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Spanning-tree based coverage for a tethered robot
Xiao Peng1, François Schwarzentruber2, Olivier Simonin1 and Christine Solnon1

Abstract—Tethered robots find widespread application in un-
derwater and disaster recovery missions. This study focuses on
the coverage path planning (CPP) problem for a tethered robot,
considering cable constraints and the presence of forbidden areas
in the environment. We propose adapting the spanning tree-
based coverage algorithm to address CPP. Theoretical complexity
analysis reveals NP-completeness in cases involving forbidden
areas. We show how to solve CPP by searching for a tree
in a configuration graph, and how to reduce the size of this
graph to compute approximate solutions faster. We introduce
Integer Linear Programming (ILP) models corresponding to
these approximations and experimentally compare them on
various instances.

Index Terms—Coverage Path Planning, Tethered Robot, Com-
putational Complexity.

I. INTRODUCTION

COVERAGE Path Planning (CPP) is a fundamental prob-
lem in robotics that aims at finding a shortest cycle that

fully covers a workspace for a mobile robot of a specified
size. This problem has many applications such as automatic
floor cleaning and area patrol [1]. In this paper, we study
the CPP problem for a particular type of mobile system, a
tethered robot, which plays a crucial role in some challenging
contexts, where the cable provides stable access to electricity
and network connectivity [2], [3], [4]. This new variant is
termed TCPP for tethered CPP. Compared to classical CPP,
the main challenge is related to cable constraints, wherein
the cable has limited length and cannot be crossed by the
robot. The approach to addressing these constraints depends
on assumptions about the cable. Here, we consider the case
where the cable is kept taut by a recoil system that adjusts it
as the robot moves. Additionally, we explore scenarios where
the workspace contains forbidden areas, barring the robot and
its cable from passage. This prohibition stems from potential
damage to the robot and cable or the presence of individuals
susceptible to the robot or cable.

A. Related Work

To solve CPP problems, the workspace is usually discretized
into a 4-connected grid graph g such that each grid cell has
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the same size as the robot [5], [6]. A Hamiltonian cycle
in g represents the shortest possible solution, with each cell
traversed precisely once. In [7], it is shown that the complexity
of deciding the existence of a Hamiltonian cycle depends
on g: it is in O(1) for obstacle-free rectangular grids, yet
NP-complete in the presence of obstacles. In this latter
case, Spanning Tree Coverage (STC) offers a polynomial-
time approximate solution, as described in [6]: STC involves
constructing a graph G4 whose vertices correspond to non-
overlapping groups of 2 × 2 adjacent cells in g; if each cell
of g belongs to exactly one 2× 2 cell group, then there exists
a Hamiltonian cycle in g if and only if G4 is connected and,
given a spanning tree T of G4, a Hamitonian cycle in g can
be constructed by circumnavigating T ; when some cells of g
are not covered by a vertex of G4, an approximate solution
may be built by completing the circumnavigation of T with
a sub-cycle that visits each uncovered cell twice as shown in
Fig. 1(a).

Existing tethered coverage algorithms can be broadly cate-
gorized as online or offline, depending on the level of knowl-
edge about the environment. Offline approaches operate under
the assumption of complete environmental knowledge and rely
on how the environment is modelled. In [8], a decomposition
of the environment into ”split cell” and ”corridor” structures
is proposed. Split cells are maintained in a stack, and upon
reaching a new split cell, the robot performs complete cover-
age of the corresponding corridor. Once coverage is complete,
the robot proceeds to the next split cell until the environment is
fully covered. In this method, solution optimality depends on
environment characteristics. Alternatively, [9] uses a specific
decomposition of the environment derived from ”Morse-based
Cellular Decomposition” [10]: the grid map is divided into
interconnected rectangular shapes around obstacles, covered
using a zig-zag motion pattern. However, their primary focus
is on covering all the accessible areas, rather than minimizing
the overall coverage path length. The online version of this
problem, explored in [8], [11] assumes no prior environmental
knowledge. In this setting, the environment is incrementally
explored while simultaneously constructing a tree map to track
frontiers of uncovered areas. [8] proposes an approximation
algorithm with a factor 2L

D compared to the minimum path
length for coverage, and it is further improved to 2(1 − 1

N )
in [11], where L represents cable length, D denotes cell size,
and N indicates the number of accessible obstacle-free cells.

B. Outline and contributions of the paper

The primary contribution of this work is to investigate the
interest of using STC to solve offline TCPP. Indeed, in case of
a tethered robot, STC ensures that the cable is fully retracted
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Fig. 1. (a): Illustration of STC. Vertices of G4 are represented by black points (at the center of 2×2 free cells). In this example, G4 does not cover the top
row of g. A spanning tree T of G4 is shown in green and the path πT obtained by circumnavigating T is displayed in blue. πT does not visit the free cells
of g that are not covered by G4 (top row). πT may be completed by visiting twice each of these free cells, as displayed in brown. (b): The blue solid path is
smaller than the blue dashed path, but the cable configuration associated with the solid path is longer than the cable configuration associated with the dashed
path. (c): The cable configuration displayed with a red solid line is not valid because it crosses the forbidden area. The robot must bend its cable around the
top obstacle to prevent it from crossing the forbidden area. (d): Curves γ2 and γ′

2 are homotopic, while γ2 and γ1 are not. The curve γ2 is the shortest path
within its homotopy class and it corresponds to a cable configuration.

