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Abstract  

The spectrum of known monogenic inborn errors of immunity is growing, with certain disorder underlying a 

specific and narrow range of infectious diseases. These disorders reveal the core mechanisms by which 

these infections occur in various settings, including inherited and acquired immunodeficiencies, thereby 

delineating the essential mechanisms of protective immunity to the corresponding pathogens. These 

findings also have medical implications, facilitating diagnosis and improving the management of individuals 

at risk of disease.  

 

Keywords: Mendelian and monogenic infections, Inborn errors of immunity, infections, protection against 
common pathogens 
 
Abbreviations: 
IEI: inborn errors of immunity  
GWAS: genome-wide association studies  
MSMD: Mendelian susceptibility to mycobacterial disease  
EM: environmental mycobacteria  
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AR: autosomal recessive  
XL: X-linked recessive  
TB: Tuberculosis  
Mtb: Mycobacterium tuberculosis 
ROS: Reactive oxygen species  
CMC: Chronic mucocutaneous candidiasis 
AD: Autosomal dominant 
GOF: gain-of-function 
IFD: Invasive fungal diseases 
auto-Abs: autoantibodies 
MAC: membrane attack complex 
TLR: Toll-like receptor  
TIR: Toll-like and IL-1 receptor 
LTA: lipoteichoic acid  
CRP: C reactive protein 
EV: Epidermodysplasia verruciformis  
HPV: Human papillomavirus 
NMSC: non-melanoma skin cancer 
APC: antigen-presenting cell 
DC: dendritic cells 
RW: Recalcitrant warts  
HSV-1: Herpes simplex virus 1  
HSE: Herpes simplex encephalitis 
h- and i- PSC: human and induced pluripotent stem cell  
CNS: central nervous system 
EBV: Epstein Barr virus 
WD: Whipple’s disease 
DARC: Duffy antigen receptor for chemokines 
HBGA: histo-blood group antigens 
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Introduction 

Inborn errors of immunity (IEI) were initially thought to affect all leukocyte subsets and to predispose 

individuals to a wide range of pathogens [1, 2]. IEI have been classified into combined immunodeficiency 

groups (see Tables 1 and 2 of the classification of IEI) [3]. However, with the increasing number of IEIs being 

discovered, some exhibit a very narrow spectrum of susceptibility, often limited to a single pathogen [4-8]. In 

this review, susceptibility is defined as the unusual recurrence or severity of infection with a given pathogen 

that necessitates medical intervention or hospitalization. These patients are often cared for by specialized 

centers and undergo ancillary investigations (e.g., immunophenotyping, biopsy, etc.). For monogenic 

disorders, susceptibility arises from defects having a strong individual effect in increasing the risk of 

developing a specific infectious disease. This risk is classically measured by odds ratio (OR) or relative risk, 

with monogenic defects associated with high ORs (e.g. >10) [9]. Although these disorders are more common 

than previously thought and can manifest with a full spectrum of clinical manifestations, ranging from 

localized symptoms to severe and potentially lethal conditions in otherwise healthy individuals, they 

highlight the specific involvement of and impact on distinct immunological pathways, and therefore 

underscore redundant pathways for other pathogens. However, we define a syndromic disorder as a clinical 

phenotype characterized by the association of a primary infectious disease with additional clinical 

manifestations, whether infectious or not. The advent of next-generation sequencing has significantly 

improved our ability to provide a genetic diagnosis for an ever-growing number of these conditions, allowing 

for more precise and tailored medical interventions [10]. In this review, we will attempt to highlight the most 

important IEIs conferring a predisposition to narrow infectious diseases, focusing particularly on 

susceptibility to mycobacterial diseases (caused by both weakly virulent non-tuberculous and highly virulent 

tuberculous species), and certain bacterial, fungal, and viral diseases, and highlighting the genes recently 

implicated in IEI and the cellular and molecular functions affected in patients. Conversely, we also highlight 

genetic variants important for resistance to infection. We will not discuss genetic investigations based on 

genome-wide association studies (GWAS), which are more commonly used to identify common variants for 

complex traits through large-scale comparisons of patients and controls, scanning the entire genome, and 

detecting several loci with possible small independent effects on the disease. These approaches have been 

previously reviewed [11-13]. Instead, we focus here on the genetic investigation of patients (and their relatives) 
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to identify pathogenic causal variants with a strong effect (Table 1). We will deal, in particular, with 

monogenic predispositions, in which the causal relationship between the genotype and phenotype has been 

demonstrated. 

 

   • Inborn errors of immunity underlying mycobacterial diseases  

Mendelian susceptibility to mycobacterial disease (MSMD)  

MSMD is a rare group of IEI characterized by a selective predisposition to clinical disease caused by weakly 

virulent mycobacterial species, such as Mycobacterium bovis-BCG vaccines and environmental 

mycobacteria (EM), in otherwise healthy individuals normally resistant to other microbes [14, 15]. MSMD 

occurs in ~ 1/50,000 individuals of diverse ancestries. About half the patients are also particularly 

susceptible to Salmonella and a significant proportion of MSMD patients also suffer from mucocutaneous 

infection with Candida species [16]. The genetic dissection of MSMD has identified deleterious variants in 

22 genes underlying 46 different genetic etiologies[14, 17-23], considering factors such as mode of inheritance, 

whether the defect is complete or partial, whether the mutant protein being expressed, and the specific 

function affected (e.g. phosphorylation)(Figure 1). They are all physiologically related and impair the activity 

of interferon-gamma (IFN-γ), the “macrophage-activating factor”[24, 25]. ZNFX1 is the only gene implicated 

in MSMD for which the underlying mechanism has yet to be determined [26]. The essential role of IFN-γ in 

protective immunity to mycobacteria was confirmed with the identification of the first patients with complete 

IFN-γ deficiency in 2020 [27], showing that IFN-γ is the only agonist of its receptor. The last four years have 

revealed four new molecular players in MSMD: TBX21, MCTS1, IRF1, and CCR2. Patients with autosomal 

recessive (AR) T-bet/TBX21 deficiency display impaired development of the NK, iNKT, MAIT, Vδ2+ γδ T 

and TH1 lymphoid cell subsets and impaired IFN-γ production by innate and innate-like lymphocytes [19]. X-

linked recessive (XL)-MCTS1 deficiency impairs JAK2 synthesis, leading to impaired IL-23-dependent IFN-

