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Abstract

We consider a dynamic buyer-seller interaction. Instead of the buyer’s valuation, it is the frequency

with which he needs to trade that is the buyer’s private information. The difference matters. With

commitment, in particular, full surplus extraction is possible, via, for instance, limited-time offers.

Without commitment, ratcheting is mitigated, as not buying is not necessarily a sign of strength.

Because time is informative, the seller learns and may adjust her behavior over time. She starts with

a pooling offer, before occasionally experimenting with separating offers. The seller’s payoff is not

monotone in her belief about the buyer’s type.

Keywords: Loyalty, Imperfect monitoring, Repeat customers.

JEL Classification Numbers: C72, C73, C78.

1 Introduction

Buyers come in all shapes and sizes, just like the products they purchase. Most of the

economic literature on adverse selection has focused on the case in which consumers

differ in their taste for quality or quantity –attributes of the product that a seller

supplies. The starting point of this paper is that buyers also differ in how often they

need to trade, an inherently dynamic trait that cannot be reduced to the analysis

of Mussa and Rosen (1978). While largely overlooked by the economics literature,

the importance of heterogeneity in repeat-buying has been emphasized in marketing

(Ehrenberg, 2000). The literature segments buyers into heavy vs. light buyers. A

heavy (category) airline customer, for instance, is someone who often travels across
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the country, whereas a light (brand) customer might be an individual who occasionally

travels on a single route using the same airline.

The purpose of this paper is to understand how this unobserved heterogeneity shapes

the seller’s pricing strategy, the buyer’s welfare and the dynamics of the relationship.

The difference between weight and volume (quantity, as in Mussa and Rosen) matters.

Results markedly differ, whether the seller commits or not.

To highlight the role of buyer purchase frequency, we abstract from the usual hetero-

geneity in valuations: consumers place the same value on all attributes of the good.

However, because heavy buyers anticipate more frequent needs, they are more willing

to experiment with competing products, to find those that are most suitable. If the

seller wishes to deter them from doing so, and so from losing them eventually, she

must supply a requisite premium. Hence, although consumers share the same value

for the good, their heterogeneity in purchase frequency endogenously generates het-

erogeneity in their reservation utility. Unlike in Mussa and Rosen, it is unclear what

kind of customer is more desirable: heavy buyers purchase more often, but entail a

lower markup.

Suppose first that the seller commits. Surprisingly, the seller can extract all the buyer’s

surplus, yet guarantee that the buyer trades with the seller whenever he needs to trade.

That is, unlike in the Mussa-Rosen paradigm, here, the buyer derives no rent from his

private information. Many pricing strategies achieve this. We focus on a simple one

that is prevalent in practice: limited-time offers. Buying triggers a countdown timer.

Attractive terms are offered to a buyer who takes action before the window closes.

Those terms are attractive to a heavy buyer, but the window’s brevity is dissuasive

for a light buyer.1

Under non-commitment, the seller learns from the buyer’s purchase behavior. On

1Leaving no rents to the buyer is optimal for the seller if her profit is linear in the utility that
she supplies, as is the case if price is one of the instruments that she controls. If she cannot adjust
the price, it might not be profit-maximizing to leave no rents to the buyer, as this requires the utility
to vary over time. If the seller’s profit is strictly concave in the utility she supplies, this might be
unappealing.
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the one hand, no trade can be statistical evidence that the buyer has a reservation

utility that is too high given the seller’s deal and, hence, that he is a heavy buyer.

On the other hand, a heavy buyer might have sampled alternatives: conditioning

on the event that he is not a lost customer is conditioning on the event that he

had few opportunities to do so, suggesting that he is a light buyer. Hence, unlike

with unobserved valuations, foregoing trade is not a show of strength and does not

automatically trigger more advantageous offers. This curtails ratcheting and facilitates

screening.

We solve for the Markov perfect equilibrium of the game, using the seller’s belief as

a state variable. This belief may drift up or down in the absence of trade, depending

on the strategy she follows, and which buyers she targets. In particular, it can drift

down whenever the seller caters to both types, but drift up whenever the seller targets

light buyers only (the “no news is good news” scenario). At the juncture of these two

events, the seller intersperses pooling offers, which if accepted leads to further pooling,

at least for a spell, with separating offers, which only a light buyer might accept.

Attracting the light buyer is not cheap, however, since such a buyer anticipates that

more attractive deals will occasionally arise if she turns down a separating offer.

For low beliefs, targeting the light buyer is attractive, but involves taking a chance

of losing the buyer if the buyer is heavy, a cost that increases with optimism (higher

belief). For high beliefs, catering to both buyers’ types is optimal, but repeat buying

does not often occur if the buyer is light, a revenue loss that increases with pessimism.

This leads to a non-monotone (quasiconvex) seller’s payoff as a function of the belief

she attaches to a buyer being heavy.

These peculiarities in the seller’s payoff and strategy differ markedly from the pre-

dictions of the model with heterogeneous values. Hart and Tirole (1988) show that,

absent commitment, the standard ratchet effect forces the seller to make a pooling

offer, at least when the buyer is sufficiently patient, the case on which they focus.2

2Otherwise, she makes a separating offer that only the light type accepts, leading to perfect price
discrimination from the second round onward.
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Here, these Coasian forces are diminished because the seller learns about the buyer’s

type over time. This is either because the buyer was supposed to visit if the oppor-

tunity arose but failed to do so, or because the buyer was likely to find a suitable

alternative yet remains in the market. A detailed comparison is carried out in Section

4.6, accounting for the differences in settings across papers.

A snapshot description of the formal model is as follows. The game is cast in con-

tinuous time. The buyer needs to trade at random times that are private, drawn

according to a Poisson process whose intensity can be either high or low, depending

on the buyer’s type. When the buyer needs to trade, the buyer can either turn to

the seller or to an outside option. In the latter case, this outside option is suitable

with some exogenous, i.i.d. probability, in which case the buyer exits the relationship

(and ends the game), or not. The seller observes all the buyer’s trades with her, and

nothing else. Given her information, she makes an offer at every point in time, directly

formulated in terms of the utility it provides to the buyer, which the buyer observes

if he needs to trade at that moment.

