
HAL Id: hal-04876863
https://hal.science/hal-04876863v1

Submitted on 9 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

BridgeSec: Facilitating effective communication between
security engineering and systems engineering

Avi Shaked, Nan Zhang Messe

To cite this version:
Avi Shaked, Nan Zhang Messe. BridgeSec: Facilitating effective communication between security
engineering and systems engineering. Journal of information security and applications, 2025, 89,
�10.1016/j.jisa.2024.103954�. �hal-04876863�

https://hal.science/hal-04876863v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

B
e
A
a

b

A

K
S
M
S
V
T
S
S

1

e
r
e
i
s
b
t
t
a
c
b
f
e

h

Journal of Information Security and Applications 89 (2025) 103954

A
2

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

ridgeSec: Facilitating effective communication between security
ngineering and systems engineering
vi Shaked a ,∗, Nan Messe b

Department of Computer Science, University of Oxford, Oxford, UK
IRIT, Toulouse University, CNRS, INP, UT2, Toulouse, France

R T I C L E I N F O

eywords:
ecurity by design
odel-driven engineering

ystem development
ulnerability management
hreat modelling
ecurity engineering
ystems engineering

A B S T R A C T

We increasingly rely on systems to perform reliably and securely. Therefore, it is imperative that security
aspects are properly considered when designing and maintaining systems. However, achieving the security by
design ideal is challenging. Security information is typically unstructured, dispersed, hard to communicate,
and its assessment is somewhat subjective and tacit. Additionally, the inclusion of security information within
design requires integrating the efforts of two knowledge-intensive disciplines: security engineering and systems
engineering. In this paper, we introduce BridgeSec, a novel conceptual information-exchange interface to
systemise the communication of security information between these two disciplines. The main contribution
of BridgeSec lies in its explicit identification of concepts related to vulnerability management, which allows
systems engineering and security engineering teams to codify pertinent information. The disciplines involved
in the system design can thus coordinate policies, implementations and, ultimately, the security posture.
Furthermore, based on the newly unveiled interface, an automated reasoning mechanism is specified. This
mechanism allows to reason about the vulnerability posture of systems in a scalable and systematic way.
First, we describe and formalise the information-exchange interface BridgeSecand how it can be used to
reason about the security of systems designs. Next, we present an open-source prototype – integrated into
a threat modelling tool – which rigorously implements the interface and the reasoning mechanism. Finally, we
detail two diverse and prominent applications of the interface for communicating security aspects of systems
designs. These applications show how BridgeSec can rigorously support the design of systems’ security in
two representative scenarios: in coordinating security features and policy during design, and in coordinating
mitigation to disclosed implementation vulnerabilities.
. Introduction

The pervasive nature of software-intensive systems in modern soci-
ty has transformed various industries, yet the security of such systems
emains a pressing concern [1]. Unfortunately, systems development
fforts often prioritise functionality over security, leading to a lack of
nherent security orientation [2,3]. This is particularly true in time-
ensitive scenarios where small-scale companies or those aiming to
e market pioneers prioritise time-to-market over security considera-
ions [4]. Incorporating security aspects and considerations into sys-
em development is of paramount importance to ensure the resilience
nd integrity of the resulting systems [5]. Failing to address security
oncerns adequately can have severe consequences, including data
reaches, service disruptions, and compromised user trust [6]. There-
ore, it is essential to incorporate security as a fundamental consid-
ration throughout the entire system development lifecycle [5,7–9].

∗ Corresponding author.
E-mail addresses: avi.shaked@cs.ox.ac.uk (A. Shaked), nan.messe@irit.fr (N. Messe).

When security is treated as an afterthought or added retroactively,
it can lead to significant challenges and increased costs [10]. Previous
research [11,12,9] and security policymakers’ publications [7,13] em-
phasise the significance of integrating security into the system from its
inception, rather than attempting to retrofit it later. Such integration
requires that system developers participate in the decision-making
processes of designing for security as well as that these developers tap
into cyber security domain knowledge.

By proactively identifying and addressing security during the early
phases of the system development lifecycle, particularly in the require-
ment and design stages, vulnerabilities can be communicated with the
development team earlier. This could reduce the likelihood of cyber
incidents and minimise their impacts – including operational, financial
and reputational – on organisations [14]. The identified vulnerabilities
can be in the form of a conceptual design weakness or a concrete
ttps://doi.org/10.1016/j.jisa.2024.103954

vailable online 6 January 2025
214-2126/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jisa
https://www.elsevier.com/locate/jisa
https://orcid.org/0000-0001-7976-1942
https://orcid.org/0000-0002-3766-0710
mailto:avi.shaked@cs.ox.ac.uk
mailto:nan.messe@irit.fr
https://doi.org/10.1016/j.jisa.2024.103954
https://doi.org/10.1016/j.jisa.2024.103954
http://creativecommons.org/licenses/by/4.0/

A. Shaked and N. Messe

d

f

r
p

c

t
a
s
f

u

e

p
t

i

a

s
d
f
d
B
s
d
(
s
a
w
d

c
t
c
t
e
b
e

c

w
b
d
e

Journal of Information Security and Applications 89 (2025) 103954
implementation, as further explained in the Background section (Sec-
tion 2). By adopting this security-centric approach early in the system
evelopment process, also referred to as ‘‘security by design’’ [15,13],

organisations can build systems that are more resilient, trustworthy,
and better aligned with the needs of their stakeholders. As a result, this
proactive stance towards security not only enhances the overall sys-
tem’s trustworthiness, but also saves costs associated with addressing
and fixing security issues later in the development cycle [9,16].

To address security concerns from the outset and establish solid
oundations for subsequent development efforts and operations, system

architects and engineers should take proactive steps. They can specify
equired security functionality and requirements as well as identify ap-
ropriate security controls and embed them into their designs [5,17,3].

In practice, however, system engineers often lack sufficient expertise
in cyber security [18]. Thus, performing security by design often ne-
essitates the involvement of dedicated security specialists within the

development team [19].
Consequently, achieving the ideal of security by design is chal-

lenging due to the need to balance two perspectives: the security
engineering view and the systems engineering view [20,21,17,22–24].
The two disciplines often use different terminologies and relate to
their domain-specific concepts. For example, system engineers typically
communicate design aspects by expressing the system’s functionali-
ties, subsystems, components and connectors [25,26], using modelling
languages such as SysML [27]. In contrast, security experts commu-
nicate the security posture using concepts such as vulnerabilities, at-
tacks and mitigation/controls [28–30], represented by artefacts such
as attack trees [31] and threat models [32–34]. This disconnection
can result in security considerations being overlooked or inadequately
communicated and consequently poorly addressed, leaving the system
vulnerable to potential threats.

Furthermore, system designers might exercise inept judgment due to
poor security orientation, insufficient training or conflict with explicit
key performance indicators measurements (or rather, non-existent key
performance indicators with respect to security [3]). As security com-
pliance of individuals remains a major challenge, organisations need to
adopt appropriate management practices that support security-related
individual decision-making [35].

Moreover, a recent systematic mapping study on security for sys-
em of systems establishes the lack of strategic, widely applicable
pproaches to planning and coordinating the security posture of a
ystem and its constituents [36]. Specifically, the study suggests that
uture work should address technical management aspects relating

to: (a) the responsibility of analysing the security of the systems;
(b) the responsibility and approaches to develop countermeasures to
prevent exploitation of detected vulnerabilities; (c) how to coordinate
the security of systems in a dynamic environment.

To address the serious gaps in coordinating security in systems
development contexts, it is crucial to facilitate effective, ongoing com-
munication and collaboration between system engineers and security
experts. This can be achieved by establishing a shared language or a set
of concepts that can be understood by both parties [37,38]. A common
nderstanding allows for the seamless exchange of information, such as

ideas, requirements, and concerns. System development is knowledge-
intensive, and it is essential to codify pertinent knowledge to support
effective collaboration between stakeholders [39,40], including system
ngineers and security experts. An interface for exchanging information

– henceforth, an ‘‘information-exchange interface’’ – is therefore an im-
ortant design aspect of organisational operation, which can facilitate
apping into internal and external knowledge and team-reasoning [41,

40].
Moreover, security posture and compliance are affected by how

stakeholders (such as system engineers) perceive security policies, and
t is, therefore, important to communicate security policies and ex-

pectations in a clear, well-formed way using a clear-cut process [42].
Using an information exchange interface between systems engineering
2
and security experts, the development process can benefit from clear
rticulation of security policies and objectives, enhanced coordination,

improved decision-making, and more efficient integration of security
measures into systems [37].

In this article, we address the challenges outlined above by pro-
viding a mechanism to consolidate the systems engineering and the
ecurity engineering views, and to systematically support security by
esign. We propose the use of an explicit information-exchange inter-
ace – BridgeSec – between the two disciplines as well as provide formal
efinitions of related concepts and a semi-automated reasoning engine.
ridgeSec is specifically designed to assist organisations in creating
ecure systems, by: (1) employing a divide-and-conquer strategy for the
esign effort, shared between systems engineering and security teams;
2) providing and communicating well-structured security policies and
ystem designs between the two teams. These ensure a disciplined
pproach to security by design, as well as rigorous decision-making
ith respect to the security posture of the systems that are being
eveloped or deployed.

From the security engineering perspective, BridgeSec supports the
reation of security policies or specifications of security requirements
o be included in system development efforts. Such definitions can
odify expert knowledge. These definitions can be aligned with the
ypes of components integrated into the design, as specified by systems
ngineers. Security experts can suggest necessary security controls – to
e considered as security requirements – during the design of systems,
nsuring alignment with security objectives.

From the system engineering perspective, BridgeSec allows to ex-
plicitly communicate the identified security controls (those needed to
be integrated into the system design to improve the security posture of
systems and/or meet the security policy’s requirements, as specified by
security experts), with respect to the actual system design. BridgeSec
can underpin real-time feedback and recommendations with respect to
the system’s security posture, empowering system engineers to make
informed decisions that enhance the security of their systems.

To demonstrate the feasibility and practicality of the suggested
conceptual, information-exchange interface, we provide a rigorous pro-
totype of BridgeSec, using model-based technologies that employ meta-
modelling and model-based representations. We illustrate the appli-
ation of BridgeSec, using our prototype, in two widely applicable

scenarios. These examples showcase BridgeSec’s value and ability to
accommodate the design in different levels of abstraction and in var-
ious stages of the system life cycle, as well as to make informed,
security-related decisions about the design.

The contribution of this research is a novel information-exchange
interface – BridgeSec – to support security by design. More precisely,
this contribution is threefold: (1) identifying an information-exchange
interface that allows communicating security aspects between the se-
curity engineering and the systems engineering disciplines as well as
supporting the separation of concerns between the disciplines. The
interface comprises two essential concepts: component types and secu-
rity controls; (2) articulating and formalising a reasoning mechanism,

hich utilises the identified interface as a means to achieve security
y design. Specifically, the interface and reasoning mechanism are
esigned to support a vulnerability management approach, which is
ssential to security by design. [43,19]. Also, they can incorporate

information from security knowledge bases and system models, as
well as support their integration.; (3) implementing a well-defined,
open-source prototype of BridgeSec. The prototype extends the state-
of-the-art security by design methodology and tool – TRADES [17,
44]. Specifically, we introduce new concepts related to vulnerability
management into TRADES, integrate them with existing concepts, and
provide a graphical representation that employs the interface and
reasoning mechanism.

This paper is structured as follows: in Section 2, we provide per-
tinent background about the existing security body of knowledge and
security by design. As this work revises TRADES [17] and significantly

A. Shaked and N. Messe

B
o

t
i

o
i
s
t
h
d

s
a
s
a
s
p
h
t

p
t
r
v
c
r
s

C

s
a
r
t
t
a
i

h
a

s

e
t
f
b
a
s
o

r
f
c
T
s
b

t
m
a
s
a
p
e
f

Journal of Information Security and Applications 89 (2025) 103954
extends it, we also provide pertinent TRADES background in this
section. Next, BridgeSec is described and formalised in Section 3. Then,
in Section 4, we discuss realistic, representative examples of applying

ridgeSec. We conclude by situating our work with respect to the state-
f-the-art in Section 5, and finally, in Section 6, by discussing the

proposed information-exchange interface and its applications as well
as potential extensions and future work.

2. Background

2.1. Security body of knowledge

Several common security knowledge bases are available as informa-
ion sources to understand and manage vulnerabilities and risks. These
nclude CWE, CVE, CPE, NIST SP 800–53 , CAPEC and ATT&CK. We

shortly describe them.
CWE (Common Weakness Enumeration) [45] is a comprehensive list

f common software and hardware weaknesses. It provides a standard-
sed language for describing and categorising vulnerabilities, enabling
ecurity professionals to identify, understand, and address them effec-
ively. Each CWE record represents a conceptual vulnerability. This
elps create awareness about common security pitfalls and guides the
evelopment of secure software and systems.

CVE (Common Vulnerabilities and Exposures) [46] is a dictionary-
like database of publicly-known information security vulnerabilities.
Each CVE record represents a concrete, implementation-specific vul-
nerability. A CVE record is typically the manifestation of one or more
conceptual vulnerabilities identified in CWE. Each CVE vulnerability is
assigned a unique identifier, allowing for easy reference and tracking
across different systems and products. CVE provides a common plat-
form to understand, communicate and share vulnerability information,
assisting organisations in prioritising and mitigating potential risks.

CPE (Common Platform Enumeration) [47] is a structured naming
cheme that facilitates the identification and description of software
pplications and hardware devices. It enables the standardised repre-
entation of vendor, product, and version information, aiding in the
ccurate identification and tracking of components across different
ystems. CPE supports vulnerability management and assessment by
roviding a consistent and uniform way to catalogue software and
ardware assets. CVE records typically refer to impacted assets by using
heir CPE identification.