γ production [18]. AR IRF1 deficiency highlights the essential role of this protein in IFN-γ dependent 

macrophagic immunity to mycobacteria and its probable redundancy in type I IFN-mediated immunity in 

humans [22]. Finally, AR CCR2 deficiency may underlie MSMD in some patients due to migration of too few 

peripheral blood monocytes to tissues [17]. The identification of new genetic disorders of MSMD should 

extend the list of molecules known to be involved in the control of human IFN-γ immunity. 
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Tuberculosis (TB)  

Tuberculosis, caused by the highly virulent Mycobacterium tuberculosis (Mtb), remains a devastating 

disease [28, 29]. However, building on the discoveries made for MSMD, rare patients suffering solely from TB 

and homozygous for variants causing deficiencies of IL-12R1 and TYK2, for example, have been identified 

[5, 8, 15, 16, 30, 31], providing the first proof-of-principle that TB can be a monogenic disorder, upon infection with 

Mtb that acts as a trigger [9, 30] (Figure 1). New genetic etiologies, such as AR ITK and PD1 deficiencies, 

have been shown to underlie TB [32-34] through the impairment of IFN-γ-mediated immunity [35]. The later 

has been corroborated by the susceptibility to mycobacterial disease observed in patients treated with anti-

PD1/PDL1 antibodies [36, 37]. Impaired IFN-γ production was also observed in the first two PDL1-deficient 

patients [38]. In addition, five forms of AR TYK2 deficiency were characterized, based on expression, 

pathway affected and minor allele frequency of the deleterious variants [39, 40], all affecting IL-23-dependent 

IFN-γ-mediated immunity and underlying susceptibility to mycobacterial diseases, highlighting the role of 

IL-23 in anti-TB immunity [39, 40]. Moreover, homozygosity for a common missense TYK2 variant (P1104A) 

was identified as the first common monogenic cause of tuberculosis in two different patient cohorts[41, 42]. 

P1104A has been subject to negative selection over the last 4,000 years in Europe, probably due to the 

selective pressure exerted by TB[43, 44]. Homozygosity for this variant was probably responsible for 10 million 

deaths (1%) from TB over the last 2,000 years [42]. Homozygosity for P1104A specifically impairs (but does 

not abolish) IL-23-mediated IFN-γ-dependent immunity, which is exerted mostly by MAIT and V2+  Tcells 

[23], challenging the conventional doctrine and demonstrating that IL-23 is predominantly an 

antimycobacterial cytokine. Two patients with complete AR TNF deficiency and recurrent TB were recently 

identified (Figure 1). Reactive oxygen species (ROS) production is impaired in the patients’ alveolar-like 

macrophages but not in other myeloid cells, explaining the narrow clinical phenotype of the patients [45] and 

revealing the redundant nature of TNF for other infectious diseases. The discovery of additional IEI 

underlying TB is anticipated, with different genetic architectures depending on ethnicity and inheritance. 

 

   • Inborn errors of immunity underlying fungal diseases 

Non-invasive fungal diseases   
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Chronic mucocutaneous candidiasis (CMC) manifests as persistent or recurrent infections of the skin, 

mucosa, and nails with Candida spp. Severe CMC disease is associated with weight loss, failure to thrive, 

and complications, such as esophageal stricture, squamous cell carcinoma, and cerebral aneurysms in 

some cases [46, 47]. The first IEI of the IL-17A/F signaling pathway were identified in 2011 [48, 49]. Autosomal 

dominant (AD) IL-17F, and AR IL-17RA, IL-17RC, and ACT1 deficiencies were described in patients with 

CMC who were otherwise healthy apart from mucocutaneous diseases caused by Staphylococcus aureus 

in some patients (Figure 2). In parallel, IEI affecting the production alone or both the production of and 

response to IL-17A/F were progressively described and deciphered, mostly in patients with syndromic CMC 

(ie: CMC and additional symptoms, infectious or not). AD JNK1 or IL6ST deficiency, AR IL-23R, 

RORγ/RORγT, ZNF341, or cRel deficiency, and AD STAT1 gain-of-function (GOF) have all been described 

in patients with mild or severe CMC and other infectious and/or autoimmune features. These IEI were 

shown to impair the production of IL-17A/F, probably underlying the CMC observed in the patients [48-51]. 

CMC was recently reported in a third of the patients from a cohort of individuals with complete AR IL-23R 

deficiency and abolished responses to IL-23, a cytokine reported to be essential for the maintenance of 

Th17 cells in mice [23]. These findings suggest that human IL-23 plays a crucial role in IL-17A/F–mediated 

protection against mucocutaneous Candida disease in a subset of affected individuals, whereas it appears 

to be redundant in most individuals [23]. None of the patients with IEI of IL-17-mediated immunity reported 

(except for a few of the patients with AD STAT1 GOF and most patients with AR CARD9 deficiency) have 

been documented to have invasive candidiasis, suggesting that IL-17A/F play a redundant role in protection 

against invasive C. albicans disease.  

 

Invasive fungal diseases (IFD) 

The second emblematic example of an IEI underlying fungal diseases is AR CARD9 deficiency [52, 53]. Over 

90 patients have now been reported, all suffering from mucocutaneous or invasive diseases caused 

exclusively by fungal pathogens, with a disease onset ranging from early childhood to late adulthood. 

CARD9 is expressed primarily by myeloid cells and serves as an adaptor downstream from C-type lectin 

receptors (e.g. dectin-1), promoting the production of proinflammatory cytokines and chemokines upon 

fungal infection [53]. The fungal diseases concerned include superficial and deep dermatophytosis, 
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superficial and invasive Candida infections, subcutaneous and invasive phaeohyphomycosis caused by 

fungi such as Exophiala spp., Corynespora cassiicola, and Phialophora verrucosa. Rare cases of 

mucormycosis or aspergillosis have been reported [49]. By contrast, no cases of cryptococcosis “reported in 

some patients with neutralizing autoantibodies (auto-Abs) against GM-CSF”, Pneumocystis jirovecii 

pneumonia “frequently reported in patients with IEI of the IKAROS zinc finger transcription factor family”, or 

cases following dimorphic fungal infections have yet been reported in patients with AR CARD9 deficiency. 