With commitment, we may invoke the revelation principle to simplify the seller’s

problem, and we simply exhibit a scheme that extracts all the buyer’s surplus, while

ensuring that the buyer always wants to trade with the seller (Theorem 1). In the

absence of commitment, attention is restricted to Markov perfect equilibria. That is,

the deal the seller offers is a function of her belief about the buyer only. The Markov

perfect equilibrium (MPE) need not be unique. While our description above pertains

to the arguably more interesting MPE of the game (see Theorems 2 and 4), there

might exist another equilibrium, in which the seller makes a pooling offer for every

belief she may hold (see Theorems 3 and 5). Depending on the parameters, one or

the other equilibrium (or both) might exist. Focusing on the limiting equilibrium of

the finite-horizon game as the horizon length increases restores uniqueness.

Examples of limited-time offers abound. Such deals are common in many markets,

from retail to the service industry.3 Without commitment, our results address the

3For instance, Burger King or Taco Bell regularly offer buy-one-get-one-free deals to repeat
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personalization of pricing and services in business-to-business (B2B) relationships. For

instance, firms that make regular purchases over a certain period receive discounted

prices on future orders, priority customer service or extended payment terms.4

There are a number of papers looking at the economics of repeat customers with one-

sided private information. In these papers, the private information pertains to the

buyer’s value for the good and flexible transfers are typically available. In contrast, in

this paper, consumers do not differ in their value for the good but in the frequency of

their consumption need. Regardless of their frequency of trade, buyers in our model

prefer higher over lower quality, and they receive the same utility from any given

provided quality. Moreover, we do not allow for flexible transfers. Crémer (1984)

analyzes a two-period model in which consumers learn their own value for the good

through consumption, and transfers are available. Kennan (2001) analyses repeated

contract negotiations between a buyer and a seller, where the buyer has persistent

private information about his value for the good. Hart and Tirole (1988) analyze the

optimal contract between a seller and a buyer whose (persistent) valuation for a per

period service is private. Battaglini (2005) looks at the optimal long-term contract

when consumers’ preferences evolve following a Markov process.5

The type-dependent reservation utility of the buyer clearly plays a key role in the

customers through their mobile app. Similarly, the gym chain Orangetheory Fitness regularly offers
deals where purchasing a certain number of classes entitles the consumer to a complimentary future
session. Supercuts, a chain offering haircuts, regularly offers a discount on a future haircut if the
customer books within a specific timeframe. While we are not aware of economic papers on firms
screening by purchase frequency specifically, there are a number of papers on time-limited offers
being used as a screening device: among others, see Baik and Larson (2023), Chevalier and Kashyap
(2019), Gerstner and Hess (1991), Gerstner et al. (1994), and Nevo and Wolfram (2002).

4While companies offering such personalization are often not transparent about these schemes,
or may provide such customized pricing and services through individual negotiations or account
management, there are a number of companies known to offer such personalization. For instance,
Amazon Business (the B2B arm of Amazon), Office Depot Business Solutions (the B2B arm of Office
Depot), Grainger (a large industrial supply distributor), and Cisco (a technology and networking
equipment provider) all offer customized pricing and services based on purchase patterns. While
largely overlooked by the economics literature, several marketing papers examine the link between
quality and purchase frequency. See Athanasopoulou (2009) for a survey.

5Further references that are more tangentially related are provided in Fudenberg and Villas-Boas
(2006) in their survey article on behavior-based price discrimination. Hosios and Peters (1993) is also
tangentially related.
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analysis. The difficulties and peculiarities that type-dependent reservation utilities

raise for adverse selection models are thoroughly examined in Jullien (2000).

2 Model

Time t ≥ 0 is continuous and the horizon is infinite. There are two players: one buyer

(he) and one seller (she).

This is a game of incomplete information. The buyer is one of two types, which is

private information. Either the buyer is a heavy (h-type, for short), or a light buyer (l-

type). Heavy buyers have more frequent needs to trade. More specifically, the buyer

needs to trade at times that are exponentially distributed, with parameter λh, λl,

depending on the type, with λh > λl > 0.

Arrival times are private information as well. A buyer who needs to trade at time τ has

the choice between the seller’s offering, and an outside option. We follow Schmalensee

(1982) by modeling the outside option as the offering of an alternative seller, whose

good’s quality or fit is uncertain.6 If he picks the outside option, with probability

α ∈ (0, 1), the buyer exits the game. This is interpreted as the event in which the

alternative seller who is sampled turns out to be a good match, and so the buyer

becomes a lost customer for the seller. Such an event is i.i.d. across those times –think

of a large number of possible alternatives, of which the outside option is the reduced-

form, each of which is equally likely to be suitable given our buyer’s preferences. If

the match is bad, the buyer remains attentive to the seller’s future offerings.

Hence, we have in mind a perishable product that is an experience good, so the only

way that the consumer can resolve uncertainty about its fit is to purchase a brand

and try it, and for simplicity, in the product class considered, a product “works” or

“does not work” for the consumer, e.g., stainless steel razor blades. That uncertainty

no longer applies to the seller in our game, whose suitability for the buyer is already

established.

We have assumed that a buyer who eschews trading with the seller necessarily samples

6See also, in particular, Villas-Boas (2004).
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the outside option. This is for convenience: it is readily checked that, in equilibrium,

the buyer prefers sampling the outside option rather than sitting out. Conversely, we

have assumed that a buyer cannot pretend to have a need when he does not. This is

more restrictive, but innocuous provided that the utility from consuming a unit when

it is not needed is low enough. To be sure, taking a flight at the end of the year to

maintain or improve one’s tier is not unheard of, but it is the exception rather than

the rule. Finally, we assume that a buyer who finds a suitable match elsewhere never

returns –a simplification to be sure, but one that captures the conventional wisdom

that “acquiring a new customer is anywhere from five to 25 times more expensive

than retaining an existing one” (Gallo, 2014).

