
HAL Id: hal-04877200
https://hal.science/hal-04877200v1

Submitted on 9 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On the design and implementation of Modular Explicits
Samuel Vivien, Didier Rémy

To cite this version:
Samuel Vivien, Didier Rémy. On the design and implementation of Modular Explicits. OCaml
Workshop @ ICFP 2024, Sep 2024, Milan, Italy. �hal-04877200�

https://hal.science/hal-04877200v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


On the design and implementation of Modular Explicits

Samuel Vivien∗ Didier Rémy†

July 26, 2024

Abstract

We present and discuss the design and implementation of modular explicits, an extension
of OCaml first-class modules with module-dependent functions, functions taking first-class
modules as arguments. We show some difficulties with the present use of first-class modules
and how modular explicits solve them in a simpler, more direct way. Modular explicits are
fully compatible with, and can be presented as an extension of, first-class modules. Inter-
estingly, both the formalization and the implementation reuse the mechanism designed to
ensure principal types in the presence of semi-explicit first-class polymorphism and OCaml
polymorphic methods. Modular explicits are also meant to be the underlying language in
which modular implicits, i.e., module arguments left implicit from their signatures, should
be elaborated.

First-class modules in OCaml

First-class modules, a feature present in OCaml since 3.12, allow a module M of signature S to
be packed as a value m of type (module S) using the construct (module M : S), which can then
be stored in data-structures or passed as argument to functions. A first-class module such as m,
i.e., a value of known type (module S) can then be unpacked with the construct

let module X = (val m) in a[X]

This binds X to a module of type S that can be used in the expression a. Ifm were of an unknown
type, we should write (m : (module S)) instead of m. This situation occurs in particular when x
is a function argument, as in

fun x → let module X = (val (x : (module S))) in a[X] (1)

or equivalently, moving the annotation to the binding site,

fun x : (module S) → let module X = (val x) in a[X]

Here, the first-class module is immediately unpacked as a module X which can then be used
in a[X ]. OCaml offers a concise abbreviation for this is common pattern,

fun (module X : S) → a[X ]

giving the (useful) illusion that the function directly receives a module as argument.

∗OCamlPro and École Normale Supérieure PSL, France
†Inria Paris Research Centre, France

1



Unfortunately, there is some limitation to this pattern when the signature S contains an
abstract type component, say type t. Looking at the equivalent form (1), it is clear that the
first-class module type (module S) of x contains an abstract type t, which when unpacked becomes
the abstract type X .t with a scope limited to the let-binding body, i.e., a[X ]. That is, X .t should
not occur free in the type of a[X ], which is also the type of the let-binding, as it would otherwise
escape from its scope.

A possible work around?

When we write fun (module X : S) → a in such a case, we rather mean a polymorphic function
of type ∀α. (module S with type t = α) → τ [α], say σ, That is,

fun (type α) → fun (module X : S with type t = α) → a[X ]

which accepts as argument any module compatible with the signature S, i.e., with a type compo-
nent t that might be abstract or any concrete type, much as during the application of a functor
functor (X : S) → M ′. Using a universal binder that extends to the whole arrow type, instead
of an existential binder limited to the right-hand side, avoids the scope escaping problem.

Notice however that this amounts to re-encoding the convenient module-level type abstraction
mechanism into the core language, somewhat along the lines of Blaudeau et al. (2024), hence
loosing the convenient and concise path-based approach of OCaml modules. In particular, it
does not scale well when S has multiple abstract types.

Besides, we still have to deal with first-class polymorphism when passing such a function,
say f , to another higher-order function, say happy, that will apply f several times to module
arguments of different types:

let happy (f : σ) = . . . f(module M1) . . . f(module M2) . . .

a pattern that often happens in some use cases of modular explicits, such as the emulation of
overloading.

Unfortunately, this is not allowed in OCaml when σ is polymorphic as is the case here.
OCaml offers some but still poor support for first-class polymorphism. We need to encapsulate σ,
either using semi-explicit polymorphism as proposed by Garrigue and Rémy (1999) via objects
or records polymorphic fields—or using some module-level wrapper. Examples of such encodings
are given by Vivien et al. (2024).

In fact, the encoding of abstract types with universal types, which may be a work around in
some cases, is not possible in OCaml when t is a higher-order abstract type, such as List.t, since
OCaml core-level type variables cannot be of higher-rank.