Impaired CARD9-dependent induction of Th17 cytokines and neutrophil-recruiting chemokines (CXCL1, 

CXCL2 or CXCL5 [54]) has been identified as a potentially important mechanism underlying superficial and 

invasive fungal diseases, respectively, in patients with CARD9 deficiency (Figure 2). Biallelic deleterious 

variants of CLEC7A, encoding dectin-1 (a β-glucan-binding receptor), which signals through CARD9, have 

recently been reported in patients with severe C. cassiicola phaeohyphomycosis [55]. However, human 

dectin-1 deficiency is a frequent condition, with the p.Y238* allele present at a frequency of about 7% in 

European populations and up to 40% in the San population of South Africa, suggesting that it cannot be 

considered per se as an IEI underlying rare C. cassiicola phaeohyphomycosis, but should instead be seen 

as a risk factor. Further studies of the molecular and cellular bases of isolated CMC and IFD in humans 

with inherited CARD9 deficiency should shed light on the mechanisms of antifungal immunity in humans.  

 

   • Inborn errors of immunity underlying pyogenic bacterial diseases 

Neisseria disease  

Diseases due to Neisseria result in an estimated 600,000 deaths worldwide[56]. Complement deficiencies, 

first identified in the early 1970s, confer a predisposition to Neisseria infections[57]. The complement system 

— discovered by Bordet in 1896 and shown to have antibacterial properties — is a proteolytic cascade of 

multiple proteins [58, 59] defining three activation pathways: the classical, mannose, and alternative 

complement pathways. All these pathways can cleave C3, the central component, and activate the terminal 

pathway[58, 59]. Genetic studies of patients with a particularly susceptibility only to Neisseria infections 

revealed AR deficiencies of terminal pathway components (C5, C6, C7, C8 and C9) as the main cause [60-

62]. These terminal components form the membrane attack complex (MAC) on the surface of the bacterium, 

creating a pore that kills it by osmolysis [63]. In 2023, two studies suggested a role for C5 in human immunity 
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to fungi[64, 65], but these studies were unable to explain the absence of fungal infections in hundreds of 

previously reported C5-deficient patients. Inherited deficiencies of early alternative pathway components 

(XLR properdin, AR factor D,  AR factor B deficiencies) [60, 62] and classical pathway components (AR C1q, 

AR C1r, AR C1s, AR C2, AR C3, AR C4, AR, AR factor H, AR factor I deficiencies) increase susceptibility 

to Neisseria, but also to pneumococcal diseases, and such deficiencies may also be associated with 

autoimmune conditions [60, 62]. Investigations of complement are therefore essential in child and adult 

patients who have suffered from invasive infections due to encapsulated bacteria, even after a single 

episode [66, 67]. Deficiencies of components of the mannose pathway do not cause Mendelian disorders [68]. 

Interestingly, alleles underlying deficiencies of C2, C6, and C9 are present in the European, African and 

Asian populations, respectively, each with an minor allele frequency close to 1%[69]. The high frequencies 

of these deleterious alleles, at least in certain populations, are intriguing and warrant further investigation 

through population and evolutionary genetics. 

 

Pneumococcal disease  

Pneumococcal diseases cause an estimated 800,000 deaths annually worldwide[56]. In 1953, Bruton 

reported that immunoglobulins play an important role in controlling S. pneumoniae infection [1]. Studies of 

patients with agammaglobulinemia led to the discovery of the most common genetic etiology underlying 

this condition: X-recessive BTK deficiency [70, 71]. It is now well established that IEI affecting the 

development, differentiation or maturation of B cells confer a predisposition to S. pneumoniae [72]. More 

than 50 genetic etiologies with an impact on the quantity or quality of immunoglobulins have now been 

identified and recently reviewed [73]. Complement studies revealed that the classical complement pathway 

and antibodies binding to the polysaccharide on the surface of S. pneumoniae cooperate to initiate 

opsonization of the bacteria (see above). Patients with AR deficiencies of C2, C3 and C4 may therefore 

develop severe pneumococcal disease, but they may also present autoimmunity. From 2001 onwards, 

studies of a series of patients with Toll-like receptor (TLR)-IL-1R (TIR)-NF-κB pathway deficiencies (XLR-

IKBKG, AD NFKBIA, AR HOIL-1 and AR HOIP deficiencies)[74-79], in addition to the identification of IRAK-

4[80] and MyD88[81] deficiencies, highlighted the crucial role of TLR/IL-1R pathway in the myeloid lineage for 

controlling pneumococcal infections in humans and defining narrow non-redundant antibacterial immunity. 
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However, the effector mechanism remains unknown. These three key non-redundant mechanisms- 

complement and myeloid cells (both innate immunity) and anti-polysaccharide antibodies (humoral 

immunity)-are required to protect humans against pneumococcal disease. The absence of a genetic 

diagnosis for most people suffering from pneumococcal disease [66] despite active vaccination, suggests 

the presence of other immune mechanisms capable of controlling this disease. 

 

Staphylococcal disease 

Staphylococcal diseases lead to an estimated 1,000,000 deaths annually worldwide [56]. Human phagocytes 

play a key role in defenses against S. aureus infection[82]. Indeed, IEI such as congenital neutropenia[83] 

and phagocytosis defects[84, 85] confer a predisposition to S. aureus infections. Disorders of the TLR/IL-1R 

-NF-κB pathway (XLR-IKBKG, AD NFKBIA, AR IRAK4 and AR MyD88 deficiencies)[74-81], confer a 

predisposition to severe S. aureus and a few other infections. The description of inherited TIRAP deficiency, 

which is an adaptor protein interacting with TLR2 and TLR4, and acts upstream of MyD88 and IRAK-4, has 

narrowed the search for the main player in selective predisposition to S. aureus infection to TLR1/2 and 

TLR2/6 [86].  The incomplete penetrance of staphylococcal infection among individuals with AR TIRAP 

deficiency in this kindred was explained by the production of anti-lipoteichoic acid antibody in all relatives 

tested but not in the patient, which rescue TLR2-dependent immunity to staphylococcal LTA. Studies of 

patients with human OTULIN haploinsufficiency have recently shed light on the essential role of toxin 

receptor expression in immunity. OTULIN haploinsufficiency in fibroblasts dysregulates 

