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Highlights: Impact and implications:
� The liver hosts autonomic neurons that mediate liver/whole
body crosstalk.

� HCCs display neural reconfiguration with several immature
and cholinergic markers.

� This orientation quantified by a ‘neuronal score’ correlates
with aggressive HCCs.

� Low-dose cholinergic targeting decreased cell growth and
synergized with TKIs.

� These data identify cholinergic processes as instrumental in
liver carcinogenesis.
https://doi.org/10.1016/j.jhepr.2024.101245
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Hepatocellular carcinoma (HCC) care has long been hampered
by the enigmatic nature of disease evolution, as well as of
response or resistance to treatment. Hepatic neurons are likely
the least studied liver cell type and mediate patients singular-
ities from the ANS to the organ in real-time. Cholinergic inputs
identified in this study as pathogenic may be targeted with the
well charted pharmacopoeia of neurotropic drugs already
available, for basic or clinical research purposes, with an ex-
pected high level of safety.
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Background & Aims: Owing to unexplained interpatient variation and treatment failure in hepatocellular carcinoma (HCC), novel
therapeutic approaches remain an urgent clinical need. Hepatic neurons, belonging to the autonomic nervous system (ANS),
mediate liver/whole body crosstalk. Pathological innervation of the ANS has been identified in cancer, nurturing tumor stroma and
conferring stronger carcinogenic properties.

Methods: We characterized the innervation of liver tumors from the French Liver Biobank, then applied bioinformatics to TCGA
(The Cancer Genome Atlas), several other datasets and a European validation cohort, to re-evaluate patient stratification. Cell
biology and pharmacology studies were also performed.

Results: Densely packed nucleated DCX+, synaptophysin+, NeuN+, VAChT+, TH-, CD31-, CD45- clusters, to date undetected,
were identified in human HCCs, and independently confirmed by single-cell RNA sequencing data. Using the new concept of a
neuronal score, human and rat HCCs displayed tightly netrin-1-associated neural reconfiguration towards cholinergic polarity,
which was associated with chronic liver disease progression, cancer onset and many features of aggressive (proliferative class)
HCC, including shortened survival. This score was conditioned by tumoral hepatocytes, and predicted sorafenib efficacy in the
STORM HCC phase III trial. Conversely, intratumoral adrenergic lymphocytes were enriched in TEMRA and cytotoxic phenotypes.
Amongst all cholinergic transcripts, the medically targeted CHRM3 receptor was enriched and associated with pathogenic traits in
HCC, as well as poor prognosis in HCC stages 1-2, while its level dropped upon experimental re-differentiation. Its pharmaco-
logical inhibition with low concentrations of anticholinergic drugs, but not cholinomimetics, decreased anchorage-independent
growth and anoikis, synergized with sorafenib and lenvatinib in HCC class 1 to 3 lines, yet not in primary human hepatocytes,
and preserved mature hepatocyte functions.

Conclusion: These data identify cholinergic processes as instrumental in liver carcinogenesis and support the use of EMA/FDA-
approved cholinergic drugs in HCC research.

© 2024 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
Despite the development of effective therapies against HBV
and HCV, deaths related to hepatocellular carcinoma (HCC)
have continued to increase. Liver comorbidities, such as
MASLD (metabolic dysfunction-associated steatotic liver dis-
ease) and alcohol-related liver disease (ALD) combined with
metabolic syndrome (MetALD) or not, are long-term co-
operators or independent factors fostering the onset of HCC
and enhancing disease heterogeneity.1 Despite multifactorial
etiologies, HCC typically develops in patients with cirrhosis.
Treatments with tyrosine kinase inhibitors (TKIs) for instance
q Given their role as Editor-in-Chief, Josep M Llovet had no involvement in the peer-review
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lead to short-term, unavoidable relapse,2 whereas immune
checkpoint or growth factor inhibitors currently provide hope
for only a fraction of patients with unresectable HCC.

In this respect, cellular/tissular structures linking the general
pathophysiology of the patient with HCC are of interest, as they
may uncover novel ways of stratifying patients. Several recent
works and reviews3 have highlighted the relevance of studying
neural aspects of cancers in peripheral organs. For instance,
pathological innervation and involvement or dysregulation of
the autonomic nervous system (ANS) have been identified in
ovarian, prostate, gastric and pancreatic cancers,3,4 nurturing
of this article and had no access to information regarding its peer-review. Full
obert F. Schwabe.
ours Albert Thomas, Lyon, France.