NIST SP 800-53 (National Institute of Standards and Technology
Special Publication 800-53) [48] is a comprehensive publication that
rovides a set of security controls and guidelines for information sys-
ems and organisations. It offers a framework for managing security
isks and protecting sensitive information. NIST SP 800-53 covers
arious security domains, including access control, incident response,
ryptography, secure development, and others. It serves as a valuable
esource for organisations in designing, implementing, and assessing
ecurity controls to safeguard systems.

CAPEC (Common Attack Pattern Enumeration and
lassification) [49] and ATT&CK (Adversarial Tactics, Techniques &

Common Knowledge) [50] are two knowledge bases dedicated to clas-
ifying and describing attacks. Attacks typically exploit vulnerabilities,
nd, accordingly, CAPEC attack patterns are linked with the CWE
ecords that they potentially exploit. MITRE – the nonprofit corporation
hat develops and maintains CAPEC and ATT&CK – explicitly identifies
hat ATT&CK is a more computer-network-oriented body of knowledge
nd that it includes techniques for employing attack patterns identified
n the more general CAPEC knowledge base. An interesting aspect

of ATT&CK is that – in addition to the adversarial viewpoint – it
as evolved to include a more explicit identification of mitigations
nd assets. ATT&CK mitigations are ‘‘security concepts and classes of
technologies that can be used to prevent a technique or sub-technique
from being successfully executed’’ [50]. ATT&CK assets are ‘‘devices and
ystems commonly found within Industrial Control System environments’’,
3
with those devices including ‘‘considerations for hardware, software,
architecture, and intended function’’ [50]. Mitigations and assets are
mapped – in ATT&CK – to the adversarial techniques.

Fig. 1 shows the prominent information security resources and how
they relate to each other. These resources collectively contribute to
the security body of knowledge by providing standardised frameworks,
classifications, and guidance for identifying, addressing, and managing
vulnerabilities. They assist security professionals, system developers,
system administrators and organisations in understanding and applying
best practices to enhance the security posture of software, hardware
and information systems.

While these resources individually contribute to the security body
of knowledge, they do not form a cohesive, consistent body of knowl-
edge. Each resource addresses different aspects of security and can
be utilised independently based on specific needs and requirements.
Furthermore, the resources are only semi-structured, and this hinders
the ability to formalise them. Specifically, the MITRE knowledge bases
– CWE, CVE, CAPEC and ATT&CK – do not refer explicitly to NIST
SP 800-53 security controls. Instead, they offer possible mitigation for
vulnerabilities or attacks using unstructured natural language, with the
xception of ATT&CK which also maps to its own collection of mitiga-
ions. These resources do not provide collective systematic guidance
or designing secure systems. Furthermore, even the recent guidelines
y world-leading security agencies – that acknowledge the need to
ddress vulnerabilities by design – fail to provide guidance for the
ystematic management of vulnerabilities and the vulnerability posture
f systems [13].

2.2. Security by design culture, activities and methodologies

Two distinct strategies have been identified for integrating secu-
ity into the software and system development process [51,52]. The
irst is an ‘‘a priori’’ approach, which entails incorporating security
onsiderations throughout the System Development Life Cycle (SDLC).
he second is an ‘‘a posteriori’’ approach, which involves addressing
ecurity aspects as an afterthought to the system development, usually
y reactively applying patches [53] or by adding dedicated security

products into the operational environment in which systems are de-
ployed [54], e.g., by integrating firewall components into the network
in which systems operate. The latter can be characterised as a separate
effort from the system development effort, while the former is an effort
inherent to systems development.

As emphasised in Section 1, it is crucial to prioritise security as
a proactive measure throughout the SDLC, to mitigate potential per-
formance degradation, reduce costs, meet time-to-market constraints,
and enhance overall usability [43]. Despite the prevailing tendency to
address security as an afterthought in practice [55], recent years have
witnessed an increasing emphasis on adopting the ‘‘a priori’’ strategy to
ensure that security is ingrained within the development process [15].

The concept of ‘‘security by design’’ [13,56] falls in the scope of
he ‘‘a priori’’ strategy, emphasising the proactive inclusion of security
easures to address security threats. It advocates for a holistic and

nticipatory approach, promoting a secure by default paradigm in
ystem component configuration, access policies, and system security
ssurance processes. A primary objective of the security by design
aradigm is to identify potential security vulnerabilities at the earli-
st stages of the SDLC and to incorporate security requirements and
eatures from the outset [57–59].

Security vulnerabilities can be conceptual design weaknesses emerg-
ing explicitly or implicitly from design decisions (e.g., CWE weak-
nesses). Also, even in the early stages of system design, concrete
vulnerabilities can be identified, such as those that emerge from de-
cisions to incorporate specific software products with disclosed CVE
records (e.g., a specific operating system) into the system that is un-
der development. Identifying and communicating both conceptual and

concrete vulnerabilities during system design is crucial to facilitating

A. Shaked and N. Messe Journal of Information Security and Applications 89 (2025) 103954
Fig. 1. Security knowledge bases and their relations.
informed decision-making about the design and the system’s security
posture.

The security by design approach necessitates the integration of
security during the design phase through the utilisation of security
assurance processes [9,57,58]. Security assurance processes involve
activities such as comprehensive threat modelling, where threats are
identified and communicated with the developers as well as countered
through informing and educating the developers about security best
practices and security controls [9]; and complementary vulnerability
management, which deals with the identification, analysis, mitigation,
and management of vulnerabilities in different stages of the system
development [57]. Threats are the potential exploitation of vulnerabil-
ities that exist in systems. Vulnerabilities can, therefore, be seen as the
root cause enablers of threats (alternatively, attacks). Vulnerabilities
are manifestations of issues in the system design. In our effort to bridge
security engineering and systems engineering, we focus on vulnerability
management, as the elementary security by design practice that is
relevant to both disciplines.

Vulnerability management is an essential practice for developing
and maintaining secure systems. It involves identifying, assessing, and
mitigating vulnerabilities from the early stages of the SDLC, to build
secure and resilient systems and in support of their proper maintenance
in case new vulnerabilities are disclosed throughout the system life
cycle. Proactive vulnerability management is typically carried out by
security experts, together with system engineers, during brainstorming
sessions, to identify potential vulnerabilities specific to the system’s
architecture, components, and functionality [19].

During the design phase, vulnerability management focuses on iden-
tifying potential attack vectors and the associated vulnerabilities that
may be present in the system. This includes: (1) analysing the sys-
tem’s attack surface, by clearly identifying the system’s constituents,
such as software, hardware, and configuration components, or related
processes; (2) evaluating potential weaknesses of the system, by identi-
fying, assessing, and prioritising vulnerabilities based on their severity,
potential impact, and exploitability using frameworks (such as the
Common Vulnerability Scoring System [60]), and (3) defining appropri-
ate security controls to mitigate the undesired vulnerabilities, such as
employing encryption and authentication mechanisms and establishing
proper access controls.

Due to the inherent variability of software-intensive systems, it is
imperative to explicitly specify the security requirements that must
be addressed during the design phase [59,61]. Since both the threat
landscape and the system design typically evolve throughout the de-
velopment life cycle, a clear specification of security requirements
facilitates the creation of tailored and effective security solutions [62–
64].

In general, security by design is approached through three primary
methodologies: attack-tree-based, ontology-based, and model-driven
security methodologies. Attack-tree-based methodologies are popularly
used in security by design to analyse and assess the potential attack
scenarios and vulnerabilities of a system [65,66]. The generation of an
attack tree involves constructing a hierarchical tree-like structure [31,
4
67], where the root represents the main objective, such as compro-
mising the system’s confidentiality, integrity, or availability. The tree
branches out into different attack paths, representing various attack
techniques or steps required to achieve the objective. Each node in the
tree represents a specific attack goal or sub-goal, and the edges depict
the relationships between the attack steps.

The attack-defence tree [68,69] is an extension of the attack tree
that incorporates the notion of defence strategies and countermea-
sures into the analysis of systems security. It provides a framework
for modelling and evaluating both the potential attack paths and the
corresponding defence mechanisms. Similar to attack trees, attack-
defence trees are structured hierarchically, with the root representing
the main objective compromising the system’s security. Attack-defence
tree branches out into different attack paths, depicting the potential
attack techniques or steps. However, unlike attack trees, attack-defence
trees also include defence nodes, representing the various defence
strategies and countermeasures that can be employed to mitigate the
corresponding attack.

By employing attack tree-based methodologies, security profession-
als can systematically evaluate the security posture of a system, and
identify potential weaknesses or vulnerabilities and defence strategies.
These informal methodologies provide visual representations of the
attack and defence paths and allow for the quantification of risks asso-
ciated with each attack path. This enables security experts to prioritise
their efforts and focus on mitigating the most critical threats.

Integrating the results of vulnerability analysis performed using an
attack tree-based methodology into the system development process is
often an informal, error-prone process. The interpretation and integra-
tion of attack tree-based results into the system development lifecycle
often rely on the subjective expertise and judgment of security experts
and system engineers involved. Attack tree-based methodologies offer
no engineering design perspective, and by that, they exemplify the gap
in the transition from security analysis to system design. Ultimately,
while the insights provided by the attack tree analysis can be valuable,
the translation of these findings into concrete actions and system design
decisions lacks a formalised, systematic approach [52].

Formal-ontology-based methodologies can be employed in the con-
text of security by design to enhance the understanding of security-
related concepts, relationships, and properties within a system. They
leverage the power of formal ontologies, which are formal models
that capture domain knowledge and enable reasoning, to support the
systematic integration of security considerations into the system de-
velopment process [70,71]. In such methodologies, security experts
utilise ontologies to define a conceptual framework that encompasses
relevant security domains, such as threats, vulnerabilities, assets, and
security controls, providing a structured representation of security
knowledge, which, in turn, enables formal reasoning and inference
capabilities [33]. Furthermore, the use of ontologies in security by
design promotes knowledge reuse and information sharing across dif-
ferent system development projects. By capturing security knowledge
in a standardised and reusable format, ontologies can facilitate the

A. Shaked and N. Messe

r

d
i
a
c
n
a
m
i

p

o

o
m
o

s
m

m
o

u
t

a
a
a

y
e

,

a
d
e
s

a
s

c
a
c
b
r
a
i
a
s
p
o

c
v

i
B
p

t

r

t

i
n
f
S
a
m

Journal of Information Security and Applications 89 (2025) 103954
transfer of best practices, lessons learned, and domain-specific security
expertise.

Ontology-based methodologies for security by design can offer valu-
able insights and benefits in terms of capturing and representing secu-
ity knowledge within a system. Ontologies can provide for rigorous,

explicit definitions as well as for sustainable vulnerability manage-
ment [61]. However, ontology-based methodologies require specialised
knowledge and skills in ontology engineering and semantic reasoning,
which are not widely available in systems engineering and security
engineering circles.

Integrating the results of an ontology-based analysis into the system
evelopment process requires a high level of expertise in understand-
ng and utilising ontologies effectively. Furthermore, ontology-based
pproaches commonly lack appropriate graphical representations to
ommunicate systems designs and security analysis in a way that is
atural to systems engineers and to security experts, both individu-
lly for each discipline and collectively. As a result, ontology-based
ethodologies by themselves are a limited tool for integrating security

nformation into system development efforts.
Model-driven security is an inclusive term for specifying security

aspects using well-structured models. It can be used to formalise as-
ects of the previously mentioned approaches (i.e., attack tree-, attack-

defence tree-, and formal-ontology-based methodologies) [72]. The
rigin of model-driven security can be traced back to the broader

concept of model-driven development [73], which aims to improve
the productivity, quality, and maintainability in software and systems
development, by leveraging models as primary artefacts throughout the
SDLC [74]. Models can be perceived as structured ‘‘living documents
maintained to reflect design choices and system revisions’’ [28]. Instead
f focusing solely on writing code or creating free-form diagrams,
odel-driven development emphasises the creation and manipulation

f structured information models that capture various aspects of the
system which is being developed.

Similarly, model-driven security refers to a promising approach
that leverages models as central artefacts in the design, analysis, and
implementation of secure systems [75,76]. By utilising models as a
hared source of information on security requirements, policies, and
echanisms, model-driven security may enable security experts to

express their expertise in a structured and formal manner. These models
serve as a means to capture and communicate security-related knowl-
edge, potentially allowing security experts to articulate their security
concerns, design decisions, and recommendations in a more rigorous
and communicable way. System engineers can leverage these security

odels to gain insights into the security requirements and constraints
f the system.

An important aspect of model-driven solutions is model-based rep-
resentations, i.e. representations that are generated according to the
nderlying information model. Such representations can communicate
he models in ways that are naturally or easily understood by the desig-

nated audience, e.g., by attack trees or by block diagrams for security
nalysts and systems engineers respectively. The representations can
lso convey design analysis and tips that may emerge from the use of
n ontology-based approach [77,78].