when the robot returns to its initial position, which is not
the case of arbitrary cycles that may encircle obstacles, as
illustrated in Fig. 2. An extension of STC is proposed to
address cable constraints by restricting the tree structure in
the solution, which differs from the classic STC. Based on
this concept, we show in Section III that TCPP can be solved
in polynomial time by adapting Dijkstra’s algorithm, when
there is no forbidden area. A major contribution of our work
is studying the case with forbidden areas. Specifically, in
Section IV, we demonstrate that TCPP becomes NP-complete
by providing a reduction from Separable Planar 3-SAT. In
Section V, we show how to solve TCPP with forbidden areas
by searching for a tree in a graph that represents all possible
cable configurations. To improve scale-up properties, Section
VI introduces an approximate solution by removing some
edges in the graph, along with an Integer Linear Programming
(ILP) model to search for a tree in this filtered graph. In
Section VII, we show how to further reduce the graph by
merging some nodes. Section VIII provides a qualitative anal-
ysis on simulated instances discussing the factors contributing
to problem hardness.

II. PROBLEM STATEMENT

We consider a discrete workspace defined by a 4-connected
grid graph g composed of square cells which have the same
size as the robot’s footprint. The graph g contains 3 different
kinds of cells: obstacle cells that cannot be crossed by robots
and around which cables may bend, forbidden cells that cannot
be crossed by robots nor by cables, and free cells that may
be crossed by robots and cables. We note r the free cell
from which the robot starts its path and to which its cable
is anchored. The cell r is called the anchor.

A path of length k is a sequence of k + 1 free cells
π = ⟨c0, . . . , ck⟩ such that c0 = r and ∀i ∈ [1, n], ci
is adjacent to ci−1 in g. Given a path π followed by a
robot, its cable configuration may be different from π as the
cable is kept taut by a recoil system: the cable configuration
associated with π is the sequence ccπ = ⟨c0, v1, . . . , vl, ck⟩
such that ∀i ∈ [1, l], vi is a vertex of an obstacle and ccπ
is the shortest path homotopic to π, where two paths are

homotopic if there exists a continuous deformation between
them without crossing obstacles [12], as illustrated in Fig.
1(d). The (Euclidean) length of ccπ is denoted ∥ccπ∥. A cable
configuration ccπ is valid if (i) ccπ is not self-crossing, (ii)
∥ccπ∥ does not exceed the length of the cable, and (iii) ccπ
does not cross any forbidden cell. A path π = ⟨c0, . . . , ck⟩ is
valid if ∀i ∈ [1, k], the cable configuration cc⟨c0,...,ci⟩ is valid.

The TCPP problem aims to find a shortest valid path π =
⟨c0, . . . , ck⟩ that starts from and ends on r (i.e., c0 = ck = r),
visits each free cell at least once, and such that the cable is
fully retracted when the robot arrives on ck (i.e., ccπ = ⟨r⟩).

To solve TCPP with an STC-based approach, we introduce
the cell group graph G4 = (V4, E4) such that each vertex in
V4 is the center of a group of 2× 2 free cells of g, where E4

corresponds to adjacency relations between these cell groups,
and each free cell belongs to at most one cell group of V4. In
this work, we assume that the grid graph g can be perfectly
transformed into a cell group graph G4, i.e., each free cell
belongs to exactly one cell group of V4. The vertex of V4

associated with the cell group that contains the anchor r is
called the root and is denoted by R.

A covering tree of a graph G = (V,E) is a connected
graph T = (VT , ET ) such that VT ⊆ V , ET ⊆ E ∩ VT × VT ,
and |ET | = |VT | − 1. Given a covering tree T = (VT , ET )
of G4 such that R ∈ VT , we may obtain a cycle of g
by circumnavigating T , starting from and ending on r, as
illustrated in Fig. 1(a). This cycle, denoted πT , always satisfies
the property that the cable is fully retracted at the end, whereas
this is not the case of all cycles, as illustrated in Fig. 2(a). This
is a main motivation to solve TCPP by computing covering
trees. However, other cable-related constraints may prevent us
from finding a covering tree that covers all vertices of G4,
even if G4 is connected, because the length of the cable must
not be exceeded, and the cable cannot cross itself or forbidden
areas, as illustrated in Fig. 2(b). Hence, we propose to solve
TCPP by computing a Maximum Covering Tree (MCT).

Definition II.1 (MCT). Given a cell group graph G4, an MCT
is a covering tree T = (VT , ET ) of G4 such that πT is valid,
R ∈ VT , and |VT | is maximum.
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Fig. 2. (a): Example of Hamiltonian cycle in g that encircles an obstacle.
(b)(c): When the Hamiltonian cycle (in blue) is obtained by circumnavigating
a spanning tree of G4 (in green) the cable is always completely retracted
when the robot returns to its initial position. The cycle in (b) does not avoid
cable crossing when the robot is on u (as shown by the dashed line). The
cycle in (c) is the one computed by Algo. 1 and it avoids cable entanglements.