2025. vol. 7 j 101245

http://creativecommons.org/licenses/by/4.0/
mailto:romain.parent@inserm.fr
https://doi.org/10.1016/j.jhepr.2024.101245
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhepr.2024.101245&domain=pdf


Cholinergic inputs and HCC
tumor stroma and conferring stronger carcinogenic properties.
Little, however, is known about the potential role of the ANS in
liver oncogenesis.

The ANS comprises the sympathetic (adrenergic signaling)
and parasympathetic (cholinergic signaling) arms that relay sig-
nals bothways along thebrain/liver neural axis in order to regulate
involuntary physiological or pathological processes. Oddly, liver
nerves are seldom mentioned in anatomical reference text-
books.4 The liver is an innervated organ that hosts afferent and
efferent ANS nerves, in constant communication with the central
nervous system (CNS)5 to regulate liver functions.

As notably pointed out by Tracey’s theory,6 neural signals
also regulate several processes that may impact HCC onset and
growth. Portal hypertension, a recognized risk factor for HCC
development and recurrence,7 is correlated with ANS dysfunc-
tion.8 The global orientation of liver innervation in chronic liver
disease is currently debated in mice and humans,9,10 yet these
studies agree on recurrent adrenergic nerve degeneration.
Conversely, cholinergic signaling was shown to attenuate
apoptosis in the mouse liver11 and foster HCC growth.12 Inter-
estingly, choline acetyltransferase (ChAT)+ regulatory T cells and
dysfunctional programmed cell death 1 (PD-1)+ T cells, were
observed in HCC-bearing mice.13 The present study describes
neural features in human HCC, and their likely contributions to
pathogenesis. Moreover, these results identify a new neural
signature that could be relevant for targeting HCC.

Materials and methods
Expanded experimental biology methods (origin and process-
ing of biological samples, Western blotting, gene expression,
immunofluorescence, cell culture approaches, pharmacology,
and RNA-seq processing) and statistical methods are detailed
in the supplementary file.

Neuronal receptor score calculation and cohort
classification

Gene set scores were calculated using single-sample gene set-
enrichment analysis (GSEA) for bulk transcriptomic data14 and
gene set-variation analysis for single-cell transcriptomic data.15

Here, two gene set scores were calculated from both lists of
receptors, one including all adrenergic ones, and the other all
cholinergic ones, in order to obtain an adrenergic and a
cholinergic score, respectively. To obtain a global neuronal
receptor score (NRS), the difference (the adrenergic score
minus the cholinergic score) was calculated for each sample.
The use of a gene set score difference instead of a ratio of gene
expression has several advantages. First, the score is
computed by taking the entire transcriptome into account, thus
overcoming cases where a sample is less covered. This
method is common to all transcriptome profiling technologies.
Second, NRS values always vary linearly with the evolution of
any term of the equation, which is not the case with ratios.
Finally, this method is preferential to evaluate the activity of a
pathway in a sample by transcriptomics, as it is independent of
the number of genes evaluated.

Transcriptomic datasets

Single-cell RNA sequencing (scRNA-seq) data from patients
with HCC was obtained from the Gene Expression Omnibus
JHEP Reports, January
database accession GSE149614 (n = 10) and https://
lambrechtslab.sites.vib.be/en/aHCC (n = 38). Bulk RNA-seq
data from paired HCC and non-tumor tissues were extracted
from GSE124535 (n = 35), GSE144269 (n = 70) and microarray
data from GSE64041 (n = 60). Microarray data from two cohorts
of mixed liver disease etiologies were obtained from GSE32879
(n = 37) and GSE89377 (n = 107). Microarray data from patients
with HCC treated with sorafenib (n = 67) or placebo (n = 73)
were retrieved from GSE109211. Single-nuclei RNA
sequencing (snRNA-seq) from MASLD (n = 2) and healthy in-
dividuals (n = 2) from GSE174748. Bulk RNA-seq data from
paired cholangiocarcinoma and non-tumor tissues from
GSE107943 (n = 27), GSE119336 (n = 15) and microarray data
from GSE76297 (n = 90).