At any time t, the seller offers a distribution over utilities Ut. Because the buyers’ types

do not differ in their valuation for the good, we do not need to take a stance regarding

the actual levers that the seller uses to control this utility, which might include price,

quality, a quantity/price schedule, etc. It could also depend on other random variables,

such as the actual volume the buyer wants to buy on that particular occasion. All that

matters is that the buyer’s type does not affect his preference over these instruments,

so that the derived expected utility is a sufficient statistic. A buyer who needs to

trade gets to observe both the distribution over utilities and the realized draw from

this distribution, before choosing between taking this offering, or the outside option.

In case the seller offers a nondegenerate distribution over utilities, she does not see

the realization that the buyer has drawn, in case the buyer had a need to trade (which

she does not observe, as mentioned), unless the buyer takes this offering.

All rewards are discounted at the common interest rate r > 0. Whenever the buyer

takes the offering Ut, this is his reward. If the buyer samples the outside option,

he obtains some fixed utility Uo > 0 in the case of a good match, that is, with

probability α, and 0 otherwise.7 If the match is good, the buyer exits the game, and

7We take the utility of a good match to be type-independent, in line with our focus on the
trading frequency as the only feature distinguishing heavy from light buyers. Picking this utility
constant is convenient, but inessential. We might as well take the net present value of a good match
as a primitive, at the cost of introducing additional parameters.

7



his continuation payoff is the discounted sum of these utilities Uo, which he obtains

whenever the need for a trade occurs. That is, his expected continuation payoff is

then8

E

[

∑

τn

e−rτnUo

]

=
λk

r
Uo =: Zo,k,

with k = h, l, where (τn)n∈N are the arrival times of the buyer. Note that this continu-

ation payoff is higher for the h-type. That is, the reservation utility is type-dependent,

as a consequence of the difference in arrival rates.

The seller’s reward when her offering Ut is accepted by the buyer is denoted Π(Ut). We

assume that Π is continuous, strictly decreasing in U and strictly positive under com-

plete information (see below). In Section 4.4, concerned with equilibrium uniqueness,

and for the figures, we assume that Π(U) = R − c · U , for some constants R, c ∈ R+.

The buyer and seller’s rewards at every instant when no trade takes place for either

party are normalized to 0. The players’ objective is to maximize their payoff, that is,

the expected discounted sum of rewards.

We conclude this section with the benchmark of complete information. The seller

has no incentive to offer more than the bare minimum which keeps the buyer from

sampling the outside option. Therefore, unless she chooses to let him go, the utility

Uk the seller offers to the buyer of type k solves

Uk +
λk

r
Uk = α

(

Uo + Zo,k
)

+ (1− α)
λk

r
Uk.

Indeed, by the one-shot principle, the buyer is indifferent between staying with the

seller forever, or trying the outside option once, and reverting to the seller forever in

case of a bad match. Solving,

Uk =
λk + r

αλk + r
αUo. (1)

The utility level Uk that the seller must offer to the buyer is higher if the buyer is

known to be heavy (as (λh + r)/(αλh + r) > (λl + r)/(αλl + r)). While it might well

be that, in many applications, the outside option Uo is also type- dependent, with

8We omit the standard definitions of outcomes –infinite histories– and realized payoffs.
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heavy buyers having better outside opportunities, we do not need to assume as much:

their higher trade frequency already makes experimentation with other sellers more

attractive to them.

Let Πk := Π(Uk) denote the seller’s reward from serving a buyer of type k. Because

Uh > U l, Πh < Πl. We assume that Πh > 0, so the seller has no incentive to exclude

either type of buyer under complete information. Because Πh < Πl, but a buyer of

h-type comes more often than a buyer of l-type, the seller might find either buyer

type more desirable:

λh

r
Πh ≶

λl

r
Πl.

Hence, a higher belief is not necessarily “good news,” regarding the seller’s payoffs,

although it is convenient to describe higher beliefs this way, as we do.

3 Commitment

Here, we assume the seller can commit. Then, without loss, we may assume that the

optimal mechanism has the buyer reveal his type, and as a function of this report,

specify a utility level after each sequence of arrival times. Formally, a mechanism is a

pair of maps Uh,Ul, where, for θ = h, l,

Uθ : ∪n∈N R
n
+ → R

(τ1, τ2, . . . , τn) 7→ U ,

where τj is the interarrival time between the j − 1-th visit and the j-th visit. That

is, Uθ(τ1, τ2, . . . , τn) is the utility provided at time tn =
∑n

j=1 τj to a visiting buyer

who reported type θ, and already visited at times tj =
∑j

i=1 τi, j < n. Without

loss, the mechanism satisfies incentive compatibility; that is, type θ prefers reporting

truthfully.

It is tempting to think that, under commitment, the problem is “static.” However,

the seller does not simply want to frontload the payment (say, if this is one of the

instruments determining utilities) to the first encounter. To see why this is suboptimal,

note that she then either rations one of the types (one of the prices involving a cap on
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the “net present number of future times” the buyer comes for the service), in which

case she leaves some surplus on the table (there are histories after which either type

arrives very often in a short span of time), or she does not, but then she has to

charge the same price to both types, again leaving some surplus to at least one of the

buyer’s types. Backloading is not an option either, both because the buyer’s needs

can’t wait –the utility must be delivered when he needs it– and because the buyer is

not committed –if payment was an instrument available to the seller, the buyer would

just leave the seller for the outside option if she had a debt that increased sufficiently

over time.