Algorithm 1: MCT(G4, R, ℓ)

Input: A graph G4 = (V4, E4), the root R and the maximal cable length ℓ
Output: An MCT T = (VT , ET )

1 for each vertex u ∈ V4 do d[u]← +∞;
2 d[R]← 0; VT ← ∅; ET ← ∅
3 while there exists u ∈ V4 \ VT such that d[u] < +∞ do
4 let u be the vertex of V4 \ VT such that d[u] is minimal
5 add u to VT

6 if u ̸= R then add (p[u], u) to ET ;
7 for each edge (u, v) ∈ E4 such that v ̸∈ VT do
8 let πu be the path from R to u in the tree T = (VT , ET )
9 let πv be the path obtained by adding v at the end of πu

10 if ∥ccπv∥ ≤ ℓ and ∥ccπv∥ < d[v] then
11 d[v]← ∥ccπv∥; p[v]← u

To decide whether πT is valid, for each vertex u ∈ VT

such that u is the center of four free cells c1, c2, c3, and c4
in g, we approximate the cable configurations associated with
the four paths from r to c1, c2, c3, and c4, respectively, by
the cable configuration that starts from R and ends on u. The
error induced by this approximation never exceeds the length
of a cell diagonal.

III. POLYNOMIAL ALGORITHM FOR COMPUTING MCTS
WHEN THERE ARE NO FORBIDDEN CELLS

Consider the case where the workspace g does not contain
forbidden cells. Depending on the total length of the cable,
some free cells may be out of reach. We may perform a
Breadth First Search (BFS) from R to compute a covering
tree that minimizes the path length from R to u for each
vertex u ∈ V4. However, the length ∥ccπ∥ of the cable
configuration associated with a shortest path π in g is not
necessarily minimum, as illustrated in Fig. 1(b). We show in
Algo. 1 how to adapt Dijkstra’s algorithm [13] to compute an
MCT T . For each vertex u ∈ V4, p[u] is the predecessor of u
in the best known path πu from R to u, and d[u] = ∥ccπu∥.
The tree T = (VT , ET ) is incrementally built: at each iteration
of the loop Lines 3-11, we add to VT the vertex u such that
d[u] is minimal, and we add to ET the edge (p[u], u), except
when u is the root R (lines 4-6). Then, for each neighbour v
of u, we update d[v] and p[v] whenever we obtain a shorter
cable configuration by visiting v just after u, provided that the
maximal cable length is not exceeded (lines 10-11).

Correctness: The main difference with Dijkstra’s algo-
rithm comes from the fact that the cost of an edge (u, v)
depends on the path πu from R to u in T : this cost is equal to
∥ccπv

∥−∥ccπu
∥. In some cases, this cost is negative (because

the cable configuration length is reduced when the robot moves
from u to v). The correctness of Algo. 1 relies on the fact
that, for every vertex u ∈ V4, the path π = ⟨v0, . . . , vk⟩ from
R to u that minimizes the length of the cable configuration
is such that, ∀i ∈ [1, k], ∥cc⟨v0,...,vi−1⟩∥ ≤ ∥cc⟨v0,...,vi⟩∥. In
other words, whenever the robot follows π, the length of the
cable configuration never decreases. This is a straightforward
consequence of the fact that the cable configuration ccπ
associated with a path π is the shortest path homotopic to π.
This non decreasing property implies that the correctness proof
of Dijkstra’s algorithm can be transposed to Algo. 1 [13], even
if some edges may have a negative cost because these edges
do not belong to best paths. Hence, at the end of Algo. 1, the
tree T contains all reachable vertices. Let us finally prove
that this tree is an MCT by proving that, for each vertex
u ∈ VT , the cable configuration ccπ associated with the path
π from R to u in T is not self-crossing. This is ensured by
the fact that a self-crossing cable configuration cannot be a
shortest cable configuration, given that we obtain a shorter
cable configuration by removing the crossing as demonstrated
in [14]. For example, in Fig. 2(b), the cable is self-crossing
when the robot is on u. In this case, the cable configuration
is not the shortest one as the path ⟨R, v, u⟩ is shorter.

Complexity: Lines 3-11 are iterated O(|V4|) times, as a
vertex of V4\VT is added to VT at each iteration, and iterations
are stopped when V4 \ VT = ∅ in the worst case. Lines 8-11
are iterated at most 4 times, as each vertex in V4 has at most
4 neighbours. A key point is to efficiently compute ∥ccπv

∥
(Line 10). This is done in O(|V4|) by memorizing the cable
configuration ccπu associated with the path from R to u, for
each cell group u ∈ VT , and by adapting the funnel algorithm
described in [15] to incrementally compute ccπv

from ccπu
.

Hence, the time complexity of Algo. 1 is O(|V4|2).

IV. NP-COMPLETENESS IN CASE OF FORBIDDEN CELLS

When g contains forbidden cells, we must ensure that the
cable never crosses them, and this increases the complexity as
stated in the following theorem.

Theorem IV.1. Given a cell group graph G4 and an integer k,
deciding whether there exists a covering tree T = (VT , ET )
of G4 such that πT is valid and |VT | ≥ k is NP-complete.

Let us first prove that this problem belongs to NP . Indeed,
the cable configuration associated with every vertex in T may
be computed in polynomial time using the algorithm described
in [15] and, given a cable configuration, we can check in
polynomial time that it does not cross forbidden areas.