CAVEOLIN/ADAM10 expression on the cell surface, increasing the cells' sensitivity to α-toxin. It has 

indicated that other, non-hematopoietic immune cells also play crucial roles in controlling pyogenic 

infections through intrinsic mechanisms[87]. Incomplete penetrance for staphylococcal infection in 

individuals with OTULIN haploinsufficiency has been shown to be due to the presence of anti--toxin 

antibody [87]. Finally, further investigations into patients suffering from staphylococcal diseases and hyper-

IgE syndrome ultimately led to the discovery of the first patients with AR IL-6 receptor deficiency [88-90]. The 

studies of these patients have revealed the importance of IL-6 in T-cell differentiation (circulating follicular 

helper cells and Th17 T cells) confirming the observation described in patients with AD STAT3, or AD or 

AR GP130 deficiency (encoded by IL6ST), who are characterized by a deficit of STAT3-dependent IL-6 
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response [91-93]. Since 2008, a few patients with recurrent subcutaneous staphylococcal abscesses or other 

severe pyogenic infections have been reported to have neutralizing auto-Abs against IL-6 [94-96]. Similarly, 

severe bacterial infections have been reported in patients treated with Tocilizumab [97]. Auto-Abs against IL-

6 should therefore be considered in patients, particularly adults, with unexplained bacterial infections, 

especially when there is no adequate increase in CRP levels during the infection. Together, these 

discoveries demonstrate the key role of IL-6 in immunity to staphylococci and highlight the contribution of 

adaptive immunity. 

 

   • Inborn errors of immunity underlying viral diseases of the skin 

Epidermodysplasia verruciformis (EV)  

Human papillomaviruses (HPVs) are small DNA viruses, each with a specific tropism to mucosal (α-) or 

cutaneous (α-, β-, γ-, μ- and ν-) tissues. In the general population, the α-, γ-, μ- and ν-HPVs cause benign 

cutaneous common and plantar warts[98]. The α-HPVs also cause anogenital and oropharyngeal cancers, 

whereas β-HPVs generally cause asymptomatic infections. Some β-HPVs are responsible for flat wart-like 

lesions and non-melanoma skin cancer (NMSC) in rare patients with epidermodysplasia verruciformis 

(EV)[99, 100]. In 1946, EV was the first Mendelian IEI described, characterized by a narrow range or “isolated” 

form of infections[99-101]. Three IEI have been identified in patients with isolated EV: EVER1, EVER2 and 

CIB1 deficiencies[101-103] (Figure 3). CIB1, EVER1, and EVER2 form a complex that binds E5 and E8, 

governing keratinocyte-intrinsic immunity to β-HPVs and potentially acting as a viral restriction factor[104]. 

Rare patients with EV and other phenotypes, mostly infectious, referred to as atypical, or “syndromic” forms 

of EV[101]  present various inherited disorders of T cells, including RhoH, CORO1A, DOCK8, LCK, TPP2, 

STK4, and ITK deficiencies[32, 105-110]. Complete AR FLT3L deficiency was recently reported in a multiplex 

family with syndromic EV or recalcitrant warts. FLT3L deficiency induces a severe deficit of antigen-

presenting cells (APCs) of all kinds, including dendritic cells. FLT3L-deficient individuals have a similar skin 

composition to healthy donor, with the presence of Langerhans cells and macrophages, but with much 

lower levels of dermal DCs. These findings strongly suggest a non-redundant role of dermal DCs in the 

control of cutaneous HPVs [111]. Together, these data demonstrate that both isolated and syndromic EV 

display genetic heterogeneity but physiological homogeneity. Both cellular and intrinsic immune responses 
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are therefore involved in cutaneous immunity to EV-HPVs. Disorders of T-cell responses underlie syndromic 

EV and other HPV-related skin infections, whereas disorders of keratinocytes underlie isolated EV.  

 

Recalcitrant warts (RW)  

In rare cases, common warts, mostly due to α-HPVs, can spread and persist, in which case they are 

described as recalcitrant warts (RW)[112]. Unlike EV, RW often present as a syndromic form, with multiple 

HPV types or manifestations (cutaneous, mucosal). The best characterized of these genetic defects are 

those in patients with monoallelic mutations of CXCR4 [113-115] and GATA2 [116-119], and biallelic mutations of 

DOCK8[120-122], who suffer from RW in 80, 50 and 40%, respectively, of cases[105, 123]. These IEI with a high 

penetrance for HPV diseases may selectively affect APCs counts, as recently reported for FLT3L 

deficiency[111], or both APCs and T lymphocytes counts, migration or function (Figure 3). Other IEI affecting 

mostly T lymphocytes have also been reported in patients with severe HPV infection[105, 123]. Many of these 

IEI impair αβ T-cell counts, as reported for TRAC and IL-7 deficiencies[124-126], or primarily CD4+ T-cell 

counts, as reported for STK4 deficiency or the recently described SASH3 deficiency[127-132]. Other IEI 

conferring a predisposition to RW are associated with normal or near-normal T-cell counts and 

differentiation. CD28 deficiency has been reported in patients with isolated RW, including one patient with 

tree man syndrome [133]. Interestingly multiple IEI conferring predisposition to HPV underlie a CD28 

signaling defect. Deficiencies of CARMIL2, a cytoplasmic signaling molecule, impair NF-κB activation 

downstream from CD28[134-136]. MAGT1 deficiency results in a glycosylation defect, the effects of which 

include an impairment of CD28 expression on T lymphocytes[137]. AD CARD11 dominant-negative variants 

impair NF-𝜅B activation upon CD3/CD28 costimulation [138], and CARD11 is a direct partner of CARMIL2[139, 

140]. Together, these findings suggest a major role of the NF-𝜅B pathway downstream from CD28 in the 

control of skin papillomavirus infection by T cells. Furthermore, deficiencies of CD4 [141], another T cell-

costimulating molecule, have recently been shown to underlie RW[142] by an as yet unclear mechanism, 

possibly involving CD28 and LCK[143]. Thus, studies of IEI have shown that impairments of the numbers or 

functions of APCs and T cells can confer a predisposition to severe RW.  