A correct, but unpractical encoding

An alternative solution is to view and encode fun (module X : S) → a altogether as a first-class
functor

(module functor (X : S) → struct value = a end : S′)

whose signature S′, equal to X .t → sig val value : τ [X .t] end, should be named and explicitly
given1 to build the first-class value (or when passing it to a function such as happy). An example
of this encoding is given by Vivien et al. (2024).

1One may sometimes work around using the module type of construct to derive S′ from the inferred type
of the functor before packing the functor.

2



This encoding can also cope with higher-order abstract types. Actually, it seems to cover
all use cases, showing that modular explicits do not provide additional expressiveness—if we
ignore conciseness and the amount of type annotations. Indeed, it requires quite a few module-
types manipulations, which may quickly become cumbersome, as module types cannot be passed
directly to functors in OCaml but only when embedded in structures—which must themselves
be given a signature. Hence, this encoding is quite unpractical at large scale. As shown by
Vivien et al. (2024), a one-line definition with modular explicits may expand to a dozen-line
implementation with lots of boiler-plate code in plain OCaml.

Presentation of modular explicits

Modular explicits are a solution to the limitation of first-class modules, which they extend by
introducing a new type construction in the language, the module-dependent arrow (module X :
S) → τ where X may occur free in τ (as the origin of a path leading to an abstract type such as
X .P.t). The difference between the module-dependent arrow (module X : S) → τ and the usual
arrow (module S) → τ whose domain is a module type is syntactically small, but technically
significant: X : S acts as a binder for X with some limited scope, as X may appear in (and only
in) the codomain type τ . Hence, (module X : S) → τ behaves as a first-class polymorphic type2

while S → τ behaves as a simple type.
Still, when X does not appear in τ , the two forms mean the same and the implementation

will actually turn the module-dependent arrow type into a usual arrow type whose domain is a
first-class module type.

The typing of modular explicits is sketched by Vivien et al. (2024) using an excerpt of OCaml.
As a result of the overlapping of the two kinds of arrows, there is also an overlapping of the typing
rules. However, the typing rules have been designed to always agree when they overlap, which
relies on the fact that the domain of module-dependent arrow should always be known for the
type to be treated as a module-dependent arrow. To formalize this concept, we must reveal a
detailed that we have hidden so far for sake of simplicity. Arrow types (module X : S) →ϵ τ and
τ1 →ϵ τ2 both carry an additional parameter ϵ, called a node-variable, that allows to distinguish
between types that are known (when ϵ is generalizable in the current context) and can be treated
as dependent arrows and types that are not yet known and should always be treated as non-
dependent arrow types. Node variables are of a special kind and incompatible with usual type
variables. This mechanism, introduced in OCaml for typechecking polymorphic methods and
record fields and formalized by Garrigue and Rémy (1999), ensures that type inference does not
take a decision depending on the order in which type inference and unification constraints are
solved, so that inferred types are principal. More details are given by Vivien et al. (2024).

Interestingly, the way we distinguish known from guessed types of module-dependent-functions
is also similar to a recent proposal by White (2023) for adding semi-explicit polymorphic param-
eters.

Compatibility with first-class modules

Module-dependent functions are only typing artifacts: their runtime representations are the same
as that of functions taking first-class modules as arguments. This allows code-free coercions
from the type of the former to the type of the latter. In the implementation, the tricky part

2Module-dependent arrow types are actually no more than first-class polymorphic types and in no way a
general form of dependent types. This agrees with the interpretation of modules in Fω by Blaudeau et al. (2024)
and the specific positions of quantifiers in this interpretation.

3



is the unification of dependent and non-dependent arrow types, which is possible under certain
conditions. Namely, (module X : S1) → τ1 and (module S2) → τ2 are unifiable if and only if:

• inlining X in τ1 leads to (via type equivalence) a type τ1
′ that does not contain a reference

to X and
• (module S1) → τ1

′ and (module S2) → τ2 are unifiable.

Summary

Modular explicits are a small extension to first-class modules as they do not actually increase
expressiveness, but an extension that considerably improves conciseness thanks to a better in-
teraction between the core and module levels, making module-level first-class functors become
core-level module-dependent functions, and thus enabling some programming with modules di-
rectly at the core level without boiler-plate encodings.