To prove NP-hardness, we give a poly-time reduction from
Separable Planar 3-SAT which is NP-Complete [16]. An
instance of Separable Planar 3-SAT is defined by a triple
(X,F, µ) such that:

- X = {x1, ..., xn} is a set of n boolean variables;
- F = C1 ∧ ... ∧ Cm is a conjunction of m clauses such

that (i) each clause Cj is a disjunction of 2 or 3 literals,
where a literal is either a variable xi or its negation ¬xi;
and (ii) every variable xi occurs in 2 or 3 clauses and at
least once positively and once negatively;
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- µ : X ∪ F → R2 is a plane embedding that associates
2D coordinates to every variable and every clause such
that (i) it is possible to draw continuous lines between
every clause and its variables without line crossings, (ii)
all variables are aligned, and when drawing the straight
line that goes through all variables, thus separating the
space in two half-spaces, for each variable xi, all clauses
that contain the literal xi are located in the same half-
space whereas all clauses that contain the literal ¬xi are
located in the other half-space, as illustrated in Fig. 3 (see
[17] for more details).

From a Separable Planar 3-SAT instance (X,F, µ), an
instance of our problem is constructed as follows. The graph
G4 is composed of two parts: a variable part, displayed in
green in Fig. 3, and a clause part, displayed in blue in Fig. 3.

The green part of G4 contains n aligned horizontal obstacles
surrounded by two horizontal lines of vertices. These obstacles
are separated by couples of vertical arms. Each couple is
associated with a different variable xi, in the same order as in
the plane embedding defined by µ: the upper arm (resp. lower
arm) is labelled with xi if all clauses that contain the literal
xi are above (resp. below) the variable line defined by µ, and
it is labelled with ¬xi otherwise. Forbidden areas are located
between these arms. The root R is on the left of the first
obstacle. A tree T rooted in R cannot cover the two arms of a
same variable. Indeed, each horizontal obstacle may be used to
prevent the cable from crossing forbidden areas when turning
on a vertical arm, but we have to choose: to cover the upper
(resp. lower) arm, the robot must pass below (resp. above)
the obstacle before turning left (resp. right) on the arm and
it is not possible to cover both arms without creating a cycle
in T as there is only one vertex between two obstacles. Hence,
there are 2n different possible MCTs of the green part of G4,
each of them corresponding to a different truth assignment of
the n variables.

The blue part of G4 contains a convex area of K vertices
for each clause. Each convex area associated with a clause is
connected to the green arms associated to its literals using blue
corridors. Obstacles are added at intersections of blue corridors
to prevent cable configurations from crossing forbidden areas.
The separable plane embedding µ associated with (X,F )
ensures that the convex areas are properly nested so that
corridors and arms do not cross each other. This is why we use
an instance of Separable Planar 3-SAT to make this reduction,
rather than the classical 3-SAT. We make K greater than the
total number of vertices in corridors and arms. This condition
can be satisfied if we scale properly the length of the arms.
Finally, we set k = mK, and the cable length to ∞. The
construction can be done in polynomial time in the size of F .

We now prove that F is satisfiable iff G4 has a coverage
tree T = (VT , ET ) such that |VT | ≥ k.

⇒ Let {x̃1, ..., x̃n} be a truth assignment of X satisfying
F . We build the tree T such that, for each variable xi, T covers
the green arm labelled with x̃i. To connect this arm to R, we
add to T the green cells below (resp. above) the horizontal
obstacle if the arm is above (resp. below) the obstacle. As
each clause Cj is satisfied by the truth assignment, there is
at least one of its literals set to true, and T covers the blue

X = {x1, x2, x3, x4, x5}
F = (¬x1 ∨ x2 ∨ ¬x4)

∧(x1 ∨ ¬x2 ∨ x3)
∧(x2 ∨ ¬x3 ∨ ¬x4)
∧(x3 ∨ x4 ∨ ¬x5)
∧(¬x1 ∨ x5)

x1 x2 x3 x4 x5

C1

C3

C5

C2 C4

neg

pos neg

pos
neg

pos

neg
pos neg

pos
pos neg

posneg

â

¬x1

x1

R

¬x2

x2 ¬x3

x3

¬x4

x4 ¬x5

x5

K C1

K C2

K C3

K C4

K C5

Fig. 3. Top: An instance of Separable Planar 3-SAT. The embedding µ is
displayed on the left, and X and F on the right. The truth assignment A =
{¬x1, x2, x3, x4, x5} satisfies all clauses and we highlight in red edges that
connect each clause with one satisfied literal. Bottom: Graph G4 built from
(X,F, µ). The tree in red connects the root R with the five K-cell blue
blocks associated with the five clauses using the same assignment as in A.
Empty areas are considered as forbidden zones.

corridor that connects this literal to the convex area of size K
associated with Cj . Finally, T covers each convex area using
a comb-shaped tree. Therefore, T has a size greater than k.

⇐ Let T = (VT , ET ) be a covering tree of G4 such that
|V | ≥ k. VT must contain all vertices in all convex areas
associated with clauses since we assume that K is greater than
the total size of all corridors. Each convex area is connected
to T by using a green arm associated with a literal and it is
not possible to have in a same covering tree an arm associated
with xi and an arm associated with ¬xi, as explained above.
We set each variable xi to true (resp. false) if T contains an
arm labeled with xi (resp. ¬xi). It may happen that T contains
no arm associated with a variable xi, when each clause that
contains xi is satisfied by another variable than xi. In this case
we set xi to true by convention. The resulting assignment
satisfies F . For example, in Fig. 3, there exists a tree that
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Fig. 4. Left: Example of cell group graph G4, with an obstacle in black (surrounded by vertices 1 to 4), and two forbidden areas in grey. The robot must
take path ⟨R, a, b, i, h, g, f, e⟩ (resp. ⟨R, c, d, g, h, i, j, k⟩) in order to reach cell e. (resp. k). An MCT is displayed in blue. Right: Associated configuration
graph GC . The MCT of GC corresponding to the blue MCT of GC is displayed in red.

covers the five clauses by choosing the arms ¬x1, x2, and x3.
In this case, we set x4 and x5 to true.