Results

Neural progenitors of cholinergic orientation in human and
rat HCC samples

Comprehensive maps of ANS features and innervation are
currently lacking in HCC. Interestingly, human liver ANS
innervation is more developed than in rodents, as it extends
deeper into the lobule,5 increasing its regulatory capacities and
suggesting that ANS-related mechanisms observed in animals
may play more important roles in patients. Human samples,
obtained from the French National HCC biobank, were selected
across the four major HCC etiologies (HBV, HCV, former ALD,
former NASH; 24-26% each). The main characteristics of the
patients are provided in Table S1. To characterize HCC inner-
vation, the following classically validated neuron markers were
considered: neuronal nuclear antigen (NeuN, phospho- and
total, RBFOX3) as a mature, nuclear, neuron marker;16 and
doublecortin (DCX) and internexin neuronal intermediate fila-
ment protein alpha (INA) as immature neuron markers.17

Additionally, tyrosine hydroxylase (TH, TY3H) for adrenergic,
and vesicular acetylcholine transporter (VAChT) for cholinergic
neurons,18 were used.

We first investigated the presence of ANS markers in
normal human samples (both uninfected and non-fibrotic) vs.
cirrhotic (minimum distance of 2 cm from tumor) and tumor
samples (HCC). Western blotting highlighted positive staining
for DCX and INA in tumor samples, and a lower expression of
the mature neural marker NeuN, strongly suggesting the
presence of immature neurons. In addition, HCC samples
lacked the adrenergic marker TH but showed normal expres-
sion of the cholinergic neural marker VAChT (representative
large blot of 30 patients, Fig. 1A), prompting further analysis.
DCX levels were sharply correlated with b-tubulin degradation,
suggesting the association of neural alterations with paren-
chymal remodeling in human samples (Fig. 1B). In an attempt
to quantify ANS dynamics, we defined a neuronal score (NS)
as the difference between adrenergic and cholinergic signals
(see Methods, NS = TH - VAChT). These markers evolved to-
wards a more cholinergic orientation with disease progression
(Fig. 1C-H). We then compared the expression levels of such
markers in normal livers, cirrhotic and tumoral lesions in
samples from the four main HCC etiologies (HBV [n = 14], HCV
[n = 9], former ALD [n = 14] and former NASH [n = 14], total of
51 patients). Extensive blots are provided in Figs S1-2 and
summarized in Table S2. Comprehensive technical validations
for NeuN, DCX, TH and VAChT antibodies are provided in
2025. vol. 7 j 101245 2
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Fig. 1. Expression of mature and progenitor neural markers in human HCC. (A) Immunoblotting of netrin-1, NeuN, DCX and INA, TH and VAChT markers on 10
normal liver, 10 cirrhotic (F4) and 10 HCC samples. (B) DCX induction is correlated with parenchymal remodeling. DCX levels were plotted against ratios of full-length
vs. degraded tubulin signals. Spearman test (***p <0.001). (C–H) Signal quantification was done using total protein normalization.41 Mann-Whitney or t test (after
normality test, *p <0.05, **p <0.01, ***p <0.001). n = 30 patients, from the four main HCC etiologies.
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Supplementary information 1. This phenotype was similar to
that of the cirrhotic HCC rat model of reference
(Supplementary information 2 and Figs S3-5). As in the rat,
neurogenic netrin-1 expression was strongly (r >0.85) corre-
lated with proteolyzed b-tubulin and DCX levels, as well as
cirrhosis onset, and HCC (Fig. S6). Such clinical data depict
JHEP Reports, January
cholinergic-oriented alterations of neural networks in late-
stage chronic liver disease and HCC.