 

   • Inborn errors of immunity underlying viral encephalitis  
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Herpes simplex virus 1 (HSV-1) encephalitis (HSE) is the most common sporadic viral encephalitis in 

Western countries and, perhaps, worldwide. The causal role of HSV in HSE was established in 1941 [144], 

and HSV-1 was distinguished from HSV-2 in 1977 [145]. About 1-2/10,000 infected individuals develop life-

threatening HSE. In the early 2000s, it was hypothesized that childhood HSE might result from single-gene 

IEI to HSV-1 in the central nervous system (CNS) [146-148]. The evidence supporting genetic susceptibility to 

HSE came from two very rare cases of “syndromic” HSE observed in combination with mycobacterial 

diseases, in a child with AR complete STAT1 deficiency [149], and a child with a NEMO mutation [150-152]. 

From 2006 onwards, 12 IEI underlying the typical form of isolated childhood HSE were progressively 

discovered. Most of the HSE-causing IEI identified to date affect type I IFN-mediated antiviral immunity 

through mutations of genes encoding proteins involved in type I IFN production (TLR3, UNC93B1, TRIF, 

TRAF3, TBK1, IRF3, NEMO, GTF3A) or responsiveness (IFNAR1, STAT1, STAT2, TYK2)[6, 149, 152-162] 

pathways (Figure 4). HSE-causing IEI disrupting novel type I IFN-independent antiviral mechanisms have 

also recently been shown to underlie HSE in other HSE patients, the genes encode DBR1 [163], snoRNA31 

[164], RIPK3 [165] and TMEFF1 [166]. Unlike deficits of the type I IFN circuit that impair type I IFN-mediated first 

line antiviral responses in a broad range of tissues and cells, hence underlying various severe viral 

infections in humans including those resulted from live attenuated virus vaccination [40, 167, 168], the four HSE-

causing IEI impairing type I IFN-independent antiviral immunity have been found only in patients with 

isolated HSE so far. Regardless of the molecular mechanisms, human pluripotent stem cell (hPSC)-derived 

forebrain neurons harboring HSE-causing IEIs display defective cell-intrinsic immunity to HSV-1, resulting 

in unrestricted HSV-1 replication in neurons. Such IEI therefore presumably underlie HSE pathogenesis in 

vivo, with incomplete clinical penetrance, accounting for up to 10% of the cases studied. The last two 

decades of human genetic and immunological studies have, therefore, progressively established a new 

paradigm that childhood HSE can result from inborn errors of CNS-specific, cell-intrinsic immunity to HSV-

1, expanding the concept of host defense in natura from the immune system to the whole organism. 

 

• Inborn errors of immunity underlying viral pneumonia  

The first IEI identified to cause life-threatening viral pneumonia was IRF7-deficiency in a patient with 

influenza[169]. IRF7-deficient plasmacytoid DCs (pDCs) and induced pluripotent stem cell (iPSC)–derived 
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pulmonary epithelial cells (PECs) from this patient produced abnormally small amounts of type I and III 

IFNs in response to influenza A viruses (IAVs), promoting IAV proliferation[169]. AD deficiencies of TLR3, 

and AR deficiencies of IRF9, STAT1, TYK2 and STAT2- have been identified in patients with life-threatening 

influenza pneumonia, further demonstrating that the type I IFN response in PECs is essential to control 

influenza infection[40, 167, 168, 170-172] (Figure 4). Studies of critical COVID-19 pneumonia led to the discovery 

of a new IEI, XR TLR7 deficiency, accounting for more than 1% of cases of critical COVID-19 in men, 

especially those under 60 years of age[173]. The blood B-cell lines and myeloid cell subsets of these patients 

did not respond to TLR7 stimulation and their pDCs produced low levels of type I IFNs in response to SARS-

CoV-2 [173]. TLR7 is a MyD88/IRAK-4-dependent endosomal receptor for single-stranded RNA in pDCs. 

Patients with AR MyD88 or IRAK-4 deficiency have been shown to be at high risk of life-threatening COVID-

19 due to impaired TLR7-dependent type I IFN production by pDCs[174]. The discoveries of IE of TLR3- and 

IRF7-dependent type I IFN immunity, including AR deficiencies of IRF7, IRF9, IFNAR1, IFNAR2, STAT2, 

TYK2 and TBK1-, and AD deficiencies of TLR3 in patients with critical COVID-19 pneumonia suggested 

that influenza and COVID-19 pneumonia are allelic on five loci (IRF7, IRF9, STAT2, TYK2, and TLR3)[175-

180], where variants on the same loci underlie both diseases. AR deficiencies of IFIH1, a RIG-I-like receptor 

involved in the sensing of viral RNA leading to the induction of type I interferons, have been reported in 

children suffering of severe respiratory illness due to respiratory syncytial virus, human rhinovirus or 

influenza [181, 182]. Intriguingly, the penetrance of all these inborn errors of type I IFN immunity is far from 

complete, even for the most virulent pathogen, SARS-CoV-2.  

 

   • Inborn errors of immunity underlying EBV diseases  

Epstein Barr virus (EBV) belongs to the -herpes family [183]. Most EBV infections are benign and symptom-

free, with about 90% of adults worldwide experiencing infection at some time in their lives, but this virus 

has been implicated in about 1% of all cancer cases [184]. EBV primarily infects epithelial cells and B 

lymphocytes, establishing latency within B cells. Uncontrolled EBV infections can manifest as infectious 

mononucleosis (IM), hemophagocytic lymphohistiocytosis (HLH), and various B-cell proliferative disorders. 

CD8+ T-cell responses play a key role in immunity to EBV [183, 185, 186]. Two types of IEI corresponding to 

different lymphoproliferative disorders have been identified. The first group, characterized by variants of 
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PRF1, RAB27A, UNC13D, SYT11, LYST and SH2D1A, impairs the granule-dependent cytotoxicity 

function of NK and CD8+ T cells, leading to EBV-induced HLH. The second group comprises IEI in which 

EBV infection predominantly drives B-cell lymphoproliferative disorders, including B-cell lymphomas. 

Patients with IEI of this type present an impaired activation and expansion of EBV-specific T cells due to 

deficiencies of RASGRP1, ITK, MAGT1, DEF6, CTPS1, TNFRSF9, CD27 or its ligand CD70 [187, 188]. 

Patients with ITK deficiency are also susceptible to TB [32]. For this group of IEI, a recent report identified 

patients homozygous for loss-of-function variants of IL27RA displaying selective vulnerability to EBV[189]. 