V. COMPUTING MCTS USING CONFIGURATION GRAPHS

When there are forbidden areas, the complexity of MCT
comes from the fact that some cable configurations are not
compatible, as illustrated in the NP-completeness proof.
To compute an MCT, we must explore all possible cable
configurations to reach each cell group. Given a cable con-
figuration cc = ⟨R, v1, . . . , vk, u⟩ from R to u, we note dcc
its destination, i.e., dcc = u. The relations between cable
configurations can be represented as a configuration graph,
similar to the grid-based homotopy-augmented graph of [3].

Definition V.1 (Configuration graph). The configuration graph
associated with G4 = (V4, E4) is the graph GC = (VC , EC)
such that VC is the set of all valid cable configurations in G4,
and EC = {(cc, cc′) ∈ VC × VC | (dcc, dcc′) ∈ E4 and cc
is homotopic to cc′ ◦ ⟨dcc⟩}, where ◦ denotes concatenation.

Each vertex cc ∈ VC corresponds to a valid cable con-
figuration from R to dcc in G4. In Fig. 4, for example,
there are two possible configurations to reach f : ⟨R, 1, 2, f⟩,
and ⟨R, 4, f⟩. The neighbors of a configuration cc ∈ VC

correspond to the valid moves from dcc to a neighbour of dcc
in G4. For example, when the configuration is ⟨R, 1, 2, f⟩,
the robot can move to g or e (leading to configurations
⟨R, 1, 2, g⟩ or ⟨R, 1, 2, e⟩, respectively), whereas when the
configuration is ⟨R, 4, f⟩ the robot can only move to g (leading
to configuration ⟨R, 4, g⟩) because if the robot moves to e then
its cable crosses forbidden cells.

To efficiently enumerate all valid cable configurations, we
perform a Depth First Search (DFS) in the visibility graph
associated with G4 [18], and use a tree to represent the set of
all consistent cable configuration prefixes as proposed in [4].

As GC represents valid moves, we can use it to build
an MCT of G4. More precisely, given a covering tree T =
(VT , ET ) of GC such that the vertices of T correspond to
cable configurations that end on different vertices of G4 (i.e.,
∀{cc, cc′} ⊆ VT , dcc ̸= dcc′ ), we can build the covering tree
T ′ = (VT ′ , ET ′) of G4 such that VT ′ = {dcc |cc ∈ VT } and
ET ′ = {(dcc1 , dcc2 )|(cc1, cc2) ∈ ET }. The validity of πT ′ is
ensured by Def. V.1. Hence, to solve the MCT problem, we
may search for an MCT in GC , as illustrated in Fig. 4.

The number of vertices in GC is in O(|V4 | · |CP |) where
CP is the set of all valid cable configuration prefixes. As the
size of CP grows exponentially with respect to the number

of obstacles in g, and as the maximum degree of a vertex in
GC is four, the size of GC grows linearly with respect to |V4|
and exponentially with respect to the number of obstacles in
g. We have designed an ILP model to search for an MCT
in GC , but it does not scale well enough. We show in the
next two sections how to compute approximate solutions more
efficiently by reducing the size of GC .

VI. APPROXIMATING MCTS USING DIRECTED
CONFIGURATION GRAPHS

The configuration graph GC is undirected and usually
contains cycles. When designing an ILP model to search for
an MCT in GC , we initially tested flow-based constraints to
handle subtour elimination [19]. However, its performance is
heavily constrained by the graph size, limiting its effectiveness
to very small instances.1 To improve scale-up properties, we
propose to orientate the edges of GC to forbid moves that de-
crease the cable configuration length, thus obtaining a Directed
Acyclic Graph (DAG) in which subtour elimination constraints
become useless. More precisely, given a configuration graph
GC , we define the DAG ĜC = (V̂C , ÊC) such that V̂C = VC ,
ÊC = {(cc, cc′) ∈ EC , ∥cc∥ < ∥cc′∥}. ĜC cannot contain
cycles as it is not possible to have a cycle of decreasing
lengths.

When there is no forbidden area, we can remove edges cor-
responding to decreasing cable configuration lengths without
changing the optimal solution, because a path that minimizes
the cable configuration length never uses these decreasing
edges. However, this is no longer the case when there are
forbidden areas: an MCT of ĜC is a covering tree of GC , but
it may not be maximum, as shown in Fig. 5.