Given that tissue markers may change with disease pro-
gression, we sought to gain insight into the localization of
neural signals in human samples. As a first approach, we per-
formed standard fluorescence staining of a cohort of 24
2025. vol. 7 j 101245 3
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tumors. These were subjected to Masson’s trichrome or HES
staining to expose tissue architecture, and then NeuN, DCX, TH
and VAChT immunostaining coupled with DAPI staining.
Technical validations are provided in Fig. S7. In accordance
with blots, TH staining was negligible in both frequency and
intensity throughout samples (Fig. S8A-F). Importantly, DCX
and VAChT were found in the tumor bulk, where they displayed
co-localization (Fig. S8G-J). In order to further confirm these
findings, we probed the same samples with CD31 staining to
locate vessels, CD45 to exclude leucocytes as potential sour-
ces of the signals, and synaptophysin as another independent
neuron marker. As shown in Fig. S9, HCC also hosts VAChT+,
synaptophysin+, CD45- and CD31- cells, also nucleated
(consistently with NeuN staining), as in prostate cancer with
muscarinic signaling.19 Although the comprehensive pheno-
type of these cells remains to be characterized, these data
indicate that HCC hosts neural cells of cholinergic orientation.
As observed by western blotting, the predominant ANS co-
labeling was specific to immature DCX+

fibers and cholinergic
neural cells, indicating that the neural alterations highlighted
herein are likely cholinergic, in line with previous data on
steatohepatitis.10 These data are consistent with the presence
of cholinergic intrahepatic neural cells in the diseased liver as
confirmed by snRNA-seq investigation (Supplementary
information 3). Such observations were similar between HCC
etiologies, and substantiated findings on other solid malig-
nancies,3,4 in which these tumors host nerves with migratory
potential, likely tuning their interactions with post-
synaptic receptors.

Greater cholinergic orientation of ANS receptors from
normal liver to HCC

The balance between adrenergic and cholinergic signals de-
fines a unified ANS output in each innervated organ. To
investigate such signals, we first defined a post-synaptic
neuro-signature encompassing all adrenergic and cholinergic
receptor transcripts. We thus quantified the expression of all
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-4,000

-2,000

0

2,000

4,000

6,000

8,000

10,000

N
R

S

***

Cirrh
os

is

HCC

-2,500

0

2,500

5,000

7,500

10,000

12,500

15,000

N
R

S

***

Adja
ce

nt

HCC

Fig. 2. The NRS selectively decreases in HCC vs. all other histological states o
signed rank test (***p <0.001), n = 70 (GSE144269). (B) NRS in adjacent vs. tumors
stages (GSE89377). Kruskal-Wallis test corrected with a Dunn’s test (*p <0.05, **p <
HCC G1-3, Edmonson grades 1-3 (n = 107 patients total). NRS, neuronal receptor

JHEP Reports, January
transcripts encoding ANS receptors in HCC samples
(Table S3). The previously described NS was then adapted to
the post-synaptic status of such targets. Hence, its counterpart
was termed ‘neuronal receptor score’, NRS. Functional
biochemistry data pertaining to the functioning of each receptor
are mostly absent in the liver or HCC. As for the NS, the NRS
corresponds to the difference between the sums of all adren-
ergic receptors (except ADRA2, being presynaptic) and all
cholinergic receptor signals, providing an integrated view of the
balance between ANS receptors in the tissue. Paralleling neural
data yet with a delay, the NRS decreased in low-grade
dysplastic nodules and more intensely in cancer in three in-
dependent datasets based on paired or unpaired samples
(Fig. 2A-C), indicating the relevance of further investigations
into the relationships between the cholinergic branch of the
ANS and HCC.

Bioinformatics highlight the pathogenic implication of the
cholinergic orientation in HCC evolution

To map the interplay between autonomic functions and HCC,
we performed a bioinformatics study on the previously pub-
lished HCC (LIHC) TCGA dataset. Salient features were then
considered in an independent cohort of 171 HCC samples from
a previous study,20 hereafter referred to as the ‘valida-
tion cohort’.

After NRS calculation, samples were split into two classes:
those with a higher difference than median were named
adrenergic and those with a lower difference than median were
named cholinergic (Fig. 3A, see the Methods section). The
distribution diagram of NRS values obtained and PCA (principal
component analysis) projection of those two classes are shown
in Fig. 3B,C. As expected, adrenergic receptors were more
strongly expressed in the ‘NRS > median’ class, while cholin-
ergic receptors were more strongly expressed in the ‘NRS <
median’ class (Table S3, Fig. S10).