Yet, with commitment, the seller can reduce the buyer’s utility to his payoff under

complete information, and have the buyer always visit the seller. In the case of linear

cost, this implies that the seller receives the same payoff as under complete informa-

tion, i.e., she leaves no rents to the buyer.9

The construction is informally described as follows. The buyer first truthfully reports

his type: if he reports light, he obtains U l whenever he visits the seller, which, as a

light type, he does whenever the opportunity arises. If he reports heavy, he obtains

the following deal: at the first visit, he obtains utility U I , to be determined; if he then

visits again within a delay of T ∈ R+, he obtains utility UF . As soon as he does, or if

he fails to visit within this delay, he faces the same deal as was offered to start with

after his initial report: the utility U I is supplied at the next visit, followed by UF if

another visit takes place within T of that next visit, etc.10

We choose the triple (T,U I ,UF ) so that the heavy type is indifferent between visiting

the seller or not when visiting the seller entails utility U I ; he strictly prefers to visit

the seller over the outside option if a visit entails utility UF . For the light type, the

9If the cost is strictly convex, this conclusion does not follow –indeed, it is is critical in the
construction below that the utility level provided to the buyer is not constant over time –hence, the
seller’s average cost is not equal to the cost of supplying the average utility.

10Note that, with this scheme, the buyer obtains UF at best half the time. Perhaps it would be
more realistic to assume that any visit opens a window of length T over which UF is supplied if a
visit ensues, whether or not UF has already been supplied at the last visit. We chose our formulation
for convenience, but many alternative mechanisms exist, with the desired properties.
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same holds: intuitively, the delay T is chosen to be sufficiently short such that the

light buyer discounts the opportunity to take advantage of the better deal UF .

Hence, time is used as a screening device. This is reminiscent of contract theory with

hard evidence: here, the light buyer cannot replicate the probabilistic frequency of

visits of the heavy type, and the seller can use this to eliminate rents that would

otherwise arise. However, note that the same result also holds if the buyer can trade

even when he has no need, provided that he derives little enjoyment from such a

trade.

Solving for such a triple is a matter of simple algebra. Fix T > 0. Let us denote by

Zλ
t the ex ante payoff of a buyer with arrival rate λ = λl, λh, who visits the seller

whenever he has the chance to do so, and has another t ≤ T time-to-go over which

the next visit would yield utility UF . Therefore, Zλ
T is the payoff when the buyer just

visited the seller and derived utility U I , and Zλ
0 is his payoff when this time-to-go

runs out, so that the next utility is (back to) U I . Keeping in mind that time-to-go

decreases as time passes by, Zλ
t satisfies

(r + λ)Zλ
t + Żλ

t = λ(UF + Zλ
0 ), (2)

with boundary condition

Zλ
0 =

λ

λ+ r
(U I + Zλ

T ). (3)

The solution of this differential equation is

Zλ
0 =

λ

r

(

U I +
λ(e(λ+r)T − 1)

e(λ+r)T (2λ+ r)− λ
(UF − U I)

)

. (4)

Given T , we then pick U I ,UF to satisfy Zλl

0 = λl

r
U l, Zλh

0 = λh

r
Uh, that is, both types

are held to their outside option; in particular, lying does not benefit either type at

the reporting stage. It is readily shown that UF ≥ U I (see appendix).11 Hence, either

type strictly prefers to visit the seller if he gets the opportunity to do so during the

window of length T that opens after a visit. Hence, conditional on reporting heavy,

either type of buyer visits the seller whenever the opportunity arises. We summarize

11The difference UF − UI is actually decreasing in T . A seller with convex cost prefers longer
windows T .
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this discussion with the following theorem.

Theorem 1 There exists a mechanism such that the buyer comes whenever he has a

need to trade, and is held down to his reservation utility, independent of his type.

As mentioned, this mechanism is not unique. The one we have focused on has the

benefit of being simple to describe, common in practice, and rich enough that we can

choose its parameters so that the players’ payoffs are positive at all times.

If the seller’s profit function Π(·) is strictly concave, extracting all surplus is not

necessarily desirable for the seller. While solving for the optimal mechanism is beyond

the scope of this paper, a few observations simplify the seller’s problem. For inference

purposes, conditional on the buyer’s n-th arrival occurring at time t, the exact earlier

arrival times are uninformative. Hence, the seller might as well offer utility functions

{Un(·)}n∈N to the h-type, which specify a utility level he gets if his n-th arrival occurs

at time t. (Meanwhile, it is optimal for the seller to offer U l always to the professed l-

type.) Indeed, if the buyer could commit (so that only his ex ante individual rationality

constraint must be satisfied), one can characterize these functions; not surprisingly,

they are decreasing functions of time, which implies that the buyer would want to

renege and take the outside option, at least after some histories. Such ex post inefficient

exclusion serves screening, and is ex ante desirable from the seller’s point of view, to

an extent that depends not only on her cost, but also on her revenue. That is, the

optimal mechanism also specifies times {T (n)}n∈N ∈ R+ such that the buyer must

have arrived at least n times by time T (n) for the seller to offer a utility level that

is acceptable to either type. In turn, this significantly complicates the calculation of

the probability that the buyer arrives for the n-time at time t, since he will have had

to fulfill the time-limits during the meantime. Hence, we do not push the analysis

further here.

We conclude this section with four remarks.

Commitment: Commitment is not actually required to achieve the outcome de-

scribed in Theorem 1. As is often the case in this literature, non-commitment only
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bites to the extent that some refinement (usually, Markov perfection) is imposed. In

the spirit of the durable-goods literature, here, reputational equilibria can be devised

that implement the commitment solution, relying on the threat of reversion to some

Markov equilibrium. However, as discussed in Section 4.4, such equilibria are not

robust to a finite horizon, no matter how long.

Storable Units: Theorem 1 relies critically on units being nonstorable. If the buyer

can store units, buying and consuming them as he wishes, there is no longer a dis-

tinction between weight and volume. The analysis of Mussa and Rosen applies, and

rents must be granted to the buyer given his private information.