The ILP model displayed in Fig. 6, denoted ILP(ĜC ), com-
putes an MCT of ĜC . For each cable configuration cc ∈ V̂C ,
the binary variable zcc is set to 1 if cc is selected in the MCT.
For each edge (cc, cc′) ∈ ÊC , the binary variable xcc,cc′ is
set to 1 if (cc, cc′) is selected in the MCT. Eq. (1) ensures
that we maximize the number of selected cable configurations.
Eq. (2) ensures that at most one selected cable configurations
reaches vertex v, ∀v ∈ V4. Eq. (3) ensures that ⟨R⟩ is selected.
Eq. (4) ensures that each selected cable configuration (except
⟨R⟩) has exactly one predecessor in the MCT. Eq. (5) ensures
that the number of selected edges is equal to the number of
selected cable configurations minus one. Eq. (6) ensures that

1For more implementation details, see the thesis: https://hal.science/
tel-04553494



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER 2024

R
1
2

3

45
6

q

w v

u u′

Fig. 5. Example of graph G4 such that the optimal solution computed in
GC (displayed in cyan) covers all vertices. Vertex q can only be reached
with configuration ⟨R, 3, 4, 5, 6, q⟩, making u′ already covered, so that the
only possibility to reach v is to come from w. However, ∥⟨R, 1, 2, w⟩∥ >
∥⟨R, 1, 2, v⟩∥ so that (⟨R, 1, 2, w⟩, ⟨R, 1, 2, v⟩) ̸∈ ÊC . Therefore, the MCT
in Ĝcc cannot cover all vertices of G4.

max
∑

cc∈V̂C

zcc (1)

s.t.
∑

cc∈V̂C ,dcc=v

zcc ≤ 1,∀v ∈ V4 (2)

z⟨R⟩ = 1 (3)∑
cc′∈V̂C

xcc′,cc = zcc ,∀cc ∈ VC \ {⟨R⟩} (4)

∑
(cc,cc′)∈ÊC

xcc,cc′ = (
∑

cc∈V̂C

zcc)− 1 (5)

xcc,cc′ ≤ zcczcc′ ,∀(cc, cc′) ∈ ÊC (6)

zcc ∈ {0, 1},∀cc ∈ V̂C (7)

xcc,cc′ ∈ {0, 1},∀(cc, cc′) ∈ ÊC (8)

Fig. 6. ILP model ILP(ĜC ) for computing an MCT of ĜC .

an edge is selected only if its two endpoints are selected, and
it can be implemented with linear constraints by introducing
the auxiliary variables wcc,cc′ associated with each edge, such
that: (i) xcc,cc′ ≤ wcc,cc′ , (ii) wcc,cc′ ≤ zcc, (iii) wcc,cc′ ≤ zcc′ ,
(iv) zcc + zcc′ − 1 ≤ wcc,cc′ .

VII. APPROXIMATING MCTS USING QUOTIENT GRAPHS

The size of GC grows linearly with respect to |V4| and
exponentially with respect to the number of obstacles in g.
However, |V4| is often large whereas the number of obstacles
may be small. In this case, the size of GC is mostly impacted
by |V4|, and we may reduce the size of GC by merging
similar cable configurations. For example, let us consider the
graph G4 displayed in Fig. 4, and let us imagine that we
add a large set V ′ of aligned vertices on the left of e. For
each vertex i ∈ V ′, there is only one possible configuration
that ends on i, i.e., ⟨R, 1, 2, i⟩, and we propose to merge all
these configurations to treat all vertices in V ′ ∪ {e} at once.
This is done by introducing an equivalence relation between
cable configurations, based on configuration prefixes. Given a
configuration cc = ⟨R, v1 , . . . , vk , u⟩, we note pcc its prefix,
i.e., pcc = ⟨R, v1 , . . . , vk ⟩. Given a vertex u ∈ V4, we note
P(u) the set of prefixes of configurations that reach u, i.e.,
P(u) = {pcc | cc ∈ VC and dcc = u}.

Definition VII.1 (Equivalence relation on VC). Two config-
urations cc, cc′ ∈ VC are equivalent, denoted cc ∼ cc′ if
pcc = pcc′ and P(dcc) = P(dcc′).

〈R〉〈R,m〉

〈R, a〉
〈R, n〉

〈R, c〉
〈R, l〉

〈R, 1, i〉
〈R, 1, j〉

〈R, 4, f〉
〈R, 4, g〉

〈R, 1, b〉

〈R, 4, d〉

〈R, 1, 2, g〉
〈R, 1, 2, f〉

〈R, 4, 3, j〉
〈R, 4, 3, i〉

〈R, 1, 2, h〉

〈R, 4, 3, h〉

〈R, 1, 2, e〉

〈R, 4, 3, k〉

〈R, 1, 2, 3, l〉
〈R, 1, 2, 3, c〉

〈R, 4, 3, 2, n〉
〈R, 4, 3, 2, a〉

〈R, 1, 2, 3, d〉

〈R, 4, 3, 2, b〉

〈R, 1, 2, 3, 4,m〉

〈R, 4, 3, 2, 1,m〉

Fig. 7. Quotient graph Gq associated with the configuration graph GC

displayed in Fig. 4. A covering tree is displayed in red.

In Fig. 4, for example, ⟨R, 1, 2, f⟩ ∼ ⟨R, 1, 2, g⟩ be-
cause both configurations share the same prefix ⟨R, 1, 2⟩, and
P(f) = P(g) = {⟨R, 4⟩, ⟨R, 1, 2⟩}.

The equivalence class of a configuration cc ∈ VC , noted
[cc], is the set of all configurations equivalent to cc, i.e.,
[cc] = {cc′ ∈ VC | cc ∼ cc′}, and the set of all equivalence
classes defines a partition of VC . We propose to reduce the
configuration graph GC by considering its quotient graph
Gq = (Vq, Eq) with respect to ∼: the vertices of Gq are the
equivalence classes, i.e., Vq = {[cc] | cc ∈ VC}, and there is an
edge between two equivalence classes [cc] and [cc′] whenever
there exists an edge between a configuration in [cc] and a con-
figuration in [cc′], i.e., Eq = {([cc], [cc′]) | (cc, cc′) ∈ EC}.