The phosphorylation of STAT1 and STAT3 by IL-27 was abolished in the T cells of these patients. This 

deficiency impairs the expansion of potent anti-EBV effector cytotoxic CD8+ T cells, probably due to the 

lack of a synergistic effect on T-cell receptor-dependent T-cell proliferation. In addition, a specific allele of 

IL27RA (rs201107107) for which enrichment has been detected in the Finish population is associated with 

a higher risk of developing IM when present in the homozygous state. Finally, neutralizing auto-Abs against 

IL-27 have also been reported in patients with sporadic IM and chronic EBV infection. These findings 

demonstrate the crucial role of IL27-IL27RA in immunity to EBV [189].  

 

   • Autoimmune phenocopies of inborn errors of immunity  

Some autoimmune disorders can phenocopy IEIs, resulting in an almost undistinguishable 

infectious phenotype[190]. Auto-Abs against a component of the complement system (C3 convertase) has 

been shown to enhance its activity (thus being an “enhancing” auto-Ab), lowering complement levels and 

underlying severe bacterial infections such as meningitis due to Neisseria[191], pneumonia due to 

Streptococcus pneumoniae[192] or Haemophilus influenza[193]. Autoimmune phenocopies of at least four 

cytokines have also been described[72, 194, 195]: IL-6 and staphylococcal disease [94], IFN- and MSMD[194, 196-

199], IL-17A/F and autoimmune polyendocrinopathy syndrome type I (APS-1 or APECED syndrome 

/CMC[200, 201] and GM-CSF and idiopathic pulmonary alveolar proteinosis and cerebral/pulmonary 

nocardiosis[202-204] or cryptococcosis[205-216]. More recently, auto-Abs neutralizing IFN-α and/or ω were 

detected in about 15% of cases of life-threatening COVID-19 pneumonia [217], 20% of the fatal COVID-19 

cases tested [218-220], and 20% of individuals suffering from ‘breakthrough’ hypoxemic COVID-19 pneumonia 

despite an appropriate Ab response to mRNA vaccine [221, 222]. The risk of critical disease increases with the 
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number and concentration of type I IFNs neutralized. These auto-Abs were also found to underlie about 

one third of the rare cases of severe adverse reactions to yellow fever YFV-17D live-attenuated viral vaccine 

[223], 5% of cases of critical influenza pneumonia [176], 20% of cases of critical Middle East respiratory 

syndrome (MERS) pneumonia [224], 40% of cases of West Nile virus encephalitis [225], and various herpes 

viral infections[226-231]. They can be detected in 0.3-1% of individuals under the age of 65 years (including 

0.2-2% of children), after which their prevalence increases sharply, reaching 4-8% in individuals over 70 

years of age. Auto-Abs neutralizing type I IFNs are present before infection and are causal for severe viral 

diseases. Patients with neutralizing anti-IL-27 auto-Abs have recently been reported to be prone to Epstein–

Barr virus diseases, like patients with AR IL-27RA deficiency[189]. It remains unknown why they are 

produced, but their production can be genetically driven, as in patients with anti-IFN- auto-Abs and specific 

HLA class II haplotypes, or in a few patients with IEI of T-cell thymic selection and auto-Abs against type I 

IFNs [232, 233]. The clinical consequences may be much broader than initially thought, such as high titers of 

neutralizing auto-Abs against IL-10 recently reported in children with mild to severe colitis, phenotypically 

mimicking inborn errors of the IL-10 pathway [234]. 

 

Other infections studied from a monogenic angle 

Other infectious diseases have also been investigated to identify the human genetic component involved. 

Whipple’s disease (WD), caused by the bacterium Trophyrema whipplei, is associated with chronic or acute 

infections [235, 236]. Two genetic etiologies have been identified: AD IRF4 deficiency due to haploinsufficiency 

[237] and CD4 deficiency in patients with WD among other symptoms [141]. However, the pathophysiology of 

this disease remains unknown. Two mycobacterial diseases, Buruli ulcer, caused by M. ulcerans and 

recently shown to be transmitted by mosquitoes in Australia [238] and leprosy, caused by M. leprae, have 

been studied. A monogenic contribution to Buruli ulcer was recently reported, with the identification of a 

microdeletion on chromosome 8 encompassing a long non-coding (lnc) RNA gene expressed in the skin 

and located close to a cluster of defensin genes [239, 240] , in a familial form of severe Buruli ulcer [241]. Recent 

studies of twins with early-onset leprosy led to identification of three rare variants of two genes (LRRK2 and 

NOD2), with deleterious and additive effects on disease development [242]. Kaposi sarcoma is caused by 

infection with HHV8, a  -herpes virus with oncogenic properties, the seroprevalence of which varies 
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considerably worldwide, from 20 to 40 % [243]. Three AR genetic etiologies have been linked to susceptibility 

to KS (IFNGR1, STIM1 and OX40), and  three XL genetic etiologies have been linked to cutaneous KS 

(WAS, MAGT1 and CTLA4), highlighting the crucial role of T cells, and of OX40-dependent T-cell immunity 

in particular, for protection against HHV8 [244-246]. In addition, fulminant viral hepatitis, caused by hepatitis A 

virus (HAV) is a rare life-threatening disease,  for which two genetic etiologies have been discovered: 

IL10RB [247] and IL18BP deficiencies [248]. These findings suggest that the molecular basis of FVH in these 

patients may involve excessive IFN-γ activity during HAV infections of the liver [249].  Finally, NOS2 deficiency 

was found to be associated with fatal CMV disease in an otherwise healthy adult [250]. Altogether, these 

studies suggest that human genetic determinants play an important role in the course of infectious diseases. 

 

Mendelian resistance to infection 

Mendelian susceptibility to infectious disease is indissociable from Mendelian resistance to infection. The 

role of Duffy antigen receptor for chemokines (DARC)-expressing erythrocytes in protection against 

Plasmodium vivax infection was first reported in the 1970s [251]. In Plasmodium vivax malaria, the parasite 

makes use of the interaction between its Duffy binding protein and DARC to invade reticulocytes. AR DARC 

deficiency, due to a single-nucleotide variant, inhibits DARC transcription in erythroid cells [252]. Natural 

selection, in areas in which Pv is endemic, led to an increase in the prevalence of resistance associated 

with an absence of the Duffy binding protein [253]. Similarly, FUT2-expressing intestinal epithelial cells play 

a key role in resistance to norovirus and rotavirus infections, which cause diarrheal diseases [254]. 

