σr)
n is of degree −r− 1, for all n ⩾ 2, and all r+ 1-tuples of permutations in Sn,

where r ⩾ 0 and σi ̸= σi+1 for 0 ⩽ i ⩽ r− 1. Recall that cn stands for the n-corolla.
12



Quasi-planar completeness. The conilpotent dg cooperad BEnu is a quasi-planar conilpotent dg
cooperad, and therefore it admits a canonical filtration, called the quasi-planar filtration. This
filtration can be considered an analogue of the coradical filtration in a positive characteristic
setting. We refer to [GRiL23a, Subsection 2.6] for the definition of a quasi-planar cooperad, to
[GRiL23a, Subsection 2.7] for the proof that BEnu is quasi-planar and to [GRiL23a, Subsection
2.10] for the definition of the canonical quasi-planar filtration of a quasi-planar cooperad.

The quasi-planar filtration on BEnu an exhaustive filtration

0 ↪→ F0BEnu ↪→ F1BEnu ↪→ F2BEnu ↪→ · · · ↪→ colim
δ

FδBEnu ∼= BEnu ,

where FδBEnu is the conilpotent sub-cooperad that contains symmetric rooted trees of degree
at most δ. This filtration induces a canonical filtration on any absolute Lπ∞-algebra, which we
call the qp-filtration.

Let g be a absolute Lπ∞-algebra, its qp-filtration Wδg is defined as the following pushout∏
n⩾1

HomSn

(
BEnu(n), g⊗n

) ∏
n⩾1

HomSn

(
FδBEnu(n), g⊗n

)

g Wδg ,

πδ

⌜

γg

where πδ is the projection induced by the inclusion FδBEnu ↪→ BEnu. By Lemmas 1.10 and 1.11,
it can be computed that

Wδg = Im

γg|Wδ :
∏
n⩾0

WδΩ(Enu)∗(n)⊗Sn
g⊗n −→ g

 ,

for any δ ⩾ 0, where WδΩ(Enu)∗ is the sub-dg-S-module of symmetric rooted trees of degree
greater or equal to δ. An element g in g is of weight δ0, meaning it is in Wδ0g, if and only if it
can be written as

g = γg

∑
δ⩾δ0

∑
τ∈SCRT(δ)

λττ(gi1 , · · · ,gin)

 .

Each step of the qp-filtration Wδg is an ideal of g, meaning g/Wδg has an unique absolute
Lπ∞-algebra structure induced by the structure of g. For example, g/W1g is a dg module with
a trivial absolute Lπ∞-algebra structure, given by the generators of g. We refer to [GRiL23a,
Section 3.6] for more details on qp-filtrations.

Definition 1.13 (Qp-complete absolute Lπ∞-algebra). Let (g,γg,dg) be an absolute Lπ∞-algebra.
It is qp-complete if the canonical map

φg : g ↠ lim
δ

g/Wδg

is an isomorphism of absolute Lπ∞-algebras.

REMARK 1.14. The map φg is always an epimorphism, see [GRiL23a, Lemma 29]. Thus being
qp-complete essentially means that the topology induced by the canonical filtration is sepa-
rated.

Qp-complete absolute Lπ∞-algebras form a reflexive full sub-category of absolute Lπ∞-algebras,
where the reflector is given, for an absolute Lπ∞-algebra g, by the completion

ĝ := lim
δ

g/Wδg .
13



In general, we will restrict to qp-complete absolute Lπ∞-algebras, as they are algebraically and
homotopically better behaved.

Comparison functors. We can compare absolute Lπ∞-algebras with Lπ∞-algebras via the fol-
lowing adjunction.

Lemma 1.15. There is an adjunction

Lπ∞-alg abs Lπ∞-alg
Ab

Res

⊣

between the category of absolute Lπ∞-algebras and the category of Lπ∞-algebras, where the right adjoint
Res is given by restricting the structure to the elementary operations.

Proof. The canonical inclusion map of monads

ι :
⊕
n⩾1

Ω(Enu)∗(n)⊗Sn
(−)⊗n −→

∏
n⩾1

Ω(Enu)∗(n)⊗Sn
(−)⊗n ,

induces an adjunction between their respective categories of algebras. The restriction along
this morphism of the structure map of an absolute Lπ∞-algebra is given by the elementary
operations. □

Definition 1.16 (Nilpotent partition L∞-algebra). Let (h,γh,dh) be a Lπ∞-algebra. It is nilpotent
if the structural morphism

γh :
⊕
n⩾1

Ω(Enu)∗(n)⊗Sn
h⊗n −→ h .

factors through

γh :

k⊕
n⩾1

FδΩ(Enu)∗(n)⊗Sn
h⊗n −→ h

for some k ⩾ 1 and some δ ⩾ 0, where FδΩ(Enu)∗ is the sub-operad containing only symmetric
rooted trees of degree ⩽ δ.

REMARK 1.17. One can define a lower central series for partition L∞-algebras, in an analogue
way to [Get09, Definition 4.2]. Being arity-nilpotent amounts to this lower central series termi-
nating. Nevertheless, arity-nilpotency does not imply weight-nilpotency in this case, as there are
operations of arbitrarily high weight in each arity, and vice-versa. Our notion of nilpotency
requires both being arity-nilpotent and weight-nilpotent.

Any nilpotent partition L∞-algebra is a qp-complete absolute partition L∞-algebra. In fact,
the restriction functor of Lemma 1.15 is fully faithful on nilpotent partition L∞-algebras, and
the adjunction restricts to an equivalence on nilpotent objects.

REMARK 1.18 (Pro-nilpotent partition L∞-algebras). Since qp-complete absolute partition L∞-
algebras are stable under limits, which are computed in the ground category of dg modules,
any limit of nilpotent partition L∞-algebras is again a qp-complete absolute partition L∞-
algebra. In particular, any pro-nilpotent partition L∞-algebras is.

Maurer–Cartan elements. Finally, we define the analogue of the Maurer–Cartan equation for
absolute Lπ∞-algebras.

Definition 1.19 (Maurer–Cartan equation). Let (g,γg,dg) be an absolute Lπ∞-algebra. A Maurer–
Cartan element α is an element in g of degree 0 which satisfies the following equation

γg

∑
n⩾2

cid
n(α, · · · ,α)

+ dg(α) = 0 .

The set of Maurer–Cartan elements in g is denoted by MC(g) .
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REMARK 1.20. Let g be a qp-complete absolute Lπ∞-algebra. If α is in weight 1, the above
sum splits as the corresponding infinite sum, in g, of the elementary operations indexed by the
identity permutation applied to α, by qp-completeness.

1.3. Curved absolute partition L∞-algebras. Finally, we introduce the more general notion of
a curved absolute partition L∞-algebra. Absolute partition L∞-algebras, like their L∞ counter-
parts, are pointed, in the sense that the element 0 is always a Maurer–Cartan element. One can
think of curved absolute Lπ∞-algebras as the unpointed version of this structure, where adding
a distinguished element, called the curvature, prevents 0 from being a Maurer–Cartan element.
We refer to the introduction of [RiL24] for more details about the curved setting. The goal of
this subsection, parallel to Subsection 1.2, is to make the definition of curved absolute partition
L∞-algebras explicit.

We start by considering the dg operad E, which is the unital version of the Barratt-Eccles dg
operad, meaning that E(0) = k. This dg operad is no longer augmented, hence we cannot
perform the classical operadic bar construction on E. We consider instead the conilpotent
curved cooperad Bs.aE, where Bs.a stands for the semi-augmented bar construction of [HM12].
See also [RiL24, Appendix] for more details about this bar construction.

A vector basis of Bs.aE is given by symmetric corked rooted trees. A symmetric corked rooted
tree is a rooted tree where vertices either have at least two incoming edges or zero incoming
edges. Vertices with zero incoming edges are called corks. Each vertex with at least two in-
coming edges is labelled by a rv + 1-uple (σ0, · · · ,σrv), where σj is an element of SIn(v), where
rv ⩾ 0, and where σi ̸= σj for i ̸= j. The degree deg(τ) of a symmetric corked rooted tree τ is
given by

deg(τ) := Cork(τ) +
∑

v∈V(τ)

rv + 1 ,

where Cork(τ) is the number of corks of τ and where V(τ) is the set of all vertices of τ. The
arity of a tree is given by the number of leaves and the weight by the number of vertices
(including the corks). We denote SCRTω

n denote the set of symmetric corked rooted trees of
arity n and with ω internal edges. Notice that any symmetric rooted trees are included in
symmetric corked rooted trees.

Lemma 1.21.
(1) The conilpotent curved cooperad Bs.aE is quasi-planar.

(2) Its canonical quasi-planar filtration is given by

0 ↪→ F0Bs.aE ↪→ F1Bs.aE ↪→ F2Bs.aE ↪→ · · · ↪→ colim
δ

FδBs.aE ∼= Bs.aE ,

where FδBs.aE is the conilpotent curved sub-cooperad containing symmetric corked rooted trees
of degree at most δ.

Proof. The analogue of this result for BE is proven in [GRiL23a, Section 2.7], and it holds mu-
tatis mutandis for the semi-augmented bar construction as well. Let us explain why it is quasi-
planar: the filtration induced by considering only symmetric corked rooted trees of degree ⩽ δ
induces an ω-ladder of conilpotent curved cooperads whose colimit is Bs.aE. The underlying
conilpotent graded cooperads of each step of the filtration is clearly planar and the differential
simply vanishes on the associated graded, hence it is a quasi-planar filtration. The canonical
quasi-planar filtration is induced by the E-comodule structure of ΩBs.aE, which can be explic-
itly computed like in [GRiL23a, Proposition 16] and coincides with the above filtration. □

WARNING 1.22. When considering curved structures, we will work over the base category
of pre-differential (pdg) modules, which are graded modules with a degree −1 endomorphism
which does not necessarily square to zero.
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Definition 1.23 (Curved absolute partition L∞-algebra). A curved absolute partition L∞-algebra
g amounts the data (g,γg,dg) of a curved Bs.aE-algebra.

Structural data. A curved absolute Lπ∞-algebra structure on a pdg module (g,dg) amounts to
the data of a structural morphism

γg :
∏
n⩾0

HomSn

(
Bs.aE(n), g⊗n

)
−→ g ,

which satisfies the conditions of a curved algebra over a curved cooperad. These amount to
a compatibility condition with the pre-differentials, the associativity condition of an algebra
over a monad and finally a compatibility condition with the curvature of the cooperad. We
refer to [GRiL23a, Section 3.2] for more details.

The linear dual dg operad of Bs.aE is given by Ω̂s.aE∗, the semi-coaugmented cobar construction
of the linear dual of E∗, see [RiL24, Appendix]. This dg operad admits a linear basis given
by formal power series of symmetric corked rooted trees. Like in Lemma 1.10, there is an
isomorphism of pdg modules∏

n⩾0

HomSn

(
Bs.aE(n), g⊗n

)
∼=

∏
n⩾0

Ω̂s.aE∗(n) ⊗̂Sn
g⊗n .

where ⊗̂ denotes the completed tensor product, defined as

Ω̂s.aE∗(n) ⊗̂Sn
g⊗n := lim

δ

(
FδΩ̂

s.aE∗(n)⊗Sn
g⊗n

)
where FδΩ̂s.aE∗ refers to the sub dg-operad which only involves symmetric corked rooted trees
of degree ⩽ δ. The previous isomorphism follows from the fact that this later dg sub-operad is
arity-wise finite dimensional and quasi-planar.

The structural data of a curved absolute Lπ∞-algebra structure can thus be rewritten as a map

γg :
∏
n⩾0

Ω̂s.aE∗(n) ⊗̂Sn
g⊗n −→ g .

The product on the left hand side admits a linear basis given by formal power series of symmet-
ric corked rooted trees decorated by elements of g, similar to Lemma 1.11. Thus this structural
morphism sends any formal power series of the form∑

n⩾0

∑
δ⩾0

∑
τ∈SCRTδ

n

∑
i∈Iτ

λ
(i)
τ τ

(
g
(i)
i1

, · · · ,g(i)in

)
to a well-defined image

γg

∑
n⩾0

∑
δ⩾0

∑
τ∈SCRTδ

n

∑
i∈Iτ

λ
(i)
τ τ

(
g
(i)
i1

, · · · ,g(i)in

) ,

in the pdg module g.

The elementary operations induced by the structural map γg are defined in the same way as for
absolute Lπ∞-algebras, namely by restricting the structural morphism to corollas. In the curved
case, there is an extra elementary operation l0 : k −→ g called the curvature, induced by the
image of the single cork by the structural morphism γg.

Curved condition. The structural map γg needs to satisfy associativity and a compatibility
with the pre-differential conditions that are analogous to those explained in [RiL24, Section 1].
Furthermore, in order to form a curved absolute Lπ∞-algebra structure, the following equation
on the elementary operations

(1) d2
g(g) = l

(12)
2 (l0,g) + l(21)

2 (l0,g) ,
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needs to hold. This equation comes precisely from the requirement that the pdg Bs.aE-algebra
structure on g needs to be compatible with the curvature of the conilpotent curved cooperad,
that is, the diagram in [GRiL23a, Definition 44] needs to commute.

Quasi-planar completeness. We make the same definitions as in Subsection 1.2, using the
quasi-planar filtration of Bs.aE. The δ-stage of the canonical filtration on a curved absolute Lπ∞-
algebra is given by the image by the structural morphism of formal power series which only
involve symmetric corked rooted trees of degree equal or higher than δ, for δ ⩾ 0. Mutatis
mutandis, the same results hold for this canonical filtration as in the previous subsection. See
[GRiL23a, Sections 3.6 and 3.7] for the general case.

Comparison with absolute Lπ∞-algebras. Absolute Lπ∞-algebras are particular examples of
curved absolute Lπ∞-algebras, where the curvature l0 is zero.

Proposition 1.24. There is an adjunction

curv abs Lπ∞-alg abs Lπ∞-alg ,
(−)∗

U
⊣

between curved absolute Lπ∞-algebras and absolute Lπ∞-algebras, where the functor U is fully faithful.
The essential image of U is given by curved absolute Lπ∞-algebras such that the curvature l0 is zero.

Proof. The canonical inclusion of dg operads Enu ↪→ E induces an inclusion of conilpotent
curved cooperads BEnu ↪→ Bs.aE (any dg cooperad is a curved cooperad with zero curvature).
This morphism induces the above adjunction. It is straightforward to check that U is fully
faithful and to identify its essential image. □

Maurer–Cartan equation. Let (g,γg,dg) be a curved absolute Lπ∞-algebra. A Maurer–Cartan
element α is an element in g of degree 0 which satisfies the following equation

γg

 ∑
n⩾0, n ̸=1

cid
n(α, · · · ,α)

+ dg(α) = 0 .

Notice that this equation now involves the curvature in arity zero, thus 0 is not automatically
a Maurer–Cartan element. When the curvature is zero, it specifies to the Maurer–Cartan equa-
tion in the previous subsection.

1.4. Model structures. The goal of this subsection is to endow the category of qp-complete
curved absolute Lπ∞-algebras with a model category structure, transferred from their Koszul
dual coalgebras, which are non-necessarily conilpotent homotopy counital cocommutative
coalgebras. Specifically, they are coalgebras over the dg operad ΩBs.aE, which we will de-
note by uEE∞. We perform the same constructions in the non-curved/non-counital case, and
compare their homotopy theories.

Proposition 1.25. There is a model structure on the category of uEE∞-coalgebras, left-transferred
along the cofree-forgetful adjunction

dg mod uEE∞-coalg ,
C(uEE∞)(−)

U

⊣

where
(1) the class of weak equivalences is given by quasi-isomorphisms,
(2) the class of cofibrations is given by degree-wise monomorphisms,
(3) the class of fibrations is given by right lifting property with respect to acyclic cofibrations.