For example, we display in Fig. 7 the quotient graph Gq

associated with the configuration graph GC displayed in Fig. 4.
Gq has 20 vertices, whereas GC has 28 vertices. Note that
if we subdivide each vertex of G4 in k2 vertices (and scale
the obstacle and forbidden areas consequently), the number
of vertices in Gq does not increase, whereas the number of
vertices in GC is increased by a factor k2.

Note that for every pair of equivalence classes [cc], [cc′] ∈
Vq , either [cc] and [cc′] have the same set of destinations, or
their sets of destinations are disjoint (i.e., either {dcci | cci ∈
[cc]} = {dcc′

i
| cc′i ∈ [cc′]} or {dcci | cci ∈ [cc]} ∩ {dcc′

i
|

cc′i ∈ [cc′]} = ∅). This comes from the fact that Def. VII.1
ensures that all the destinations of the configurations in a same
equivalence class share the same set of configuration prefixes.

Given a covering tree T = (VT , ET ) of Gq such that classes
in VT have disjoint sets of destinations (i.e., ∀{[cc], [cc′]} ⊆
VT , {dcci |cci ∈ [cc]} ∩ {dcc′

i
|cc′i ∈ [cc′]} = ∅), we can

build a covering tree T ′ = (VT ′ , ET ′) of GC . VT ′ is the
set of all destinations in all equivalence classes in VT , i.e.,
VT ′ = ∪[cc]∈VT

{dcci |cci ∈ [cc]}. The subgraph of GC

induced by VT ′ is connected because, for each equivalence
class [cc], the subgraph of GC induced by [cc] is connected.
Hence, we can easily select |VT ′ | − 1 edges, among the set of
edges of the subgraph of GC induced by VT ′ so that the tree
T ′ is connected.

For example, the tree highlighted in the quotient graph Gq

displayed in Fig. 7 corresponds to the tree highlighted in the
configuration graph GC displayed in Fig. 4.

The covering tree T ′ of Gc may not be maximal. To increase
the number of vertices of V4 that are covered by a cable
configuration in VT ′ , we may search for the tree T that
maximizes the sum of the number of configurations in each
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equivalence class in VT , i.e.,
∑

[cc]∈VT
|[cc]|. However, the

tree T that is maximal with respect to this objective function
may not correspond to an MCT of GC . This comes from the
fact that we deliberately choose the same cable configuration
prefix for covering all destinations within a same equivalence
class whereas, in some cases, the MCT of GC uses different
prefixes. For example, in the MCT displayed in Fig. 5, u
and u′ share the same two cable configuration prefixes, i.e.,
⟨R, 3, 4⟩ and ⟨R, 1, 2⟩ and there are two equivalence classes
that contain these vertices, i.e., [⟨R, 3, 4, u⟩] and [⟨R, 1, 2, u⟩].
If [⟨R, 3, 4, u⟩] is selected in the covering tree of Gq , then both
u and u′ are reached from ⟨R, 3, 4⟩ and, therefore, v cannot be
covered. If [⟨R, 1, 2, u⟩] is selected in the covering tree of Gq ,
then both u and u′ are reached from ⟨R, 1, 2⟩ and, therefore,
q cannot be covered.

Finally, we may further relax the problem by converting
Gq into a DAG, denoted Ĝq , based on the shortest length
of configurations contained in each equivalence class of Vq ,
similar to what has been done with GC . A lower bound can
be computed by searching for a maximum arborescence T̂q

in Ĝq . We propose to apply the same ILP model as that of
ILP(ĜC ) to solve this problem. The only difference is that
in this case, the objective function becomes: max

∑
i∈Vq

cizi
where ci is the number of cells in the ith equivalence class of
Vq . This approach is referred to as ILP(Ĝq). Note that both
of the two approximated solutions via ILP are guaranteed to
be feasible, meaning that all the constraints are satisfied.

VIII. EXPERIMENTAL RESULTS

A. Description of Benchmarks

To analyze the factors affecting the complexity of the
problem, we generated 6 workspaces by incorporating ran-
domly positioned rectangular obstacles and forbidden areas,
as depicted in Fig. 8. The bounding polygon for workspace
(a) is defined as the rectangle [0, 25]× [0, 20], and the other 5
workspaces are bounded by [0, 70]× [0, 60]. Another variable
in our problem is the location of the anchor point, and
by choosing different anchor points in each workspace, we
generate a total of 10 scenarios, as described in Tab. I. For each
scenario, we fix a limit ℓmax on the maximum cable length
value to ensure its solvability. We generated 107 instances by
incrementing the cable length ℓ from 10 to ℓmax for each
scenario. Our ILP models ILP(ĜC ) and ILP(Ĝq) are both
solved using the Gurobi Solver (version 9.1.2) [20], and the
run time is limited to 3600 seconds. All experiments reported
here are implemented in Python2 and run on a computer with
an Intel Core Intel Xeon E5-2623v3 processor operating at 3.0
GHz with 16 cores and 32GB of RAM.