FUT2 controls the secretion of ABO histo-blood group antigens (HBGAs) at the surface of the gut, where 

they act as receptors for nororovirus and rotavirus.  AR loss-of-function FUT2 variants confer a non-secretor 

phenotype, preventing the expression of HBGAs on the surface of the gut, making it more difficult for the 

virus to bind [255, 256]. However, the idea that HBGAs function as receptors is controversial and some authors 

have suggested that these antigens may simply enhance viral replication and disease development without 

being essential for infection per se [257]. FUT2 non-secretor status has also been linked to susceptibility to 

various diseases. Consistently, a complex pattern of natural selection has been described for FUT2, with 

most variants displaying a long history of balancing selection in Eurasian and African populations [258]. 

These advances in our understanding of monogenic resistance have highlighted the importance of non-
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professional immune cells in protective immunity. Human genotypes at the DARC and FUT2 loci blocking 

the entry of parasites and viruses into non-professional immune cells have demonstrated how genetic 

variants in erythrocytes and the intestinal epithelium can have a life-saving effect. Finally, AR CCR5 

deficiency, which has been found to confer resistance to HIV-1, illustrates the role of complete deficiencies 

of pathogen entry receptors in mechanisms of Mendelian resistance [259-261]. The most common loss-of-

function variant of CCR5 is a 32-base pair deletion with a minor allele frequency of 10% in the European 

population. The genetic mechanisms of protection against severe infectious outcomes and resistance to 

infection are subject to positive selection, providing a survival advantage. 

 

Future directions 

The human genetic basis of infectious diseases remains elusive in most affected individuals, driving 

ongoing efforts to unravel the genetic determinants underlying diseases, including those occurring 

sporadically. In large cohorts of patients with narrow infectious phenotypes, the identification of causal 

genetic etiologies depends largely on the disease itself and its prevalence (ranging from 50% for MSMD to 

1% for tuberculosis) [8]. Other genetic hypotheses (e.g. weak clinical penetrance, digenic or oligenic models) 

have not yet been thoroughly tested and might explain many infectious phenotypes. Recent discoveries of 

common monogenic alleles in the general population — such P1104A TYK2 and the role of this allele in the 

homozygous state in TB [41] through a selective biochemical effect on IL-23-mediated IFN-γ immunity, or 

D31N PTCRA [262], which increase the risk of autoimmunity — indicate promising future directions for IEI 

research. Digenic or oligogenic models with strong effects will probably shape the future of this field. 

Nevertheless, many patients still have no known genetic etiology, particular for the more frequent diseases. 

Widespread access to WES has already resolved many genetic cases, and the possibility of performing 

WGS combined with long-read technology may soon make it possible to determine not only the role of non-

coding variants but also that of more complex variants involved in chromosome architecture, such as short 

and long repeats, CNVs, inversions, or translocations. The computing challenges posed by the large 

amounts of data generated are gradually being resolved. The bottleneck is not currently the identification 

of variants, but substantiating the deleterious nature of the variants identified and their causal role in the 

disease studied. Diagnosis based on the identification of a variant without functional validation persists and 
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poses inherent risks[173, 262-264]. The ongoing elucidation of interindividual variability in responses to specific 

pathogens is improving our genetic understanding and providing deeper insight into the phenomenon of 

incomplete penetrance  (Table 1). Furthermore, the identification of novel genetic causes of specific 

infectious diseases is enriching our knowledge of cellular, immunological, and pathophysiological 

processes in an unbiased manner. This should help to define the cell subsets and pathways crucial for the 

control of particular infections in vivo and will serve as a basis for the development of preventive and 

therapeutic strategies based on physiological mechanisms. These discoveries will also facilitate the 

development of genetic counseling for affected families. 
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Figure 1: Schematic representation of the cooperation between phagocytic cells and T and NK 
cells during bacterial invasion.  
Molecules for which the genes are found mutated in patients with MSMD are represented in pink. 
Molecules for which the genes are found mutated in patients with TB are represented with a red 
surrounding. Molecules in pink with a red surrounding indicate that patients were found to suffer 
from MSMD or TB or both. Autoantibodies to IFN-g in patients with MSMD are also represented. 
 
Figure 2: Schematic representation of the signaling pathways activated during C. albicans 
infection.  
Molecules for which the genes are mutated and responsible for syndromic chronic 
mucocutaneous candidiasis (CMC) are represented in pink. Molecules for which the genes are 
mutated and responsible for isolated CMC are represented with red surroundings.  
Autoantibodies neutralizing IL-17A and/or IL-17F in patients with syndromic CMC (APS-1/APECED 
patients) are also represented. 
 
Figure 3: Schematic representation of the skin and the cooperation between target cells 
(keratinocytes), antigen-presenting cells (APCs) et T lymphocytes in the cutaneous anti-HPV 
immune response.  
Mutated genes found mutated in patients with isolated EV are in red. Molecules for which the 
genes are found mutated in patients with syndromic EV or recalcitrant warts are represented in 
pink. 
 
Figure 4: Schematic representation of the cooperation between Epithelial/neuron cells sand 
plasmacytoid dendritic cells during viral invasion.  
Molecules for which the genes are found mutated in patients with viral encephalitis are 
represented in pink. Molecules for which the genes are found mutated in patients with viral 
pneumonia are represented with a red surrounding. Molecules in pink with a red surrounding 
indicate that patients were found to suffer from HSE or viral pneumonia or both. Autoantibodies 

to IFN- and  in patients with pneumonia are also represented. 
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  Infectious agent Clinical 
phenotype 

Immunological 
phenotype 

Gene Inheritance # 

Mycobacterial 
diseases 

BCG vaccines 
and 
environmental 
mycobacteria 

Mendelian 
Susceptibility to 
Mycobacterial 
Diseases (MSMD) 

IFN-γ 
deficiency 

IFNGR1, IFNGR2, 
IL12RB1, IL12B, 
NEMO, STAT1, CYBB, 
IRF8, ISG15, TYK2, 
RORC, IL12RB2, 
IL23R, SPPL2A, JAK1, 
IFNG, CCR2, IRF1, 
MCTS1, ZNFX1, 
TBX21, USP18 