Proof. By Lemma 1.21, Bs.aE is a quasi-planar curved conilpotent cooperad. Therefore the dg
operadΩBs.aE is cofibrant in the semi-model category of [Fre09] by [GRiL23a, Proposition 11].
And any cofibrant dg operad is coadmissible. See [GRiL23a, Section 3.13] for more details. □
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There is a complete bar-cobar adjunction relating uEE∞-coalgebras and qp-complete curved ab-
solute Lπ∞-algebras:

uEE∞-coalg curv abs Lπ∞-algqp-comp ,
Ω̂ι

B̂ι

⊣

induced by the twisting morphism ι : Bs.aE −→ ΩBs.aE, see [GRiL23a, Section 3.11]. Using
this adjunction, one can transfer the model structure on uEE∞-coalgebras to the category of
qp-complete curved absolute Lπ∞-algebras.

Theorem 1.26. There is a model structure on the category of qp-complete curved absolute Lπ∞-algebras,
right-transferred along the complete bar-cobar adjunction

uEE∞-coalg curv abs Lπ∞-algqp-comp ,
Ω̂ι

B̂ι

⊣

where
(1) the class of weak equivalences is given by morphisms f such that B̂ι(f) is a quasi-isomorphism,
(2) the class of fibrations is given is given by morphisms f which are degree-wise epimorphisms,
(3) and the class of cofibrations is given by left lifting property with respect to acyclic fibrations.

Furthermore, this adjunction is a Quillen equivalence.

Proof. Follows from [GRiL23a, Theorems 10 and 11], using the quasi-planarity of Bs.aE. □

There is a particular kind of weak equivalence between qp-complete curved absolute partition
Lπ∞-algebras which admits an easy description.

Definition 1.27 (Associated graded). Let g be a curved absolute Lπ∞-algebra. Its associated
graded of weight δ is defined as

grδ(g) := Wδg/Wδ+1g ,

where Wδg is the canonical filtration of g given by the images of formal power series involving
symmetric corked rooted trees of degree greater or equal to δ.

REMARK 1.28. For any δ ⩾ 0, the associated graded grδ(g) is a chain complex. Indeed, recall
that

d2
g(−) = l

(12)
2 (l0,−)+ l

(21)
2 (l0,−) .

It implies that
d2
g(Wδg) ⊆Wδ+1g ,

hence d2
g is zero in the associated graded.

Definition 1.29 (Filtered quasi-isomorphisms). Let f : g −→ u be a morphism of qp-complete
curved absolute partition Lπ∞-algebras. It is a filtered quasi-isomorphism if in induces a quasi-
isomorphism

grδ(f) : grδg ∼−→ grδu
between their respective associated graded complexes, for all δ ⩾ 0.

Proposition 1.30. Let f : g −→ u be a filtered quasi-isomorphism between two qp-complete curved
absolute partition Lπ∞-algebras. Then

B̂ι(f) : B̂ι(g) ∼−→ B̂ι(u)

is a quasi-isomorphism and f is a weak equivalence of qp-complete curved absolute partition Lπ∞-
algebras.

Proof. Follows from [GRiL23a, Section 6.5]. □
18



The non-unital case. We denote by EE∞ the dg operad ΩBEnu. Coalgebras over this operad
are non-necessarily conilpotent homotopy cocommutative coalgebras, without a (homotopy)
counit. The category of EE∞-coalgebras admits a left-transferred model structure from dg
modules, analogous to the one in Proposition 1.25 (since BEnu is also quasi-planar). There is a
complete bar-cobar adjunction

EE∞-coalg abs Lπ∞-algqp-comp ,
Ω̂♭

ι

B̂♭
ι

⊣

between EE∞-coalgebras and qp-complete absolute Lπ∞-algebras, which we denote by Ω̂♭
ι ⊣ B̂♭

ι,
in order to avoid confusion with the previous complete bar-cobar adjunction. Analogously to
Theorem 1.26, one can transfer the model structure on EE∞-coalgebras and obtain a Quillen
equivalence. Furthermore, filtered quasi-isomorphisms are again particular examples of weak
equivalences in the transferred structure again.

Proposition 1.31. The adjunction

curv abs Lπ∞-algqp-comp abs Lπ∞-algqp-comp ,
(−)∗

U

⊣

between qp-complete curved absolute Lπ∞-algebras and qp-complete absolute Lπ∞-algebras is a Quillen
adjunction. Furthermore, the functor U is homotopically fully faithful.

Proof. The proof is completely analogous to [RiL24, Proposition 1.37]. □

Absolute partition L∞-algebras can also be homotopically compared to partition L∞-algebras.

Proposition 1.32. The adjunction

Lπ∞-algqp-comp abs Lπ∞-alg
Ab

Res

⊣

between qp-complete absolute partition L∞-algebras and partition L∞-algebras is a Quillen adjunction.

Proof. The restriction functor preserves fibrations, which are degree-wise surjections in both
cases, and weak equivalences, since any weak equivalence in this transferred model structure
on absolute partition L∞-algebras is in particular a quasi-isomorphism. We refer to [GRiL23a,
Corollary 11] for more details on this last point. □

REMARK 1.33 (About the underlying ∞-categories). The ∞-category obtained by localizing
EE∞-coalgebras at quasi-isomorphisms should be equivalent to the ∞-category of non-counital
(equivalently, coaugmented) E∞-coalgebras in Modk, the ∞-category of k-modules. An explicit
model for Modk is obtained by localizing dg k-modules at quasi-isomorphisms. See [Lur18a,
Section 3.1] for a precise definition of E∞-coalgebras. Proving this statement shall be the sub-
ject of future work.

Assuming this rectification result, it is clear that since absolute partition L∞-algebras, with the
transferred model structure, are Quillen equivalent to EE∞-coalgebras, then their underlying∞-category is again that of coaugmented E∞-coalgebras in Modk. However, absolute partition
L∞-algebras admit a right Bousfield localization at quasi-isomorphism, see [GRiL23a, Section
7.5]. This gives the two following adjunctions at the level of ∞-categories:

abs Lπ∞-algqp-comp [Q.iso−1] abs Lπ∞-algqp-comp [W.eq−1] EE∞-cog [Q.iso−1] .
Id

Id

B̂♭
ι

Ω̂♭
ι

⊣ ⊣

Notice that in the right hand side adjunction, the functors are both left and right adjoints
since it is an equivalence of ∞-categories. The composite adjunction should be a model for
a dual version of the enhanced bar-cobar adjunction of Francis–Gaitsgory in [FG12, Section
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3.3]; this dual version should be obtained by factorizing topological André–Quillen cohomol-
ogy of coaugmented E∞-coalgebras through algebras over a monad at the ∞-categorical level.

1.5. Monoidal structures and convolution algebras. The category of uEE∞-coalgebras is ad-
mits a monoidal structure, where the monoidal product is given by the underlying tensor prod-
uct of dg modules. This monoidal structure is biclosed and compatible with the model structure.
However, it is not stricly symmetric, only symmetric up to homotopy. These constructions are
based on the results of [Gri22, Gri24]. See also [RiL24, Section 1.4] for an explanation of similar
constructions.

Proposition 1.34. The category of uEE∞-coalgebras forms a monoidal model category, where the
monoidal product is given by tensor product.

Proof. The dg operad ΩBs.aE is isomorphic to the cellular chains of the Boardman-Vogt con-
struction of the simplicial Barratt-Eccles operad. This implies that it inherits a Hopf structure,
since the Barratt-Eccles operad is a Hopf operad. Finally, the tensor product trivially satisfies
the compatibility conditions of [Hov99, Chapter 4], that is, the pushout-product and the unit
axioms. □

Proposition 1.35 ([Gri22, Proposition 16]). The category of dguEE∞-coalgebras is a biclosed monoidal
category, meaning that there exists a left (resp. right) internal hom bifunctor

{−,−}L/R : (uEE∞-coalg)op × uEE∞-coalg −→ uEE∞-coalg

and, for any triple of uEE∞-coalgebras C,D,E, there exists isomorphisms

HomuEE∞-coalg(C⊗D,E) ∼= HomuEE∞-coalg(C, {D,E}L) ,

HomuEE∞-coalg(C⊗D,E) ∼= HomuEE∞-coalg(D, {C,E}R) ,

which are natural in C,D and E.

REMARK 1.36. The existence of this internal hom functors can also be directly deduced from
the adjoint functor theorem.

On the non-symmetry of the tensor product. The Hopf structure on the Barratt-Eccles dg
operad is not symmetric, however it is well known that it is symmetric up to coherent ho-
motopies, since it is induced by the Alexander–Whitney map. In fact, there are two Hopf
structures onΩBs.aE, each given by the choice of a cellular approximation of the diagonal map
of the interval. As in [RiL24, Remark 1.47], for any choice of Hopf structure forΩBs.aE, we will
have that

C⊗D ≃ D⊗C ,

for any two uEE∞-coalgebras C and D. These monoidal structure are both "symmetric up
to homotopy", a notion which, as far as we know, has no 1-categorical definition. Whatever
this might mean, it should entail that the induced monoidal structure on the underlying ∞-
category is symmetric. From now on, we will not specify which choice of cellular approxima-
tion of the diagonal of the interval we make, nor will we distinguish between left and right
internal hom bifunctors, as they are also homotopy equivalent.

Convolution structures. Given a uEE∞-coalgebra C and a curved absolute partition Lπ∞-
algebra g, there is a convolution curved absolute Lπ∞-algebra structure on the pdg module of
graded morphisms hom(C, g). Its structure map admits an analogous description to [RiL24,
Definition 1.48]. The key point is that the internal hom and the convolution algebra are com-
patible in the following sense.
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Theorem 1.37 ([Gri24]). Let C be a uEE∞-coalgebra and let g be a curved absolute Lπ∞-algebra. There
is a natural isomorphism of uEE∞-coalgebras{

C, B̂ι(g)
}

∼= B̂ι (hom(C, g)) ,

where hom(C, g) denotes the convolution curved absolute Lπ∞-algebra of C and g.

2. THE INTEGRATION THEORY

In this section, we develop the integration theory of (curved) absolute Lπ∞-algebras. We show
that the integration functor is well-behaved in an appropriate sense by purely model categor-
ical arguments. Then, we give a combinatorial and algebraic description of this integration
functor. We describe the homotopy groups of the resulting simplicial set in terms of the ini-
tial algebra. We give explicit combinatorial formulas for the horn-fillers inside this simplicial
set: in the simplest case, this formula can be thought as an analogue of the Baker–Campbell–
Hausdorff formula for (curved) absolute Lπ∞-algebras. Finally, we prove some comparison
results with other possible models and when k happens to be a field of characteristic zero,
with other known constructions.

2.1. Cellular chain functor. We consider the cellular chains functor Cc(−), endowed with
the E-coalgebra structure constructed in [BF04]. In this section, we consider the category of
simplicial sets endowed with the Kan–Quillen model structure.

REMARK 2.1. This coalgebra structure is encoded by the notion of a coalgebra over the Barrett–
Eccles operad, since it is not in general conilpotent. Coalgebras over cooperads naturally encode
conilpotent types of coalgebras.

Theorem 2.2 ([BF04]). There is a Quillen adjunction

sSet E-coalg ,
Cc(−)

R

⊣

where Cc(−) denotes the cellular chain functor endowed with a functorial E-coalgebra structure and
where the right adjoint is given by

R(C)• := HomE∞-cog(C
c(∆•),C) .

Proof. The key point is constructing the functorial E-coalgebra structure on Cc(−), which is
done in [BF04]. The operad E is coadmissible, meaning dg E-coalgebras admit a model structure
left-transferred from dg modules, see [GRiL23a, Proposition 29], originally stated in [BM03]. It
is immediate to check that this adjunction is a Quillen adjunction. □

The counit morphism ϵ : ΩBs.aE ∼−→ E induces a Quillen adjunction:

E-coalg uEE∞-coalg .
Resϵ

Coindϵ

⊣

By composing both Quillen adjunctions, we get the following Quillen adjunction:

sSet uEE∞-coalg ,
Resϵ ◦ Cc(−)

R

⊣

The right adjoint is given, for a uEE∞-coalgebra C, by

R(C)• := HomuEE∞-cog (ResϵCc(∆•),C) ∼= HomE-cog (C
c(∆•), CoindϵC) .
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REMARK 2.3. We embed the cellular chains functor Cc(−) inside the bigger category of uEE∞-
coalgebras since their homotopy theory is better behaved than the homotopy theory of E-
coalgebras. It is not known to us if the quasi-isomorphism ϵ : ΩBs.aE ∼−→ E induces a Quillen
equivalence, since E is not cofibrant as a dg operad.

Notation 2.4. Since the inclusion functor Resϵ do not change the underlying dg module nor
the coalgebraic structure of the cellular chain functor Cc(−), we will denote the composition
ResϵCc(−) simply by Cc(−) from now on.

Theorem 2.5. There is a commuting triangle

uEE∞-coalg

sSet

curv abs Lπ∞-algqp-comp ,

Ω̂ι

R

Cc
∗(−)

L

⊣

B̂ι

R

⊣

⊣

made of Quillen adjunctions, where L is given by the composition of the left adjoint functors and R by
the composition of the right adjoint functors.

Proof. Follows directly from the above, together with Theorem 1.26. □

2.2. The integration functor. The define the integration functor to the right adjoint functor R in
the triangle above. This definition is analogous to the one given in [RiL24, Section 2.1]. The
next result also follows from the same model categorical arguments as in op.cit.

Theorem 2.6.
(1) For any qp-complete curved absolute Lπ∞-algebra g, the simplicial set R(g) is a Kan complex.

(2) Let f : g ↠ h be a degree-wise epimorphism of qp-complete curved absolute Lπ∞-algebras. Then

R(f) : R(g) ↠ R(h)

is a fibration of simplicial sets.

(3) The functor R preserves weak equivalences. In particular, it sends any filtered quasi-isomorphism
f : g ∼−→ h of qp-complete curved absolute Lπ∞-algebras to a weak homotopy equivalence of sim-
plicial sets.

Proof. The functor R is a right Quillen functor. □

REMARK 2.7. The above theorem establishes the main properties that an integration functor
should satisfy, where the first two points are part of the main results of [Get09] and the last one
can be considered a Goldman–Millson type of theorem. See also [RiL24, Remark 2.13].

Corollary 2.8. The integration functor commutes with limits of curved absolute Lπ∞-algebras and
homotopy limits of qp-complete curved absolute Lπ∞-algebras.

Proof. The functor R is a right Quillen functor, and since every qp-complete curved absolute
Lπ∞-algebra is fibrant, it is also equal to its derived functor. □

REMARK 2.9. Let g be a qp-complete curved absolute partition Lπ∞-algebra. There is an iso-
morphism

R(g)• ∼= lim
δ

R(g/Wδg)• .

of Kan complexes. Thus R(g) is the (homotopy) limit of a tower of simplicial sets obtained by
integrating each step of the canonical qp-filtration.
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Non-abelian Dold-Kan correspondence. The adjunction

sSet curv abs Lπ∞-algqp-comp
L

R

⊣

is a generalization of the Dold-Kan correspondence over a field. Notice that a dg module (V ,dV) is
a particular example of a curved absolute Lπ∞-algebra, where the structural morphism

γV :
∏
n⩾0

Ω̂s.aE∗(n) ⊗̂Sn
V⊗n −→ V

is the zero morphism on any non-trivial symmetric corked rooted tree. Thus any chain com-
plex admits an abelian (trivial) curved absolute Lπ∞-algebra structure, which is furthermore
qp-complete.

Proposition 2.10. Let (V ,dV) be a dg module endowed with a trivial curved absolute Lπ∞-algebra
structure. There is an isomorphism

R(V) ∼= Γ(V) ,

where Γ(−) is the Dold–Kan functor.