More Types: Here, we have focused on two types only. One might wonder whether

the analysis extends to more types. In particular, consider an intermediate type, with

arrival intensity λm ∈ (λl, λh). Because the expected number of needs of such a buyer’s

type is a convex combination of the expected number of the other two types, he could

“mimic” such a convex combination by mixing his initial report. This suggests that he

might be able to secure rents in this fashion. Yet, this is not the case. The contract

can depend on richer statistics than the expected number of needs. In particular, by

conditioning on, say, the variance in the number of units demanded, the seller could

separate a truthful m-report from the mixture over l- and h-reports. Formally, a type

defines a distribution over sample paths of realized times at which needs arise, and

the space of sample paths is sufficiently rich not only to distinguish three types, but,

indeed, an arbitrary continuum of arrival intensities. Of course, the richer the set of

types, the richer the set of contracts.

Formally, in Online Appendix C, we extend Theorem 1 to the case of a bounded

interval of types λ ∈ [λ, λ], 0 < λ < λ. A mechanism exists such that the buyer

comes whenever he has a need to trade, and is held down to his reservation utility,

independent of his type. The contract is a simple variation of the one we have used

with two types only. It involves an initial utility U I(λ̂), given a report λ̂ ∈ [λ, λ], and

a second higher utility UF (λ̂) if such a demand arises during a window that closes

either when this demand materializes, or at a random time, occurring at a constant
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rate κ · λ̂, for some κ > 0 (as with two types, this deal repeats over time). Theorem

1 might be reminiscent of the full surplus extraction result of Crémer and McLean

(1988). Indeed, both rely on a separation argument, but it is not obvious that the

analogy extends further.

Deterministic vs. Stochastic Needs: Of course, if the set of types is the set of

sample paths itself, separation is no longer possible without conceding rents. This

is what happens if the buyer has foreknowledge of the timing of his needs, and the

support of this set of possible types is rich. On the other hand, if the set of types

is small enough (e.g., one type wishes to receive the newspaper every day, the other

type only cares about the weekend edition), separating types without granting rents

remains possible.

4 No Commitment

4.1 Equilibrium Concept

To define the non-cooperative game, additional notation is needed. A seller’s history

ht
S specifies the distribution of utilities she has offered at all times s < t, the times

(τn)n at which the buyer traded with the seller and the realized utility the buyer drew

at those times. A buyer’s history ht
B includes, in addition to ht

S, the times at which

the outside option was sampled, unsuccessfully, as well as the realized seller’s utility

whenever he had a trade need (including possibly at time t). We ignore histories that

occur after the buyer exits, if he does.

We assume that exit is observable. This is without loss of generality. Even if this is

rarely the case in reality, it does not matter: the seller will not have to deliver on the

promised utility ever again if exit has occurred, so it is irrelevant what she does after

the buyer exits. Hence, the seller might as well condition on the event that exit has

not occurred, which is equivalent to assuming that exit is observable.

At any time t (throughout, conditional on no exit), given the seller’s history ht
S, the

seller has a belief µt = P(λ = λh | ht
S) that the buyer is of the h-type. Throughout, it
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is more convenient to work with the likelihood ratio ℓt := ln µt

1−µt
, despite the cost of

having to deal with the domain R, the extended real line: we interpret ℓt = ±∞ as a

degenerate belief –the seller believes with probability one that the buyer is the h- or

l-type. With some abuse we also refer to ℓt as the belief. The prior belief is denoted

µ0, or ℓ0.12

We focus on equilibria in (stationary) Markov strategies, with the seller’s belief as

state variable. We omit the definition of strategies that are not Markov, but note

that, as is standard, equilibria in Markov strategies remain equilibria when a larger

class of strategies is allowed –in particular, players are allowed to deviate to non-

Markov strategies. From here on, we drop the qualifier Markov.

The seller’s strategy is a map σS : R 7→ ∆(R+), mapping her belief into a distribution

over (positive) utilities.13 Without loss, we restrict attention to distributions with

finite support. Measurability assumptions are made below (see footnote 14).

A buyer’s strategy is a map σk
B : R×R+ 7→ ∆({In, Out}), specifying for each time at

which an arrival might occur, a (possibly random) choice between the outside option

and the seller’s offering, as a function of his type k = h, l, the seller’s belief ℓ, and the

realized seller’s offering U . Specifically, we let σk
B(ℓ,U) denote the probability that

the buyer picks the outside option.

Absent any trade, the belief evolves according to the differential equation14

ℓ̇t =
∑

U

P(U)
(

(1− σl
B(ℓt,U)(1− α))λl − (1− σh

B(ℓt,U)(1− α))λh
)

, (5)

12Equivalently, we may assume that ℓ0 is the seller’s belief when a buyer first approaches her, an
assumption that is perhaps more palatable for applications.

13While the notation does not account for this, we allow duplicate utilities, so to speak, to avoid
issues of existence: that is, the seller is allowed to offer two identical utility levels, with labels that
induce different behaviors by the buyer: one, say, that both types accept, and one that only one type
is supposed to accept.

14 Requiring (5) to be Lipschitz continuous in ℓ is too strong an assumption, as it turns out:
stationary points of the belief dynamics are (sometimes) reached in finite time, so that the assumption
fails in interesting cases.15 We assume that the RHS of (5) is one-sided Lipschitz continuous in ℓ, so
that, given ℓt, (5) has at most a unique solution on [t, t+ ε], for some ε > 0, and all ℓt and t. More
precisely, we assume that the domain of the belief, R admits a finite partition in intervals, possibly
including points, such that the RHS of (5) is one-sided Lipschitz continuous on each nondegenerate
interval. Primitive assumptions on σB, σS that ensure that this condition is satisfied are omitted.
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given any posted lottery over utilities, {P(U) : U ∈ R+}. To better understand

this equation, consider the special case in which the seller assigns probability one to

utility U only, which the l-type is supposed to accept (in case he gets the opportunity

to trade) and the h-type is supposed to reject. No-trade is an event of probability

1−αλh dt in case the buyer is an h-type, and of probability 1−λl dt if he is an l-type,

so that the likelihood ratio satisfies

dℓ

ℓ
=

1− αλh dt

1− λl dt
≃ (λl − αλh) dt.