Mendelian 
or 
monogenic 

AR, AD, XR 

  Mycobacterium 
tuberculosis 

Tuberculosis (TB) IFN-γ or TNF 
deficiency 

IL12RB1, TYK2, ITK, 
PDCD1, TNF 

Monogenic AR 

  Mycobacterium 
ulcerans 

Buruli ulcer Defensin 
deficiency 

Chr. 8 microdeletion Monogenic AR 

  Mycobacterium 
leprosy 

Leprosy LRRK2 and 
NOD2 
deficiency 

LRRK2 and NOD2 Digenic AR, AD 

Fungal 
diseases 

Candida sp. Chronic 
Mucocutaneous 
Candidiasis (CMC) 

IL-17 deficiency IL17F, IL17RA, 
IL17RC, TRAP3IP2, 
STAT1, JNK1, IL6ST, 
CARD9, IL12B, 
IL12RB1, IL23R, 
STAT3, REL, ZNF341, 
RORC 

Mendelian AR, AD 

  Dermatophytes  Invasive fungal 
diseases 

CARD9 
deficiency 

CARD9 Mendelian AR 

Bacteria 
disease 

Neisseria Meningitis Complement 
deficiency 

C1QA, C1QB, C1QC, 
C1S, C2, C3, C4A, 
C4B, CFH, CFI, 
C5, C6, C7, C8A, 
C8B, C9, CFB, CFD, 
CFP 

Monogenic AR, XR 

  Streptococcus 
pneumoniae (and 
other 
encapsulated 
bacteria) 

Meningitis, 
pneumonia, ENT 

Complement 
deficiency 

C1QA, C1QB, C1QC, 
C1S, C2, C3, C4A, 
C4B, CFH, CFI, CFP 

Monogenic AR 

      TIR response 
deficiency 

IRAK4, MYD88, 
NEMO, HOIL1, HOIP 

Monogenic AR, XR 

      Specific 
antibody 
defect/asplenia 

RPSA Monogenic AD 

  Staphylococcus 
aureus 

Severe and 
recurrent 
pneumonia, skin 
infection (CMC, 
Abscesses) 

TLR2 response 
deficiency or 
IL-6 deficiency 

TIRAP, IL6RA, 
ZNF341, STAT3, IL6ST 

Mendelian 
or 
monogenic 

AR, AD 

      Increase 
sensitivity to 
𝛂-toxin in non-
hematopoietic 
cells 

OTULIN Monogenic AD 

  Tropheryma 
whipplei 

Whipple’s disease IRF4 or CD4 
deficiency 

IRF4, CD4 Monogenic AD, AR 

Viral diseases 
of the skin 

Human 
papillomavirus 
(HPV) 

Epidermodysplasia 
verruciformis 

EVER-CIB1 
deficiency and 
APC and/or T 
cells deficiency 

EVER1, EVER2, CIB1, 
RhoH, CORO1A, 
DOCK8, LCK, TPP2, 
STK4, ITK, FLT3L 

Monogenic AR 
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Table 1 : Genetic etiologies of infectious diseases categorized by infectious agents, clinical, and immunological phenotypes. 

 
Footnote: # Mendelian refers to complete concordance between the genotype and phenotype, with full penetrance of the trait. In contrast, 
monogenic diseases may exhibit incomplete penetrance. 
 
 

 

 

 

 

 

 

    Recurrent warts APC and/or T 
cells deficiency 

STK4, DOCK8, 
GATA2, CXCR4, 
FLT3L, CD4, ICOSLG, 
CARMIL2, IL7, CD28, 
CARD11, MAGT1, 
TRAC 

Monogenic AR, AD, XLR 

  Human herpes 
virus 8 

Kaposi sarcoma T cells and 
OX40-
dependent T 
cell immunity 

OX40, IFNGR1, 
CTLA4, MAGT1, 
STIM1 

Monogenic AR, AD 

Viral 
encephalitis  

Herpes simplex 
virus (HSV) 

Encephalitis TLR3-IFN-α/β 
deficiency, 
TFIIIA-RIG-I-
IFN-α/β 
deficiency 

TLR3, UNC93B1, 
TRIF, TRAF3, TBK1, 
IRF3, NEMO, GTF3A, 
IFNAR1, STAT1, 
STAT2, TYK2,  

Monogenic AR, AD 

       IFN-α/β-
independent 
deficiency 

RIPK3, SNORA31, 
DBR1 

Monogenic AR, AD 

Viral 
pneumonia  

SARS-CoV-2 COVID-19 
pneumonia 

Type I and III 
IFN deficiency 

IRF7, IRF9, STAT2, 
TYK2, TLR3, STAT1 

Mendelian AR, AD, XR 

  Influenza virus Severe influenza Type I and III 
IFN deficiency 

IRF7, IRF9, TLR3, 
TLR7, IFNAR1, 
IFNAR2, STAT2, 
TYK2, TBK1 

Monogenic AR, AD 

  Rhinovirus, 
Respiratory 
syncitial virus 
(RSV) 

Recurrent/severe 
infections 

MDA5 
deficiency 

IFIH1 Monogenic AR, AD 

EBV diseases  Epstein–Barr 
virus (EBV) 

X-linked 
lymphoproliferative 
disease; severe 
infection; B-cell 
lymphoma 

Cytotoxic T/NK 
cell deficiency 

PRF1, RAB27A, 
UNC13D, SYT11, 
LYST, SH2D1A, 
RASGRP1, ITK, 
MAGT1, DEF6, 
CTPS1, THFRSF9, 
CD27, CD70, IL27RA 

Mendelian 
or 
monogenic 

AR, XR 

  Cytomegalovirus 
(CMV) 

Lethal infection NOS2 
deficiency 

NOS2 Mendelian  AR 

Hepatitis Hepatitis A virus Fulminant hepatitis Increased 
IFN-γ activity 

IL18BP, IL10RB Monogenic AR 

Resistance to 
infection 

Human 
immunodeficiency 
virus-1 

Resistance to 
infection 

Lack of 
receptor for 
pathogen in 
CD4+ T cells 

CCR5 Mendelian AR 

  Plasmodium 
vivax 

Resistance to 
infection 

Lack of 
receptor for 
pathogen in 
erythrocytes 

DARC Mendelian AR 

  Norovirus Resistance to 
infection 

Lack of 
receptor for 
pathogen in 
intestinal 
epithelium 

FUT2 Mendelian AR 
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