Proof. Since the structure map γV is trivial, the complete bar construction B̂ιV on V is equal to
the cofree construction C (uEE∞)(V). Therefore we have the following isomorphisms

R(V) ∼= HomuEE∞-cog (C
c(∆•), C (uEE∞)(V)) ∼= Homdg mod (C

c(∆•),V) .

□

A pointed version of the integration functor. The reduced chain functor C̃c
∗(−) on pointed

simplicial sets has a natural Enu-coalgebra structure, which in turn gives a ΩBEnu-coalgebra
structure by pullback. By composing this adjunction with the complete bar-cobar adjunction
betweenΩBEnu-coalgebras and absolute partition L∞-algebras, we get a adjunction

sSet∗ abs Lπ∞-algqp-comp ,
L∗

R∗

⊣

which fits in a commutative triangle of Quillen adjunctions like its unpointed analogue in
Theorem 2.5. Let us compare these two adjunctions.

Proposition 2.11. The following square of Quillen adjunctions

sSet∗ abs Lπ∞-algqp-comp

sSet curv abs Lπ∞-algqp-comp ,

L∗

U U

R∗

L

(−)⊔{∗}

R

(−)∗⊣

⊣

⊣

⊣

is commutative in the following sense: the left adjoints from the bottom-left to the top-right corner are
naturally isomorphic.

Proof. The proof is completely analogous to [RiL24, Proposition 3.34]. See also [RiL24, Subsec-
tion 3.4] for more details on how to compare counital and non-counital coalgebras. □
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2.3. Maurer–Cartan elements. The 0-simplices of R(g) exactly correspond to solutions of the
Maurer–Cartan equation in g.

Proposition 2.12. Let g be a curved absolute Lπ∞-algebra. There is a bijection

R(g)0 ∼= MC(g) ,

between the 0-simplices of R(g) and the Maurer–Cartan elements of g.

Proof. The 0-simplices of R(g) are determined by the E-coalgebra structure of Cc
∗({∗}) ∼= k. One

can check that this coalgebra structure is given by maps
k.a0

∏
n⩾0

HomSn

(
E(n), (k.a0)

⊗n
)

a0
∑

n⩾0, σ0∈Sn n ̸=1

[eva0 : c
σ0
n 7→ a0 ⊗ · · · ⊗ a0] ,

where the other decomposition maps are zero for degree reasons. Notice that

N(cid
n(a0, · · · ,a0)) =

∑
σ0∈Sn

[eva0 : c
σ0
n 7→ a0 ⊗ · · · ⊗ a0]

under the norm map isomorphism

N : Ω̂s.aE∗(n) ⊗̂Sn
g⊗n −→ HomSn

(
Bs.aE(n), g⊗n

)
.

Thus

Ω̂ι(k.a0) ∼=

∏
n⩾0

Ω̂s.aE∗(n) ⊗̂Sn
(k.a0)

⊗n,dcobar(a0) = −
∑

n⩾0 , n ̸=1

cid
n(a0, · · · ,a0)

 .

Therefore the data of a morphism of curved absolute Lπ∞-algebras Ω̂ι(k.a0) −→ g is equivalent
to the data of an element α in g of degree 0 such that

dg(α) = −γg

 ∑
n⩾0,n ̸=1

cid
n(α, · · · ,α)

 .

□

2.4. Gauge equivalences and higher homotopy groups. We compute paths in R(g) and give
a combinatorial description of them. These paths are gauge equivalences, as in [RiL24, Section
2.4]. This allows us to give a full combinatorial description of the set π0(R(g)). From the
point of view of deformation theory, if g encodes a spectral deformation problem, comput-
ing Maurer–Cartan elements up to gauge equivalences gives the classical deformation problem
associated to g. Then, we compute the higher homotopy groups of the integration functor
R(g) for any qp-complete absolute partition Lπ∞-algebra, at the 0 Maurer–Cartan element. The
group πk(R(g), 0) is in bijection with elements in g of degree kwhich satisfy an algebraic equa-
tion, up to an equivalence relation imposed by elements in degree k+ 1, in terms of a similar
algebraic equation. These equations are determined by the dg E-coalgebra structure on the
cellular chains on the interval and on the spheres.

The coalgebra structure on the interval. We use the general formulas given in [BF04, Sec-
tion 2.2] for the E-coalgebra structure of Cc

∗(∆
k) to effectively compute the structural map of

Cc
∗(∆

1). Since Cc
∗(∆

1) is a canonical interval object, computing this structure will allow us to
compute homotopies in the category of uEE-coalgebras.
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The function φn
I . Let n ⩾ 2 and let I ⊆ {1, · · · ,n} be an ordered subset, where we denote the

elements by I = {i1, · · · , ik}. Let σ be a permutation in Sn. We say that σ is an I--unshuffle if

σ−1(i1) < · · · < σ−1(ik) .

We define the map φn
I : Sn −→ {0, 1} by sending σ to 1 if it is an I-unshuffle and to 0 if it is not.

The function π(n,S)
I . Let n ⩾ 2 and let I,S ⊆ {1, · · · ,n} be two ordered subsets, where S =

{o1, · · · ,os} is of cardinality s ⩾ 1. Let σ = (σ0, · · · ,σs−1) be an s-tuple of permutations of Sn.
We say that σ is an S-ordered partition of I if it satisfies the following conditions:

(1) For all i such that 1 ⩽ i ⩽ s, we have that

σi−1({1, · · · ,σ−1
i−1(oi) − 1}) ⊆ I .

The set {1, · · · ,σ−1
i−1(oi)− 1} is considered to be empty if σ−1

i−1(oi) = 1, in which case the
condition is trivially satisfied.

(2) Let us denote by ImI(σi−1) the image of {1, · · · ,σ−1
i−1(oi) − 1} by σi−1 inside I. Then the

collections of sets defined by

Ii := ImI(σi−1) −

i−2⋃
j=0

ImI(σi−1)

 .

forms an ordered partition I1 ⊔ · · · ⊔ Is of I.

We define the map π(n,S)
I : S×s

n −→ {0, 1} by sending σ to 1 if it is an S-ordered partition of I
and to 0 if it is not.

EXAMPLE 2.13. Let σ be in S×s
n , and let S = {1, · · · , s}. It is an S-ordered partition of ∅ if and

only if the tuple (σ0(1), · · · ,σs−1(1)) is the identity permutation (1, · · · , s) of Ss.

Proposition 2.14. The E-coalgebra structure on the interval Cc
∗(∆

1) ∼= k.a0 ⊕ k.a1 ⊕ k.a01 is given
by the following structure map:

Cc
∗(∆

1)
∏
n⩾0

HomSn

(
E(n), (Cc

∗(∆
1))⊗n

)
ai

∑
n⩾0, σ0∈Sn n ̸=1

[evai
: cσ0

n 7→ ai ⊗ · · · ⊗ ai] for i = 0, 1 ,

a01
∑
n⩾2

s+a+b=n

∑
w∈E(n)s−1

σ∈Sn

α(w).

cσ.w
n 7→ σ−1 •

a01 ⊗ · · · ⊗ a01︸ ︷︷ ︸
s

⊗a0 ⊗ · · · ⊗ a0︸ ︷︷ ︸
a

⊗a1 ⊗ · · · ⊗ a1︸ ︷︷ ︸
b

 ,

where the coefficient α(w) is given by the product π(n,S)
Ia

(w).φn
Ib
(σs−1), for Ia = {s+ 1, · · · , s+ a},

Ib = {s+ a+ 1, · · · , s+ a+ b} and S = {1, · · · , s}.

Proof. We want to compute which operations in the Barratt-Eccles operad give non-trivial de-
compositions of a01; the case of a0 and a1 are straightforward. Since the E-coalgebra structure
is the pullback of the Surj-coalgebra structure, let us first compute which elements in the sur-
jections operad give such decompositions.

Let us fix an arity n ⩾ 2. We suppose that u in Surj(n) produces a nont-trivial decomposition
of a01 involving s-copies of a01, a-copies of a0 and b-copies of a1, where s+ a+ b = n. Then
u is of degree s− 1. Furthermore, let us fix the following order on the decomposition

a⊗s
01 ⊗ a

⊗a
0 ⊗ a⊗b

1 = a01︸︷︷︸
1

⊗ · · · ⊗ a01︸︷︷︸
s

⊗ a0︸︷︷︸
s+1

⊗ · · · ⊗ a0︸︷︷︸
s+a

⊗ a1︸︷︷︸
s+a+1

⊗ · · · ⊗ a1︸︷︷︸
s+a+b

,
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with respect to the interval cut operation of u. For instance, this means that the first term a01
comes from the two occurrences of 1 in u (one in the first (s + a − 1)-terms and one in the
last (s+ b− 1)-terms), or that the (s+ a+ 1)-th term a1 comes from the single appearance of
s+a+ 1 in u, at least in the (s+a+ 1)-th position. Therefore umust have a table arrangement
of the form∣∣∣∣∣∣∣∣∣∣∣∣∣

s+ 1 · · · s+ i1 1
s+ i1 + 1 · · · s+ i2 + i1 2
...
s+ is−2 + · · ·+ 1 · · · s+ is—1 + · · ·+ i1 s− 1

s+ is−1 + · · ·+ 1 · · · s+ is + · · ·+ i1 s u(s+ a+ 1) · · · u(2s+ a+ b− 1) ,

where (i1, · · · , is) are integers ⩾ 0 such that i1 + · · ·+ is = a. If ij is zero, then j is the first term
in the j-th row of the table arrangement of u. Equivalently, the numbers (i1, · · · , is) determine
an ordered partition of Ia = {s+ 1, · · · , s+ a} via Ij = {s+ ij−1 + · · ·+ i1, · · · , s+ ij + · · ·+ i1}
for j ⩾ 2 and I1 = {s + 1, · · · , s + i1}. The set Ij is empty whenever ij = 0. And the table
arrangement of u starts with at row j with Ij and ends with j, except in the last row. This last
row contains the rest of the terms of the surjection u; since we have also ordered the terms a1
in the decomposition, the set Ib = {s+a+ 1, · · · , s+a+b} must appear ordered, possibly with
other terms in between, in the last row. Finally, notice that such a decomposition involves no
signs, as both the position and the permutation sign associated to a surjection uwith this type
of table arrangement are trivial.

Now, consider a element w = (σ0, · · · ,σs−1) in E(n)s−1. A surjection u of the type described
above appears in the image of the table reduction of w if and only if the w is a Ia-ordered
partition and if σs−1 is a Ib-unshuffle. Finally, any decomposition involving s-copies of a01,
a-copies of a0 and b-copies of a1 can be obtained via a permutation in Sn of the above decom-
position, hence the action of Sn on the w in E(n)s−1 generates all the elements that produce
these decompositions. □

REMARK 2.15. When Ia = ∅, that is, we consider only decompositions of a01 which involve
a01 and a1, we recover the formulas of [BF04, Theorem 3.2.4]. The sign (−1)σ, where σ =
s(s− 1)/2, does not appear in the coalgebra structure since it comes from the duality pairing,
see the paragraph above [BF04, Proof of Lemma 3.3.3]. And the sign ϵr(w) is precisely the sign
that appears when a permutation σ in Sn acts on the ordered decomposition a⊗s

01 ⊗a
⊗a
0 ⊗a⊗b

1 .

Gauge equivalences. We give a definition of gauge equivalences, which are paths in the ∞-
groupoid associated to a curved absolute partition Lπ∞-algebra. Recall that in the characteristic
zero setting, defining gauge equivalences in this way recovers the other definitions present in
the literature, see [RiL24, Section 2.4].

Definition 2.16 (Gauge equivalences). Let g be a qp-complete curved absolute Lπ∞-algebra,
and let α,β be two Maurer–Cartan elements. The element α is gauge equivalent to β if there
exists a degree 1 element λ in g such that

dg(λ) = β−α−γg

 ∑
n⩾2

s+a+b=n

∑
w∈E(n)s−1

w=(σ0,··· ,σs−1)

π
(n,S)
Ia

(w).φn
Ib
(σs−1)c

w
n

λ, · · · , λ︸ ︷︷ ︸
s

,α, · · · ,α︸ ︷︷ ︸
a

,β, · · · ,β︸ ︷︷ ︸
b


 .

for Ia = {s+ 1, · · · , s+ a}, Ib = {s+ a+ 1, · · · , s+ a+ b} and S = {1, · · · , s}. We denote this by
α ∼λ β.

Since g is qp-complete, the above formula can be split in several components according to the
weight of the operations.
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Gauge actions. The above formula can also be rewritten into the following fixed-point equa-
tion in terms of the element β:

β = dg(λ)+α+γg

 ∑
n⩾2

s+a+b=n

∑
w∈E(n)s−1

w=(σ0,··· ,σs−1)

π
(n,s)
Ia

(w).φn
Ib
(σs−1)c

w
n

λ, · · · , λ︸ ︷︷ ︸
s

,α, · · · ,α︸ ︷︷ ︸
a

,β, · · · ,β︸ ︷︷ ︸
b


 .

If α and λ are in weight 1 in g, this fixed-point equation admits an unique solution, using
[RNV20, Appendix A]. See also Proposition 2.25 (with different weight conventions) and the
computations done in Subsection 2.5. Let us briefly describe this solution.

Let τ be a symmetric corked planar tree. It is right-handed if for every vertex v with In(v) ⩾ 2
incoming edges, the j-th incoming edge is linked to another edge only if all the previous l
incoming edges (reading from right to left) are linked to an edge, for all 0 ⩽ l ⩽ j and every
j ∈ [1, in(v)]. Furthermore, every vertex which is not a cork must have at least one leaf.

A labelling of such a τ by 01 and 0, subsets of [0, 1], is licit if for every vertex v of τ which is
not a cork, going from right to left of its incoming edges, v has b incoming edges attached to
other edges, a leaves labelled by 0 and then c leaves labelled by 01, where a+ b+ c = In(v)
and a,b ⩾ 0 and c ⩾ 1. In other words, a label 0 cannot appear after a label 01 (from right to
left) and since v has at least one leaf, at least one leaf (the utmost left one) is labelled by 01. We
denote the set of licit labels by L01,0(τ).

We define a coefficient α(τ; 01,··· ,1) for every right-handed symmetric corked planar tree τ to-
gether with a licit labelling by 01, 0 as follows:

α(τ; 01,··· ,1) =
∏

v∈V(τ)

α(σ; 01,··· ,1) ,

where σv is the label of the vertex v, and where the product runs over all vertices of τ which
are not corks. The coefficients at each vertex v are given as follows: suppose the vertex v has b
incoming edges attached to other edges, c leaves labelled by 01 and then a leaves labelled by
0, where a+ b+ c = n is the total number of incoming edges, and where a,b ⩾ 0 and c ⩾ 1.
Then

α(σ; 01,··· ,1) =

{
π
(n,Ic)
Ia

(σ).φn
Ib
(σc−1) if degree(σ) = c− 1 ,

0 otherwise ,

where σ = (σ0, · · ·σc−1) and for Ia = {c + 1, · · · , s + a}, Ib = {c + a + 1, · · · , c + a + b} and
Ic = {1, · · · , c}.

Let g be a qp-complete curved absolute Lπ∞-algebra, and let α be a Maurer–Cartan element in
weight 1 and let λ be a degree 1 element in g of weight 1. The gauge-action of λ on α is given by

λ •α =
∑
m⩾0

∑
τ∈SCPTright

m

∑
L01,0(τ)

α(τ; 01,··· ,1)γg (τ (λ, · · · ,α, · · · , λ, · · · ,α;dg(λ) +α)) ,

where λ appears if a leaf is labelled by 01 and α by 0, where the corks are replaced by the input
dg(λ)+α and where the sum is taken over all right-handed symmetric corked planar trees and
all licit labellings of those. It is interesting to notice that the solution starts as follows

β = α+ dg(λ) +
∑
n⩾2

lidn(α, · · · ,α, λ) + · · · ,

where the weight 1 (in terms of structural operations) term is extremely similar to the twisted
differential dαg (α) that appears in the same equation in the L∞-algebra case, but without the
coefficient 1/(n− 1)!.
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Theorem 2.17. Let g be a qp-complete curved absolute Lπ∞-algebra. There is a canonical natural bijec-
tion

π0(R(g)) ∼= MC(g)/ ∼gauge equiv .