Then, to identify a potential association between ANS
orientation and standard parameters in HCC, we tested the
C
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correlation between both neuronal classes and gender,
ethnicity, etiology, obesity and mutational profile (hTERT, TP53,
CTNNB1). A Fisher’s exact test comparing the signature of
each class to each variable was constructed (Table S4).
Importantly, no association could be seen between either
neural class and gender, ethnicity, obesity, family history, or
any of the four main HCC etiologies (Fig. 3D). CTNNB1 muta-
tions and age >60 years emerged as positively associated with
the adrenergic class. TP53 mutations emerged as positively
associated with the cholinergic class. A strong trend for as-
sociation between the adrenergic class and CTNNB1mutations
was also found in the ‘validation cohort’ (Table S5). These data
JHEP Reports, January
suggest that these two classes defined by this ANS-based
signature may redefine the current stratification of HCC het-
erogeneity based on genetics. This question warrants further
investigations across different disease stages and ethnic
backgrounds, as suggested for instance in HCC studies on
Mongolian samples.21

To identify genes associated with tumor ANS features, we
performed differential gene expression analysis between the
two neuronal classes (padj <0.01 and absolute Log2 fold-
change >0.58). Results are illustrated in a volcano plot
(Fig. 3E). Data related to the 100 most significantly up- and
downregulated genes for the adrenergic and cholinergic
2025. vol. 7 j 101245 5



Cholinergic inputs and HCC
signatures are shown in Tables S6 and S7, respectively.
Differentially expressed genes upregulated in the cholinergic
signature include many dedifferentiation-related antigens, un-
like transcripts enriched in the adrenergic signature (e.g.,
CYP450 mRNAs, Table S8). Of importance, no CYP450 mRNA
was found in the cholinergic class. Altogether, such data sup-
port that the cholinergic signature may be correlated with less
differentiated HCC tumors.

Next, to better understand the phenotypic relevance by
deciphering the different molecular pathways defining adren-
ergic and cholinergic tumors, we performed a Hanzelmann
overrepresentation analysis of gene sets, using the differentially
expressed genes identified above and shown in a heatmap
(Fig. 4A). Genes over-expressed in each tumor class were used
as input against Hallmark gene sets of the MsigDB. On the one
hand, the most enriched pathways in genes over-expressed in
adrenergic tumors corresponded to differentiated, hepatocytic
metabolic functions, such as XENOBIOTIC_METABOLISM (71
genes), BILE_ACID_METABOLISM (35 genes), FATTY_A-
CID_METABOLISM (40 genes) and PEROXISOME (22 genes)
(Fig. 4B, Table S9). All these functions are linked with a
CTNNB1 mutational profile1 that is associated with this
neuronal class. As a control, the b-catenin target GLUL was
also positively associated with this adrenergic class (+1.52
Log2; rank 241). On the other hand, many pathways associated
with cell cycle and proliferation were significantly enriched in
cholinergic tumors. Indeed, more than 50 genes were associ-
ated with pathogenic, proliferative pathways such as, amongst
others with consistent adverse, pro-mitotic, outcomes:
G2M_CHECKPOINT (72 genes), E2F_TARGETS (64 genes) and
EPITHELIAL_MESENCHYMAL_TRANSITION (70 genes)
(Fig. 4C, Table S10), in agreement with the frequent TP53
mutation found in these tumors. Interestingly, panels B and C
corroborate genetic data of Fig. 3D. Indeed, TP53mut tumors
are enriched in mitotic pathways and cholinergic lesions are
also enriched in these pathways. Control pathways such as
cardiac (adrenergic) and nausea/vomiting (cholinergic) path-
ways were identified in their expected classes. In line with dif-
ferentiation data, these results suggest a more deleterious
profile for the cholinergic class. Survival analyses confirmed
this hypothesis, showing an association between the adren-
ergic class and longer overall survival within a timeframe of 4
years (Fig. 4D). Data were confirmed by GSEA on the MSigDB
C2 and C5 gene set collections, that showed an enrichment in
CTNNB1 mutation-associated metabolic functions in adren-
ergic samples and TP53 mutation-linked proliferative and
mitogenic pathways in cholinergic samples (Figs S11-12).