B. Computational Performance

We denote ub as an upper bound of TCPP, which counts all
free cells that can be reached by a certain cable configuration
under the given cable length, hence it can be larger than the
optimal solution. Each method x ∈ {ILP(ĜC ), ILP(Ĝq)}

2Our implementation is publicly available at https://gitlab.inria.fr/xipeng/
tcpp.git.
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Fig. 8. The 6 simulated workspaces tested in our experimental analysis. In
each workspace, the black rectangles are the obstacles, the forbidden areas are
filled with slash lines, and the green points are the anchor points. Workspaces
are discretized, and the blue points depict the vertices in G4.
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Ĝ
C
) s

ol
vi

ng
 ti

m
e(

s)

gx = 0.2

10 ≤ ℓ≤ 30
40 ≤ ℓ≤ 60
70 ≤ ℓ≤ 90
100 ≤ ℓ≤ 120
130 ≤ ℓ≤ 150

10−2 100 102
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Fig. 9. Comparison of the two ILP model’s solving times with regard to
solution quality and instance hardness. Each point represents an instance,
with solving time of ILP(Ĝq ) on the x-axis and ILP(ĜC ) on the y-axis.

computes a lower bound lbx and these lower bounds are not
necessarily equal. To evaluate the quality of these bounds,
we calculate the bound gap gx = ub−lbx

ub for each method.
The results reveal that for ILP(ĜC ) and ILP(Ĝq), 40.2%
and 39.3% of the instances, respectively, have a bound gap
of 0, and 73.8% and 72.9% of instances below 0.05. The
maximum observed gx is 0.197. Fig. 9 presents a comparison
of the solving times for the two models. Since each model
computes different bounds, we evaluate them based on the
bound gap gx and the instance hardness, as measured by
the cable length. This comparison aligns with the theoretical
complexity analysis, indicating that ILP(Ĝq) proves to be
more efficient when |V4| is much larger than the number of
obstacles.

TABLE I
EXPERIMENTAL SCENARIOS: Each line successively gives the scenario

name S, the workspace g, the anchor position R, the number Nfree of free
cells in g, and the maximum cable length ℓmax . For each ℓmax , we give the

number Nmax of cells that can be reached and the coverage ratio Nmax
Nfree

.

S g R Nfree ℓmax Nmax
Nmax
Nfree

I0 (a) A0 96 50 96 1.0
I1 (b) A1 848 100 848 1.0
I2 (b) A2 848 100 848 1.0
I3 (c) A3 870 50 492 0.566
I4 (d) A4 880 100 880 1.0
I5 (d) A5 880 140 880 1.0
I6 (e) A6 820 140 705 0.86
I7 (e) A7 820 150 820 1.0
I8 (f) A8 862 140 856 0.993
I9 (f) A9 862 100 856 0.993
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Fig. 10. Evolution of graph sizes (|V̂C | and |V̂q |) and solving times (y-axis with a log scale) with respect to the cable length (x-axis, incremented by 20) for
each instance. ts represents ILP solving time and tb is for building time. These bars of small value are not shown.

In Fig. 10, we present the evolution of total solving times,
composed of ILP model building times (tb) and ILP solving
times (ts). Specifically, building times include enumerating all
consistent cable configurations and constructing corresponding
graphs (ĜC and Ĝq). Graph sizes (|V̂C | and |V̂q|) are dis-
played to understand their impact on solving times. Larger
workspaces generally require more time to solve, especially
when ℓ is sufficiently large. We observe that both |V̂C | and |V̂q|
grow exponentially with cable length. In each method, ts cor-
relates strongly with the graph size. However, the performance
of ILP(Ĝq) is degraded as ℓ increases. Consider instance I8
and I9, when ℓ reaches 80, the gap between |V̂C | and |V̂q|
shrinks, and so does ts, reaching the 1-hour time limit. In fact,
as the number of homotopy classes expands with the cable
length, the weight of each vertex of Ĝq , which is equivalent
to the size of the corresponding partition of ĜC decreases. In
other words, the partitions of G4 become finer and Ĝq is closer
to ĜC . Generally, tb is relatively smaller compared to ts. It
increases with the cable length ℓ when ℓ is small. However, in
the presence of more obstacles in the workspace, tb increases
exponentially, as can be observed in instance I8 and I9. When
ℓ is small, it takes less time to construct Ĝq than ĜC because
|V̂C | > |V̂q|. As ℓ becomes larger, |V̂q| gets closer to |V̂C |,
and connecting two vertices in Ĝq is more computationally
expensive than connecting two simple vertices in ĜC . This is
because we have to find the boundary cells and check their
connectivity in Ĝq . It explains why tb in ILP(Ĝq) exceeds
that for ILP(ĜC ) when ℓ increases.

While the presence of forbidden zones renders the problem
NP-complete, hardness depends on the number of obstacles
rather than the number of forbidden zones (comparing I1, I2
and I3). More obstacles, coupled with longer cable lengths,
allow to explore more homotopy classes, thereby enlarging
the graph size and increasing solving time. Another factor
that could have an impact on the hardness of the problem is
the anchor position, as we can compare the result of I6 with
I7, and I8 with I9. Intensely distributed obstacles surrounding
an anchor point near their center can generate a multitude of
homotopy classes, further increasing problem complexity. In
this study, we provide a qualitative analysis of these results, as
we believe that instance hardness stems from a combination
of various topological factors, and hence difficult to discuss
each factor separately. Our aim is to show in which cases a
TCPP instance can be hard, and how to calculate a satisfactory
approximate solution for it.
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