Proof. There are canonical bijections

π0(R(g)) ∼= HomsSets({∗},R(g))/ ∼hmt
∼= HomuEE∞-coalg

(
Cc
∗({∗}), B̂ι(g)

)
/ ∼hmt ,

since Cc
∗ ⊣ R is a Quillen adjuntion. In order to compute homotopies in uEE∞-coalgebras, we

need an interval object. This interval object is provided by tensoring with the interval object
Cc
∗(∆

1). Notice that the uEE∞-coalgebra structure of Cc
∗(∆

1) is the pullback of its E-coalgebra
structure by the projection, which is computed in Proposition 2.14.
Finally, the data of a morphism h : Cc

∗(∆
1) −→ B̂ι(g) is equivalent to the data of a curved

twisting morphism ιh : Cc
∗(∆

1) −→ g. In turn, this data coincides precisely with the definition
of a gauge equivalence by Proposition 2.14, once we pullback the formulas in the coalgebra
structure along the norm isomorphism. □

REMARK 2.18. It follows that gauge equivalence is an equivalence relation on the set of Maurer–
Cartan elements. This is not immediate from the definition. For instance, it is not obvious a
priori that gauge equivalences are reflexive, as the formula in Proposition 2.14 is not symmetric
in a0 and a1.

The coalgebra structure on the pointed spheres. Let Sk be the simplicial model for the k-
sphere given by ∆k/∂∆k. We consider the reduced chains on C̃c

∗(S
k), which is a coalgebra

over the non-unital Barratt–Eccles operad.

Lemma 2.19. Let k ⩾ 1. The Enu-coalgebra structure on the pointed k-sphere C̃c
∗(S

k) ∼= k.ak is given
by the following structure map:

C̃c
∗(S

k)
∏
n⩾0

HomSn

(
E(n), (C̃c

∗(S
k))⊗n

)

ak
∑
n⩾2

∑
w∈E(n)k.n−1
wj(1)=idSn

∑
σ∈Sn

cσ.w
n 7→ (−1)jk ak ⊗ · · · ⊗ ak︸ ︷︷ ︸

n

 ,

where jk = (k − 1)n(n−1)
2 and where the sum runs over all w = (σ0, · · · ,σk.n−1) in E(n)k.n−1

which satisfy the following condition: for each n-tuple of permutations wj = (σj.n, · · · ,σj.(n+1)−1),
the n-tuple of numbers wj(1) is the identity permutation of Sn, for all 0 ⩽ j ⩽ (k− 1).

Proof. It essentially follows from the isomorphism C̃c
∗(S

k) ∼= C̃c
∗(S

1)⊗k in [BF04, Proposition
3.2.5], together with formula of the Hopf structure of the operad Enu, which is given by:

∆Enu((σ0, · · · ,σl)) =
l∑

i=0

(σ0, . . . ,σi)⊗ (σi, . . . ,σl) ,

for any element (σ0, · · · ,σl) in Enu(n)l, and any n ⩾ 1. □

REMARK 2.20. There is an analogue isomorphism Cc
∗(S

k) ∼= Cc
∗(S

1) of E-coalgebras. Using
the canonical projection Cc

∗(∆
1) ↠ Cc

∗(S
1), it is straightforward to compute the E-coalgebra

structure of Cc
∗(S

1), and hence that of Cc
∗(S

k). It gives somewhat similar, but much longer to
write formulas.

Higher homotopy groups of the integration functor. The explicit formulas for the coalgebra
structures of the pointed spheres and of the interval allow us to give the following combinato-
rial description of the higher homotopy groups πkR(g) at the Maurer–Cartan element 0.
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Definition 2.21 (Representative elements). Let g be a qp-complete absolute Lπ∞-algebra. An
element ε of g in degree k ⩾ 1 is a representative element if it satisfies the following equation:

dg(ε) +
∑
n⩾2

∑
w∈E(n)k.n−1
wj(1)=idSn

(−1)jklwn (ε, · · · , ε) = 0 ,

where jk = (k− 1)n(n−1)
2 and where the sum runs over all w = (σ0, · · · ,σk.n−1) in E(n)k.n−1

which satisfy the following condition: for each n-tuplewj = (σj.n, · · · ,σj.(n+1)−1), the n-tuple
of numbers wj(1) is the identity permutation of Sn, for all 0 ⩽ j ⩽ (k− 1). We denote the set
of representative elements of degree k by rep(gk).

Each operation lwn is in degree (thus in weight) k.n−1, this means that there are a finite amount
of terms in each weight and therefore the above sum converges in g by qp-completeness.

Definition 2.22 (Interval equivalences). Let g be a qp-complete absolute Lπ∞-algebra and let
ε1 and ε2 be two representative elements of degree k ⩾ 1. They are interval-equivalent if there
exists an element φ in g of degree k+ 1 such that

dg(φ) = ε1 −ε2 −γg


∑

n⩾2,s∈[1,n]
a+b=n−s

∑
w∈E(n)k.n+s−1

w ′
j(1)=id

(−1)jk .π(n,s)
Ia

(w|S).φn
Ib
(σs−1)c

w
n

φ, · · · ,φ︸ ︷︷ ︸
s

, ε1, · · · , ε1︸ ︷︷ ︸
a

, ε2, · · · , ε2︸ ︷︷ ︸
b




where jk = (k − 1)n(n−1)
2 , and where the sum runs over all w = (σ0, · · · ,σk.n+s−1) which

satisfy the following condition: for each n-tuple w ′
j = (σj.n+s, · · · ,σj.(n+1)−1+s), the n-tuple

of numbers w ′
j(1) is the identity permutation of Sn, for all 0 ⩽ j ⩽ (k− 1). Here w|S refers to

the first s-tuple permutations (σ0, · · · ,σs−1).

Theorem 2.23. Let g be an qp-complete absolute Lπ∞-algebra. There is a canonical natural bijection

πk(R(g), 0) ∼= rep(gk)/ ∼int ,

between the k-th homotopy group of R(g) at the Maurer–Cartan 0 and the set of representative elements
of degree k ⩾ 1 in g up to interval equivalences.

Proof. Let g be an qp-complete absolute Lπ∞-algebra. There are canonical bijections

πk(R(g), 0) ∼= HomsSets∗

(
Sk,R(g)

)
/ ∼hmt

∼= HomEE∞-coalg

(
C̃c
∗(S

k), B̂♭
ι(g)

)
/ ∼hmt ,

by the pointed version of the commuting triangle constructed in Theorem 2.5.

The data of a morphism of EE∞-coalgebras C̃c
∗(S

k) −→ B̂♭
ι(g) is equivalent to the data of a

twisting morphism C̃c
∗(S

k) −→ g, which is precisely the data of a representative element in
rep(gk) by Lemma 2.19.

By Proposition 1.31, we can compute homotopies between such maps in the category of uEE∞-
coalgebras. Such an homotopy is equivalent to the data of a curved twisting morphismCc

∗(∆
1)⊗

C̃c
∗(S

k) −→ g, since Cc
∗(∆

1) is an interval object. So it all boils down to computing the uEE∞-
coalgebra structure of Cc

∗(∆
1) ⊗ C̃c

∗(S
k), which follows from Proposition 2.14 and Lemma

2.19. □

REMARK 2.24 (Berglund’s theorem and formally étale cochains). Let g be a (shifted) L∞-algebra
over a characteristic zero field. Berglund showed in [Ber15] that there is an isomorphism

Hk(g) ∼= πk(R(g), 0) ,

where the integration functor considered is that of [Get09]; more generally, homotopy groups
of R(g) at a Maurer–Cartan α are given by the homology of the twisted L∞-algebra by that
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element. These isomorphisms can be proved using the same methods as the ones used here,
and ultimately rely on the fact that the coalgebra structure on the cellular chains of sphere is
(homotopically) trivial over a characteristic zero field, see [RiL24, Subsection 2.6]. In general,
however, this coalgebra structure is non-trivial (see after the next paragraph).

This is consistent with the fact, proven by Lurie in [Lur11b, Proposition 2.4.12], that the E∞-
algebra of cochains C∗

c(X) of a finite space X is formally étale over a algebraically closed field
of characteristic p. This means that its cotangent complex is acyclic. And, up to comparison
and rectification results, the linear dual this cotangent complex should coincide with L∗(X).
Thus L∗(X) should also be acyclic. If Berglund’s theorem was to hold in that setting, it would
be impossible to construct p-adic models using our functor L∗, as we will do in Section 3.

Relationship with May-Steenrod chain level operations. Kaufmann and Medina-Mardones
give in [KMM21] an effective construction for (higher) Steenrod operations at the chain level.
These terms appear as the labels of the operations in the sum of Definition 2.21. Let us give
some examples.

For instance, the cycle in the Barratt-Eccles operad that models the cup-i product of arity 2 is
degree i element σi = ((12), (21), (12), · · · ), where σi ends with (12) if i is odd and with (21)
if it is even. The first term in the equation of Definition of 2.21 for a representative element of
degree k is:

dg(ε) + (−1)(k−1)lσ2k
2 (ε, ε) + · · · = 0 ,

and it is labelled by the cycle representing the cup-2k product of arity 2. Recall that cup-i of
arity 2 are in general non-trivial over a field of characteristic 2.

However, these cycles that represent the cup-2k (co)products in a general E-(co)algebra appear
in the above formula becasue of the particular E-coalgebra structure on the reduced chains
on the spheres C̃c

∗(S
k), so one may wonder if they are homotopically trivial in this particular

structure. As recently shown by Heuts and Land in [HL24], the cochains on spheresC∗
c(S

k) are
formal as Ek-algebras but not as a Ek+1-algebra. This implies that, up to quasi-isomorphism,
all the operations lying in the sub-operad Ek inside E act trivially (since the cup product is also
trivial on the reduced cochains). Here Ek refers to the sub-operad defined in [BF04, Section
1.6], which is a model for Ek. Nevertheless, the element σ2k lies inside E2k so the formality
theorem does not apply.

In principle, only the elementsw in E which act homotopically non-trivially on C̃c
∗(S

k) should
contribute to the sum in Definition 2.21. For example, in characteristic 0, C̃c

∗(S
k) is homotopi-

cally trivial as a E-coalgebra, and one recovers Berglund’s theorem explained in Remark 2.24.
And at a fixed prime p, it should be possible to simplify this sum as well. For instance, the
first homotopically non-trivial terms only appear in arity p. This shall be the subject of future
research.

2.5. The analogues of the (higher) Baker–Campbell–Hausdorff formulas in positive char-
acteristic. The goal of this subsection is to show that, for any absolute partition L∞-algebra
g, the horn-fillers in the ∞-groupoid R(g) are given by explicit algebraic formulas, and thus
that R(g) is an algebraic ∞-groupoid in the sense of [Nik11]. This notion can be thought as a
"group up to homotopy" in an algebraic sense. In particular, the formula for the horn-fillers
with respect to Λ2

1 can be thought as the analogue of the Baker–Campbell–Hausdorff formula
in positive characteristic. This opens the door to a generalization of the Lie correspondences
between unipotent or abstract groups and nilpotent Lie algebras to a positive characteristic
setting.

Formal fixed-points equations. We adapt the algebraic methods of [RNV20, Appendix A.1]
for the particular context we are interested in. Let (V ,dV) be a chain complex over a field k.
We suppose there exists a decreasing filtration F∗V on V

V = F0V ⊇ F1V ⊇ F2V ⊇ · · · ⊇ FpV ⊇ · · ·
30



such that V is complete with respect to it, meaning that V ∼= limp∈N V/FpV . We consider a
family of multilinear maps

Pj : V
⊗j −→ V such that Pj(Fi1V , · · · , FijV) ⊂ Fi1+···+ij+jV ,

that is, such that Pj ∈ FjHom(V⊗j,V), for all j ⩾ 0. The term P0 corresponds to an element
P0(1) in V . We consider the following fixed-point equation

P(x) = P0 +
∑
j⩾1

Pj(x
⊗j) = x ,

where we want to find a solution x in V . Let τ be a planar tree with d leaves. We denote by τP

the linear map V⊗d −→ V obtained by replacing the vertices of τwith their corresponding op-
eration and composing these operations along τ, meaning every vertex v in τwith k incoming
edges is replaced by the operation Pk, and we take the composition of all these operations as
they are disposed in the planar tree τ.

Proposition 2.25. The exists an unique solution x in V to the above fixed-point equation, given by

x =
∑
τ∈PT

τP(P0, · · · ,P0) ,

where the sum runs over all planar trees τ.

Proof. The proof is exactly the same as in [RNV20, Proposition A.5]. The only difference is the
weight convention. In loc.cit. the operations Pj are in weight 1 for all j ⩾ 0, whereas here the
operation Pj is in weight j for all j ⩾ 0. It is straightforward to check that the same arguments
apply with this new weight convention. □

Horn-fillers in Maurer–Cartan spaces. Like in [RNV20, Section 5.1] and in [RiL24, Section 2.5],
we give an algebraic characterization of all the horn-fillers in R(g), here in the case where g is
a qp-complete curved absolute partition L∞-algebra. These horn-fillers are given by explicit
algebraic formulas, solutions to a fixed-points equation.

Let Dn denote the chain complex given by k.u in degree n and k.du in degree n− 1, where
d(u) = du. We consider the free qp-complete pdg Bs.aE-algebra on Dn, which is given by

(Dn)Bs.aE =
∏
m⩾0

Ω̂s.aE∗(m) ⊗̂Sn
(Dn)⊗m .

It does not form a curved Bs.aE-algebra since it does not satisfy the curved condition 1. How-
ever, curved Bs.aE-algebras are a reflexive full subcategory of pdg Bs.aE-algebras, hence work-
ing in this context in enough for our immediate purposes. See [GRiL23a, Section 3.5] for more
details on these notions.

Lemma 2.26. There is an isomorphism of qp-complete pdg Bs.aE-algebras

L(∆n) ∼= L(Λn
k )⨿ (Dn)Bs.aE ,

for all n ⩾ 2 and any 0 ⩽ k ⩽ n, where Λn
k denotes the k-horn of dimension n.

Proof. Let us consider the following morphism of qp-complete pdg Bs.aE-algebras

φ : L(Λn
k )⨿ (Dn)Bs.aE L(∆n)

aI aI

u a[n]

du d(a[n]) .
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We want to construct an inverse ψ of φwith the following assignment

ψ : L(∆n) L(Λn
k )⨿ (Dn)Bs.aE

aI aI

a[n] u

a
k̂

x ,

where k̂ ⊂ [n] is the subset containing all elements except k. Let us denote

d(a[n]) =

n∑
l=0

(−1)la
l̂
−

∑
m⩾2

∑
w∈E(m)

∑
I1,··· ,Im⊆[n]

Il ̸=∅

λ(w;I1,··· ,Im) lwm(aI1 , · · · ,aIm) ,

the image of a[n] by the pre-differential, where the first sum comes from the differential of
Cc
∗(∆

n) and the second sum comes from the decompositions of a[n] in the E-coalgebra struc-
ture. In fact, the second sum is the pre-image of the decompositions of a[n] by the norm
isomorphism described in Remark 1.12, like in previous computations. Notice that the coeffi-
cients λ(w;I1,··· ,Im) are either 0 or ±1.