Hence, the belief drifts up or down depending on the sign of λl − αλh. Indeed, no

trade is good news: on the one hand, the l-type is less likely to get opportunities to

trade, and so the absence of trade is bad news (in terms of the probability of the

h-type). On the other hand, exit has not occurred, and exit could have occurred if

the buyer was an h-type, so no-exit is good news in this regard. This dichotomy plays

an important role in the sequel, as λl − αλh < 0 implies that, in equilibrium, beliefs

always drift down in the absence of trade. We call this scenario the no news is bad

news case.

In case the buyer trades with the seller, the seller’s belief jumps, in a direction and

to an extent that reflects the buyer’s strategy. More precisely, given the realized U ,

and belief ℓt, the updated belief is

ℓt+ = ℓt + ln
λh(1− σh

B(ℓt,U))

λl(1− σl
B(ℓt,U))

, (6)

with the convention that ℓt+ = ±∞ in case σk
B(ℓt,U) = 0 for exactly one of k = h, l.

If both types are supposed to reject the offer, which is the only off-path event that

the buyer can trigger, the posterior belief could be set arbitrarily. For definiteness,

with one exception, the equilibria we construct under no commitment assume that

such an offer is interpreted as evidence that the buyer is of the l-type.16 Note that

this belief is common knowledge. This is why we assume that the buyer observes the

distribution of utilities that the seller offers, in addition to the realized utility, so that

the buyer’s information includes everything the seller knows.

16Refinements are discussed below. Note that updating (5)–(6) already encapsulates “no signaling
what you don’t know,” as the seller’s action is not informative per se.
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An equilibrium refers to a Markov perfect equilibrium. That is, fixing the equilibrium

strategies, and so the updating rules (5)–(6), we may view the game as a stochastic

game with state variable ℓ, and require the players’ strategies to be mutual best-replies;

that is, given any time t, any history up to that time, and the resulting belief ℓt, each

player’s continuation strategy maximizes his or her expected payoff, conditional on

the equilibrium strategies and the transition rules (5)–(6).

It is worth pointing out that, perhaps surprisingly, the equilibrium outcome under

complete information (described at the end of Section 2) is not the unique (Markov)

equilibrium outcome of the game with incomplete information, when the seller believes

the buyer to be of type k with probability one. Some refinement must be imposed to

rule out other, arguably less plausible equilibria. We return to this issue in subsec-

tion 4.4. Until then, we describe equilibria of the game with incomplete information

in which the equilibrium outcome of the continuation game with degenerate belief

coincides with the outcome of the game with complete information.

4.2 No News is Bad News

This section assumes that λl < αλh: that is, when only the l-type is supposed to

trade, absence of trade is bad news, even if the concomitant absence of exit is good

news: the belief ℓ drifts down at rate αλh − λl in this event. A fortiori, if both types

are supposed to trade, absence of trade is bad news too: the seller’s belief then drifts

down at the higher rate λh − λl.

A natural equilibrium candidate involves the seller using a cutoff strategy: she offers

Uh, and only Uh, whenever ℓ ≥ ℓ∗, for some ℓ∗ to be determined, and she offers

U l at lower beliefs. The h-type buyer accepts any offer that is at least equal to Uh;

hence, in equilibrium, he accepts offers as long as the belief remains above ℓ∗. The

l-type buyer accepts any offer above U l for ℓ < ℓ∗, and uses a cutoff Ǔ(ℓ) ≤ Uh

that is nondecreasing in ℓ for ℓ > ℓ∗, with Ǔ(ℓ∗) = U l. Its exact value does not

matter here (see (15)): it makes such a buyer indifferent between accepting the offer,

thereby disclosing his type, and thus obtaining U l forever in the continuation game,
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or rejecting the offer, but enjoying the opportunity to trade at utility Uh in the time

window until the belief drifts down past ℓ∗, at which point he will content himself

with U l.17 Fortunately, along the equilibrium path, the l-type buyer will be spared

this dilemma, as for ℓ > ℓ∗ he can expect to get Uh. This calculation implicitly

assumes that the seller interprets any acceptance of an offer strictly below Uh as a

clear indication that the buyer is of the l-type. While our seller could draw more

creative conclusions in such an event, accepting lower offers is strictly dominated for

the h-type, unless he aspires to get offers strictly above Uh by doing so, which is

rather wishful thinking.18

What pins the cutoff belief ℓ∗? Let V (ℓ; ℓ∗) denote the seller’s payoff, given belief

ℓ, under the cutoff ℓ∗. Typically, considering that the buyer adjusts his behavior

to the cutoff, one cannot expect the seller’s cutoff to be time-consistent.19 That is,

depending on ℓ, the seller might prefer different values for ℓ∗. Provided her favorite

cutoff is interior, this favorite ℓ∗ must solve the first-order condition V2(ℓ; ℓ
∗), where

V2(·; ·) denotes the derivative with respect to the second argument of V . In particular,

if she is willing to switch the utility level she offers at ℓ = ℓ∗, this belief must solve

V2(ℓ; ℓ
∗)|ℓ=ℓ∗ = 0. (7)

Fixing ℓ∗, the payoff function V can be solved explicitly, but as a stepping stone it

is easier to work with the rescaled payoff f(ℓ; ℓ∗) = (1 + eℓ)V (ℓ; ℓ∗) (so, dividing the

payoff by the probability 1 − µ that the buyer is of the l-type): on the range ℓ ≥ ℓ∗,

it is the unique solution of the delay differential equation, with j := ln(λh/λl),

rf(ℓ) = (λl + eℓλh)Πh + λl(f(ℓ+ j)− f(ℓ))− (λh − λl)f ′(ℓ), (8)

(where we drop the argument ℓ∗ from f), with boundary condition limℓ→+∞ f(ℓ)/(1+

17That is, unless this value would exceed Uh, in which case we set Ǔ(ℓ) = Uh.
18We note that our updating rules (5)–(6) (which are stronger than the usual requirements perfect

Bayesian equilibrium imposes) imply what we posit here as the seller’s inference, and the buyer’s
expectations –except in the event in which an offer below Ǔ(ℓ) is unexpectedly accepted.