Among all pathways unveiled, we focused on HCC-specific
signatures known to be related to good or poor prognosis.1 We
performed single-sample GSEA quantification of all these
pathways for each sample and compared the two neuronal
classes using Wilcoxon’s tests. Almost all of these HCC-
specific signatures (Table S11) were differentially enriched
between both classes (Fig. 5A). The adrenergic class was
statistically associated with 17 HCC canonical signatures, 16
of which were functionally consistent with the transcriptomics
of this class (i.e., related to better prognosis). The cholinergic
class was linked to eight HCC canonical signatures, all related
to poor prognosis (Fig. 5B, Table S12). The present study
yielded consistent results in the ‘validation cohort’ (Fig. 5C).
Likewise, cholinergic polarity was repeatedly associated with
JHEP Reports, January
increased hypoxia, a process linked to tumor aggressiveness
and TKI resistance,22 using three representative hypoxia
scores (Fig. 5D-F). All these findings argue in favor of a worse
prognosis for patients with HCC and higher cholin-
ergic signaling.
Dedifferentiated hepatocytes display low NRS values
in HCC

Tumors are heterogenous in terms of cell types, and bulk an-
alyses may not address this issue thoroughly. To provide cell-
type relevance to these data, we first searched for tumor cell
type(s) likely dictating cholinergic-oriented (i.e., lower) NRS in
HCC samples. Dedifferentiated (or ‘malignant’) hepatocytes,
specifically, were identified as such by scRNA-seq (Figs 6A-D
and S13). The ‘malignant hepatocyte’ signature was used as
defined in a reference study.23 Data were confirmed function-
ally using hepatocyte-like spheroids and a differentiation pro-
tocol for 2D cultures. Consistently with previous data, the NRS
increased (i.e., becomes more adrenergic) with cell differenti-
ation (Fig. 6E-I, functional validation of re-differentiation in
Fig. S14, as published elsewhere24) paving the way for down-
stream perturbation studies. Functional and pharmacological
data were derived from the three classes of the currently
admitted classification of HCC lines25 after assessment of their
suitability for each assay (Table S13).
The cholinergic receptor CHRM3 participates in cancer cell
growth, dedifferentiation and resistance to HCC-
relevant TKIs

Within the cholinergic branch, the CHRM3 transcript encodes
a receptor targetable by the FDA- and EMA-approved drug
darifenacin. CHRM3 was frequently and strongly upregulated
in tumor lesions compared to adjacent tissue in three cohorts,
using cirrhotic or non-cirrhotic tissue as non-tumor controls
(Fig. 7A-D). In addition, HCC was one of the few cancer types
where CHRM3 was expressed at moderate to strong immu-
noreactivity levels in the Protein Atlas database26

(Supplementary information 4). CHRM3 was also repeatedly
correlated with several pathogenic hallmarks of proliferative
HCC (Fig. 7E,F). To provide causal data concerning hep-
atocytic cells, we evaluated the sensitivity of HCC lines
belonging to all classes25 to cholinergic drugs. The soft-agar
assay, which provides results in close correlation with in vivo
HCC data in treatment studies27,28 was used. Importantly,
these lines span the entire spectrum of CHRM3 expression in
HCC lines, all of which express it robustly in the Liver Cancer
Cell Line Database (https://lccl.zucmanlab.com/hcc/home), as
in numerous HCC cases.26 Data indicate that targeted func-
tional blockade of the CHRM3 receptor using low concentra-
tions of darifenacin (see Supplementary information 5)
hampered colony formation, whereas no phenotype could be
obtained using either scopolamine a non-selective muscarinic
CHRM3 antagonist, or agonists (Fig. 7G,H). Since none of the
class 3 HCC lines tested grew in this context, we then sub-
mitted a similar yet larger panel of HCC lines to an anoikis
induction protocol. Likewise, limited doses of darifenacin dis-
played the most robust inhibitory capacity (Fig. 7I). To
corroborate such data, we then induced polarization of 2D
cultures of these HCC lines into spheroids (re-differentiation
2025. vol. 7 j 101245 6
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previously validated in Fig. S14). Conversely, we observed an
important drop (>10-fold) in CHRM3 transcript levels, indi-
cating that it correlated with hepatocytic differentiation
(Fig. S15). Because of this dataset, we then evaluated the
potential poor prognostic status of CHRM3 expression in HCC
using the ‘kmplot’ interface (https://kmplot.com) that con-
siders the LIHC TCGA cohort. When specifically analyzing
HCC samples at stages 1 or 1+2 (i.e., early or well-
differentiated cases, n = 171 or n = 253 patients, respec-
tively), significance was reached (log-rank p = 0.042 and 0.023,
Fig. S16). CHRM3-mediated pathogenic contribution to early
carcinogenesis in particular deserves further investigation, as
its targeting could be beneficial to patients receiving loco-
regional therapy. Altogether, this dataset identifies the
CHRM3 receptor as implicated in the pathogenic properties of
HCC cells.