Like in the proof of [RNV20, Lemma 5.1], the element x needs to satisfy a fixed-point equation
where the operations are

P0 = (−1)kdu−
∑
l ̸=k

(−1)l+ka
l̂
+ (−1)k

∑
m⩾2

∑
w∈E(m)

∑
I1,··· ,Im⊆[n]

Il ̸=∅,k̂

λ(w;I1,··· ,Im) lwm(aI1 , · · · ,aIm)

that is, where the second sum only involves the decompositions of a[n] without the term a
k̂

;
and

Pj = (−1)k
∑
m⩾2

∑
w∈E(m+j)

∑
I1,··· ,Im⊆[n]

Il ̸=∅,k̂

λ(w;I1,··· ,k̂,··· ,k̂,··· ,Im) lwm(aI1 , · · · , —, · · · , —, · · · ,aIm) ,

where the terms that appear correspond to decompositions of a[n] which involve j-times the
term a

k̂
, for all j ⩾ 1. These slots are left as inputs of the operation Pj; there are exactly j-inputs.

The term P0 is in weight zero, as any a
l̂

is a generator, and the term P1 is in weight 1, since it
is a sum of structural operations. Let us show that Pj is necessarily in weight at least j when
j ⩾ 2. Any w in E(n) which decomposes a[n] into j copies of a

k̂
must be of degree at least

j(n− 1) −n, and therefore lwm is in weight at least j(n− 1) −n+ 1. This number is greater than
j if n ⩾ 3. For n = 2, the result hold because of the specific formulas of [BF04, Section 2]. If a02
appears j-times, the interval cut is at least of length 2j+ 2, hence the degree of w is at least j,
thus the weight of lwm is at least j+ 1. If a01 or a12 appear j-times, the interval cut is at least of
length 2j+ 1, hence the degree ofw is at least j− 1, thus the weight of lwm is at least j. Therefore
this fixed-point equation has an unique solution x by Proposition 2.25. We then conclude using
the same arguments as in the proof of [RNV20, Lemma 5.1]. □

Theorem 2.27. Let g be a qp-complete curved absolute Lπ∞-algebra. There are bijections

ρnk : gn ×HomsSet(Λ
n
k ,R(g)) ∼= HomsSet(∆

n,R(g)) ,

natural in g, for all n ⩾ 2 and 0 ⩽ k ⩽ n.

Proof. We have the following natural isomorphism

HomsSet(∆
n,R(g)) ∼= Homcurv abs Lπ∞-algqp-comp(L(∆n), g) ,

given by the L ⊣ R adjunction. Using Lemma 2.26 and the fact that qp-complete curved
absolute Lπ∞-algebras are a full subcategory of pdg Bs.aE-algebras, we get

Homcurv abs Lπ∞-algqp-comp(L(∆n), g) ∼= Hompdg Bs.aE-alg(L(∆
n), g)
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∼= Hompdg Bs.aE-alg((D
n)Bs.aE, g)×Hompdg Bs.aE-alg(L(Λ

n
k ), g)

∼= Hompdg mod(D
n, g)×Hompdg Bs.aE-alg(L(Λ

n
k ), g)

∼= gn ×Homcurv abs Lπ∞-algqp-comp(L(Λn
k ), g)

∼= gn ×HomsSet(Λ
n
k ,R(g)) .

□

Let g be a qp-complete curved absolute Lπ∞-algebra. The simplicial set R(g) is not only a Kan
complex, it is an algebraic Kan complex in the sense of [Nik11]. Indeed, for any lifting problem
Λn

k −→ R(g), there is a canonical horn-filler given by 0 in gn under the bijection of Theorem
2.27. One may thing of R(g) not as satisfying the property of being a Kan complex, but as being
endowed with additional structure. From this point of view, R(g) is a group up to homotopy in
an algebraic sense.

The data of an n-simplex κ in R(g)n is equivalent to the data of a curved twisting morphism
ακ : Cc

∗(∆
n) −→ g. It is in particular a collection of elements ακ(aI) in g of degree Card(I) − 1

for all non-empty subsets I ⊆ [n]. They satisfy algebraic equations imposed by the E-coalgebra
structure of Cc

∗(∆
n). Mutatis mutandis, the same holds for the data of a horn Λn

k in R(g), re-
placing Cc

∗(∆
n) by Cc

∗(Λ
n
k ).

Definition 2.28 (Horn-filling operations). Let g be a qp-complete curved absolute Lπ∞-algebra
and let y be a degree n element in g. The horn-filler operation with respect to y is defined as

HFy : HomsSet(Λ
n
k ,R(g)) gn−1

{xI}I⊂[n],
I ̸=∅,k̂

ρnk (y, xI)(ak̂) .

It sends any hornΛn
k in R(g), that is, any collection {xI} of elements in g satisfying the algebraic

equations imposed by the E-coalgebra structure of Cc
∗(Λ

n
k ), to the element ρnk (y, xI)(ak̂) in

gn−1. This element is given constructed as follows: associated to the pair (y, xI), there exists
an unique n-simplex ρnk (y, xI) in R(g) by the bijection of Theorem 2.27; this n-simplex is the
data of a curved twisting morphism ρnk (y, xI) : Cc

∗(∆
n) −→ g, the horn-filler product HFy(xI)

is the image of a
k̂

by this curved twisting morphism.

REMARK 2.29. This definition is analogous to the higher Baker–Campbell–Hausdorff products
defined in [RNV20] and extended to the curved setting in [RiL24].

Recall that a symmetric corked planar tree τ is a planar tree where every vertex has at least two
incoming edges or zero incoming edges (called corks). Every vertex v is labelled by an element
σv in E(In(v)), where In(v) is the number of incoming edges of the vertex. The set of symmetric
corked planar trees is denoted by SCPT.

The image of the element a[n] in L(∆n) by the pre-differential is given by

d(a[n]) =

n∑
l=0

(−1)la
l̂
−

∑
m⩾2

∑
w∈E(m)

∑
I1,··· ,Im⊆[n]

Il ̸=∅

λ(w;I1,··· ,Im) lwm(aI1 , · · · ,aIm) ,

where the coefficients λ(w;I1,··· ,Im) are pre-image by the norm map of the decomposition of
a[n] by the E-coalgebra structure of Cc

∗(∆
n). These coefficients are either 0 or ±1. From these

coefficients, we are going to define a coefficient for any symmetric corked planar tree τ of
arity m with leaves labelled by a collection (I1, · · · , Im) of subsets Ij ⊆ [n], where Ij ̸= k̂ and
0 ⩽ k ⩽ n. We define the coefficient λ(τ;I1,··· ,Im) as

λ(τ;I1,··· ,Im) =
∏

v∈V(τ)

(−1)kλ(σv;Ii1 ,··· ,k̂,··· ,Iin(v)) ,

where σv is the label of the vertex v, and where the product runs over all vertices of τ.
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The subsets that appear in the coefficient λ(σv;Ii1 ,··· ,k̂,··· ,Iin(v)) are chosen as follows: from left to
right, if an incoming edge is a leaf, the we chose the label of the leaf, if an incoming edge is
attached to another vertex, we chose the subset k̂.

Proposition 2.30. Let g be a qp-complete curved absolute Lπ∞-algebra, let y be a degree n element
in g and let {xI} be a collection of elements in g corresponding to a horn Λn

k in R(g). The horn-filler
operation with respect to y of {xI} is given by the following formula

HFy(xI) = γg

∑
m⩾0

∑
τ∈SCPTm

∑
I1,··· ,Im⊆[n]

Il ̸=∅,k̂

λ(τ;I1,··· ,Im)τ

xI1 , · · · , xIm ; (−1)kdy−
∑
l ̸=k

(−1)l+kx
l̂


 ,

where τ
(
xI1 , · · · , xIm ; (−1)kdy−

∑
l ̸=k(−1)l+kx

l̂

)
denotes the planar tree obtained by labelling the

leaves of τ by the elements xI1 , · · · , xIm and by replacing the corks in τ by the element (−1)kdy −∑
l ̸=k(−1)l+kx

l̂
.

Proof. Follows directly from solving the formal fixed-point equation in the proof of Lemma
2.26, using the explicit solution of Proposition 2.25. □

REMARK 2.31. Computing the coefficients λ(σv;Ii1 ,··· ,k̂,··· ,Iin(v)) is the only obstacle to fully de-
termining the horn-filler products. Using the Python package for the Barrat–Eccles operad of
[MM21], one can write a computer code for the E-coalgebra structure of Cc

∗(∆
n) and compute

first terms of the above formula.

The analogue of the Baker–Campbell–Hausdorff formula. Let g be a qp-complete absolute
Lπ∞-algebra. Then 0 is a Maurer–Cartan element. The data of a horn Λ2

1 in R(g) based at the
Maurer–Cartan 0 is given by

,
where x and y are two representative elements in g1, as defined in Definition 2.21. The horn-
filler product HF0(x,y) with respect to 0 in g2 of x and y gives a representative element in g1
which represents the composition of the two paths represented by x and y inside π1(R(g), 0).
This precise construction recovers the classical Baker–Campbell-Hausdorff formula in the char-
acteristic zero setting, see [Ban14, Theorem 5.2.37] or [RNV20, Corollary 5.20]. Our is to give
a closed formula for the analogue of the Baker–Campbell–Hausdorff formula in the setting of
absolute partition Lπ∞-algebras.

Let τ be a symmetric corked planar tree. It is left-handed if for every vertex v with In(v) ⩾ 2
incoming edges, the j-th incoming edge is linked to another edge only if all the previous l
incoming edges (reading from left to right) are linked to an edge, for all 0 ⩽ l ⩽ j and every
j ∈ [1, In(v)]. Furthermore, every vertex which is not a cork must have at least two leaves, so
incoming edges linked to another vertex can only occur in vertices with valence at least 3.

A labelling of such a τ by 01 and 12, subsets of [0, 1, 2], is licit if for every vertex v of τ which
is not a cork, going from left to right of its incoming edges, v has c incoming edges attached to
other edges, a leaves labelled by 01 and then b leaves labelled by 12, where a+ b+ c = in(v)
and c ⩾ 0 and a,b ⩾ 1. In other words, a label 01 cannot appear after a label 12 and since v has
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at least two leaves, at least one of them is labelled by 01 and one of them by 12. We denote the
set of licit labels by L01,12(τ).

We define a coefficient α(τ; 01,··· ,12) for every left-handed symmetric corked planar tree τ to-
gether with a licit labelling by 01, 12 as follows:

α(τ; 01,··· ,12) =
∏

v∈V(τ)

(−1)α(σ; 01,··· ,12) ,

where σv is the label of the vertex v, and where the product runs over all vertices of τ which
are not corks. The coefficients at each vertex v are given as follows: suppose the vertex v has c
incoming edges attached to other edges, a leaves labelled by 01 and then b leaves labelled by
12, where a+ b+ c = n is the total number of incoming edges, and where c ⩾ 0 and a,b ⩾ 1.
Then

α(σ; 01,··· ,12) =

{
ϵ.φn

Ia
(σa+c−1(1))φn

Ic
(σa+c−1(1))π

(n,Ib)
I ′a

(σb) if degree(σ) = n− 2 ,
0 otherwise ,

where σa+c−1 = (σ0, · · ·σa+c−2), where σb = (σa+c−1, · · · ,σn−2), and where Ic = {1, · · · , c},
Ib = {c+ a+ 1} and where Ia = {c+ 1, · · · , c+ a} and I ′a = {c+ a, c+ 1, · · · , c+ a− 1}. Notice
that Ia and I ′a have the same underlying set but different orders. The sign ϵ is given by

ϵ = sign(σ0(1), · · ·σa+c−2(1)).(−1)b−1 .

In plaint words, the coefficient is non-trivial if and only if the permutation (σ0(1), · · ·σa+c−2(1))
in Sa+c−1 is an (c,a − 1)-unshuffle and if the last b-terms (σa+c−1, · · · ,σn−2) forms a Ib-
ordered partition of I ′a.

EXAMPLE 2.32. Here is an example of left-handed symmetric corked planar tree with a licit
labelling (the only possible licit labelling of this tree in fact).

,

The coefficients of the vertex labelled by (12) and the vertex labelled by ((132), (231)) are both
1. The coefficient of the last vertex is −1. The coefficient of the whole tree is therefore (−1)2 = 1.

Theorem 2.33. Let g be a qp-complete absolute Lπ∞-algebra, and let x,y be two representative elements
in g1. The horn-filler product HF0(x,y) is given by

HF0(x,y) =
∑
m⩾0

∑
τ∈SCPTleft

m

∑
L01,12(τ)

α(τ; 01,··· ,12)γg (τ (x, · · · ,y, · · · , x, · · · ,y; x+ y)) ,

where x appears if a leaf is labelled by 01 and y by 12, where the corks are replaced by the input x+ y
and where the sum is taken over all left-handed symmetric corked planar trees and all licit labellings of
those.

Proof. We consider Cc
∗(∆

2) together with its E-coalgebra structure. We want to compute which
operations σ in E give a decomposition of a012 with c terms a02, a terms a01 and b terms a12,
for any a,b, c ⩾ 0. Let n = a+ b+ c, it is immediate that such an operation is of degree n− 2.
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The rest of the proof follows the same ideas as the proof of Proposition 2.14. We first com-
pute which surjections u act non-trivially giving us the decomposition we want. We fix the
following order on the decompositions:

a⊗c
02 ⊗ a

⊗a
01 ⊗ a

⊗b
12 = a02︸︷︷︸

1

⊗ · · · ⊗ a02︸︷︷︸
c

⊗ a01︸︷︷︸
c+1

⊗ · · · ⊗ a01︸︷︷︸
c+a

⊗ a12︸︷︷︸
c+a+1

⊗ · · · ⊗ a12︸︷︷︸
c+a+b

,

with respect to the interval cut operation of u. Notice that a,b ⩾ 1. Indeed, if there is a 1 in the
interval cut, then both a ⩾ 1 and b ⩾ 1. If there are no 1’s, the interval cut only contains 0’s
and 2’s. Since the operation is of arity n and degree n− 2, there are 2n− 1 cuts, and thus there
must be a repetition and the resulting decomposition is trivial. In general, a surjection u that
produces such a decomposition has a table arrangement of the form∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u(1)
...

u(a+ c− 1)
c+ a c+ 1 · · · c+ i1 c+ a+ 1
c+ i1 + 1 · · · c+ i2 + i1 c+ a+ 2
...
c+ ib−2 + · · ·+ 1 · · · c+ ib—1 + · · ·+ i1 c+ a+ b− 1

c+ ib−1 + · · ·+ 1 · · · c+ ib + · · ·+ i1 n u(2a+ b+ c) · · · u(2a+ 2c+ 2b− 2) ,

where (u(1), · · · ,u(a + c − 1)) is a (c,a − 1)-unshuffle in Sa+c−1 and where (i1, · · · , ib) are
integers ⩾ 0 such that i1 + · · · + ib = a. If ij is zero, then c + a + j is the first term in the
(a + c − 1 + j)-th row of the table arrangement of u. These terms determine an Ib-ordered
partition of I ′a = {c+a, c+ 1, · · · , c+a− 1}. The position sign associated to such a surjection is
(−1)b−1, since there are b− 1 inner intervals ending with 1. The permutation sign is given by
the signature of the permutation (u(1), · · · ,u(a+ c− 1)). Indeed, when rearranging the terms,
these are the only permutations that involve two intervals of length 1; the rest involve intervals
of length 0 and 1, and therefore produce no signs. From the above, we get the characterization
of the elements σ in E(n)n−2 that have a surjection u of this type which appears in their table
reduction. This characterization is precisely encoded in the coefficients α(σ; 01,··· ,12), where
incoming edges connected to another vertex correspond to the terms a02 in the decomposition,
and the labels 01 and 12 to the terms a01 and a12, respectively. The sign that appears in these
coefficients corresponds to the sign of the decomposition. We conclude adapting Proposition
2.30 to our particular computation. □

The first terms of the formula are the following:

HF0(x,y) = x+ y− l(12)
2 (x,y) − l((123),(213))

3 (x, x,y) − l((132),(213))
3 (x, x,y)−

− l
((123),(231))
3 (x, x,y) − l((132),(231))

3 (x, x,y) + l((123),(132))
3 (x,y,y) + l((123),(312))

3 (x,y,y)

+ l
((123),(321))
3 (x,y,y) + l((213),(132))

3 (x,y,y) + l((231),(132))
3 (x,y,y)+

+ l
((123),(231))
3

(
l
(12)
2 (x,y), x,y

)
+ l

((132),(231))
3

(
l
(12)
2 (x,y), x,y

)
+ · · ·

Let us make a few observations. Notice that unlike the classical Baker–Campbell–Hausdorff
formula, which involves coefficients of the form 1/r!, the coefficients in this formula are all
±1. Furthermore, by suitably permuting the labels, they can be all made positive. It is thus
obvious that such a formula is well-defined in any characteristic. Another point is that unlike
the classical BCH formula, which is made of iterations of the Lie bracket, here there are no
iterations of the first bracket l(12)

2 (x,y) alone. All iterations involve higher arity operations as
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well. However, when k is a field of characteristic zero, the group produced by this formula
can be compared to the group produced by the BCH formula; in fact, they are isomorphic. See
Subsection 2.7 for more details.