19To be more precise, the seller’s payoff depends on the prevailing belief, ℓ, the cutoff ℓ∗, and the
cutoff the buyer expects the seller to use, call it ℓ∗e. In equilibrium, ℓ∗e = ℓ∗, but the seller takes ℓ∗e
as given, so the first-order condition is with respect to ℓ∗, keeping ℓ∗e, and then solving for the value
of ℓ such that ℓ = ℓ∗ = ℓ∗e.
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eℓ) = λhΠh/r. This equation has a familiar interpretation: the annuity (rf(ℓ)) is equal

to sum of the flow payoff ((λl + eℓλh)Πh, where (λl + eℓλh) is the probability of an

arrival and hence an acceptance, times 1 + eℓ), of the capital gain in case an arrival

materializes (λl(f(ℓ+ j)− f(ℓ))), and of the change in value due to the drift in belief

(−(λh − λl)f ′(ℓ)).20

Equation (8) admits as unique solution21

f(ℓ) =
λl

r
(1 + eℓ+j)Πh +

(

f(ℓ∗)−
λl

r

(

1 + eℓ
∗+j

)

Πh

)

e−κ(ℓ−ℓ∗), (9)

where κ is the unique positive root of

r + λl = λl

(

λh

λl

)−κ

+ (λh − λl)κ. (10)

As for ℓ < ℓ∗, given the rescaling, it holds that f(ℓ) = λlΠl/r. By continuity, this is

also the value of the constant f(ℓ∗) that appears in (9).

As it turns out, the necessary condition (7) pins down a unique candidate for ℓ∗.

Namely,

eℓ
∗

=
κ

1 + κ

λl

λh

Πl − Πh

Πh
. (11)

Both κ and ℓ∗ are increasing in r, in λl and decreasing in λh.

Formally, the seller’s strategy is

σS(ℓ) =











Uh if ℓ ≥ ℓ∗,

U l if ℓ < ℓ∗,
(12)

20The only perhaps surprising feature of this equation is the coefficient λl in front of the capital
gain, as opposed to the rescaled probability of a jump. Recall that f(·) is rescaled, so that, in
particular f(ℓ + j) is the payoff V (ℓ + j; ℓ∗), times 1 + eℓ+j. Yet, by Bayes rule, the ratio (1 +
eℓ+j)/(1 + eℓ), which is the probability that the buyer is of the l-type after an arrival, relative to
that prior probability, is simply λl divided by the probability of a jump.

21Continuous time is key to obtaining closed forms, and hence to verifying that candidate strate-
gies form an equilibrium. Even in continuous time, delay-differential equations such as (8) rarely
admit explicit solutions, and studying them requires considerable care (see Keller and Rady, 2001).
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λh

r
Πh

ℓ∗

Figure 1: Seller’s payoff in the bad news case.23

where ℓ∗ is given by (11). The buyer’s strategy is

σh
B(ℓ,U) =











In if U ≥ Uh,

Out otherwise,
(13)

σl
B(ℓ,U) =























In if ℓ ≥ ℓ∗ and U ≥ Ǔ(ℓ),

In if ℓ < ℓ∗ and U ≥ U l,

Out otherwise,

(14)

where Ǔ(ℓ) is given by, for ℓ ≥ ℓ∗,

Ǔ(ℓ) = U l + (Uh − U l) ·min

{

1,
λl

r
(1− α)

(

1− e−κ(ℓ−ℓ∗)
)

}

. (15)

It is readily verified that the value function V (·) (that is, the seller’s payoff function

given tis nothe optimal ℓ∗) is strictly quasiconvex and decreasing at ℓ∗.22 This is not

too surprising: for ℓ < ℓ∗, the seller bets on the buyer being of the l-type, giving up

on the buyer in the event he is of the h-type. Such a strategy is particularly costly

when the buyer is likely to be of the h-type. By continuity, the same calculus applies

for ℓ close to, but above ℓ∗. As for high enough ℓ, the seller’s payoff increases with ℓ

simply because she anticipates more frequent trade. Figure 1 illustrates.

We summarize this discussion with the following theorem.

22It is differentiable everywhere, including at ℓ∗.
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Theorem 2 The strategies given by (12), (13) and (19), and the belief updating rules

given by (5)–(6) constitute an equilibrium, provided λl < αλh.

Sufficiency is established in appendix.

We note that asymptotic learning is complete, but it does come at a cost to the seller,

in the sense that she might lose the heavy customer with positive probability. If ℓ ≤ ℓ∗,

she loses him with probability 1. If ℓ > ℓ∗, she loses him with probability

P
σ[ℓ∗ is eventually hit | k = h] = e−(ℓ−ℓ∗). (16)

Indeed, it is readily verified that this expression solves the functional equation

λhy(ℓ) = λhy(ℓ+ j)− (λh − λl)y′(ℓ),

subject to y(ℓ∗) = 1 and limℓ→+∞ y(ℓ) = 0, which is the defining property of this

probability. Perhaps surprisingly, the arrival intensities λk do not play a role in these

formulas. But, of course, they affect the probabilities via ℓ∗. We note that, as one

might have surmised, the probability that the heavy customer is lost is decreasing

in the seller’s patience (since ℓ∗ is increasing in r). The probability that an outside

option is suitable plays no role whatsoever, except in determining Uh,U l.