Various model-driven security approaches for the design and anal-
sis of secure software and systems exist. These include Unified Mod-
lling Language (UML)-based approaches (e.g. SecureUML [79]), Sys-

tem Modelling Language (SysML)-based approaches (e.g. SysMLSec [80]
MBSAES [81], and SoSSec [82]), and other Domain-Specific Languages
(DSL)-based approaches (e.g. VERDICT [72], MAL [34] and the model-
driven vulnerability specification approach by Rouland et al. [83]).
These approaches necessitate a high level of proficiency in software
nd system modelling for designers to effectively conduct secure system
evelopment [17]. However, in widespread scenarios where security
xperts are not software or system engineers, expecting them to possess
uch modelling expertise becomes unrealistic.
5
TRADES is a model-driven methodology to address the design and
analysis of systems specifically from a security perspective [17,84]. It
supports a disciplined yet practical model-driven approach, including
diverse representations grounded in a single well-defined metamodel
to promote a holistic view. While TRADES supports the association of
threats for a system of interest and its constituents as well as their
risk management, it does not support vulnerability management [85].
Specifically, the representation of vulnerabilities at any level of abstrac-
tion is not supported. Also, TRADES lacks a type system for components
t any level of detail (e.g., software, specific software package, and a
pecific version of a software package).

In Section 3.3, we present an implementation of the proposed
onceptual information-exchange interface, which extends TRADES and
ddresses its current limitations in representing vulnerabilities and
omponent types. We do this by introducing and integrating vulnera-
ility management concepts into the systems security models and their
epresentations. This implementation exhibits a model-driven security
pproach that incorporates an ontology-based approach, accommodates
nformation from existing knowledge bases (e.g., CWE, CVE, and CPE),
nd communicates the results of the ontology-based reasoning with
ystems engineers and security experts on the fly – during the design
rocess as it evolves – without requiring them to have any knowledge
f formal ontologies.

3. BridgeSec: an information-exchange interface for security by
design

To advance the security by design state-of-the-art, we propose a con-
eptual, information-exchange interface – BridgeSec – which introduces
ulnerability management aspects into system design efforts and auto-

mates some of them. In this section, we first describe the conceptual
interface that we identified as a bridge between the systems engineering
and the security engineering perspectives and highlight the overarch-
ng approach and design of BridgeSec. Then, we formally introduce
ridgeSec’s concepts and the related reasoning mechanism. Finally, we
resent a prototype implementation of the proposed interface.

3.1. BridgeSec: conceptual design and description

To address the gap of systematically coordinating security aspects
of the system between the systems engineering and the security engi-
neering perspectives, it is necessary to identify an interface that allows
o explicitly communicate these aspects between the disciplines. Such

an interface should enable the separation of concerns that would allow
each discipline to act within its realm of responsibility and employ the
elevant disciplinary information and expertise.

While attempting to appease the two perspectives, and by inspecting
he related security body of knowledge (Section 2), we identify such a

conceptual information-exchange interface in the form of two concepts:
component types and controls. Fig. 2 presents this newly unveiled
nterface in the context of the security by design effort. Systems engi-
eering is the discipline that is responsible for specifying the required
unctionality of a system as well as the architecture of the system.
ecurity engineering is the discipline that holds valuable information
bout attacks, vulnerabilities that may lead to them, and controls that
ay mitigate these.

The conceptual interface specifies that systems engineering is re-
sponsible for curating component types used in the system design (as
derived from the functionality and architecture), in any appropriate
level of abstraction, e.g., from a generic software component type
through a more specific type of a software unto a specific version of
the software to be used. Similarly, security engineering is responsible
for curating vulnerabilities and controls in any appropriate level of
abstraction, e.g., CWEs as conceptual vulnerability mechanisms and
CVEs as specific, concrete types of vulnerabilities in software packages.

A. Shaked and N. Messe Journal of Information Security and Applications 89 (2025) 103954
Fig. 2. BridgeSec interfaces the system engineer’s view and the security expert’s view.
Component types, as communicated by systems engineering, are
analysed by security engineering to identify potential vulnerabilities
(in the pertinent level of abstraction). Furthermore, security engineer-
ing is expected to propose controls to mitigate these vulnerabilities,
corresponding with the level of abstraction of the component type.
Systems engineering is informed of potential vulnerabilities associated
with the various system components, based on their types and in the
appropriate level of abstraction. The systems engineering team can
also examine the level-appropriate controls offered by the security
engineering team and embed them into the design specification, ei-
ther as additional architectural elements (e.g., Firewall) or additional
functionality (e.g., message filtering). This is in alignment with systems
engineering practices of specifying system architecture as an arrange-
ment of components, as well as specifying and managing required
functions – and later requirements – at various levels of abstraction.
Some of the functions/requirements management aspects include al-
locating the functions/requirements to the system components that
should provide them, for further development by the component’s
development team [5].

To leverage the identified interface as an inter-disciplinary com-
munication mechanism and to facilitate its use for designing systems
for security, we propose the BridgeSec prototype implementation. The
prototype allows systems engineers to depict system architecture and
security-related functionalities as well as to type the various compo-
nents used within the system design. It also allows security engineers
to specify vulnerabilities and security controls. These are all currently
done manually.

The typing of components – by systems engineers – and the speci-
fication of vulnerabilities and controls – by security experts – can be
an iterative process, to which both disciplines contribute. For example,
specific types can be further suggested by security experts in order to
facilitate their understanding of components and – as a result – identifi-
cation of potential vulnerabilities. In certain scenarios, security experts
can also specify component types as part of an organisational policy
of mandating mitigation for component types of interest. For example,
a security team can mandate the use of a memory-safe programming
language for software components that are internally developed. For
this, the security team will need to define ‘‘internally developed soft-
ware’’ as a component type, which will then be used by systems
engineering to characterise every internally developed software item
in the system design. Similarly, skilled systems engineers can offer
mechanisms that may be considered as security controls to address
different vulnerabilities, based on their domain expertise and/or expe-
rience with other, somewhat related design objectives such as safety
and resilience. These controls can be added to the mitigation body
of knowledge developed by security experts. Consequently, BridgeSec
can support design decisions about the security posture of the system
under development as well as on the security controls that need to be
incorporated into the system, as detailed shortly.

Once definitions of system-related component types exist, security
engineers can associate vulnerabilities with the component types that
are prone to such vulnerabilities, as well as with security controls that
6
can mitigate the vulnerabilities. Inspired by the terminology of previ-
ous vulnerability management work [19], we term such associations
collectively as a definition of a vulnerable asset (VA). VA allows a
security expert to describe a related set of vulnerabilities that may
be exploited when a component of a specific type is under attack,
potentially resulting in a security compromise. Also, the security expert
is able to identify a set of controls that may mitigate the collective set of
vulnerabilities. As a design decision, our current BridgeSec implemen-
tation treats each of the associated controls – individually – as proper
potential mitigation. If an expert wishes to mandate the collective use
of several security controls as mitigation, he/she can create multiple
vulnerable asset definitions, with each single definition relating to a
specific control from the mandated set.

Fig. 3 illustrates the use of BridgeSec as a process framework. It
identifies key activities and data objects (artefacts) that can be used to
systematically reason about the security of system designs and improve
them. The general flow of the activities depicted in the figure is top
to bottom, although, realistically, we expect iterative applications of
this flow. Security experts may specify component types (the ‘‘Specify
component types’’ activity) to result in definitions of component types
that can be used for system design, e.g., in support of an organisational
security policy. System engineers are expected to type the components
that appear in the requirements specification and architecture (‘‘Type
components’’ activity). For this, systems engineers can use component
types previously defined by security experts and/or further contribute
new component types to the organisational knowledge base. The ‘‘Type
components’’ activity should also result in updates to the requirement
specifications and/or architectures (e.g., by incorporating identified
component types as metadata/attributes for components in system
models).

The creation of component types may involve the use of information
from existing knowledge bases. Whenever new component types appear
in the Component Types collection, security experts are expected to
identify vulnerabilities that may affect components of this type (the
‘‘Identify/specify vulnerabilities’’ activity, resulting in an updated col-
lection of vulnerabilities). This can be the result of researching attack
and vulnerability knowledge bases. Security experts then proceed to
curate the existing knowledge in the form of vulnerable assets (the
‘‘Specify vulnerable assets and security controls’’ activity). They at-
tribute vulnerabilities (from the Vulnerabilities collection) to pertinent
component types (from the Component Types collection) resulting in
vulnerable asset definitions. In these definitions, they also identify per-
tinent security controls, from the existing Security Controls collection.
If new controls are needed, they are added to the Security Controls
collection. The collection can be populated by importing information
from existing knowledge bases (such as NIST SP 800-53).

Finally, system engineers can project vulnerable asset definitions on
their design (artefacts such as requirement specification and architec-
ture, which already include component type associations), and assess
which components are vulnerable. For the vulnerable components, sys-
tem engineers should then design the mitigation, by adopting controls
(from the Security Controls collection), adapting them or introducing
new security controls. While the proposed scheme clearly outlines the

A. Shaked and N. Messe Journal of Information Security and Applications 89 (2025) 103954
Fig. 3. System engineer’s and security expert’s activities conducted in the scope of BridgeSec.
responsibility of each discipline and delegates each discipline to lead
specific activities, all activities may include acts of consultation and
coordination between the disciplines.

Additionally, some of the activities may be automated. BridgeSec
incorporates a reasoning mechanism that infers whether system compo-
nents (specified in the system architecture description) are vulnerable,
based on VA definitions and the controls associated with the com-
ponents. This automates part of the ‘‘Identify vulnerable components
and design/integrate controls into these components’’ activity of Fig. 3.
The automated reasoning mechanism is applied individually for every
component of the system. The mechanism:

• collects all predefined VAs that can be relevant to the specific
component, based on its predefined component types;

• checks if the controls currently associated with the specific com-
ponent provide potential mitigation for the entire collection of
VAs, by making sure that each VA is covered at least by one of the
controls designed to be integrated into the component. If there is
one or more VAs left unmitigated (by the potential design), then
the reasoning mechanism identifies the component as vulnerable.

We provide the formal description of VA as well as the reasoning
mechanism in the next subsection.

3.2. BridgeSec: formal description

BridgeSec provides a semi-automated capability to identify vul-
nerable components in the design of systems. The capability incor-
porates two mechanisms: (1) formal definition of vulnerable assets
(Section 3.2.1, manual), and (2) vulnerable component assessment
(Section 3.2.2, automatic). Next, we detail these two mechanisms.

3.2.1. Formal definition of vulnerable assets
The construction of a VA definition in BridgeSec is a manual mech-

anism, designed to be used by a security expert and to capture security-
related knowledge and/or policy. A vulnerable asset (VA) binds a
specific type of component with one or more vulnerabilities. This is
the mechanism that allows the expert to express knowledge about
vulnerabilities that pertain to a specific type of component. The VA may
7
also bind security controls that can, potentially, mitigate the associated
vulnerabilities. This mechanism does not depend on a specific system
design. Theoretically, it requires no input from system designers. How-
ever, the VAs should be developed with the relevant system domain in
mind.

Formally, a VA is the tuple of a set of component types, a set of
vulnerabilities, and a set of security controls as specified in Eq. (1):

VA ≡ {Component Ty pes,Vulner abilit ies,Cont r ols} (1)

where:
ComponentTypes is a set of specific component types;
Vulnerabilities is a set of vulnerabilities;
Controls is a set of security controls, of which each element may
mitigate the Vulnerabilities.

3.2.2. Automated reasoning for vulnerable component assessment
The reasoning mechanism allows to automatically assess whether

a specific component is a vulnerable component. For a specific com-
ponent, all associated component types are collected to compose the
set of applicable component types (ACT). We note that a component
may be associated with any number of component types, to provide
designers the freedom to express components as well as component
types in any hierarchy or conceptual level. Then, from the set of
applicable component types, we retrieve all VAs associated with every
component type. This composes the set of applicable VAs (AVA). Then,
we define the set of all security controls currently assigned to the
specific component (ASC). Finally, we check if the currently assigned
security controls include at least one of the security controls associated
with every applicable VA. If the result is false, then the component
is assessed vulnerable, i.e., it is subject to one or more vulnerabilities
associated with at least one VA.

Formally, we define the following sets:

ACT(component) ≡
{t y pe|(t y pe ∈ Br idgeSecComponent Ty pes) (2)
∧ (t y pe ∈ Component Ty pes(component))}
where:
ACT is the set of applicable component types for a specific component;

A. Shaked and N. Messe Journal of Information Security and Applications 89 (2025) 103954
Fig. 4. BridgeSec Metamodel. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
BridgeSecComponentTypes is the set of all predefined component types
in BridgeSec;
ComponentTypes is the set of all predefined component types associated
with a specific component.

AVA(component) ≡ (3)
{VA ∣ VA ∈ Br idgeSecVAs ∧ VA.Component Ty pe ∈ ACT(component)}
where:
AVA is the set of applicable VAs for a specific component;
BridgeSecVAs is the set of all predefined VAs in BridgeSec.

Then, our mechanism uses the above definitions to assert if a
specific component is vulnerable or not, based on the following logic:

¬
(

∀VA ∈ AVA(component),

∃cont r ol ∈ ASC(component) ∧ cont r ol ∈ VA.Cont r ols
)

(4)

→ VC(component)
where:
¬ is the symbol for negation (‘‘not’’);
ASC is the set of security controls currently assigned to a specific
component;
VA.Controls is the set of security controls included in the definition of
a specific VA (as potential mitigation);
→ is the symbol for inference/implication (‘‘implies’’);
VC indicates if a specific component is vulnerable.

In our design, a single security control of the set of potential mitiga-
tions is sufficient in assessing that a component is no longer vulnerable.
This supports a selection of controls between various options. Our
design, however, also provides an option for the security expert to
express more complex situations and/or policies – i.e., policies that
require a combination of security controls – by introducing multiple
VAs. The inference about not being a vulnerable component is in the
form of conjunction with respect to the entire set of VAs, i.e., unless
a component has at least one control for every associated VA, it is
assessed as vulnerable.