Theorem 2.34. Let g be a nilpotent partition Lπ∞-algebra concentrated in degree 1. Then R(g) is the
classifying space of the group (

g, HF0(−,−), 0
)

,

which is a nilpotent group.

Proof. By Theorem 2.23, its clear that R(g) is the classifying space of its first homotopy group
π1(R(g), 0), since it is connected and every other homotopy group is trivial. Furthermore, every
element in g is a representative element, and there are no interval equivalences since g2 = {0}.
Hence the underlying set of π1(R(g), 0) is given by g, and moreover, the composition of paths
in π1(R(g), 0) is explicitly given by the formula HF0(−,−).

Since g is concentrated in degree 1, operations in arity n must be in degree n− 2. Therefore g
is weight-nilpotent if and only if it is arity-nilpotent; and in any of these cases it is nilpotent in
the sense of Definition 1.16. Let us prove that it is nilpotent by induction on the weight. If g
is abelian, meaning it endowed with the trivial structure and every operation is zero, then the
horn-filler product is

HF0(x,y) = x+ y ,

for any x,y in g. We get an abelian and hence a nilpotent group. Now consider the short exact
sequence of k-vector spaces

0 −→Wδg/Wδ+1g ↪→ g/Wδ+1g ↠ g/Wδg −→ 0 .

These are all nilpotent partition Lπ∞-algebra maps, hence they induce a short exact sequence
between their associated groups. The structure on Wδg/Wδ+1g is trivial, hence its associated
group is abelian. The group g/Wδg is nilpotent by induction hypothesis. Since the group
associated to g/Wδ+1g is an extension of a nilpotent group by an abelian group, it is nilpotent
if this extension is central. Let x be in Wδg/Wδ+1g and g be in g/Wδ+1g, then

HF0(x,g) = x+ g = g+ x = HF0(g, x) .

Indeed, since x lies precisely in weight δ, any operations applied to x lies in weight δ + 1
and hence vanishes in g/Wδ+1g. There are no terms in the formula of HF0(x,g) involving
operations only labelled by g. Therefore all higher terms vanish in the formulas for HF0(x,g)
and HF0(g, x). Since x then commutes with any element g in g/Wδ+1g, this group extension is
central, which concludes the proof. □

REMARK 2.35. Notice that a nilpotent partition Lπ∞-algebra does not need to be concentrated in
degree 1 in order for R(g) to be the classifying space of a group. If the representative elements
in all degrees different from 1 are trivial up to interval equivalence, then by Theorem 2.23 the
space R(g) is the classifying space of its π1, whose group structure is still determined by the
formula in Theorem 2.33.

EXAMPLE 2.36. Let us give a simple non-trivial example of the construction of Theorems 2.33
and 2.34. The data of a 2-nilpotent partition L∞-algebra concentrated in degree 1 amounts to
the data of a k-vector space g together with a binary operation

l2 : g⊗ g −→ g ,

such that any composition of l2 with itself is zero, i.e: l2(l2(−,−),−) = l2(−, l2(−,−)) = 0. This
structure is sometimes referred to as a 2-nilpotent associative algebra.

The following statements can be checked by direct computations.
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• The horn-filler product of Theorem 2.33 is given in this case by

x ⋆ y := x+ y− l2(x,y) ,

and it defines a group structure on g, where the neutral element is 0 and the inverse is
given by

x−1 = −x− l2(x, x) .

• The group (g, ⋆, 0) is nilpotent of nilpotency class 2. Commutators are given by

x ⋆ y ⋆ x−1 ⋆ y−1 = l2(y, x) − l2(x,y) .

• If k is of characteristic p, then x⋆p = l2(x, x) and thus x⋆p
2
= p.l2(x, x) = 0, meaning

every element x is of order at most p2.

For example, if g is a k-vector space of dimension 3 denoted by k⊕3 and if l2 is given by

l2 : k⊕3 ⊗ k⊗3 k⊕3

(α,β,γ)⊗ (α ′,β ′,γ ′) (0, 0,−α.β ′) ,

then the resulting group (k⊕3, ⋆, 0) is isomorphic to H3(k), the Heisenberg group of 3x3 upper
triangular matrices with 1’s in the diagonal and coefficients in k.

2.6. Formal moduli problems and integration theory. The ∞-category of formal moduli prob-
lems defined in terms of E∞-algebras is equivalent to the ∞-category of partition L∞-algebras,
as first shown in [BM19]. We work in the set-up of [GRiL23b]. The goal of this subsection is to
show that under a homotopy completeness assumption, applying the integration functor R to
a partition L∞-algebra recovers its associated formal moduli problem.

Definition 2.37 (Homotopy complete algebra). Let g be a partition L∞-algebra. It is homotopy
complete if the derived unit of adjunction

Lηg : g ∼−→ Res LAb(g)

of Proposition 1.32 is a quasi-isomorphism.

REMARK 2.38. This definition is a divided powers analogue of the definition of homotopy
completeness given by Harper and Hess in [HH13].

EXAMPLE 2.39. Partition L∞-algebras which admit as a quasi-free model generated by a finite
dimensional complex V in degrees ⩽ 0 are homotopy complete, as shown in [GRiL23b]. These
algebras correspond to representable formal moduli problems.

In order to present the formal moduli problem associated to a homotopy complete partition
L∞-algebra, we follow the main ideas of [GRiL23b, Section 3.3]. Formal moduli problems can
also be defined as contravariant functors from the ∞-category of coArtinianΩBEnu-coalgebras
to spaces that preserve certain pushouts. Indeed, there is an equivalence, given by linear du-
ality, between the ∞-category of coArtinianΩBEnu-coalgebras and the ∞-category of Artinian
ΩBEnu-algebras. Notice thatΩBEnu-algebras are a model for E∞-algebras over k.

Proposition 2.40. Let g be a partition L∞-algebra which is homotopy complete. The functor

ψ(g) : ΩBEnu-coalg sSets

C R(hom(C⊕ k, LAb(g))) .

when restricted to coArtinian ΩBEnu-coalgebras, presents the formal moduli problem associated to g,
where hom(C⊕ k, LAb(g)) refers to the convolution algebra construction of subsection 1.5 between
C⊕ k (cofreely added a strict counit to C) and and the derived homotopy completion LAb(g)) of g.
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Proof. By [GRiL23b, Lemma 9], the formal moduli problem associated to a partition L∞-algebra
is given by the functor

Ψ : part L∞-alg [Q.iso−1] Fun (coArtΩBEnu-coalg, S)

g
[
C 7→Mappart L∞-alg [Q.iso−1]

(
Res Ω̂♭

ιC, g
)]

,

at the ∞-categorical level. IfC is coArtinian, then Res Ω̂ιC is homotopy complete by [GRiL23b,
Theorem 4]. Hence

Mappart L∞-alg [Q.iso−1]

(
Res Ω̂♭

ιC, g
)
≃Mapabs part L∞-alg [W−1]

(
Ω̂♭

ιC, LAb(g)
)

,

since g is supposed to be homotopy complete as well. Therefore it suffices to give an explicit
model for this mapping space. By Proposition 1.31, we can compute this mapping space in
curved absolute partition L∞-algebras. A model for this mapping space is given by

HomΩBs.aE-coalg

(
(C⊕ k)⊗Cc

∗(∆
•), B̂ιLAb(g)

)
∼= Homdg ΩBs.aE-coalg

(
Cc
∗(∆

•),
{
C⊕ k, B̂ιLAb(g)

})
∼= Homdg ΩBs.aE-coalg

(
Cc
∗(∆

•), B̂ιhom(C⊕ k, LAb(g))
)

∼= R(hom(C⊕ k, LAb(g))) ,

since C⊗Cc
∗(∆

•) is a Reedy cofibrant resolution of C as aΩBEnu-coalgebra. Finally, any quasi-
isomorphism g ∼−→ g ′ induces a weak equivalence LAb(g) ∼−→ LAb(g ′), and the convolution
construction preserves weak equivalences in the second variable. □

REMARK 2.41. Like in the characteristic zero case of [CCN22, Section 7], it should be possible
to remove the homotopy completeness assumption on g. The idea is that, given a general par-
tition L∞-algebra g, a convolution construction between g and a strictly coArtinian coalgebra
C is necessarily nilpotent, and thus one can apply the integration functor to it.

REMARK 2.42 (Recovering general fmps). Let C be a 0-reduced quasi-planar conilpotent dg
cooperad. We define formal moduli problems of Artinian ΩC-algebras in an analogous way.
Furthermore, if C satisfies a homological condition called temperedness, then this ∞-category is
equivalent to the ∞-category of dg C∗-algebras localized at quasi-isomorphisms. We refer to
[GRiL23b] for more details.

If C is quasi-planar, the dg operad ΩC admits a canonical E-comodule structure ΩC −→ ΩC⊗
E, as described in [GRiL23a, Section 2]. This gives an enrichment {−,−} of dg ΩC-coalgebras
over dg E-coalgebras, and an analogue convolution construction hom(C, g) between a dg ΩC-
coalgebras C and a dg C-algebra g. This convolution is naturally a curved absolute partition
L∞-algebra. Applying the integration functor to this convolution algebra gives a model for
formal moduli problems encoded by homotopy complete dg C∗-algebras.

2.7. Comparison results. We discuss comparison results. First, we explain how similar con-
structions can be made using other models. Secondly, since our constructions work over any
field k, we compare them to known constructions in characteristic zero. In this case, we show
that the integration functor constructed in this paper is naturally weakly equivalent to the one
constructed in [RiL24]. This allows us to compare it to [RNV20] or to [Get09]. In particular,
this gives us a way to compare the formula in Theorem 2.33 with the classical Baker–Campbell–
Hausdorff formula.

Another quasi-planar model. Let Surj be the unital surjections operad of McClure and Smith,
defined in [MS03]. It is a S-cofibrant resolution of the commutative operad. As mentioned in
Remark 1.6, the category of dg ΩSurj∗-algebras localized at quasi-isomorphisms also present
the ∞-category of partition Lie algebras. This is the model for partition L∞-algebras consid-
ered in [BCN21, Definition 4.46].
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Lemma 2.43. The conilpotent dg cooperad Bs.aSurj is quasi-planar.

Proof. The proof is completely analogous to Lemma 1.21. Indeed, the dg Sn-module Surj(n) is
degree-wise free, thus we can filter Surj by the homological degree and induce this filtration
onto Bs.aSurj. The result follows from a straightforward check. □

The cellular chains functorCc
∗(−) has a natural Surj-coalgebra structure, constructed in [MS03]

and in [BF04]. Using this, one can construct an integration functor for curved Bs.aSurj-algebras
and Theorems 2.5 and 2.6 also hold in that context. Moreover, there is a quasi-morphism of dg
operads

TR : E ∼−→ Surj

called the table reduction morphism, constructed in [BF04]. Using this quasi-isomorphism and
Lemma 2.43 together with the general theory of [GRiL23a], it is straightforward to compare
the constructions performed so far with their analogues for this other model. (For a blueprint
of these arguments, see below the comparisons that hold in characteristic zero).

Let us discuss the differences between these two choices. The E-coalgebra structure of Cc
∗(−)

is given by pulling back the Surj-coalgebra structure along the table reduction morphism. As
explained in the proofs, the formulas in Proposition 2.14 and Lemma 2.19 are obtained from
simpler formulas for the Surj-coalgebra structure. This also results in simpler formulas for
the analogues of Proposition 2.30 and Theorem 2.33. The key difference, however, is that the
dg operad Surj is not a Hopf operad. Thus, a priori, one does not have a tensor product of
ΩBs.aSurj-coalgebras or a convolution structure. These are crucial in many proofs. For ex-
ample, when we construct cylinder objects by tensoring with Cc

∗(∆
1). This can be somewhat

repaired since ΩBs.aSurj-coalgebras are in fact tensored over E-coalgebras, but still things be-
come more cumberstone.

Comparisons in characteristic zero. There is a canonical quasi-isomorphism φ : E ∼−→ uCom,
given by the augmentation map of k[Sn] in degree 0, for every n ⩾ 0. When k is a field of
characteristic zero, this induces a quasi-isomorphism of cofibrant dg operads φ : ΩBs.aE ∼−→
ΩBs.auCom. Notice that outside of characteristic zero, ΩBs.auCom is not cofibrant any more.
This morphism induces the following commutative square of Quillen equivalences

uEE∞-coalg curv abs Lπ∞-algqp-comp

uCC∞-coalg curv abs L∞-algcomp ,

Ω̂ι

CoindΩBs.aφ ResBs.aφ

B̂ι

Ω̂2
ι

ResΩBs.aφ

B̂2
ι

IndBs.aφ⊣

⊣

⊣

⊣

where uCC∞ = ΩBs.auCom is the model for counital cocommutative up to homotopy coal-
gebras used in [RiL24]. We add the superscript 2 to distinguish the between two complete
bar-cobar adjunctions. Let us denote by Rzero the integration functor constructed in [RiL24].

Proposition 2.44. Let k be a field of characteristic zero. Let g be a qp-complete curved absolute partition
L∞-algebra and let h be a complete curved absolute L∞-algebra. The following simplicial sets are
naturally weakly equivalent

R(g) ≃ Rzero(ResBs.aφ(g)) and R(LIndBs.aφ(h)) ≃ Rzero(h) .

Proof. Let k be the ground field with its canonical uCC∞-coalgebra structure. It is straightfor-
ward to check that ResΩBs.aφ(k) is isomorphic to k with its canonical uEE∞-coalgebra structure.
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Let g be a curved absolute partition L∞-algebra, the simplicial set Rzero(g) has the following
homotopy type

R(g) ≃MapuEE∞-coalg

(
k, B̂ι(g)

)
≃MapuEE∞-coalg

(
ResΩBs.aφ(k), B̂ι(g)

)
which is naturally equivalent via adjunction to

MapuCC∞-coalg

(
k, RCoindΩBs.aφB̂ι(g)

)
≃MapuCC∞-coalg

(
k, B̂2

ι(g)
)
≃ Rzero(ResBs.aφ(g)) .

The second equivalence follows from the first one, using the fact that the derived unit of ad-
junction h ∼−→ ResBs.aφLIndBs.aφh is a natural weak equivalence. □

Let us describe the action of the restriction functor ResBs.aφ on a (curved) absolute partition
L∞-algebra g. It does not change its underlying chain complex/pre-differential module. The
structure operations of the (curved) absolute L∞-algebra ResBs.aφ(g) are given byln =

∑
σ∈Sn

lσn

 ,

for alln ⩾ 0. All the operations lwn where the degree ofw is ⩾ 1 are sent to 0. One can check that
these new operations {ln} are indeed symmetric of degree −1 and that they satisfy the axioms
of an absolute L∞-algebra. In particular, if g is a nilpotent partition Lπ∞-algebra concentrated
in degree 1, then ResBs.aφ(g) is in fact a nilpotent Lie algebra concentrated in degree 1.

Theorem 2.45. Let k be a field of characteristic zero. Let g be a nilpotent partition L∞-algebra concen-
trated in degree 1. There is an isomorphism of groups(

g, HF0(−,−), 0
)
∼=
(
g, BCH(−,−), 0

)
,

between the nilpotent group obtained with the horn-filler formula of Theorem 2.33 and the exponential
group obtained from the underlying Lie algebra of g using the Baker–Campbell–Hausdorff formula.

Proof. Follows directly from Proposition 2.44. Indeed, since the simplicial sets Rzero(ResBs.aφ(g))
and R(g) are weakly equivalent, their homotopy groups, namely their π1, are isomorphic. □

REMARK 2.46. Notice that if h is a nilpotent Lie algebra concentrated in degree 1, then the
absolute partition L∞-algebra LIndBs.aφ(h) need not be concentrated in degree 1. This coin-
cides with the observation made in Remark 2.35. However, by Proposition 2.44, the space
R(LIndBs.aφ(h)) is still the classifying space of the exponential group of h, and its group struc-
ture can also be described up to isomorphism by Theorem 2.33.

EXAMPLE 2.47. In general, Theorem 2.45 does not give an explicit construction of for the iso-
morphism between these two groups. However, in the case of Example 2.36, an explicit iso-
morphism can be constructed.

Recall that the data of a 2-nilpotent partition L∞-algebra concentrated in degree 1 is equivalent
to the data of a k-vector space g together with a binary map

l2 : g⊗ g −→ g ,

such that any composition of l2 with itself is zero, i.e: l2(l2(−,−),−) = l2(−, l2(−,−)) = 0. The
horn-filler product in this case is given by HF0(x,y) = x+ y− l2(x,y) and it can be checked by
hand that it defines a group structure on g.

Given this data, one can also define a Lie bracket on g as follows

[x,y] = l2(y, x) − l2(x,y) .

The Baker–Campbell–Hausdorff formula is then given by

BCH(x,y) = x+ y+
1
2
[x,y] .
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It can be checked by hand that the map f(x) = x+ l2(x,x)
2 defines a group isomorphism between

the group defined with the horn-filler product and the one defined with the Baker–Campbell–
Hausdorff formula. This later construction, however, only makes sense with 2 is invertible in
the ground field k.

3. LIE-TYPE MODELS IN p-ADIC HOMOTOPY THEORY

We show that (curved) absolute partition L∞-algebras, with the transferred model structure
from their Koszul dual coalgebras, model the p-adic homotopy types of connected finite type
nilpotent spaces. This is done by a dualizing Mandell’s p-adic models constructed in [Man01].
Then, we construct an intrinsic model structure on (curved) absolute partition L∞-algebras,
transferred from simplicial sets, and adapted to the study of p-adic homotopy types. Building
on the work done in the previous sections, we give an explicit description of the homotopy
groups of the p-completion of a pointed connected finite type nilpotent space in terms of its
absolute partition L∞ model. Finally, we construct (curved) absolute partition L∞ models for
p-adic mapping spaces.

3.1. Comparing derived units of adjunctions. From now on, we assume the base field k to
be an algebraic closed field of a characteristic p > 0. For example, the algebraic closure Fp of
Fp. Furthermore, we consider the category of simplicial sets endowed with the Fp-local model
structure constructed in [Bou75], where cofibrations are given by monomorphisms and where
weak equivalences are given by morphisms f : X −→ Y such that H∗(f, Fp) : H∗(X, Fp) −→
H∗(Y, Fp) is an isomorphism.

Cochains adjunction: There is an adjunction

sSet dg ΩBs.aE-algop ,
C∗

c(−)

U

⊣

where C∗
c(−) is the cellular cochains functor, endowed with a ΩBs.aE-algebra structure, which

is given by pulling back the E-algebra structure along the morphismΩBs.aE −→ E.

Finite type nilpotent spaces. We recall what finite type nilpotent spaces are and we state the
main theorem of this subsection.

Definition 3.1 (Finite type simplicial set). Let X be a simplicial set. It is said to be of finite type
if the homology groups Hn(X, Fp) are finite dimensional for all n ⩾ 0.

Definition 3.2 (Nilpotent simplicial set). Let X be a simplicial set. It is said to be nilpotent if for
every 0-simplex α it satisfies the following conditions:

(1) The group π1(X,α) is nilpotent.

(2) The π1(X,α)-module πn(X,α)-module is a nilpotent π1(X,α)-module.

Theorem 3.3 ([Man01]). Let X be a connected finite type nilpotent simplicial set. There derived unit
of adjunction

ηX : X −→ RUC∗
c(X)

is an Fp-equivalence.

Proof. The dg operad ΩBs.aE qualifies as an E∞-operad, that is, a S-projective resolution of the
commutative operad. Thus the main theorem of [Man01] applies. □

Proposition 3.4. Let X be a finite type simplicial set. There is a weak equivalence of simplicial sets

RL(X) ≃ RUC∗
c(X) ,

which is natural on the subcategory of finite type simplicial sets.
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Proof. There is an equivalence

RUC∗
c(X) ≃ HomΩBs.aE-alg(ΩιBιC

∗
c(X),C

∗
c(∆

•)) .

The following square of Quillen adjunctions

ΩBs.aE-algop curv Bs.aE-coalgop

ΩBs.aE-coalg curv Bs.aE-algqp-comp ,

Bopι

(−)◦ (−)∗

Ω
op

ι

Ω̂ι

(−)∗

B̂ι

(−)∨⊣

⊣

⊣

⊣

commutes. The left-hand side categories are endowed with a transferred model structure from
dg modules and the right-hand side with a transferred model structure using each of these
bar-cobar adjunctions. This follows from [GRiL23a, Section 8], using the fact that Bs.aE is a
quasi-planar curved conilpotent cooperad as shown in Lemma 1.21. Since X is a finite type
simplicial set, the homology of ΩιBιC

∗
c(X) is degree-wise finite dimensional and bounded

above. Therefore the generalized Sweedler dual (−)◦ is homotopically fully-faithful and we
get

HomΩBs.aE-alg(ΩιBιC
∗
c(X),C

∗
c(∆

•)) ≃ HomΩBs.aE-coalg(C
c
∗(∆

•), B̂ιΩ̂ιC
c
∗(X)) ,

which concludes the proof. See [RiL24, Section 3] for an analogue of this proof in characteristic
zero. □

Theorem 3.5. Let X be a connected finite type nilpotent simplicial set. The unit of adjunction

ηX : X ∼−→ RL(X)

is an Fp-equivalence.

Proof. Follows directly from Proposition 3.4. □

REMARK 3.6. Let X connected finite type simplicial set. The unit of adjunction

ηX : X ∼−→ RL(X)

is weakly equivalent to the Bousfield-Kan p-completion.

Corollary 3.7. Let X be a pointed connected finite type nilpotent simplicial set. The unit of adjunction

ηX : X ∼−→ R∗L∗(X)

is an Fp-equivalence.

Proof. Follows from Theorem 3.5 and Proposition 2.11. □

REMARK 3.8. In [BB24], Bachmann and Burklund showed that the chains functor from spaces
to E∞-coalgebras over k (algebraically closed field of characteristic p > 0) is homotopically
fully faithful on all nilpotent spaces, without any pointed, connected or finite type assump-
tion. If ΩBs.aE-coalgebras rectify E∞-coalgebras over k, that is, if the ∞-category of ΩBs.aE-
coalgebras localized at quasi-isomorphisms is equivalent to the ∞-category of E∞-coalgebras
over k, then it would follow that Theorem 3.5 holds for all nilpotent spaces as well.
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3.2. Minimal models. In this subsection, we construct minimal resolutions of qp-complete
curved absolute Lπ∞-algebras with respect to transferred weak equivalences.

Definition 3.9 (Minimal model). Let g be a qp-complete curved absolute Lπ∞-algebra. A mini-
mal model (V ,φdV

,ψV) amounts to the data of
(1) A graded module V together with a map

φdV
: V −→

∏
n⩾0

Ω̂s.aE∗(n)(⩾1) ⊗̂Sn
V⊗n

which lands on elements of weight greater or equal to 1, such that the induced
derivation dV satisfies

d2
V = l

(12)
2 (l0,g) + l(21)

2 (l0,g) .

(2) A weak equivalence of curved absolute Lπ∞-algebras

ψV :

∏
n⩾0

Ω̂s.aE∗(n) ⊗̂Sn
V⊗n,dV

 ∼−→ g .

REMARK 3.10. Given a graded module V , the data of the derivation dV amounts to a uEE∞-
coalgebra structure on V . Thus the data (V ,φdV

) above amounts to the data of a minimal
uEE∞-coalgebra, that is, a uEE∞-coalgebra whose underlying differential is zero.

Proposition 3.11. Let (V ,φdV
,ψV) and (W,φdW

,ψW) be two minimal models of a qp-complete
curved absolute Lπ∞-algebra g. There is an isomorphism of graded modules V ∼=W.

Proof. If (V ,φdV
,ψV) and (W,φdW

,ψW) are two minimal models of g, then, by definition,
there exists a weak equivalence of curved absolute Lπ∞-algebras∏

n⩾0

Ω̂s.aE∗(n) ⊗̂Sn
V⊗n,dV

 ∼−→

∏
n⩾0

Ω̂s.aE∗(n) ⊗̂Sn
W⊗n,dW

 .

This data amounts to an ∞-quasi-isomorphism between the uEE∞-coalgebras V andW. Since
their differentials are trivial, this data is an ∞-isomorphism, and in particular, an isomorphism
of graded modules between V and W. See [GRiL23a, Section 7] for the statements related to∞-morphisms of coalgebras in positive characteristic. □

Proposition 3.12. Let g be a qp-complete curved absolute Lπ∞-algebra. It admits a minimal model
where the graded module of generators is given by the homology of its complete bar construction.

Proof. Since we are working over a field, we can choose a contraction between B̂ιg and its
homology. We can then apply the homotopy transfer theorem of [GRiL23a, Section 7] in order
to transfer an ∞-quasi-isomorphic uEE∞-coalgebra structure onto its homology. This gives a
weak equivalence of qp-complete curved absolute Lπ∞-algebras

Ω̂ιH∗

(
B̂ιg

)
∼−→ Ω̂ιB̂ιg ∼−→ g ,

by composing the ∞-quasi-isomorphism with the counit of the complete bar-cobar adjunction.
□

Definition 3.13 (p-adic model). Let g be a qp-complete curved absolute Lπ∞-algebra. It is a
p-adic model if there exists a simplicial set X and a zig-zag of weak equivalences of qp-complete
curved absolute Lπ∞-algebras

L(X) ∼←− · ∼−→ · · · ∼←− · ∼−→ g ,

and if, furthermore, R(g) is Fp-weakly equivalent to X.

EXAMPLE 3.14. If g is weakly equivalent to L(X), where X is a connected finite type nilpotent
simplicial set, then g is a p-adic model.
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Proposition 3.15. Let g be a qp-complete curved absolute Lπ∞-algebra which is a p-adic model. The
canonical morphism of uEE∞-algebras

Cc
∗(R(g))

∼−→ B̂ιg

is a quasi-isomorphism.

Proof. The canonical mapCc
∗(R(g))

∼−→ B̂ιg is a quasi-isomorphism since its transpose L(R(g)) ∼−→
g is a weak equivalence. □

Corollary 3.16. Let g be a qp-complete curved absolute Lπ∞-algebra which is a p-adic model for a
simplicial set X. Then its minimal model is generated by H∗(X).

Proof. Immediate by Propositions 3.15 and 3.12. □

3.3. Recovering the homotopy groups of spaces and an intrinsic model structure. In this
subsection, we will focus on pointed simplicial sets and on the adjunction L∗ ⊣ R∗. On the
one hand, we show how to recover the homotopy groups of the p-completion of a pointed
connected finite type nilpotent space from its absolute partition L∞ model. On the other hand,
we use this description to define a new class of weak equivalences of absolute partition L∞-
algebras and show that one can transfer the model structure on simplicial sets onto absolute
partition L∞-algebras via the L∗ ⊣ R∗.

Theorem 3.17. Let X be a pointed connected finite type nilpotent space. There is a bijection

πk(XFp
) ∼= rep(L∗(X)k)/ ∼int ,

between the k-th homotopy group πk(XFp
) of its p-completion and representative elements of degree k

in L∗(X) up to interval equivalences, for all k ⩾ 1.

Proof. Follows directly from Theorems 2.23 and 3.5. □

The above theorem has interesting consequences even in the basic case of the spheres where
X = Sm. In this case, the absolute partition L∞-algebra L∗(S

m) can be fully described: its
underlying graded module admits a basis in terms of formal power series of symmetric rooted
trees with leaves labelled by the element a[m] where C̃c

∗(S
m) ∼= Fp.a[m], as explained in

Lemma 1.11. The differential on symmetric rooted trees is given by the terms described af-
ter the aforementioned lemma, and the image by the differential on the labelling element a[m]

is determined by the formula in Lemma 2.19. Computing representative elements in L∗(S
m)

amounts to find formal power series of a given degree

ε =
∑
δ⩾0

∑
τ∈SRT(δ)

λττ
(
a[m], · · · ,a[m]

)
,

which satisfy the following equation

dL∗(Sm)(ε) +
∑
n⩾2

∑
w∈E(n)k.n−1
wj(1)=idSn

(−1)jklwn (ε, · · · , ε) = 0 ,

where the action of the operations lwn on symmetric rooted trees is given by grafting. This
equation can be decomposed along the degree and the arity of the symmetric rooted trees that
it involves, thus it can be checked inductively. Representative elements should be considered
up to interval equivalences, but then again, these equivalences are given by purely combina-
torial formulas (Definition 2.22) as well, and they can be constructed weight by weight. In
principle, both of this questions should be implementable in a computer. However, this is
beyond the scope of the present paper and shall be the subject of future research.
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EXAMPLE 3.18. The generator a[m] in L∗(S
m) is a representative element in degree m, which

corresponds to the canonical map Sm −→ SmFp
. Since a[m] is in weight zero, it can be checked

that it can not be interval equivalent to 0, thus πm(SmFp
) ̸= 0.

REMARK 3.19. Of course, in the above discussion, one can replace L∗(X) and in particular
L∗(S

m) by any other absolute partition L∞-algebra model in the sense of Definition 3.13. Thus
computations could greatly be simplified if smaller models were found.

An intrinsic model structure. We define π-equivalences of absolute partition L∞-algebras and
show that they are weak equivalences in a model category structure. We then compare this new
model structure with the previous model structure considered so far, which was transferred
from EE∞-coalgebras.

Definition 3.20 (π-equivalence). Let f : g −→ h be a map of absolute partition L∞-algebras. It
is a π-equivalence if the induced map

π∗(R(f), 0) : π∗(R(g), 0) ∼−→ π∗(R(h), 0)

is an isomorphism of groups for all ∗ ⩾ 1.

REMARK 3.21. By Theorem 2.23, a map f : g −→ h is a π-equivalence if and only if it induces a
bijection

f : rep(g∗)/ ∼int ∼−→ rep(h∗)/ ∼int

between the sets of representative elements up to interval equivalences in all degrees ∗ ⩾ 1.

Theorem 3.22. There is a model category structure on the category of absolute partition L∞-algebras
determined by the following classes of maps

(1) the class of weak equivalences is given by π-equivalences;

(2) the class of fibrations is given by maps f such that R∗(f) is a Kan fibration;

(3) the class of cofibrations is determined by the left-lifting property against acyclic fibrations.

The adjunction L∗ ⊣ R∗ is also a Quillen adjunction with respect to this model structure.