There is another simpler equilibrium, which exists for some parameters, and can be

viewed as the special case in which ℓ∗ → −∞: the seller offers Uh for any belief

ℓ > −∞. The h-type buyer accepts any offer over Uh. What would entice the l-type

to reveal his type? The seller would have to offer at least Û , which solves

Û +
λl

r
U l = α

(

Uo + Zo,l
)

+ (1− α)
λl

r
Uh,

or, rearranging, and using the definition of U l,

Û = U l + (1− α)
λl

r
(Uh − U l). (17)

That is, Û is the value that makes the l-type buyer indifferent between trading now,

and revealing his type, or forfeiting the trade, and getting Uh forever after, in case of

a bad match. Note that if r < (1− α)λl, the seller would have to offer more than Uh

to induce the l-type buyer to reveal his type. But such an offer would also be accepted
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by the h-type. Hence, r < (1−α)λl is a sufficient condition for such an equilibrium to

exist, as the seller is then unable to screen the buyer’s types. It is also necessary, as

otherwise, for low enough ℓ, the seller finds it profitable to offer Û as a way to screen

the buyer’s types, and save on the utility she must supply.

To summarize, the seller’s strategy is24

σS(ℓ) = Uh for all ℓ > −∞ σS(−∞) = U l, (18)

and the buyer’s strategy is, for k = h, l, and all ℓ > −∞,

σk
B(ℓ,U) =











In if U ≥ Uh,

Out otherwise,
(19)

σk
B(−∞,U) = In if, and only if, U ≥ Uk.

We then have

Theorem 3 The strategies given by (18) and (19), and the belief updating rules given

by (5)–(6) constitute an equilibrium, provided λl < αλh and r < (1− α)λl.

Needless to say, the seller prefers the cutoff equilibrium described first, and the buyer

prefers the simpler equilibrium without screening (although the h-type is indifferent).

4.3 No News is Good News

We now turn to the more complex case in which λl > αλh, so that the seller’s belief

drifts up in case only the l-type is supposed to accept. Hence, if the seller uses a cutoff

strategy as in the bad news case, offering Uh above it, and targeting the l-type only

below it, belief dynamics in the absence of trade will converge to the cutoff ℓ∗ from

either side of it.

If so, ℓ∗ must be a rest point of these dynamics. At the cutoff, the seller must offer a

lottery over the utilities that she supplies on either side, to ensure that the belief does

not budge, until one of these utilities is accepted: depending on the accepted realized

utility, the belief ℓ then either jumps up by j (as both types type accept Uh, but the

23The parameters in this example are (r, α, λl, λh, R, c) = (1/6, 2/3, 3/5, 1, 3, 1).
24Of course, σS(−∞) = U l, σk

B(−∞,U) if, and only if, U ≥ Uk.
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ℓ∗ ℓ∗ + j−∞ +∞

Light type accepts Both types accept

Seller’s belief ℓ

Figure 2: Belief dynamics at the cutoff ℓ∗.

h-type is more likely to get such an opportunity), or down to −∞ (as only the l-type

accepts the lower offer). This is why we define the seller’s actions as lotteries over

utilities, as opposed to a single utility level. Note that this would not occur under

the same dynamics in discrete time: the belief would jump back and forth above and

below ℓ∗, with the seller incessantly switching between the lower and higher offer,

with frequencies that converge to the weights attached to the lottery’s utility as the

period length vanishes.25 Yet, despite being an artifact of continuous time, this lottery

admits a simple interpretation: the seller uses different channels to sell her product

(say, direct to consumer vs. wholesale), but she only finds out which channel the buyer

has sampled in case this buyer makes a purchase. Indeed, there is a large literature in

marketing that emphasizes how pricing and consumer targeting should be adjusted

to the channel. See Figure 2 for an illustration of the belief dynamics at ℓ∗.

These dynamics have two consequences that markedly distinguish such an equilibrium

from the cutoff equilibrium in the bad news case. First, when ℓ < ℓ∗, the seller does not

25Formally, consider the discrete-time game in which the period length is ∆ > 0 (see Section
4.4 for details), and generic parameters such that the belief jump when both types are supposed to
accept (but fail to do so) and the belief jump when only the light type is supposed to accept (but
does not) are not multiples of each other. Fixing the strategies given in Theorem 4 (which we do not
claim are equilibrium strategies in discrete time), then, absent trade, the discrete-time dynamics of
the beliefs satisfy

lim
ε↓0

lim
∆→0

lim
n→∞

∑

n #1{ℓn∈(ℓ∗,ℓ∗+ε)}
∑

n #1{ℓn∈(ℓ∗−ε,ℓ∗)}
=

λl − αλh

(1− α)λh
,

cf. (20). The lottery is the familiar chattering control from optimal control, which allows to sidestep
the issue of an infinite number of switches on any finite-time interval that arises otherwise.
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give up on the h-type altogether: this type is dormant, sampling the outside option

until the belief is back to ℓ∗. Second, when ℓ < ℓ∗, enticing the l-type to disclose

his identity requires a utility strictly above U l: by stubbornly sampling the outside

option until the belief is back to ℓ∗, the l-type can anticipate getting eventually Uh.

The utility the seller supplies must be sufficiently high to deter him from doing so.

Formally, the seller’s strategy is

σS(ℓ) =























Uh if ℓ ≥ ℓ∗,

Uh wp. λl−αλh

(1−α)λh , Û(ℓ∗) wp. λh−λl

(1−α)λh , if ℓ = ℓ∗,

Û(ℓ) if ℓ < ℓ∗,

(20)

where Û(ℓ) is given by, for ℓ ≤ ℓ∗,

Û(ℓ) = U l + (Uh − U l)
λl

r

(1− α)(λl − αλh)κ

r + αλl + (λl − αλh)κ
e
− r+αλl

λl−αλh
(ℓ∗−ℓ)

, (21)

and ℓ∗ is given by

eℓ
∗

=
λlκ

λh(αλh + r)(1 + κ)

r(Π(Û(ℓ∗))− Πh) + λl(Πl − Πh)

Πh
, (22)

This cutoff is pinned down, here as in the bad news case, by the first-order condition

(7). Perhaps surprisingly, Û(ℓ∗) is decreasing in α, fixing Uh,U l.26 This is because

a higher arrival rate of suitable outside opportunities decreases the probability at

which the high utility Uh must be supplied at ℓ = ