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Abstract—Epilepsy is a neurological disorder affecting millions
of people worldwide. Early detection of seizures is critical for
timely intervention. In this paper, we propose a novel deep
learning approach using a **Bidirectional Long Short-Term
Memory (BLSTM)** network combined with a **Variational
Autoencoder (VAE)** and **Continuous Wavelet Transform
(CWT)** for enhanced seizure detection from EEG signals. Our
model outperforms existing models in terms of sensitivity, speci-
ficity, and generalization across different patients. Additionally,
data augmentation through VAE addresses the class imbalance
issue, significantly improving seizure detection performance. The
results demonstrate a significant improvement in sensitivity to
96.3%, specificity to 99%, and G-Mean to 98.1% when evaluated
on the CHB-MIT dataset.

Index Terms—EEG, Epilepsy Detection, Deep Learning,
BLSTM, VAE, Continuous Wavelet Transform, Seizure Predic-
tion.

I. INTRODUCTION

In the early stages of developing automated seizure detec-
tion systems, various traditional machine learning models were
employed to classify EEG signals. These included Support
Vector Machines (SVM) [1], K-Nearest Neighbors (KNN) [2],
and Decision Trees [3]. Commonly, these machine learning
models depended on hand-crafted features, usually manually
extracted from the EEG data. Features considered from the
time-domain included signal variance, while the features ex-
tracted from the frequency-domain included power spectral
density [4]. Although these approaches showed some success
in specific applications, their performance heavily relied on
the quality of the feature extraction process. This step required
considerable domain expertise and was often computationally
expensive.

With the advent of deep learning, there has been a sig-
nificant shift towards models that inherently learn complex
patterns directly from raw data, reducing the need for hand-
crafted feature extraction. In recent years, Bidirectional Long

Short-Term Memory (BLSTM) networks and Variational Au-
toencoders (VAE) have emerged as powerful tools for EEG
classification. BLSTM networks are well-suited for capturing
the temporal dependencies in time-series data, such as EEG
signals, while VAEs are effective in learning latent represen-
tations, which improves model robustness and performance.

In this paper, we propose a deep learning model based on
BLSTM combined with VAE, leveraging Continuous Wavelet
Transform (CWT) to improve seizure detection from EEG
signals. CWT, a time-domain signal decomposition tool, trans-
forms the EEG signal into time-frequency space, capturing
how frequency content changes over time [5]. Unlike the
Fourier Transform, which provides only global frequency in-
formation, CWT offers localized frequency information, mak-
ing it particularly useful for analyzing non-stationary signals
like EEG. The CWT of a signal x(t) is formally defined by
the following integral equation:

W (a, b) =

∫ ∞

−∞
x(t)ψ∗

(
t− b

a

)
dt (1)

where ψ(t) represents the mother wavelet, the basic building
block for the transformation, a indicates the scale of analysis,
and b specifies the translation in time. This two-dimensional
time-frequency representation, also known as a scalogram,
is essential for detecting the subtle patterns associated with
seizures in EEG signals.

Epilepsy is a chronic neurological disorder characterized
by recurrent seizures caused by abnormal electrical activity
in the brain [6]. It affects roughly 50 million people globally
[7], and it brings significant physical, emotional, and social
challenges for those with the condition. EEG is one of the most
widely used techniques for diagnosing epilepsy by measuring
the brain’s electrical activity [8], [9]. However, manually ana-
lyzing EEG data is time-consuming and prone to human error,
especially with long-duration records and large datasets [8],
[10]. These limitations have driven a surge in research focused
on automatic seizure detection using machine learning and



deep learning techniques. The primary goal of such research
is to assist clinicians in diagnosing patients in time to allow
early intervention [11], [12].

Among the successful deep learning approaches, BLSTM
networks have gained prominence for their ability to model
the temporal dependencies in time-series data, such as EEG.
However, despite the success of deep learning in this domain,
models often face difficulties in generalizing their perfor-
mance across different patients. Achieving high sensitivity and
specificity-two critical metrics for any clinical application-is
particularly challenging [13].

We highlight the following key contributions of our work:

1) Development of a novel deep learning architecture com-
bining BLSTM, VAE, and CWT for EEG-based seizure
detection.

2) A data augmentation strategy using VAE to address class
imbalance, significantly improving sensitivity (96.3%)
and geometric mean (98.1

3) Demonstration of the model’s robustness and general-
ization across different subjects using the CHB-MIT
dataset.

4) A comprehensive comparison with state-of-the-art mod-
els, showing superior performance in critical metrics
such as sensitivity and specificity.

This work sets a foundation for developing accurate and
reliable seizure detection systems for clinical applications.

II. STATE OF THE ART

Investigation of epileptic seizures is a very important do-
main because seizures are very unpredictable, and intervention
is urgent. EEG is one of the major diagnostic tools for epilepsy
because it shows the brain activity through electric signals,
identifying abnormal patterns developing at times of seizure.
This, however, remains tiresome and prone to human errors
in analyzing EEG signals, especially during long monitoring.
Seizure detection has therefore become of critical interest
regarding these techniques in machine learning and deep
learning. This section will review the trend in EEG-based
seizure-detection techniques from traditional machine learning
methods to advanced deep learning architectures.

A. Traditional Machine Learning Approaches

Traditional machine learning models like SVM, k-NN,
Decision Trees, and LDA dominated early EEG-based seizure
detection, relying on manually extracted time-domain features
such as signal variance, entropy, and wavelet coefficients.
For example, Acharya et al. applied entropies with SVM for
seizure detection [14], and Siuly and Li used PCA for robust
seizure classification [15].

These methods faced limitations, including reliance on
domain expertise for feature extraction, inability to capture
nonlinear EEG dynamics, and high computational cost, leading
to suboptimal performance on large, diverse datasets.

B. Introduction of Deep Learning

The identification of epileptic seizures has been hugely revo-
lutionized with the emergence of deep learning methodologies.
Deep learning frameworks are designed to automatically detect
intricate patterns from raw data, which differs from previous
traditional machine learning methods where one needed to
manually extract features. Some of the common architectures
applied in EEG classification include CNNs, RNNs, and
hybrid models including CNNs with LSTM networks.

CNNs are good at modeling the spatial hierarchies present
in data, and this gets even more powerful in 2D images created
from EEG signals using techniques like Continuous Wavelet
Transform [16], [17]. These CNN-based models learn both
local and global patterns of the EEG signal for better seizure
detection performance. Schirrmeister et al. demonstrated how
CNN architectures could reach epilepsy seizure detection from
EEG data with superior performance as compared to tradi-
tional machine learning models by directly learning features
from raw EEG signals without going through the whole
manual process of feature engineering [17].

C. Temporal Dependencies in EEG Signals

CNNs are good at spatial features, but EEG data is
temporal with long-term dependencies in seizures. Thus,
RNNs—especially LSTM networks—are popular for EEG
seizure detection [18]. Especially, LSTM networks preserve
temporal dependencies by being able to retain information
across time steps, ideal in sequential data like EEG recordings.

Bidirectional LSTM (BLSTM) networks process informa-
tion from both directions, which improves seizure detection
by capturing temporal information. The information is very
important in the EEG data because seizures can span many
time frames; the preceding or succeeding patterns provide
substantial classification insights [12]. Hybrid models with
CNNs and LSTMs take advantage of the spatial and temporal
features of EEG data.

D. Generative Models for Data Augmentation

One of the most fundamental problems encountered by an
EEG-based seizure detector is class imbalance between seizure
and non-seizure data, as seizures are very rare events. Data
augmentation is supported through generative models like VAE
and GAN. GAN generates synthetic seizure data, balancing the
dataset and improving model performance [16], [19].

Zhang et al. [16] proposed a GAN model to generate
synthetic EEG data in order to extend the training set,
which improved the data imbalance problem. It improved
the sensitivity and lowered the false-negative rate in seizure
detection. However, GANs are often difficult to train and suffer
from instability during training. VAEs are more stable and
effective at generating synthetic data, which improves model
generalization to new patients and unobserved data.

E. Hybrid Models: CNN + LSTM + VAE

Recent studies have explored hybrid models combining
CNNs, LSTMs, and VAEs to leverage their strengths for



robust seizure detection. CNNs extract spatial features, LSTMs
capture temporal dependencies, and VAEs address data imbal-
ance through augmentation, showing superior sensitivity and
generalization [18].

Challenges in state-of-the-art methods include:
• GAN-based Models: GANs suffer from training insta-

bility and mode collapse, limiting robustness.
• Traditional Machine Learning Models: These rely on

handcrafted features requiring domain expertise and high
computational cost.

• Hybrid CNN-LSTM Models: They often fail to effec-
tively handle class imbalances in seizure data.

Our approach integrates VAEs for stable data generation and
BLSTMs to effectively capture long-range temporal dependen-
cies in EEG analysis.