Proof. Let us consider the composite adjunction

sSet0 sSet∗ abs Lπ∞-algqp-comp
inc

cn

L∗

R∗

⊣ ⊣

where sSet0 denotes the category of reduced simplicial sets together with their model structure
constructed in [GJ99, Chapter V, Proposition 6.2], and the Quillen adjunction inc ⊣ cn is given
by the inclusion of reduced simplicial sets into pointed simplicial sets on the one hand, and by
the contracting the connected component of the base point on the other hand. The category
sSet0 together with this model structure presents the ∞-category of pointed connected spaces.
The main idea is to use the "old" model structure (transferred from EE∞-coalgebras) on qp-
complete absolute Lπ∞-algebras to prove that we can use the right transfer theorem for model
structures along the above composite adjunction.

The class of maps which are sent to weak equivalences of reduced simplicial sets by R∗ is
given by π-equivalences, it includes all previous weak equivalences transferred from EE∞-
coalgebras). The class maps f such that R∗(f) is a Kan fibration contains all degree-wise sur-
jections by Theorem 2.6. Therefore every qp-complete absolute Lπ∞-algebra g is fibrant with
respect to this new class of fibrations and, moreover the diagonal map g −→ g⊕ g can be fac-
tored into a weak equivalence followed by a fibration, simply by considering the factorization
of this map with respect to the old model structure. Thus the hypothesis of the right transfer
theorem for model structures are satisfied. □
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REMARK 3.23. One can also apply the same arguments in order to transfer the model category
structure on pointed simplicial sets sSet∗ to qp-complete absolute Lπ∞-algebras along the ad-
junction L∗ ⊣ R∗. In this case, fibrations can be characterized as degree-wise surjections in
degrees ⩾ 0. However, weak equivalences are now given by maps which induce weak ho-
motopy equivalences between all the connected components of the Maurer–Cartan space, and
not only on the connected component of the zero Maurer–Cartan element. By computing the
(unreduced) E-coalgebra structure of Cc

∗(S
k), it is possible to give an algebraic characterization

of these equivalences similar to Theorem 2.23. This model structure with "global equivalences"
is analogue to the ones considered in [BFMT20, Section 8.1] and in [RNV20, Section 6.4].

Proposition 3.24. The Quillen adjunction given by the identity functor

EE∞-coalg [Q.iso−1] ≃ abs Lπ∞-algqp-comp [W−1] abs Lπ∞-algqp-comp [π-equi−1]
Id

LId

⊣

exhibits the ∞-category of qp-complete absolute Lπ∞-algebras up to π-equivalences as a coreflective sub-∞-category of EE∞-coalgebras up to quasi-isomorphism.

Proof. Clearly, the identity functor forms a Quillen adjunction since it preserves all fibrations
and weak equivalences. It is straightforward to check that the derived unit of this adjunction
is an isomorphism, so in particular a π-equivalence. □

REMARK 3.25. When k is a field of characteristic zero, the notion of π-equivalence corresponds
to the notion of a quasi-isomorphisms in degrees ⩾ 1, see Remark 2.24 and combine it with
Proposition 2.44. So, in particular, absolute partition L∞-algebras up to quasi-isomorphism
in degrees ⩾ 1 do present an ∞-category of an algebraic nature, that is, of algebras over a
monad on the ∞-category of chain complexes. It would be very interesting to determine if this
remains true for the ∞-category of absolute partition L∞-algebras up to π-equivalences over a
field of positive characteristic.

3.4. Mapping spaces. In this subsection, we construct explicit p-adic models for mapping
spaces, without any assumption on the source simplicial set. Recall that, if X and Y are simpli-
cial sets, there is a model for their mapping space given by

Map(X, Y)• := HomsSet(X×∆•, Y) ,

which forms a Kan complex when Y is so.

Lemma 3.26. Let X and Y be two simplicial sets. There is a quasi-isomorphism

EZ : Cc
∗(X)⊗Cc

∗(Y)
∼−→ Cc

∗(X× Y) ,

of uEE∞-coalgebras given by the Eilenberg-Zilber map, which furthermore is natural in X and Y.

Proof. The Eilenberg-Zilber map is know to be a quasi-isomorphism of E-coalgebras, see [BF04],
hence it is a quasi-isomorphism ofΩBs.aE-coalgebras. □

Theorem 3.27. Let g be a qp-complete curved absolute Lπ∞-algebra and let X be a simplicial set. There
is a weak equivalence of Kan complexes

Map(X,R(g)) ≃ R (hom(Cc
∗(X), g)) ,

which is natural in X and in g, where hom(Cc
∗(X), g) denotes the convolution curved absolute Lπ∞-

algebra. Furthermore, it is possible to replace the cellular chains Cc
∗(X) by the homology H∗(X) to

obtain a smaller model, meaning that there is a weak equivalence of Kan complexes

Map(X,R(g)) ≃ R (hom(H∗(X), g)) ,

which is now only natural in g.
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Proof. There is an isomorphism of simplicial sets

Map(X,R(g))• := HomsSet(X×∆•,R(g)) ∼= HomsSet(C
c
∗(X×∆•), B̂ι(g)) .

We can pre-compose by the Eilenberg-Zilber map of Lemma 3.26, giving a weak equivalence
of simplicial sets

HomΩBs.aE-cog(C
c
∗(X×∆•), B̂ι(g)) ∼−→ HomΩBs.aE-cog(C

c
∗(X)⊗Cc

∗(∆
•), B̂ι(g)) ,

since both Cc
∗(X×∆•) and Cc

∗(X)⊗Cc
∗(∆

•) are Reedy cofibrant. Let’s compute this last simpli-
cial set:

HomΩBs.aE-cog(C
c
∗(X)⊗Cc

∗(∆
•), B̂ι(g)) ∼= HomΩBs.aE-cog

(
Cc
∗(∆

•),
{
Cc
∗(X), B̂ι(g)

})
∼= HomΩBs.aE-cog

(
Cc
∗(∆

•), B̂ι (hom(Cc
∗(X), g))

)
∼= Homcurv abs Lπ∞-alg

(
Ω̂ι(C

c
∗(∆

•)), hom(Cc
∗(X), g)

)
∼= R (hom(Cc

∗(X), g)) .

Upon choosing a contraction between Cc
∗(X) and its homology H∗(X), we can use the homo-

topy transfer theorem to obtain a uCC∞-coalgebra structure on H∗(X) which is weakly equiva-
lent to Cc

∗(X). This implies that H∗(X)⊗Cc
∗(∆

•) and Cc
∗(X)⊗Cc

∗(∆
•) are weakly equivalent as

Reedy cofibrant objects, and thus we can replace the later by the former in the above compu-
tation. □

Corollary 3.28. Let X be a simplicial set and let Y be a connected finite type nilpotent simplicial set.
There is a weak equivalence of simplicial sets

Map(X, YFp
) ≃ R (hom(H∗(X),L(Y))) ,

where YFp
denotes the Bousfield-Kan p-completion of Y.

Proof. There is a weak equivalence of simplicial sets

YFp
≃ RL(Y) ,

which induces the following weak equivalences

Map(X, YFp
) ≃Map(X,RL(Y)) ≃ R (hom(H∗(X),L(Y))) .

□

Relationship with previous work on mapping spaces. Let us give a brief overview of the
relationship between Theorem 3.27 and existing work about p-adic mapping spaces, in par-
ticular around the Sullivan conjecture [Mil84, Car91, LS86, Lan92]. There are many different
statement in the literature which can be called the Sullivan conjecture, however in general they
revolve around proving that the pointed mapping space

Map∗(BV , YFp
) ≃ {∗}

is contractible under some finiteness assumptions on Y, where BV is the classifying space of a
finite dimensional Fp-vector space V .

Previous work on these questions was done at the level of so called power operations. The
homology functor

H∗ : uEE∞-cog −→ gr k-mod

from uEE∞-coalgebras to graded k-vector spaces factors through the category of graded couni-
tal coalgebras equipped with Dyer–Lashof operations, which are called power operations.
Moreover, on the homology of uEE∞-coalgebras of the form Cc

∗(X), where X is a space, Dyer–
Lashof operations give back Steenrod operations, and H∗(X) is an unstable counital coalgebra
over the Steenrod algebra. Dually, the cohomology of a uEE∞-algebra is also endowed with
Dyer–Lashof operations, which specify to Steenrod operations in the case of the cohomology
of a space H∗(X). See [Law20] for a modern point of view on power operations.
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In [Lan92], Lannes considers the tensor product of both unstable algebras and unstable coal-
gebras over the Steenrod algebra. He shows that the tensor product of unstable coalgebras
admits a right adjoint, given by a self-enrichment, and that the tensor product with a degree-
wise finite dimensional unstable algebra admits a left adjoint. These two constructions can be
compared under several finiteness assumptions, see [Lan92, Section 1.13]. See also the text-
book account of [Sch94].

Lannes’ well-known TV functor is defined as the left adjoint to the tensor product H∗(BV)⊗−
in unstable modules over the Steenrod algebra, and later it is proved that it coincides with
the left adjoint to this same tensor product in unstable algebras over the Steenrod algebras.
Lannes works with the functor TV as it is better behaved in general, nevertheless, one of the
key points of his work is to be able to compare it to the self-enrichment hom(H∗(BV),−) in
unstable coalgebras. In particular, when one takes a cosimplicial resolution on the target.

The reason is that taking a cosimplicial resolution on the target unstable coalgebra is what orig-
inally allowed Bousfield and Kan to define the unstable Adam’s spectral sequence in [BK71],
which converges to the homotopy groups of p-adic mapping spaces. Analysing this spectral
sequence was the key ingredient in Miller’s original proof in [Mil84].

The mapping coalgebra construction of Proposition 1.35 is a lift of the self-enrichment of un-
stable coalgebras constructed by Lannes in [Lan92] from the level of power operations on ho-
mology to the level of uEE∞-coalgebras. A functorial fibrant resolution at the uEE∞-coalgebra
level is given by the complete bar-cobar construction; it can be considered a lift of the cosimpli-
cial resolution at the unstable coalgebra level and it is also related to the André–Quillen coho-
mology, in this case, of uEE∞-coalgebras, see Remark 1.33. Let C,D be two uEE∞-coalgebras,
by Theorem 1.37 there is a natural isomorphism{

C, B̂ιΩ̂ιD
}

∼= B̂ιhom
(
C, Ω̂ιD

)
,

where on the left hand side we consider the mapping coalgebra construction and on the right
hand side the complete bar construction on the convolution absolute partition L∞-algebra.
The left hand side is a lift of the self-enrichment of unstable coalgebras where one takes a
cosimplicial resolution of the target. So Theorem 3.27 can be interpreted as an algebraic model
of the derived primitives of this lift, in the sense of Remark 1.33. In particular, considering
the case C = H∗(BV) recovers Lannes’ TV when passing to homology and taking the linear
dual under finiteness assumptions. And applying Theorem 2.23 to the models in 3.27 gives a
description of the homotopy groups of a general p-adic mapping space, and in this sense, it
can be considered an "algebraic lift" of the unstable Adam’s spectral sequence of [BK71].

APPENDIX A. STRUCTURAL FORMULAS

The goal of this appendix is to give formulas for the relations that the elementary operations
of a (curved) absolute Lπ∞-algebra satisfy. These relations are imposed by the partial decom-
position maps of the counital partial cooperad E∗; they are in general hard to understand. In
other words, our main goal is to describe the linear dual of the maps in [BF04, Section 1.1.3].

Lemma A.1. Let σ be an element in Sn+k−1, with n,k ⩾ 1. For any 1 ⩽ i ⩽ n, there is at most one
pair (τ,ν) with τ ∈ Sn and ν ∈ Sk such that τ ◦i ν = σ .

Proof. The decomposition exists if and only if σ stabilizes {1, · · · ,n+ k− 1}− {i, · · · , i+ k− 1}.
In that case, the permutation τ is determined by how σ restricts to this subset, and therefore ν
is also completely determined. □

Let σ be in Sn+k−1. We say it is (n,k, i)-admissible if it admits a decomposition ∆n,k
i (σ), and we

denote σ(1) and σ(2) the unique pair in Sn × Sk such that σ(1) ◦i σ(2) = σ.

Let (σ0, · · · ,σr) be an r-tuple of elements in Sn+k−1. Suppose that σj is (n,k, i)-admissible for
all 1 ⩽ j ⩽ r, and denote (σ

(1)
0 , · · · ,σ(1)

r ) and (σ
(2)
0 , · · · ,σ(2)

r ) the r-tuples of decompositions.
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Let a,b be two natural numbers such that a+ b = r and let φ : (0, 0) −→ (a,b) be a lattice
path. The r-tuple (σ0, · · · ,σr) is (φ, i)-admissible if for any step (j,k) −→ (j+ 1,k) in φ

σ
(2)
j = σ

(2)
j+1 ,

and for any step (j,k) −→ (j,k+ 1),
σ
(1)
k = σ

(1)
k+1 .

One can write (σ(1)
0 , · · · ,σ(1)

a ) and (σ
(2)
0 , · · · ,σ(2)

b ) by suppressing the repetitions when (σ0, · · · ,σr)
is (φ, i)-admissible for a given lattice path φ : (0, 0) −→ (a,b).

For any lattice path φ : (0, 0) −→ (a,b), the lattice sign ϵ(φ) is the sign of the shuffle permuta-
tion which takes horizontal segments to the first place and vertical segments to the last place,
like in [BF04, Section 1.1.3].

Proposition A.2. The partial decomposition map

∆n,k
i : E∗(n+ k− 1) −→ E∗(n)⊗ E∗(k)

is given by as follows: let (σ0, · · · ,σr) be an element in E∗(n+ k− 1).

(1) If σj is (n,k, i)-admissible for all 1 ⩽ j ⩽ r, then

∆n,k
i (σ0, · · · ,σr) =

∑
a+b=r

∑
φ:(0,0)→(a,b),
(φ,i)-admissible

(−1)ϵ(φ)
(
σ
(1)
0 , · · · ,σ(1)

a

)
⊗
(
σ
(2)
0 , · · · ,σ(2)

b

)
,

where the second sum is taken over all lattice pathsφ : (0, 0) −→ (a,b) for which (σ0, · · · ,σr)
is (φ, i)-admissible.

(2) If there exists a σj which is not (n,k, i)-admissible, then the image of (σ0, · · · ,σr) by the
decomposition ∆n,k

i is zero.

Proof. If one of the permutations σj in Sn+k−1 cannot be obtained as the i-th composition of a
permutation in Sn and a permutation in Sk, then it not reached by

◦n,k
i : E(n)⊗ E(k) −→ E(n+ k− 1)

as defined in [BF04, Section 1.1.3]. Therefore its image by ∆n,k
i = (◦n,k

i )∗ is zero. The other
part of the formula follows from direct inspection. □

Corollary A.3. Let g be a curved absolute partition L∞-algebra. Its elementary operations {l(σ0,··· ,σr)
n }

satisfy the following relations:

∂
(
l
(σ0,··· ,σr)
n

)
=

∑
σ̄∈Sn
σ̄ ̸=σe

r∑
j=0

(−1)jl(σ0,··· ,σ̄,··· ,σr)
n +

+
∑

p+q=n+1,
a+b=r

p∑
i=0

∑
φ:(0,0)→(a,b),
(φ,i)-admissible

(−1)ϵ(φ)l
(σ

(1)
0 ,··· ,σ(1)

a )
p ◦i l

(σ
(2)
0 ,··· ,σ(2)

b )
q ,

where σ̄ is added in the j-spot in (σ0, · · · , σ̄, · · · ,σr).

Proof. Follows directly from Proposition A.2. □

REMARK A.4. If g is a partition L∞-algebra, these are precisely the relations satisfied by the
structural operations. In an absolute partition L∞-algebra, these relations extend to formal
power series of elementary operations.

REMARK A.5. There is a Python package written by Medina-Mardones where elements of the
Barratt-Eccles operad and their partial compositions are coded, see [MM21]. These formulas
can also be implemented using the aforementioned package.
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