This automated reasoning can be applied to a component at any
level of the design hierarchy. It is a preliminary design tool. It only
relates to the potential of mitigating vulnerabilities. Specific designs
and/or configurations should be more specific with respect to how the
controls are effectively integrated into the component, e.g., by follow-
ing rigorous requirements engineering processes and techniques [86],
and, particularly, by specifying vulnerabilities and security controls in
the proper level of abstraction and in association with a suitable level
of the system design hierarchy.
8
3.3. BridgeSec prototype implementation

Based on the above formal description, we developed a prototype
implementation of BridgeSec. Utilising a model-driven approach, the
implementation includes a formal, executable metamodel and dynamic
representations.

The prototype implementation is available as an EPL 2.0-licensed
open-source package at https://github.com/IAI-Cyber/TRADES/releas
es/tag/v3.5-beta. The implementation has been fully integrated into
the TRADES Tool online repository [44]. We chose TRADES Tool as
the platform for the implementation as it is open-source and rigorously
relies on an explicit metamodel for detailing security-related models
and representations. Furthermore, some of the BridgeSec concepts –
specifically component and control – were already supported, and this
facilitated our implementation.

3.3.1. The prototype’s metamodel
Fig. 4 shows the prototype’s metamodel, which includes the

BridgeSec system’s concepts and their relations. The metamodel ex-
tends the previously developed TRADES metamodel concepts and rela-
tions (normal font) with new concepts and relations appearing in bold.
Concepts are depicted as nodes (boxes), and the relations between these
concepts are depicted as edges between the nodes. A relation might
have specific cardinality, which is explicitly mentioned in square brack-
ets ([1..1] represents a single element is required as the associated end
of the relation, [0..*] represents any number of elements is allowed, and
[1..*] represents one or more elements are required as the associated
end of the relation).

The metamodel incorporates various concepts associated with dif-
ferent perspectives, represented using distinct colours strictly for clarity
purposes: vulnerability management perspective (red) includes Con-
trol, Vulnerable Asset, and Vulnerability, while the system perspective
(blue) comprises Component, Component Type, Affect Relation, and
Data.

The system-related concepts support the detailing of the system to
the appropriate level. The ‘‘Component’’ concept is used to represent
the system and its constituents. Each component can have one or sev-
eral component types. We use the ‘‘refines’’ relation to allow modelling
different levels of abstraction, providing support for the hierarchical
organisation of the type system. This is denoted using a ‘‘refines’’
relation from the Component Type concept to itself. A component may
have any number of associated controls as its features/requirements,
denoted by the ‘‘assignedControl’’ relation from the Component concept
to the Control concept. Based on previous TRADES design, Affect
relations can be depicted between components (the ‘‘affectRelations’’

https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta
https://github.com/IAI-Cyber/TRADES/releases/tag/v3.5-beta

A. Shaked and N. Messe Journal of Information Security and Applications 89 (2025) 103954
Fig. 5. Scenario I system design representation using BridgeSec prototype. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
composition relation from the source ‘‘Component’’ to ‘‘AffectRelation’’;
and the ‘‘targetComponent’’ reference relation from ‘‘AffectRelation’’
to the target ‘‘Component’’). The affect relations are directional data
flows, and each may convey any number of data elements (the ‘‘data’’
reference relation to ‘‘Data’’ concept).

The vulnerability-management-related concepts facilitate the intro-
duction and management of vulnerability information. The ‘‘Vulnera-
bility’’ concept is used to represent the vulnerabilities. A lower-level
vulnerability can refine a higher-level vulnerability (e.g., a CVE vul-
nerability can refine a CWE vulnerability) using the ‘‘refines’’ relation.
The Vulnerable Asset concept is the core conceptual element of the rea-
soning mechanism. As described and formally specified in the previous
subsection, the Vulnerable Asset relates to one or more vulnerabil-
ities, associated with one or more component types and potentially
including suggested controls. The derived ‘‘vulnerableasset’’ relation
from Component to Vulnerable Asset (annotated in blue) represents
our reasoning mechanism’s inference that a component is subject to a
specific vulnerable asset definition.

In the BridgeSec prototype, models of systems – that are to be
designed or analysed – are created exclusively based on the metamodel,
i.e., every model element is an instance of a metamodel element.
By specifying the concepts and relations using a well-structured, ex-
ecutable metamodel, we provide a rigorous, comprehensive frame-
work for modelling and analysing system components, component
types, vulnerabilities, controls, and their interconnections, supporting
vulnerability management and the system design for security.

3.3.2. The prototype representation
The prototype representation is a model-based representation, i.e., it

is dynamically generated based on the content of an information model
according to rules defined with respect to the metamodel. Examples of
generated representations appear in the following section (see Figs. 5–
14). The representation extends the TRADES design diagram represen-
tation, by adding: (1) a list of types associated with every component
in square brackets; (2) a Vulnerable Asset Definitions container (named
’’VAD’’ in the figures), which is placed within the scope of system
components and names and provides access to applicable VAs (AVA) as-
sociated with the component by the reasoning mechanism (see Eq. (3));
and (3) a red colouring of the label and border of the box representing
a specific component, in case the reasoning mechanism infers that the
component is vulnerable (see Eq. (4) for the reasoning specification and
Fig. 6 as an example).
9
The reasoning mechanism queries are implemented using the Ac-
celeo Query Language (AQL), based on the formal specification (Sec-
tion 3.2.2). AQL supports evaluating basic predicate logic statements
over sets of model elements.

4. Illustrative scenarios

To demonstrate the applicability of BridgeSec, we illustrate its use
in exemplary scenarios. These scenarios are representative of promi-
nent security by design challenges related to managing and mitigating
vulnerabilities [13] as well as of the potential applications of BridgeSec
in real-world scenarios to address these challenges.

The first scenario demonstrates how BridgeSec can be applied in the
early phases of development to manage information related to systems
security. Specifically, it describes the use of BridgeSec as a mechanism
to explicitly state security policies and coordinate them with the system
designers; and, in turn, the use of BridgeSec to support the inclusion of
security controls in the system design and in the development process.
This is described using a realistic scenario.

The second scenario depicts a characteristic application of BridgeSec
to coordinate the necessary modification of systems – after specific
components are selected or implemented and even during maintenance
– due to the disclosure of vulnerability information. This scenario in-
cludes two stages, to further illustrate the use of BridgeSec throughout
the system lifecycle. Since disclosure of new vulnerabilities is unpre-
dictable, it is not realistic to evaluate new solutions while waiting for
such disclosures. Instead, we use past information and present a ‘‘what-
if’’ implementation that treats previously disclosed vulnerabilities as if
they are new information that needs consideration. Specifically, this
scenario shows how BridgeSec can support informed decision-making
to address several vulnerabilities that exist in system components and
are revealed gradually over time.

The full models for both scenarios are available in the TRADES
open-source repository (https://github.com/IAI-Cyber/TRADES/tree/
master/examples/BridgeSec_WS).

4.1. Scenario I: Coordinating security features

We describe an illustrative scenario of using BridgeSec for coor-
dinating desirable security features of the system during the require-
ments definition and analysis and the design phases of the system
development life cycle.

https://github.com/IAI-Cyber/TRADES/tree/master/examples/BridgeSec_WS
https://github.com/IAI-Cyber/TRADES/tree/master/examples/BridgeSec_WS
https://github.com/IAI-Cyber/TRADES/tree/master/examples/BridgeSec_WS

A. Shaked and N. Messe Journal of Information Security and Applications 89 (2025) 103954
Fig. 6. Scenario I system design representation, showing the security posture. Applicable VAs are associated with components, inferred as vulnerable, hence appearing in red.
Proposed security controls can be identified using the properties of each VA. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
Consider the development of a server-side application within an or-
ganisation, designated for use by the organisation, its clients, partners,
and subcontractors. This is a realistic situation for many enterprises
that rely on information technology (IT) for their operations. We view
the full application – X Application Server – as consisting of: (a) an
operating system for server applications; (b) an internally developed
server software. The development team seeks guidance for security
mechanisms that are required or desirable as part of the system’s
design.

The types for the two components are specified by the development
team as ‘‘Server’’ and ‘‘Internally developed application’’ for the op-
erating system and for the internally developed software respectively.
Such type definitions may be standardised by the organisation or a
community of interest. Lower-level definitions may be specified instead
or in addition to such high-level definitions at any stage of the develop-
ment, if the specific technology is a constraint or a design decision. For
example, the server in our scenario can be later specified as a ‘‘Windows
Server’’ typed component, if the development team chooses to use
a Windows server or if the organisational policy requires Windows
servers to be used exclusively. Upon selection of a specific Windows
Server version, this can also be specified as a type, e.g., ‘‘Windows
Server 2019’’. Fig. 5 shows the resulting representation of the design
using the BridgeSec prototype.

A security expert specifies vulnerable assets (VAs) pertinent to the
design. These VAs may be based on organisational policies, e.g., man-
dating each internally developed application to undergo specific verifi-
cation processes. They can also be in response to a new type definition
specified by the development team, e.g., when selecting a component
that has never been used by the organisation before. In our scenario, the
security expert specifies three vulnerable assets: VA1 (named ‘‘Server
authentication’’), VA2 (named ‘‘Unprotected memory access’’), and VA3
(named ‘‘Internally developed application - base’’), as shown in Fig. 6
and as specified in the following set definitions:

VA1 ≡
{

{𝑆 𝑒𝑟𝑣𝑒𝑟},
{CWE-308: Use of Single-factor Authentication}, (5)
10
{ia-2.2: Multi factor Authentication to Non privileged Accounts}
}

VA2 ≡
{

{𝑆 𝑒𝑟𝑣𝑒𝑟},
{CWE-119: Improper Restriction of Operations (6)
within the Bounds of a Memory Buffer},
{si-16: Memory Protection}

}

VA3 ≡
{

{Internally developed application},
{CWE-248: Uncaught Exception, (7)
CWE-798: Use of Hard-coded Credentials},
{sa-11.1: Static Code Analysis}

}

In the specific case, the vulnerabilities associated with these VAs
use publicly available information about vulnerabilities, by referring
to specific CWE records. It is noted that VA3 binds two CWEs that are
applicable to the same component type and can be mitigated using the
same control. Similarly, the security controls associated with these VAs
use publicly specified security control definitions, by identifying spe-
cific NIST SP 800-53 controls, with the prefix of each control denoting
its NIST SP 800-53 unique identifier [48]. While the VA definitions
use publicly available information, the integration of this information
– specifically the potential mitigation of specific vulnerabilities by
specific security controls – as VAs is a codification of the security
expert’s knowledge and/or of organisational policies.

Fig. 6 shows the security posture of the system design. Both system
components are automatically coloured red, based on the vulnerable
component inference of the BridgeSec automated reasoning mecha-
nism. The names of the VAs (assessed as the cause for a component
being vulnerable by the reasoning mechanism) appear explicitly within
the ‘‘VADs’’ container in each component box, alongside the vulnerabil-
ities associated with the VA in brackets. As a side note, the graphical
user interface element that represents a single VA allows the user to

A. Shaked and N. Messe Journal of Information Security and Applications 89 (2025) 103954
Fig. 7. The system security posture is updated with a design decision to incorporate the ‘‘static code analysis’’ security control. This reflects the internally developed component
is no longer vulnerable, appearing in black (and not red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
select the VA and see the properties related to the VA. Fig. 6 shows the
‘‘Internally developed application - base’’ VA selected and, accordingly,
its properties appear in the bottom ‘‘Properties’’ panel.

The systems engineering team is now made aware that the design
is vulnerable and/or does not comply with security policies. The devel-
opers may also probe the VAs to examine proposed security controls
to address specific VAs. The properties panel in Fig. 6 shows that
the ‘‘Internally developed application - base’’ VA can be addressed by
including ‘‘Static Code Analysis’’ (listed at the relevant ‘‘Controls’’ field
in the Properties panel). This illustrates the mechanism for communi-
cating vulnerabilities and expected security controls between system
engineers and security experts.

Based on the VAs specified by the security expert, the systems
engineering team can now design relevant security aspects of the
system and its development. Specifically, the team can make an in-
formed decision to incorporate static code analysis – a security control
suggested by the security expert – into the development process. Fig. 7
shows the resulting update to the security posture, once the ‘‘Static
code analysis’’ security control is incorporated into the scope of the
Internally Developed Software X component. The component no longer
appears in red (it is now coloured black), as the inference mechanism
did not find it to be vulnerable.

The same approach applies to the ‘‘Operating System’’ component.
First, the ‘‘memory protection’’ security control can be incorporated to
mitigate the ‘‘Unprotect memory access’’ VA, as Fig. 8 shows. Then,
the ‘‘Multi-factor authentication to non-privileged accounts’’ control
can be incorporated to mitigate the ‘‘Server authentication’’ VA, as
Fig. 9 shows; resulting in the removal of the ‘‘vulnerable’’ tag from
the ‘‘Operating system’’ component. We note that the existence of a
single VA associated by inference with the component is sufficient for
the component to be classified as vulnerable. This is in full accordance
with the formalism that appears in Section 3.