In patients with HCC, TKIs have objective but limited effi-
cacy over time due to near unavoidable tumor escape.1 We
tested a possible association between low NRS (i.e. cholinergic
tumor orientation as a marker of proliferation) and sorafenib
activity in the context of the STORM HCC clinical trial, aimed at
evaluating sorafenib as an adjuvant therapy for early HCC after
resection or local ablation.29 Molecular characterization of this
cohort identified patients benefiting from sorafenib in terms of
objective sensitivity (‘sorafenib responders’) and patients for
whom sorafenib had no effect (‘non-responders’).30 In this
context, specifically in the sorafenib-treated group, a low NRS
was associated with sensitivity to the drug (Fig. S16). This
result is in agreement with sorafenib’s multikinase inhibitor
status, affecting, amongst others, the MAPK/ERK pathway,
which notably targets HCC cell proliferation31 and further
supports the relevance of the NRS and cholinergic cues in the
disease. Acquired resistance to sorafenib is an issue in HCC
research.22 Consequently, HCC lines were subjected to
accepted synergy assays between neuroactive drugs and two
HCC-relevant TKIs (Chou-Talalay derived ZIP method32). These
assays identified a synergistic relationship between sorafenib
and scopolamine (Fig. 8A-C), as a pan-muscarinic inhibitor. We
then searched for the implicated receptor using darifenacin and
reproduced this dataset, indicating that the M3 receptor sup-
ports this phenotype (Fig. 8D-F). Quantitative values of average
synergy scores are provided in Fig. 8G. Data were mostly
confirmed with the co-first-line TKI lenvatinib (Fig. S17). High-
lighting the importance of inhibiting such function, no activity
could be observed upon usage of muscarinic agonists
(Fig. S18). Primary human hepatocytes used as controls yielded
neither sensitivity to cholinergic drugs nor synergy after com-
bination with TKIs (Fig. S19). Moreover, in the HepaRG differ-
entiation model,33 none of these drugs displayed
dedifferentiation effects on tested exocrine or endocrine func-
tions, considering bile canaliculi counts, hepatocyte nuclear
factor 4-a DNA binding levels, or secreted albumin levels
(Fig. S20). The CHRM3 receptor functionality was verified
(Supplementary information 5). These functional data confirm
the known absence of hepatotoxicity of these drugs in the
clinic, as well as their known absence of hepatic drug interac-
tion with any of the TKIs of interest herein. Of note, highly
similar cholinergic phenotypes were observed in chol-
angiocarcinoma (Supplementary information 6). Altogether,
these results indicate the compatibility of these strategies with
cancer-predisposed, even if functionally weakened, livers.
JHEP Reports, January
Discussion

Intra- and interpatient heterogeneity is a major challenge for
HCC research. It is fueled by a plethora of combinations be-
tween etiologies, differentiation grades, immune features, ge-
netics, and histological subtypes. Like many other organs, the
liver permanently communicates with the brain through afferent
and efferent nerves.5 It is therefore possible to propose that
patient neurological features interact or interfere with intra-
hepatic neural processes, including in HCC. Genetic mutations
are discrete events, likely caused by local, mutagenic events
that have escaped overwhelmed DNA repair pathways in a
context of chronic proliferation. As an ANS-influenced value,
the NRS likely fluctuates at the cross-roads of hepatic and
systemic influences longitudinally in a single patient, and
across patients as well. This suggests that the NRS may
constitute a basis for the development of whole organism-
sensitive criteria for HCC stratification. However, the causal
relationship between mutations and evolution of the NRS
values remains undefined, warranting in vivo experiments in the
future. The main limitations of our study are two-fold. First,
none of the six anti-CHRM3 antibodies tested by western
blotting or flow cytometry was found to be RNAi- or Crispr/
Cas9 sensitive, hampering loss-of-function studies. Second,
although both neural classes identified herein were clearly
associated with stronger (cholinergic-oriented) or weaker
(adrenergic-oriented) pathogenic HCC phenotypes, where
higher ADRA2B expression is related to good prognosis,34