III. PROPOSED METHOD

A. Proposed Method Framework

In this paper, our proposed method combines BLSTM
and VAE with the Continuous Wavelet Transform (CWT) to
improve the accuracy of seizure detection. In this model, each
component is incorporated into handling different challenges
faced while analyzing EEG data.

• Preprocessing with CWT: Continuous Wavelet Trans-
form (CWT) converts EEG signals into a time-frequency
representation in the form of scalograms, which allows
the model to extract both temporal and frequency-domain
features effectively.

• Preprocessing with CWT: Continuous Wavelet Trans-
form (CWT) converts EEG signals into a time-frequency
representation in the form of scalograms, which allows
the model to extract both temporal and frequency-domain
features effectively.

• Temporal Dependency Modeling: The BLSTM part
retains the temporal patterns in EEG signals, contain-
ing sequential dependencies usually spanning multiple
time frames. Class Imbalance Handling: VAE generates
synthetic seizure data to balance the dataset to improve
generalization of the model across subjects.

B. Dataset and Preprocessing

The CHB-MIT dataset [20] contains 24 long-term record-
ings of EEG for pediatric subjects with intractable seizures.
Each recording consists of several channels, each correspond-
ing to a different part of the brain. Annotated seizure onset and
offset times are given in the dataset; thus, this dataset is best
suited when proposing and evaluating models in seizure detec-
tion [21]. First of all, a systematic preprocessing pipeline was
carefully designed and implemented to ensure completeness
of the analysis of the following steps in sequence:

• Artifact Removal: Independent Component Analysis
(ICA) was applied to remove common artifacts such as
eye blinks and muscle movements.

• Continuous Wavelet Transform (CWT): The raw EEG
signals were transformed into 2D time-frequency images

using CWT. This step captures the temporal and fre-
quency characteristics of the signal, which are essential
for accurate seizure detection.

C. BLSTM+VAE Model Architecture

The proposed BLSTM + VAE model captures EEG tempo-
ral dependencies with BLSTM and hidden representations with
VAE. Figure 1 outlines the pipeline, including preprocessing,
CWT-based scalogram generation, BLSTM for sequential pat-
terns, and VAE for latent features and data augmentation. This
combination enhances sensitivity and specificity by leveraging
frequency and temporal domain information. Model parame-
ters are detailed in Table I.

Fig. 1. Proposed integrated BLSTM and VAE method

TABLE I
BLSTM+VAE MODEL ARCHITECTURE

Layer Output
Shape

Details

Input (input dim,) Input layer
Dense (256,) 256 neurons, activation = ReLU
BatchNorm (256,) Batch normalization
Dense (128,) 128 neurons, activation = ReLU
BatchNorm (128,) Batch normalization
Dense (latent dim,) Latent space (z mean and z log var),

5 dimensions
Lambda
(Sam-
pling)

(latent dim,) VAE sampling layer

Dense (128,) 128 neurons, activation = ReLU (De-
coder)

BatchNorm (128,) Batch normalization
Dense (256,) 256 neurons, activation = ReLU
BatchNorm (256,) Batch normalization
Bidirectional
LSTM

(64,) 64 units, Bidirectional LSTM

Dropout (64,) Dropout rate = 0.4
LSTM (32,) 32 units, LSTM
Dropout (32,) Dropout rate = 0.2
Output (final output

shape,)
Output layer with softmax activation

D. Training and Validation

We split the dataset into 70% training, 15% validation,
and 15% testing. K-fold cross-validation (with K=10) was
employed to ensure the robustness of the model [21]. Data
augmentation techniques such as random rotation, zoom, and



shift were applied during training to further prevent overfitting
and improve generalization [13].

The model was trained using the Adam optimizer with an
initial learning rate of 0.001, and categorical cross-entropy was
used as the loss function [22]. Early stopping was adopted to
stop training when the validation loss did not improve for 10
consecutive epochs.

E. Evaluation Metrics

In this study, three statistical performance metrics were
employed to investigate the performance of the proposed
detection model.

Sensitivity (SEN) represents the ratio of identified positive
samples to the total number of positive samples and reflects
the ability of a model in positive detection. The formula is
described as follows:

SEN =
TP

TP + FN
(2)

Specificity was the ratio of correctly identified negative
samples to the total number of negative samples. It should
reflect the ability of this model to realize a case as negative.
The formula was defined as:

SPE =
TN

TN + FP
(3)

Herein, TP refers to the seizure segments correctly identified
by the proposed algorithm, TN is the number of non-seizure
segments correctly classified, FP represents the number of non-
seizure segments mislabeled as seizures, and FN is the number
of seizure segments incorrectly classified as non-seizures.

Since seizure events are generally much shorter compared
to non-seizure events, seizure detection is naturally an im-
balanced classification problem. G-mean is an informative
metric for the performances in such imbalanced settings and
is defined by:

G−mean =
√
SEN × SPE (4)

IV. COMPARISON WITH RELATED WORKS

The GAN + 1DCNN model [23] employs a Generative
Adversarial Network (GAN) to generate synthetic data to
balance the seizure and non-seizure data, followed by a 1D
Convolutional Neural Network (1DCNN) to classify EEG
signals. While this model improves classification on imbal-
anced data, it struggles with capturing long-range temporal
dependencies in EEG signals, which are crucial for accurate
seizure detection.

In contrast, the BLSTM + VAE model is specifically de-
signed to handle temporal dependencies more effectively, as
BLSTM is ideal for processing sequential data. The VAE
generates stable synthetic data, enhancing the model’s ability
to generalize across subjects. The improved performance,
particularly in sensitivity and generalization, is demonstrated
by the results on the CHB-MIT dataset.

V. RESULTS AND DISCUSSION

The proposed BLSTM + VAE model was evaluated using
the CHB-MIT Scalp EEG dataset to detect epileptic seizures.
This section provides a comprehensive analysis of the model’s
performance, comparison with state-of-the-art methods, and an
in-depth discussion on the results obtained.

A. Performance Evaluation

The BLSTM + VAE model was evaluated using Sensitivity
(SEN), Specificity (SPE), and Geometric Mean (G-Mean),
providing a comprehensive assessment of its ability to detect
seizures accurately (true positives) and non-seizure states
(true negatives), essential for reliable clinical detection and
minimizing false alarms.

• Sensitivity (SEN): Sensitivity is crucial for clinical appli-
cations, as it measures the proportion of actual seizures
that are correctly identified by the model. The proposed
model achieved a sensitivity of 96.3%, indicating its ca-
pability to detect a wide range of seizure events, including
those with subtle patterns. A high sensitivity reduces the
likelihood of missed seizures, which is critical for timely
intervention and patient safety [12].

• Specificity (SPE): Specificity measures the model’s abil-
ity to correctly identify non-seizure events, thereby avoid-
ing false positives. A high specificity value, such as
99% achieved by our model, minimizes false alarms,
which is crucial in reducing unnecessary interventions
and psychological stress for patients [13]. High specificity
is particularly important in automated systems used in
clinical environments, where frequent false alarms can
lead to alarm fatigue among healthcare professionals.

• Geometric Mean (G-Mean): G-Mean is an informative
metric in scenarios with imbalanced datasets, such as
the CHB-MIT dataset, where non-seizure events vastly
outnumber seizure events. The G-Mean for our model
was 98.1%, indicating balanced performance across both
classes and effective handling of the class imbalance
problem [23]. This balanced performance is crucial for
ensuring that the model does not favor one class over
the other, which could compromise overall detection
accuracy.

B. Comparative Analysis

The performance of the proposed BLSTM + VAE model
was compared with previously published methods using the
CHB-MIT dataset. The baseline model for this comparison
was the GAN + 1DCNN model [23], which has shown promis-
ing results in previous studies. The results of this comparative
analysis are summarized in Table II.

The results in Table II demonstrate that the BLSTM +
VAE model surpasses the GAN + 1DCNN model in all three
performance metrics, achieving a 2.77% higher sensitivity and
a 1.95% higher G-Mean. The GAN + 1DCNN model, while
effective in generating synthetic data, struggles to capture
temporal dependencies. In contrast, our BLSTM + VAE model



TABLE II
THE COMPARISONS OF RESULTS WITH OTHER PUBLISHED METHODS USING THE CHB-MIT EEG DATABASE

Papers, Year Duration (h) Method SEN (%) SPE (%) G-Mean (%)
Zabihi, M. and Kiranyaz, S (2016) [24] - 25% training rate 50% training rate 88.27 89.10 93.21 94.80 90.70 91.91
Orosco, L. and Correa, A (2016) [25] 152.8 Dyadic WT, LDA 92.6 99.9 96.18
Samiee, K. and Kovács, P (2017) [26] 163 2D mapping and textual feature LGBP