These representations allow the security expert to assess the security
posture of the design at any time and clearly understand how security
controls are embedded into the design. Moreover, by associating secu-
rity controls with specific system components, it becomes evident who
holds the responsibility for implementing these controls: the develop-
ment team of the specific component. This provides clarity and trans-
parency regarding the incorporation of security measures, enabling
their effective management throughout the development process.
11
4.2. Scenario II: Addressing implementation-level vulnerabilities

We describe another illustrative scenario, using BridgeSec for vul-
nerability management during the maintenance phase of the system
development life cycle. This scenario is also indicative of how BridgeSec
can be employed for addressing security concerns in middle-out systems
engineering, when the system design incorporates existing lower-level
components. The system of interest is an extended view of the system
which appears in Scenario I (previous subsection), with the addition
of other components to illustrate multiple development efforts and
deployment considerations (Fig. 10). Specifically, the system comprises
a server-side application in its deployed form – designated ’’Applica-
tion X Server’’; as well as a client-side application (which interacts
with the server-side application) in its deployed form – designated
‘‘Application X Client’’. Component types are identified with their CPE
identifications, appearing in brackets in the title of each component
box. The identification of the Application X Server’s Operating System
– as a Windows Server 2019 CPE entry – is a refinement of the
‘‘Windows Server’’ component type, which is itself a refinement of the
‘‘Server’’ component type. These refinements demonstrate the ability of
systems engineering to detail a component type to the required level of
abstraction as design decisions are made throughout the development
process.

Consider a disclosure of a new vulnerability in Microsoft Remote
Desktop Services (RDS) implementation. Real-life vulnerabilities repre-
senting this compose the set of vulnerabilities published on August 14,
2019: CVE-2019-1181 [87], CVE-2019-1182 [88], CVE-2019-1222 [89]
and CVE-2019-1226 [90]. All these CVEs are rated Critical and relevant
to various Windows platforms, including Windows Server 2019 and
Windows 10 (which are both used in our system design). The vulnera-
ble component types are identified using their CPE enumerations on the
CVEs’ ‘‘Known Affected Software Configurations’’ section. The proposed
mitigation for each of these vulnerabilities, as offered by the vendor
advisories (see, for example, [87]), is to apply a security patch, or to
disable the specific services (RDS) if they are not required. Applying
the relevant security patch can be identified as a specific refinement of
the NIST SI-2 ‘‘Flaw Remediation’’ security control, which necessitates
to ‘‘install security-relevant software and firmware updates’’. Disabling
RDS can be identified as a specific refinement of the CM-7(1) ‘‘Least
Functionality’’, clause (b) ‘‘Disable or remove’’.

A. Shaked and N. Messe Journal of Information Security and Applications 89 (2025) 103954
Fig. 8. The system security posture is updated with a design decision to incorporate the ‘‘memory protection’’ security control. This reflects the operating system component is
no longer vulnerable to the specifically addressed VA, but it remains vulnerable to another VA, hence still appearing in red. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
Fig. 9. The system security posture is updated with a design decision to incorporate the ‘‘Multi-factor authentication...’’ security control. All components appear in black, signifying
no component is vulnerable according to the current design. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
Following the information provided above, a security expert speci-
fies a new vulnerable asset, VA4, named ‘‘Remote Code Execution via
RDP Server’’:

VA4 ≡
{

{cpe ∶ 2.3 ∶ o ∶ micr osof t ∶ windows_10_1507,

cpe ∶ 2.3 ∶ o ∶ micr osof t ∶ windows_ser ver_2019},
{CVE − 2019 − 1181,CVE − 2019 − 1182, (8)
CVE − 2019 − 1222,CVE − 2019 − 1226},
{‘WindowsRDPSer ver Secur it y Pat chAugust 2019’, ‘DisableRDS’}

}

Our BridgeSec prototype then infers that two components are vul-
nerable: the Application X Server’s operating system and the Applica-
tion X Client’s operating system. This is based on the types of com-
ponents – the CPE enumerations of the specific Windows Server 2019
(cpe:2.3:o:microsoft:windows_server_2019) and Windows 10 versions
(cpe:2.3:o:microsoft:windows_10_1507) – as specified, respectively, for
the components by the system designers. Fig. 11 is the pertinent
12
representation by the BridgeSec prototype, showing the vulnerable
components outlined in red.

The new vulnerability-related issues are communicated with the
systems engineering team, using BridgeSec. Now, the systems engi-
neering team is aware of the vulnerable components and considers the
suggested security controls in light of the system functionality (Fig. 2).
Since RDS is not a required functionality of the Application X Client,
the team decides to disable RDS in the client. Also, since the RDS relates
to the functionality required by the Application X Server (e.g., for
maintenance purposes), applying the vendor’s security patch is selected
as the security control for the server’s operating system. Fig. 12 shows
the design of such actions, which is, in fact, the revised design of
the system in its new version/deployment; and the resulting security
posture analysis, showing both components are no longer considered
vulnerable.

Now, consider the disclosure of another vulnerability in Microsoft
Remote Desktop Services at a later point in time. One such example
is the disclosure of the CVE-2020-0655 vulnerability on February 11,

A. Shaked and N. Messe Journal of Information Security and Applications 89 (2025) 103954
Fig. 10. Scenario II system design and the initial security posture, shown using the BridgeSec prototype. As a starting point, none of the components is inferred as vulnerable.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Scenario II updated system security posture, following a new VA definition after a new set of vulnerabilities were disclosed. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
2020 [91]. This CVE is rated High and relevant to various Windows plat-
forms, including Windows Server 2019 and Windows 10. As a side note,
unlike the advisories for the previously mentioned vulnerabilities, the
vendor advisory for this vulnerability does not include a ‘‘mitigation’’
section [91]. The proposed mitigation – installing a security update – is
implicit from the ‘‘Executive Summary’’ section. The other alternative,
disabling RDS, can also be inferred from the description in that section
but requires a more technical orientation from the reader. This provides
further evidence for the informal nature of current knowledge bases;
and it attests to the gap addressed by BridgeSec, as discussed shortly.

According to this new information, a security expert specifies a new
vulnerable asset VA5, named ‘‘Remote Code Execution via RDP Server
2020’’:

VA5 ≡
{

{cpe ∶ 2.3 ∶ o ∶ micr osof t ∶ windows_10_1507,

cpe ∶ 2.3 ∶ o ∶ micr osof t ∶ windows_ser ver_2019}, (9)
{CVE − 2020 − 0655},
{‘WindowsRDPSer ver Secur it y Pat chAugust 2020’, ‘DisableRDS’}

}

13
Fig. 13 shows the inference results made by the BridgeSec prototype
implementation. The prototype infers that the Windows Server’s operat-
ing system of our application system is vulnerable. It is noteworthy that
the application client’s operating system is not assessed as vulnerable,
because one of the controls associated with VA5 – ‘‘Disable RDS’’ –
has already been integrated into the component when responding to
the previously raised VA4. The vulnerability in the application server’s
operating system can be mitigated by applying the new security patch,
as Fig. 14 illustrates.

5. Related work

Our work establishes a conceptual and explicit information-
exchange interface between systems engineering and security engi-
neering, to articulate the design for security of systems. While vari-
ous security-related conceptualisations exist, we are unaware of any
conceptualisation designed to support information exchange between
disciplines during system development. Avizienis et al. introduce a
taxonomy of dependable and secure computing, without offering a

A. Shaked and N. Messe Journal of Information Security and Applications 89 (2025) 103954
Fig. 12. Scenario II updated system security posture, after pertinent security controls are added to address the newly identified VAs. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
Fig. 13. Scenario II updated system security posture, after another vulnerability was disclosed. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
validated approach to exercise the taxonomy’s concepts in systems
development [92]. Fenz and Ekelhart present an ontology that focuses
on security concepts in support of risk management [93]. Oliveira et al.
offer a formal ontology that integrates aspects of risk management
and security engineering primarily for supporting risk treatment [94].
These publications [92–94] fall short of demonstrating explicit methods
to integrate security into systems engineering processes utilising the
specified concepts. Accordingly, they fail to address the gap in strategic
technical management approaches for security, which is highlighted in
the recent study by Olivero et al. [36].

In comparison, our work identifies specific concepts and establishes
their systematic use within the development process, in the form of
an information-exchange interface. This interface is detailed and for-
malised to a degree where semi-automated reasoning can be applied, as
demonstrated by our prototype implementation. Our work concretely
addresses the pertinent future work questions posed by Olivero et al.

Furthermore, while previous works successfully identified concepts
similar to those used within BridgeSec (specifically, Control, Attack
14
and Vulnerability, as shown in Fig. 2), only a few of them iden-
tify the need and demonstrate the ability to associate vulnerabilities
with components based on component types/characteristics [93,72,
28]. We establish Component Type as a focal concept in vulnerability
management, as it underpins a by-design, divide-and-conquer strategy.

Additionally, our work corresponds with several related works that
offer formal reasoning or model-based approaches to security. On-
ToRisk uses a formal ontology to assess vulnerability-induced risks [61].
The method requires formal ontology engineering proficiency and does
not support the system design perspective. It provides a complemen-
tary, risk management perspective, which can be used to assess the
business impact of a newly disclosed CVE-typed vulnerability once a
system has been deployed.

Valenza et al. [33] propose a security analysis technique for sys-
tems. Like BridgeSec, their technique is formally defined. However, it
does not accommodate the specification of vulnerabilities. It is oriented
towards creating threat models and uses information about an entity
being vulnerable to a threat, as opposed to BridgeSec, which allows
specifying the nature of the vulnerabilities explicitly.

A. Shaked and N. Messe Journal of Information Security and Applications 89 (2025) 103954
Fig. 14. Scenario II updated system security posture, after pertinent security controls are added to address the newly identified VA. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
Eckhart et al. [95] suggest an ontology-based method that generates
attack graphs, which are a generalisation of attack trees. Their method
allows the automatic association of vulnerabilities with components,
but does not take into account controls embedded in the system design.
Adapting their method to address specific needs or contexts of the
design requires extensive ontology-related knowledge and skills. In
comparison, BridgeSec provides a simple mechanism to do so, by in-
cluding the vulnerable asset concept as a binding definition for multiple
concepts and applying reasoning with respect to vulnerable asset def-
initions. Their analysis results, as represented by the generated attack
graphs, are not fed back into the system’s design, whereas our prototype
clearly shows how BridgeSec analysis output can be presented as part
of the system design representation.

Tropos is a software engineering methodology that emphasises the
identification and analysis of goals, actors, and dependencies in the
early stages of system development via semi-formal modelling. Se-
cure Tropos is an extension of Tropos to address security concerns
including analysis of the security needs of the stakeholders and the
system in terms of security constraints, identification of secure entities
that guarantee the satisfaction of the security constraints, and assign-
ment of capabilities to the system to help towards the satisfaction of
the secure entities [96]. Contrary to Secure Tropos, which is primar-
ily a goal-oriented requirements engineering methodology, BridgeSec
focuses specifically on vulnerability management and design in the
context of secure system development. As opposed to BridgeSec, Secure
Tropos does not accommodate the existing security body of knowledge.

The VERDICT framework partially uses a model-based approach to
capture security-related features of a system and then applies ontology-
based rules for generating attack-defence tree representations [72].
However, VERDICT is designed as a tool exclusively for systems engi-
neering. The security engineering perspective is represented by analysis
rules that are hard-coded. These rules take into consideration only a
specific subset of CWE records as vulnerabilities and a limited selection
of security controls as well as very generic component types. VERDICT
provides no flexibility to represent security-related policies, and it does
not account for a proper representation of the security engineering
discipline during the system development effort. BridgeSec, with its
Vulnerable Asset concept – which is used for binding related do-
main concepts into manageable entities – significantly generalises and
15
expands the VERDICT approach. Our implementation allows security-
related details to be adapted and refined as well as to accommodate
information from existing body of knowledge repositories, while fully
supporting ontology-based reasoning.

Navas et al. [97] attempt to address the integration of security
engineering and systems engineering efforts when developing systems
by using a model-based approach. However, their solution necessitates
close, ongoing interaction between systems engineering and security
engineering, and it does not support vulnerability management at any
level. The TRADES model-based methodology partially addresses this
integration of efforts, but, until now, only provided means to commu-
nicate threats and not vulnerabilities [17]. BridgeSec is unique in its
ability to systematically and formally integrate the ongoing efforts of
security engineering and of systems engineering in system development
contexts, while allowing for loosely coupled efforts by each discipline.

CYBOK (Cybersecurity Body of Knowledge) is an algorithmic ap-
proach to vulnerability exploration [28]. It relies on specifying free-
form, descriptive keywords to characterise any element of its formal
model, whether a component or a semantically meaningless depen-
dency between two components. In comparison, we explicitly codify
and employ some of the domain ontology of vulnerability management
using our metamodel: vulnerabilities in various levels of abstraction,
supported by our ‘‘refines’’ relations, assigning component types to
components, and associating vulnerabilities with affected component
types. In CYBOK, vulnerabilities (CWEs and CVEs) are associated with
the system design by a search engine that looks for a match between
the descriptive keywords (of the system design) to information inde-
pendently extracted from the vulnerabilities. This does not provide for
a good separation of concerns between systems engineers and security
engineers. We provide a more formalised structure of model elements,
employing the static semantics of our metamodel to relate and reason
about these elements. Furthermore, CYBOK does not address the exis-
tence of security controls within the system design or the design space,
as potential mitigation. Ignoring the existence of security controls leads
to analyses that ignore mitigated vulnerabilities, and, as such, can lead
to many false positive alerts of vulnerabilities in the design, ultimately
deeming such analyses as impractical.

The Meta Attack Language (MAL) is a domain-specific meta-
language to support the further design of modelling languages, with

A. Shaked and N. Messe

M
A
a
i
b

a

m
u

b

Journal of Information Security and Applications 89 (2025) 103954
Table 1
Comparison of BridgeSec and related works.

Criterion Type of
methodology

Perspectives System and
security experts
collaboration

Support for
vulnerability
management
concepts

Reasoning
mechanism

User-defined typing
mechanism

Implementation
availability

Avizieniset al. [92] Taxonomy System and
security

Not systemised High level definition
of concepts

None Out of scope No

Fenz & Ekelhart [93] Formal ontology Security Out of scope Vulnerability +
Component type +
Control

Partial
(infrastructure)

Out of scope No

Oliveiraet al. [94] Formal ontology Security Out of scope Vulnerability +
Control

None Out of scope No

Valenzaet al. [33] Formal model +
Attack graph

Security Out of scope No Offline Not supported Yes

Eckhartet al. [95] Model based +
Formal ontology +
Attack graph

System and
security

Not systemised Vulnerability +
Component type
(Limited to CPE)

None Not supported Yes

OnToRisk [61] Formal ontology Security Out of scope Vulnerability Limited Not supported Yes

Secure tropos [96] Informal modelling
(diagrammatic)

System and
security

Not systemised,
tightly coupled

Control None Out of scope No

VERDICT [72] Model-based +
Formal ontology +
Attack defence tree

System and
security

Disjoint Vulnerability +
Component type +
Control

Offline, based on
formal ontology
queries (rigorous)

Not supported Yes

Navaset al. [97] Model-based System and
security

Not systemised,
tightly coupled

Control None Out of scope Yes

CYBOK [28] Formal model System and
security

Not systemised Vulnerability +
Component type

Offline, based on
search queries

By keywords
(free-form) for:
component types and
vulnerabilities

Yes

MAL [34] Formal model Security Out of scope Component type +
Control

Theoretical (subject
to implementations)

By declarations for:
component types and
security controls

Partial

BridgeSec (this work) Model-based +
Formal Model

System and
security

Systemised,
loosely coupled

Vulnerability +
Component type +
Control

Online, based on
formal definitions
(rigorous)

By model elements
(structured) for:
component types, rules,
security controls and
vulnerabilities

Yes
m
–
t
g

i
c
c
c
e
r
d

p
s
n
f
f

the potential of automatically generating attack graphs from system
architecture models (provided the concrete modelling languages cor-
rectly implement the MAL specification) [34]. Similarly to BridgeSec,

AL is formalised using set notation. It identifies the concepts of
sset and Defense, which are aligned with BridgeSec’s Component type
nd Control concepts, respectively. However, MAL does not explicitly
nclude the concept of Vulnerability, which is only implicitly addressed
y the concept of Attack step.

Table 1 summarises key aspects of the comparative analysis between
related work and BridgeSec. It shows that while some works support
automated reasoning for vulnerability assessment, only a few of them
allow user-specified typing of related concepts – namely vulnerabilities
nd the component types to which they apply. Also, our prototype

implementation is the only one to provide online/on-the-fly assess-
ent, based on elements within the model as they are created and
pdated. This was demonstrated throughout Section 4 when detailing

the examples. Furthermore, while several other related works acknowl-
edge the need for an integrative systems engineering and security
engineering effort in designing for security, none of them explicitly
systemise the interface between the disciplines and allows for manage-
able, loosely coupled separation of concerns. The explicit systemisation
of the interface between disciplines is the unique contribution and
the distinguishing aspect of BridgeSec. This systemisation underpins
the potential use of BridgeSec as a framework for security by design
processes, as illustrated in Fig. 3.

6. Discussion

Designing the security aspects of systems requires collaboration
etween systems engineering and security engineering. However, until
16
now, the joint effort has not been well articulated into a systematic
ethod. In this article, we propose a conceptual interface – BridgeSec
 that allows for effective and systematic coordination between the
wo disciplines. This interface tackles significant technical management
aps related to the responsibility and coordination of the security of

systems, which were independently established in a comprehensive,
systematic study [36].

BridgeSec relies on our identification of an information-exchange
nterface that can be used to coordinate the systems engineering and se-
urity engineering efforts. The interface is purposefully bounded to two
oncepts – component types and controls – allowing for a divide-and-
onquer strategy for the system’s security design. This approach allows
ach of the two disciplines to work based on its own expertise and
elevant information as well as supports the integration between the
isciplines. Specifically, it allows security engineers to codify security-

related knowledge and expectations – e.g., security policies – as well
as integrate information from both internal and external sources and
project it on systems designs provided – in appropriate level of details
– by systems engineers.

Furthermore, BridgeSec builds on concepts pertinent to systems
vulnerability management to provide a reasoning mechanism. Em-
loying the reasoning mechanism results in a security posture as-
essment, which can then be communicated between systems engi-
eering and security engineering. BridgeSec therefore facilitates in-
ormed, harmonised decision-making in support of designing systems
or security.

We provided the formalisation of the vulnerability management
concepts and the reasoning mechanism of BridgeSec. Moreover, we
provided a prototype for BridgeSec, which is available as an open-
source package. The prototype relies on a well-defined, executable

A. Shaked and N. Messe

m
v
e
b
m
r
B
–
n
t
i
i
e
g
i

o
B
h
r

e
g
v

s
d

e
c
d
i
s
t
f
d
v

n
i
b
b
c
r
o

t
d
e
e
t
F
t
c
d

s
o
n

b
a
e

a
s
–
f
a
r
m
t
i
t
u
m
a
–
–

f

v
p

–
B

s
r
s
a
i
–
n
w

a
b

Journal of Information Security and Applications 89 (2025) 103954
metamodel as well as model-based representations that exercise the for-
ally defined reasoning mechanism, to provide automated inference of

ulnerable components within a system’s design. Our implementation
xtends the previous state-of-the-art TRADES methodology and tool
y adding a type system for the components, additional vulnerability
anagement-related concepts, a reasoning mechanism and a dedicated

epresentation. All of these provide a concrete, integrated realisation of
ridgeSec. The availability of a software implementation of BridgeSec
 as an extension of a TRADES modelling tool – validates the sound-
ess of its definitions and its technical validity. This does not limit
he applicability of BridgeSec to TRADES models, as the conceptual
nformation-exchange interface is agnostic to the modelling language
mplementation. Furthermore, model-to-model transformations can be
xplored to translate system designs captured in other modelling lan-
uages (e.g., SysML) into TRADES, in which our BridgeSec prototype
mplementation can then be exercised.

We illustrated the use of BridgeSec in two generalised, realistic
scenarios. The first shows the use of BridgeSec in the early stages
f systems design, while the second demonstrates the ongoing use of
ridgeSec to reflect design issues and solutions even after a system
as been deployed and when considering new development blocks or
evisions to the system.

BridgeSec provides a vulnerability management mechanism that
nables system engineers to identify vulnerable components and inte-
rate security controls deemed appropriate as mitigation for specific
ulnerabilities by security experts. Moreover, it can serve as a valu-

able tool for security experts to articulate and enforce comprehensive
security guidelines and policies, enabling them to shape the overall
ecurity posture of the system effectively and throughout the system
evelopment life cycle.

In the first illustrative scenario, an explicit policy by a security
xpert is used to guide the system design and, specifically, the in-
orporation of security controls that need to be embedded within the
esign as security-oriented functionality. The policy is stated in an
mplementation-agnostic manner, which facilitates its use across de-
igns and development efforts. This provides organisations – including
hose responsible for developing systems, for procuring systems and
or regulating systems development – the ability to specify policies for
ifferent types of components (e.g., internally developed applications
s. externally developed/off-the-shelf applications).

In the second illustrative scenario, a security expert curates vul-
erability information and respective security controls. This allows for
nformed decision-making by the development teams (e.g., a selection
etween applying a relevant security patch and disabling services
ased on system/component functionality). The decision, in turn, is
ommunicated explicitly in the BridgeSec information model, and a
easoning mechanism supports assessing the resulting security posture
f the system.

By facilitating the management of security-related information
throughout the system development life cycle, BridgeSec addresses
he challenges of incorporating security considerations into systems
evelopment efforts, bridging the system engineering and security
ngineering disciplines. This proactive, security by design approach is
xpected to enhance the overall security posture of systems, reducing
he likelihood of security breaches and instilling greater user trust.
uture empirical studies and user feedback can strengthen and expand
he scope of validity. Specifically, we plan to employ BridgeSec to
oordinate security in the development of diverse systems, in different
omains.

We are fully aware that both security information knowledge and
ystems designs continue to evolve. This evolution includes an element
f uncertainty as new vulnerabilities are disclosed and as new compo-
ent types emerge. We also acknowledge that different domains and/or

organisations may adopt and tailor diverse policies as well as focus
on various types of components as the constituents of their systems

designs. Our conceptual interface as well as its meta-level codification r

17
accommodate these aspects of evolution, uncertainty and adaptability
and allow for great expressivity. Users can instantiate different models,
including different component typing systems and rule systems, to
create shared knowledge bases. For example, our metamodel (which
is a codification of the BridgeSec interface) allows systems engineers to
detail component types at any level of abstraction. Since a component
may be associated with multiple component types, component types
can even be used to specify roles of the component alongside charac-
teristics (e.g., ‘‘Sensitive information handling application’’ component
type alongside ‘‘Internally developed application’’ component type; and
oth can be associated with a specific software application, resulting in
 need to address the union of the sets of vulnerabilities associated with
ach component type).

Also, as opposed to other hard-coded reasoning mechanisms (such
s the one in VERDICT), our automated reasoning mechanism is de-
igned to operate based on meta-level entities. Various organisations
 specifically, security experts in these organisations – can detail dif-
erent policies and/or rule systems, and system engineers can use the
utomated reasoning mechanism of our approach to assess design with
espect to these policies/rules (specified by the security experts). The
eta-level characteristic allows our conceptual interface and approach

o stay up to date with evolving information security knowledge. E.g.,
f a future revision of NIST SP800-53 identifies new security controls,
hese can be instantiated and binded – by the security expert and
sing our user-specified rule system – with the vulnerabilities they
itigate and the component type context to which they apply. The

bility to accommodate for the evolution of the vulnerability landscape
 i.e., to assess systems designs against newly disclosed vulnerabilities
 is already established (Section 4.2).

Further automation can streamline and enhance the efficiency of
BridgeSec, making it more accessible and scalable. For example, in-
ormation regarding vulnerabilities can be regularly – potentially even

automatically – imported from relevant repositories (e.g., CVE records),
reflecting potential vulnerabilities on system designs as soon as these
ulnerabilities are disclosed, effectively transforming the BridgeSec
rototype implementation into a sort of security-oriented digital twin.

Future research may also attempt to automate the creation of vul-
nerable asset definitions. For example, one can automatically extract
CVE vulnerabilities with the CWE weaknesses they refine, the CPE
component types they affect and even with potential security controls,
based on the information available in a CVE record; and bind these as
vulnerable asset definitions. One can also extract components and com-
ponent types from system models (e.g., those specified using System
Modelling Language or Architecture Analysis & Design Language) or
from design documents (e.g., natural language processing techniques).

Extending the reasoning mechanism to include additional aspects
 such as risk management – can also contribute to the utility of
ridgeSec. Specifically, the integration with OntoRisk [61], to take

into consideration the risk-related concepts, can improve the decision
upport capabilities of BridgeSec. Also, for practical applications, the
easoning mechanism should be expanded to support hierarchical con-
iderations of the component types and vulnerabilities. For example, if
 Windows Server component includes – by design – a control that mit-
gates a CWE, the reasoning mechanism can infer that the component
 regardless of the specific Windows Server version implemented – is
ot vulnerable to CVEs that refine the specific CWE and are associated
ith such servers.

In conclusion, BridgeSec represents a significant step towards in-
tegrating security considerations into system engineering processes.
By providing a disciplined and practical formal approach to security
information management, it enables concise communication of codified
knowledge and structured information between relevant stakeholders,
nd, consequently, effective vulnerability management and security
y design. These provide a strong basis for rigorous, collaborative
easoning about the security posture of systems designs.

A. Shaked and N. Messe

d
r
s
c
r

c
i

a
O
(

Journal of Information Security and Applications 89 (2025) 103954
Further research, evaluation, and refinement of the methodology
will seek to enhance its capabilities and broaden its applicability in
iverse system development contexts. Also, we are working to elabo-
ate the reasoning mechanism, taking into account additional aspects
uch as the hierarchical placement of system components and security
ontrols, refinement relations of the type system and the refinement
elations between conceptual and concrete vulnerabilities.

CRediT authorship contribution statement

Avi Shaked: Writing – original draft, Visualization, Validation,
Software, Project administration, Methodology, Investigation, Fund-
ing acquisition, Formal analysis, Conceptualization. Nan Messe: Writ-
ing – original draft, Visualization, Resources, Project administration,
Methodology, Investigation, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

Acknowledgements

The authors wish to thank Professor Tom Melham for his valuable
dvice. This work is supported by the ICO, Cybersecurity Institute of
ccitanie, funded by the Occitanie Region, France, and by Innovate UK

grant #75243).

Data availability

Research data and code is shared publicly in an online repository,
under a permissive open source license.

References

[1] Thames L, Schaefer D. Cybersecurity for industry 4.0: Analysis for design and
manufacturing. 1st ed. Springer series in advanced manufacturing, Springer;
2017.

[2] Parnell GS, Driscoll PJ, Henderson DL. Decision making in systems engineering
and management. Wiley series in systems engineering and management, Wiley;
2008.

[3] Bu F, Wang N, Jiang B, Liang H. ‘‘Privacy by Design’’ implementation:
Information system engineers’ perspective. Int J Inf Manage 2020;53:102124.

[4] Beznosov K, Chess B. Security for the rest of us: An industry perspective on
the secure-software challenge. IEEE Softw 2008;25(1):10–2. http://dx.doi.org/
10.1109/MS.2008.18.

[5] Ross R, McEvilley M, Oren J. NIST SP 800-160 volume 1 rev 1: Engineering
trustworthy secure systems. National Institute of Standards and Technology;
2022, http://dx.doi.org/10.6028/NIST.SP.800-160v1r1.

[6] Lowry PB, Dinev T, Willison R. Why security and privacy research lies at the
centre of the information systems (IS) artefact: Proposing a bold research agenda.
Eur J Inf Syst 2017;26(6):546–63.

[7] Ross R, Pillitteri V, Graubart R, Bodeau D, McQuaid R. NIST SP 800-160 volume
2: Developing cyber-resilient systems: A systems security engineering approach.
National Institute of Standards and Technology; 2021.

[8] Mailloux LO, McEvilley M, Khou S, Pecarina JM. Putting the ‘‘systems" in security
engineering: An examination of NIST special publication 800-160. IEEE Secur
Priv 2016;14(4):76–80. http://dx.doi.org/10.1109/MSP.2016.77.

[9] Ray LL. Security considerations for the spiral development model. Int J Inf
Manage 2013;33(4):684–6.

[10] Steward Jr C, Wahsheh LA, Ahmad A, Graham JM, Hinds CV, Williams AT, et
al. Software security: The dangerous afterthought. In: 2012 ninth international
conference on information technology - new generations. 2012, p. 815–8. http:
//dx.doi.org/10.1109/ITNG.2012.60.

[11] Olivero MA, Bertolino A, Dominguez-Mayo FJ, Escalona MJ, Matteucci I. Security
assessment of systems of systems. In: 2019 IEEE/ACM 7th international workshop
on software engineering for systems-of-systems and 13th workshop on distributed
software development, software ecosystems and systems-of-systems. WDES, 2019,
p. 62–5. http://dx.doi.org/10.1109/SESoS/WDES.2019.00017.

[12] Kreitz M. Security by design in software engineering. SIGSOFT Softw Eng Notes
2020;44(3):23. http://dx.doi.org/10.1145/3356773.3356798.
18
[13] CISA, et al. Shifting the balance of cybersecurity risk: Principles and approaches
for security-by-design and -default. Tech. rep., Cybersecurity and Infrastructure
Security Agency; 2023.

[14] Nguyen PH, Ali S, Yue T. Model-based security engineering for cyber-physical
systems: A systematic mapping study. Inf Softw Technol 2016;83:116–35.

[15] Guggenmos F, Häckel B, Ollig P, Stahl B. Security first, security by design, or
security pragmatism — strategic roles of IT security in digitalization projects.
Comput Secur 2022;118(C). http://dx.doi.org/10.1016/j.cose.2022.102747.

[16] Porter SJ. Cyber security by design vs. Post deployment hardening. Tech. rep.,
Livermore, CA (United States): Lawrence Livermore National Lab. (LLNL); 2017.

[17] Shaked A. A model-based methodology to support systems security design and
assessment. J Ind Inf Integr 2023;33:100465. http://dx.doi.org/10.1016/j.jii.
2023.100465.

[18] Spiekermann S, Korunovska J, Langheinrich M. Inside the organization: Why
privacy and security engineering is a challenge for engineers. Proc IEEE
2019;107(3):600–15. http://dx.doi.org/10.1109/JPROC.2018.2866769.

[19] Messe N, Chiprianov V, Belloir N, El-Hachem J, Fleurquin R, Sadou S. Asset-
oriented threat modeling. In: 2020 IEEE 19th international conference on trust,
security and privacy in computing and communications. IEEE; 2020, p. 491–501.

[20] Bakirtzis G, Ward G, Deloglos C, Elks C, Horowitz B, Fleming C. Fun-
damental challenges of cyber-physical systems security modeling. In: 2020
50th annual IEEE-iFIP international conference on dependable systems and
networks-supplemental volume. DSN-s, IEEE; 2020, p. 33–6.

[21] Haney JM, Lutters WG. ‘‘It’s Scary...It’s Confusing...It’s Dull’’: How Cybersecurity
Advocates Overcome Negative Perceptions of Security. In: Proceedings of the
fourteenth USeNIX conference on usable privacy and security. SOUPS ’18, USA:
USENIX Association; 2018, p. 411–25.

[22] de Vries S. Embedding security by design: A shared responsibility. 2023,
https://www.darkreading.com/application-security/embedding-security-by-
design-a-shared-responsibility-. [Accessed 14 June 2023].

[23] Azzazi A, Shkoukani M. A knowledge-based expert system for supporting security
in software engineering projects. Int J Adv Comput Sci Appl 2022;13(1):18.

[24] Hilbrich M, Frank M. Enforcing security and privacy via a cooperation of
security experts and software engineers: A model-based vision. In: 2017 IEEE
7th international symposium on cloud and service computing. IEEE; 2017, p.
237–40.

[25] Haberfellner R, de Weck O, Fricke E, Vössner S. Systems engineering:
Fundamentals and applications. Springer International Publishing; 2019.

[26] Walden DD, Roedler GJ, Forsberg K. INCOSE systems engineering handbook
version 4: Updating the reference for practitioners. In: INCOSE international
symposium, vol. 25. (1):Wiley Online Library; 2015, p. 678–86.

[27] Friedenthal S, Moore A, Steiner R. A practical guide to SysML, third edition: The
systems modeling language. 3rd ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.; 2014.

[28] Bakirtzis G, Simon BJ, Collins AG, Fleming CH, Elks CR. Data-driven vulnerability
exploration for design phase system analysis. IEEE Syst J 2020;14(4):4864–73.

[29] Anderson RJ. Security engineering: A guide to building dependable distributed
systems. 2nd ed. Wiley Publishing; 2008.

[30] Matulevičius R. Fundamentals of secure system modelling. Springer International
Publishing; 2017.

[31] Schneier B. Secrets and Lies, Chapter 21: Attack Trees. John Wiley & Sons, Ltd;
2015, p. 318–33. http://dx.doi.org/10.1002/9781119183631.ch21.

[32] Xiong W, Lagerström R. Threat modeling — A systematic literature review.
Comput Secur 2019;84(C):53–69. http://dx.doi.org/10.1016/j.cose.2019.03.010.

[33] Valenza F, Karafili E, Steiner RV, Lupu EC. A hybrid threat model for smart
systems. IEEE Trans Dependable Secure Comput 2022;1–14. http://dx.doi.org/
10.1109/TDSC.2022.3213577.

[34] Hacks WWS, Ekstedt M, Johnson P, Lagerström R. The meta attack language
— A formal description. Comput Secur 2023;130:103284. http://dx.doi.org/10.
1016/j.cose.2023.103284.

[35] Donalds C, Osei-Bryson K-M. Cybersecurity compliance behavior: Exploring the
influences of individual decision style and other antecedents. Int J Inf Manage
2020;51:102056.

[36] Olivero MA, Bertolino A, Dominguez-Mayo FJ, Escalona MJ, Matteucci I. A
systematic mapping study on security for systems of systems. Int J Inf Secur
2024;23(2):787–817.

[37] Yskout K, Heyman T, Van Landuyt D, Sion L, Wuyts K, Joosen W. Threat
modeling: From infancy to maturity. In: Proceedings of the ACM/IEEE 42nd
international conference on software engineering: New ideas and emerging
results. 2020, p. 9–12.

[38] Flechais I, Sasse A. Stakeholder involvement, motivation, responsibility, commu-
nication: How to design usable security in e-science. Int J Hum-Comput Stud
2009;67:281–96. http://dx.doi.org/10.1016/j.ijhcs.2007.10.002.

[39] De Vasconcelos JB, Kimble C, Carreteiro P, Rocha Á. The applica-
tion of knowledge management to software evolution. Int J Inf Manage
2017;37(1):1499–506.

[40] Akgün AE. Team wisdom in software development projects and its impact on
project performance. Int J Inf Manage 2020;50:228–43.

[41] Durugbo C, Tiwari A, Alcock JR. Modelling information flow for organi-
sations: A review of approaches and future challenges. Int J Inf Manage
2013;33(3):597–610.

http://refhub.elsevier.com/S2214-2126(24)00256-4/sb1
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb1
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb1
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb1
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb1
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb2
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb2
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb2
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb2
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb2
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb3
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb3
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb3
http://dx.doi.org/10.1109/MS.2008.18
http://dx.doi.org/10.1109/MS.2008.18
http://dx.doi.org/10.1109/MS.2008.18
http://dx.doi.org/10.6028/NIST.SP.800-160v1r1
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb6
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb6
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb6
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb6
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb6
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb7
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb7
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb7
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb7
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb7
http://dx.doi.org/10.1109/MSP.2016.77
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb9
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb9
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb9
http://dx.doi.org/10.1109/ITNG.2012.60
http://dx.doi.org/10.1109/ITNG.2012.60
http://dx.doi.org/10.1109/ITNG.2012.60
http://dx.doi.org/10.1109/SESoS/WDES.2019.00017
http://dx.doi.org/10.1145/3356773.3356798
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb13
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb13
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb13
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb13
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb13
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb14
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb14
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb14
http://dx.doi.org/10.1016/j.cose.2022.102747
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb16
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb16
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb16
http://dx.doi.org/10.1016/j.jii.2023.100465
http://dx.doi.org/10.1016/j.jii.2023.100465
http://dx.doi.org/10.1016/j.jii.2023.100465
http://dx.doi.org/10.1109/JPROC.2018.2866769
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb19
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb19
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb19
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb19
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb19
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb20
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb20
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb20
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb20
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb20
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb20
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb20
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb21
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb21
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb21
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb21
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb21
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb21
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb21
https://www.darkreading.com/application-security/embedding-security-by-design-a-shared-responsibility-
https://www.darkreading.com/application-security/embedding-security-by-design-a-shared-responsibility-
https://www.darkreading.com/application-security/embedding-security-by-design-a-shared-responsibility-
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb23
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb23
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb23
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb24
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb24
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb24
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb24
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb24
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb24
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb24
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb25
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb25
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb25
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb26
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb26
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb26
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb26
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb26
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb27
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb27
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb27
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb27
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb27
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb28
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb28
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb28
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb29
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb29
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb29
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb30
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb30
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb30
http://dx.doi.org/10.1002/9781119183631.ch21
http://dx.doi.org/10.1016/j.cose.2019.03.010
http://dx.doi.org/10.1109/TDSC.2022.3213577
http://dx.doi.org/10.1109/TDSC.2022.3213577
http://dx.doi.org/10.1109/TDSC.2022.3213577
http://dx.doi.org/10.1016/j.cose.2023.103284
http://dx.doi.org/10.1016/j.cose.2023.103284
http://dx.doi.org/10.1016/j.cose.2023.103284
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb35
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb35
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb35
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb35
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb35
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb36
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb36
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb36
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb36
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb36
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb37
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb37
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb37
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb37
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb37
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb37
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb37
http://dx.doi.org/10.1016/j.ijhcs.2007.10.002
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb39
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb39
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb39
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb39
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb39
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb40
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb40
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb40
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb41
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb41
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb41
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb41
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb41

A. Shaked and N. Messe Journal of Information Security and Applications 89 (2025) 103954
[42] Samonas S, Dhillon G, Almusharraf A. Stakeholder perceptions of information
security policy: Analyzing personal constructs. Int J Inf Manage 2020;50:144–54.

[43] Messe N, Belloir N, Chiprianov V, El-Hachem J, Fleurquin R, Sadou S. An
asset-based assistance for secure by design. In: 2020 27th Asia-Pacific software
engineering conference. APSEC, IEEE; 2020, p. 178–87.

[44] TRADES Tool. online repository, https://github.com/IAI-Cyber/TRADES/. [Ac-
cessed 15 June 2023].

[45] MITRE. Common weakness enumeration, https://cwe.mitre.org/. [Accessed 21
June 2023].

[46] MITRE. Common vulnerabilities and exposures, https://www.cve.org/. [Accessed
21 June 2023].

[47] MITRE. Common platform enumeration, https://cpe.mitre.org/. [Accessed 21
June 2023].

[48] Security and privacy controls for information systems and organizations. 2020,
Special Publication (NIST SP), National Institute of Standards and Technology
NIST-SP 800-53.

[49] MITRE. Common attack pattern enumeration and classification, https://capec.
mitre.org/. [Accessed 21 October 2024].

[50] MITRE.
[51] Howard M, Lipner S. The security development lifecycle, vol. 8. Microsoft Press

Redmond; 2006.
[52] Messe NZ. security by design: an asset-based approach to bridge the gap between

architects and security experts (Ph.D. thesis), Université de Bretagne Sud; 2021.
[53] Dissanayake N, Jayatilaka A, Zahedi M, Babar MA. Software security patch

management — A systematic literature review of challenges, approaches, tools
and practices. Inf Softw Technol 2022;144:106771. http://dx.doi.org/10.1016/j.
infsof.2021.106771.

[54] Tavčar J, Horváth I. A review of the principles of designing smart cyber-physical
systems for run-time adaptation: Learned lessons and open issues. IEEE Trans
Syst Man Cybern A 2019;49(1):145–58. http://dx.doi.org/10.1109/TSMC.2018.
2814539.

[55] Van Den Berghe A, Yskout K, Scandariato R, Joosen W. A lingua franca for
security by design. In: 3rd annual IEEE cybersecurity development conference.
IEEE COMPUTER SOC; 2018, p. 69–76. http://dx.doi.org/10.1109/SecDev.2018.
00017.

[56] Cavoukian A, Dixon M. Privacy and security by design: An enterprise architecture
approach. Canada: Information and Privacy Commissioner of Ontario; 2013.

[57] Shukla A, Katt B, Nweke LO, Yeng PK, Weldehawaryat GK. System security
assurance: A systematic literature review. Comp Sci Rev 2022;45:100496. http:
//dx.doi.org/10.1016/j.cosrev.2022.100496.

[58] Casola V, De Benedictis A, Rak M, Villano U. A novel security-by-design
methodology: Modeling and assessing security with a quantitative approach. J
Syst Softw 2020;163:110537. http://dx.doi.org/10.1016/j.jss.2020.110537.

[59] Mellado D, Blanco C, Sánchez LE, Fernández-Medina E. A systematic review of
security requirements engineering. Comput Stand Interfaces 2010;32(4):153–65.
http://dx.doi.org/10.1016/j.csi.2010.01.006.

[60] Houmb SH, Franqueira VNL, Engum EA. Quantifying security risk level from
CVSS estimates of frequency and impact. J Syst Softw 2010;83(9):1622–34.
http://dx.doi.org/10.1016/j.jss.2009.08.023, Software Dependability.

[61] Shaked A, Margalit O. Sustainable risk identification using formal ontologies.
Algorithms 2022;15(9):316.

[62] Mead NR, Stehney T. Security quality requirements engineering (SQUARE)
methodology. SIGSOFT Softw Eng Notes 2005;30(4):1–7. http://dx.doi.org/10.
1145/1082983.1083214.

[63] Fabian B, Gurses S, Heisel M, Santen T, Schmidt H. A comparison of security
requirements engineering methods. Requir Eng 2010;15:7–40. http://dx.doi.org/
10.1007/s00766-009-0092-x.

[64] Wach P, Salado A. Model-based security requirements for cyber-physical systems
in SysML. In: 2020 IEEE systems security symposium. SSS, 2020, p. 1–7. http:
//dx.doi.org/10.1109/SSS47320.2020.9174222.

[65] Saini V, Duan Q, Paruchuri V. Threat modeling using attack trees. J Comput Sci
Coll 2008;23(4):124–31.

[66] Byres EJ, Franz M, Miller D. The use of attack trees in assessing vulnerabilities
in SCADA systems. In: IEEE conf. international infrastructure survivability
workshop. institute for electrical and electronics engineers. 2004.

[67] Mauw S, Oostdijk M. Foundations of attack trees. In: Won DH, Kim S, editors.
Information security and cryptology - ICISC 2005. Berlin, Heidelberg: Springer
Berlin Heidelberg; 2006, p. 186–98.

[68] Pinchinat S, Acher M, Vojtisek D. ATSyRa: An integrated environment for
synthesizing attack trees. In: Mauw S, Kordy B, Jajodia S, editors. Graphical
models for security. Cham: Springer International Publishing; 2016, p. 97–101.

[69] Kordy B, Mauw S, Radomirovic S, Schweitzer P. Attack-defense trees. J Logic
Comput 2014;24(1):55–87. http://dx.doi.org/10.1093/logcom/exs029.

[70] Donner M. Toward a security ontology. IEEE Secur Priv 2003;1(3):6–7.
19
[71] Oltramari A, Cranor LF, Walls RJ, Mcdaniel P. Building an ontology of cyber
security. In: Semantic technologies for intelligence, defense, and security. 2014.

[72] Meng B, Larraz D, Siu K, Moitra A, Interrante J, Smith W, et al. Verdict: A
language and framework for engineering cyber resilient and safe system. Systems
2021;9(1):18.

[73] Selic B. The pragmatics of model-driven development. IEEE Softw 2003;20(5):19–
25. http://dx.doi.org/10.1109/MS.2003.1231146.

[74] Czarnecki K, Helsen S. Classification of model transformation approaches. In:
Proceedings of the 2nd OOPSLA workshop on generative techniques in the
context of the model driven architecture, vol. 45. (3):USA; 2003, p. 1–17.

[75] Nguyen P, Kramer M, Klein J, Le Traon Y. An extensive systematic review on the
model-driven development of secure systems. Inf Softw Technol 2015;68:62–81.
http://dx.doi.org/10.1016/j.infsof.2015.08.006.

[76] Van Den Berghe A, Scandariato R, Yskout K, Joosen W. Design nota-
tions for secure software: A systematic literature review. Softw Syst Model
2017;16(3):809–31. http://dx.doi.org/10.1007/s10270-015-0486-9.

[77] Shaked A. Modeling for rapid systems prototyping: Hospital situational
awareness system design. Systems 2021;9(1):12. http://dx.doi.org/10.3390/
systems9010012.

[78] Shaked A. PROVE tool: A tool for designing and analyzing process descriptions.
Softw Impacts 2022;12:100234. http://dx.doi.org/10.1016/j.simpa.2022.100234.

[79] Matulevicius R, Dumas M. Towards model transformation between SecureUML
and UMLsec for role-based access control. In: Barzdins J, Kirikova M, editors.
Databases and information systems VI - selected papers from the ninth inter-
national baltic conference, dB&iS 2010, July 5-7, 2010, riga, latvia. Frontiers
in artificial intelligence and applications, vol. 224, IOS Press; 2010, p. 339–52.
http://dx.doi.org/10.3233/978-1-60750-688-1-339.

[80] Roudier Y, Apvrille L. SysML-Sec: A model driven approach for designing safe
and secure systems. In: 2015 3rd international conference on model-driven
engineering and software development. MODELSWARD, 2015, p. 655–64.

[81] Mili S, Nguyen N, Chelouah R. Model-driven architecture based security analysis.
Syst Eng 2021;24(5):307–21. http://dx.doi.org/10.1002/sys.21581.

[82] Hachem JE, Khalil TA, Chiprianov V, Babar A, Aniorte P. A model driven method
to design and analyze secure architectures of systems-of-systems. In: 2017 22nd
international conference on engineering of complex computer systems. ICECCS,
2017, p. 166–9. http://dx.doi.org/10.1109/ICECCS.2017.31.

[83] Rouland Q, Hamid B, Jaskolka J. A model-driven formal methods approach
to software architectural security vulnerabilities specification and verification.
J Syst Softw 2025;219:112219.

[84] Shaked A. Digital modeling of a domain ontology for hospital information
systems. In: Fred A, Aveiro D, Dietz J, Salgado A, Bernardino J, Filipe J, edi-
tors. Knowledge discovery, knowledge engineering and knowledge management.
Cham: Springer International Publishing; 2022, p. 157–66.

[85] Shaked A. Facilitating the integrative use of security knowledge bases within a
modelling environment. J Cybersecur Priv 2024;4(2):264–77.

[86] Kotonya G, Sommerville I. Requirements engineering — Processes and
techniques. John Wiley & Sons; 1998.

[87] CVE-2019-1181 vendor advisory, https://msrc.microsoft.com/update-guide/en-
US/vulnerability/CVE-2019-1181. [Accessed 1 June 2023].

[88] CVE-2019-1182 NIST national vulnerability database, https://nvd.nist.gov/vuln/
detail/cve-2019-1182. [Accessed 1 June 2023].

[89] CVE-2019-1222 NIST national vulnerability database, https://nvd.nist.gov/vuln/
detail/cve-2019-1222. [Accessed 1 June 2023].

[90] CVE-2019-1226 NIST national vulnerability database, https://nvd.nist.gov/vuln/
detail/cve-2019-1226. [Accessed 1 June 2023].

[91] CVE-2020-0655 vendor advisory, https://msrc.microsoft.com/update-guide/en-
US/vulnerability/CVE-2020-0655. [Accessed 1 June 2023].

[92] Avizienis A, Laprie J-C, Randell B, Landwehr C. Basic concepts and taxonomy
of dependable and secure computing. IEEE Trans Dependable Secure Comput
2004;1(1):11–33. http://dx.doi.org/10.1109/TDSC.2004.2.

[93] Fenz S, Ekelhart A. Formalizing information security knowledge. In: Proceedings
of the 4th international symposium on information, computer, and communi-
cations security. ASIACCS ’09, New York, NY, USA: Association for Computing
Machinery; 2009, p. 183–94. http://dx.doi.org/10.1145/1533057.1533084.

[94] Oliveira Í, Sales TP, Baratella R, Fumagalli M, Guizzardi G. An ontology of
security from a risk treatment perspective. In: International conference on
conceptual modeling. Springer; 2022, p. 365–79.

[95] Eckhart M, Ekelhart A, Weippl E. Automated security risk identification using
automationml-based engineering data. IEEE Trans Dependable Secure Comput
2022;19(03):1655–72. http://dx.doi.org/10.1109/TDSC.2020.3033150.

[96] Mouratidis H, Giorgini P, Manson G. Integrating security and systems engineer-
ing: Towards the modelling of secure information systems. In: Eder J, Mis-
sikoff M, editors. Advanced information systems engineering. Berlin, Heidelberg:
Springer Berlin Heidelberg; 2003, p. 63–78.

[97] Navas J, Voirin J-L, Paul S, Bonnet S. Towards a model-based approach to
systems and cyber security co-engineering. INCOSE Int Symp 2019;29(1):850–65.
http://dx.doi.org/10.1002/j.2334-5837.2019.00639.x.

http://refhub.elsevier.com/S2214-2126(24)00256-4/sb42
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb42
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb42
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb43
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb43
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb43
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb43
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb43
https://github.com/IAI-Cyber/TRADES/
https://cwe.mitre.org/
https://www.cve.org/
https://cpe.mitre.org/
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb48
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb48
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb48
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb48
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb48
https://capec.mitre.org/
https://capec.mitre.org/
https://capec.mitre.org/
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb51
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb51
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb51
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb52
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb52
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb52
http://dx.doi.org/10.1016/j.infsof.2021.106771
http://dx.doi.org/10.1016/j.infsof.2021.106771
http://dx.doi.org/10.1016/j.infsof.2021.106771
http://dx.doi.org/10.1109/TSMC.2018.2814539
http://dx.doi.org/10.1109/TSMC.2018.2814539
http://dx.doi.org/10.1109/TSMC.2018.2814539
http://dx.doi.org/10.1109/SecDev.2018.00017
http://dx.doi.org/10.1109/SecDev.2018.00017
http://dx.doi.org/10.1109/SecDev.2018.00017
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb56
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb56
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb56
http://dx.doi.org/10.1016/j.cosrev.2022.100496
http://dx.doi.org/10.1016/j.cosrev.2022.100496
http://dx.doi.org/10.1016/j.cosrev.2022.100496
http://dx.doi.org/10.1016/j.jss.2020.110537
http://dx.doi.org/10.1016/j.csi.2010.01.006
http://dx.doi.org/10.1016/j.jss.2009.08.023
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb61
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb61
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb61
http://dx.doi.org/10.1145/1082983.1083214
http://dx.doi.org/10.1145/1082983.1083214
http://dx.doi.org/10.1145/1082983.1083214
http://dx.doi.org/10.1007/s00766-009-0092-x
http://dx.doi.org/10.1007/s00766-009-0092-x
http://dx.doi.org/10.1007/s00766-009-0092-x
http://dx.doi.org/10.1109/SSS47320.2020.9174222
http://dx.doi.org/10.1109/SSS47320.2020.9174222
http://dx.doi.org/10.1109/SSS47320.2020.9174222
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb65
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb65
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb65
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb66
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb66
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb66
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb66
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb66
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb67
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb67
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb67
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb67
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb67
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb68
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb68
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb68
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb68
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb68
http://dx.doi.org/10.1093/logcom/exs029
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb70
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb71
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb71
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb71
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb72
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb72
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb72
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb72
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb72
http://dx.doi.org/10.1109/MS.2003.1231146
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb74
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb74
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb74
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb74
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb74
http://dx.doi.org/10.1016/j.infsof.2015.08.006
http://dx.doi.org/10.1007/s10270-015-0486-9
http://dx.doi.org/10.3390/systems9010012
http://dx.doi.org/10.3390/systems9010012
http://dx.doi.org/10.3390/systems9010012
http://dx.doi.org/10.1016/j.simpa.2022.100234
http://dx.doi.org/10.3233/978-1-60750-688-1-339
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb80
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb80
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb80
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb80
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb80
http://dx.doi.org/10.1002/sys.21581
http://dx.doi.org/10.1109/ICECCS.2017.31
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb83
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb83
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb83
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb83
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb83
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb84
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb84
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb84
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb84
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb84
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb84
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb84
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb85
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb85
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb85
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb86
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb86
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb86
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2019-1181
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2019-1181
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2019-1181
https://nvd.nist.gov/vuln/detail/cve-2019-1182
https://nvd.nist.gov/vuln/detail/cve-2019-1182
https://nvd.nist.gov/vuln/detail/cve-2019-1182
https://nvd.nist.gov/vuln/detail/cve-2019-1222
https://nvd.nist.gov/vuln/detail/cve-2019-1222
https://nvd.nist.gov/vuln/detail/cve-2019-1222
https://nvd.nist.gov/vuln/detail/cve-2019-1226
https://nvd.nist.gov/vuln/detail/cve-2019-1226
https://nvd.nist.gov/vuln/detail/cve-2019-1226
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-0655
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-0655
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-0655
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1145/1533057.1533084
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb94
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb94
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb94
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb94
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb94
http://dx.doi.org/10.1109/TDSC.2020.3033150
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb96
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb96
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb96
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb96
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb96
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb96
http://refhub.elsevier.com/S2214-2126(24)00256-4/sb96
http://dx.doi.org/10.1002/j.2334-5837.2019.00639.x

	BridgeSec: Facilitating effective communication between security engineering and systems engineering
	Introduction
	Background
	Security body of knowledge
	Security by Design culture, activities and methodologies

	BridgeSec: an information-exchange interface for security by design
	BridgeSec: conceptual design and description
	BridgeSec: formal description
	Formal definition of vulnerable assets
	Automated reasoning for vulnerable component assessment

	BridgeSec prototype implementation
	The prototype's metamodel
	The Prototype Representation

	Illustrative scenarios
	Scenario I: Coordinating security features
	Scenario II: Addressing implementation-level vulnerabilities

	Related work
	Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References