Although types of module-dependent functions and functions over first-class modules are two
different constructions that are typed differently, their overlapping is made mostly transparent to
the user, who only sees one kind of arrow that can be treated as a module-dependent arrow type
when its domain is known and the context allows it. Interestingly, the implementation reuses the
OCaml existing trick to keep track of principal types and smoothly move from module-dependent
arrow types to non-dependent arrow types when needed.

Although modular explicits have been originally designed as the language in which modular
implicits proposed by White et al. (2014) will be elaborated, many examples of modular explicits
need not implicit arguments to be usable—or need not them at all. Hence, modular explicits
are useful for themselves and should make their way to the compiler as soon as possible. At the
time of writing, there is an implementation of modular explicits by Vivien (2024) that is under
review before merging it in the OCaml compiler3. Vivien et al. (2024) give a formal presentation
of modular explicits that should also serve as a reference specification for this implementation.
They also provide a wide range of motivating examples for modular explicits.

Acknowledgments

We would like to thank Vincent Laviron, the Flambda team, and all the other people at OCamlPro
for hosting the internship that lead to this implementation. We also thank Leo White for his
advices and code reviewing, but also all the other people who have contributed the reviewing
process of the implementation. Some ideas emerged during previous work on modular explic-
its with Thomas Refis. We also wish to acknowledge the work of Matthew Ryan on his own
implementation of modular explicits4, which lead to various discussions on github that gave an
insight on their implementation. Reader and Vlasits (2024) wrote a significant amount of exam-
ples (Reader et al., 2024) for modular implicits that can be used with modular explicits when
doing the elaboration by hand. They also conclude with a list of desirable features that should
be implemented to reach a satisfying status for modular implicits.

References

C. Blaudeau, D. Rémy, and G. Radanne. Fulfilling ocaml modules with transparency. In Pro-
ceedings of the 2024 ACM International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA ’24, New York, NY, USA, 2024. ACM.

3An experimental version of the compiler with modular explicits can be installed with opam following instruc-
tions at https://github.com/samsa1/modular-compiler-variants.

4Available at https://github.com/ocaml/ocaml/pull/9187

4

https://github.com/samsa1/modular-compiler-variants
https://github.com/ocaml/ocaml/pull/9187


J. Garrigue and D. Rémy. Extending ML with semi-explicit higher-order polymorphism. In-
formation and Computation, 155(1/2):134–169, 1999. URL http://www.springerlink.com/
content/m303472288241339/. A preliminary version appeared in TACS’97.

P. Reader and D. Vlasits. Modular implicits internship report, 2024. URL https://github.
com/modular-implicits.github.io/report.pdf.

P. Reader, D. Vlasits, L. White, and J. Yallop. A repository of modular implicits packages, 2024.
URL https://github.com/modular-implicits/modular-implicits-opam.

S. Vivien. Modular explicits, June 2024. URL https://github.com/samsa1/
modular-compiler-variantshttps://github.com/samsa1/modular-compiler-variants.
Available as an OCaml variant on github.

S. Vivien, D. Rémy, T. Refis, and G. Scherer. On the design and implementation of
modular explicits. Draft, July 2024. URL https://gallium.inria.fr/˜remy/ocamod/
modular-explicits.pdf.

L. White. Semi-explicit polymorphic parameters. Presentation at the Higher-order, Typed,
Inferred, Strict: ML Family workshops, sep 2023.

L. White, F. Bour, and J. Yallop. Modular implicits. In O. Kiselyov and J. Garrigue, ed-
itors, Proceedings ML Family/OCaml Users and Developers workshops, ML/OCaml 2014,
Gothenburg, Sweden, September 4-5, 2014., volume 198 of EPTCS, pages 22–63, 2014. doi:
10.4204/EPTCS.198.2. URL https://doi.org/10.4204/EPTCS.198.2.

5

http://www.springerlink.com/content/m303472288241339/
http://www.springerlink.com/content/m303472288241339/
https://github.com/modular-implicits.github.io/report.pdf
https://github.com/modular-implicits.github.io/report.pdf
https://github.com/modular-implicits/modular-implicits-opam
https://github.com/samsa1/modular-compiler-variantshttps://github.com/samsa1/modular-compiler-variants
https://github.com/samsa1/modular-compiler-variantshttps://github.com/samsa1/modular-compiler-variants
https://gallium.inria.fr/~remy/ocamod/modular-explicits.pdf
https://gallium.inria.fr/~remy/ocamod/modular-explicits.pdf
https://doi.org/10.4204/EPTCS.198.2