patient-specific
70.4 99.1 83.53

Liang et al. (2018) [27] - LRCN(CNN+), LSTM 84 99 91.19
Liang, W. and Pei, H (2019) [16] - CSP, CNN 92.2 - -
Kaziha, O. and Bonny, T (2020) [28] 10.11 CNN 82.35 100 96.74
Ciurea, A. and Manoila, C (2020) [29] - Extracts time-domain features 91.99 93.38 92.69
Zanetti, R. and Aminifar, A (2020) [30] - A wearable platform 96.6 92.5 94.5
Wang, X. and Wang, X (2021) [31] - RS-DA + 1D-CNN 88.14 99.62 93.70
Gao, Bin and Zhou (2022) [23] - 1D-CNN + GAN 93.53 99.05 96.15
Our model 96.4 VAE + BLSTM 96.3 99 98.1

combines temporal modeling with stable latent feature learn-
ing, addressing imbalanced datasets and improving perfor-
mance across metrics. This demonstrates superior sensitivity
and generalization in both balanced and imbalanced scenarios,
as compared to traditional CNN-based or hybrid approaches.

This improvement highlights the advantages of integrating
the temporal modeling capabilities of BLSTM with the stable
synthetic data generation of VAE. Expanding the comparative
analysis in Table II to include more studies could provide
additional insights into how our method outperforms other
state-of-the-art approaches. [32].

C. Case-by-Case Performance

To further assess the robustness and generalization capa-
bility of the proposed model, its performance was evaluated
on a case-by-case basis across different subjects in the CHB-
MIT dataset. Table III presents the sensitivity and specificity
of the model for selected subjects, demonstrating consistent
performance across various patients.

TABLE III
CASE-BY-CASE PERFORMANCE OF THE BLSTM + VAE MODEL ON

SELECTED SUBJECTS FROM THE CHB-MIT DATASET.

Subject Sensitivity (%) Specificity (%)
chb01 95.6 98.7
chb03 100.0 99.5
chb06 100.0 99.1
chb12 100.0 99.8
chb20 93.4 98.5

As shown in Table III, the model achieved perfect sensitivity
for subjects chb03, chb06, and chb12, indicating its effective-
ness in detecting all seizure events within these records. Such
high performance across multiple subjects suggests that the
model generalizes well and can be reliably used in diverse
clinical scenarios. Similar results were reported in studies
that used deep learning models to capture patient-specific
variations in EEG signals [33].

D. Impact of Data Augmentation

Data augmentation using VAE played a critical role in
enhancing the model’s performance, particularly in handling
the class imbalance between seizure and non-seizure events.

By generating synthetic seizure data, the model was able to
learn more robust representations of seizure events, which
contributed to its high sensitivity and G-Mean. Figure 2
illustrates the effect of data augmentation on the training
process.

Fig. 2. Effect of VAE-based data augmentation on model performance during
training.

As illustrated in Figure 2, VAE-based data augmentation
significantly reduced overfitting, demonstrated by the conver-
gence of training and validation loss curves. This improvement
indicates enhanced generalization to unseen data, boosting test
set performance. Data augmentation is a widely applied tech-
nique in deep learning to improve generalization, particularly
in medical imaging and time-series analysis [34].

E. Discussion and Future Work

This work has presented the effectiveness of the BLSTM +
VAE model on epileptic seizure detection; high sensitivity and
specificity make it a perfect choice for application in a clinical
setup where early detection is quite vital. Using VAE for data
augmentation reduces class imbalance effects and, at the same
time, improves model generalization. This complements the
previous research in which data augmentation will increase
the robustness of the deep learning models [35].

We can surely do better in some areas. We will also work on
adding attention mechanisms to the model, which will enable it
to concentrate on the most important parts of the EEG signals



for seizure detection. On top of that, we’re looking forward to
trying out transformers, which really do well with sequences.
Given the fact that, by taking other signals into account—heart
rate and oxygen saturation in addition to EEG—it could give
a better insight into the patient’s state and might even achieve
superior seizure detection. [36].

VI. CONCLUSION

In this paper, we have proposed a state-of-the-art model
combining BLSTM with VAE, enhanced by generative AI,
to detect epileptic seizures by analyzing EEG signals. By
effectively leveraging the CWT along with our advanced
deep learning architecture, which incorporates BLSTM, VAE,
and generative AI techniques, our novel model has shown
significant improvements compared to existing models. These
improvements are evident from sensitive analyses of the pri-
mary evaluation metrics such as Sensitivity, Specificity, and
Geometric Mean. The promising results of our study underline
the potential of deep learning and generative AI methods in
enhancing the accuracy and reliability of epilepsy detection.
In addition, they provide opportunities for advancing research
in EEG classification and seizure detection.
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