proteomic confirmation of these findings on a large set of
ethnically diverse patients21 will be necessary to confirm RNA
data. The NRS is a brain/body-conditioned, physiologically
integrative, quantitative index that may help identify ANS drugs
in any innervated organ or tissue. Our data enrich the current
landscape of predictive transcriptomic signatures, since,
beyond the traditionally admitted genetic criteria, current
stratification based on NRS distribution identified a druggable
set of cholinergic receptors. Charting their expression
(including CHRM3’s) upon HCC recurrence will be of sub-
stantial clinical interest as well.

In the liver, Walter Cannon’s (1915) fight-or-flight model,
historically accepted to describe ANS functions,35 predicts that
adrenergic signaling mobilizes intracellular hepatocytic energy
pools for peripheral energetic needs, whereas cholinergic
signaling fosters intrahepatic nutrient storage and related pro-
cesses, such as liver expansion. This model seems relevant in
HCC, where liver expansion also implicates an increase in liver
cell size.36 Frequent comorbidities associated with liver carci-
nogenesis are excessive body mass index and alcohol intake
(as an important energetic source). This suggests that cholin-
ergic signals aiming at fostering liver expansion, due to their
implication in the rest-and-digest related functions,37 could be
hijacked by the tumor in a context of excessive nutrient avail-
ability. As was shown recently in metabolic dysfunction-
associated steatohepatitis,10 adrenergic innervation of HCC
seems to be weaker than any other stage. Here, cholinergic
tumors are associated with many poor prognosis-related
pathways. The likely protective and adverse roles of coffee38

and tobacco,38,39 respectively, as adrenergic and cholinergic
agonists, support these findings.

The second hallmark of this study consists in the identifi-
cation of (i) muscarinic receptors as bona fide targets for
2025. vol. 7 j 101245 11
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Cholinergic inputs and HCC
impeding HCC cell resistance to first-line HCC TKIs, (ii) their
predictive status with respect to sorafenib response in an
adjuvant therapy setting, and (iii) the applicability of this
JHEP Reports, January 2
approach, which generates no unwanted effects on primary
human hepatocyte viability or major hepatocyte functions. The
differential effects of M3-selective and pan-muscarinic
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inhibition in anchorage-independent growth assays vs. syn-
ergy assays are discussed in Supplementary information 7.
On the immune side, two studies implicate general cholin-
ergic13 and CHRM3-specific signaling events40 in tumor
lymphocytes. While the former depicts a stimulating role for
acetylcholine esterase-expressing lymphocytes in these pro-
cesses,13 the latter instead suggests, in accordance with our
findings, a deleterious role for cholinergic inputs in general
and on CD8+ T cells when mediated by the murine CHRM3
receptor. Moreover, our analysis of publicly available scRNA-
seq data derived from intra-tumoral immune populations
suggests that CD8+ T effector memory re-expressing CD45RA
(TEMRA) and cytotoxic NK cells are the sub-populations with
the strongest adrenergic polarization, in contrast to exhausted
JHEP Reports, January
CD8+ T cells that present markedly lower NRS levels
(Supplementary information 8). We believe that the diverging
conclusions between studies may be related to, as acknowl-
edged by Zheng et al.,13 the differential involvement of the
strong diversity of cholinergic receptors. Both studies how-
ever suggest future important discoveries in the field of ACh
and HCC immunity.

This study documents a new neural contribution in the
pathogenesis of human HCC and describes its potential clinical
implications for HCC, classification of other liver cancers and
patient stratification. This approach identified targets that have
been engaged by EMA- and FDA-approved medicines for de-
cades, and that are therefore adequate for subsequent HCC
research aimed at improving patient care.
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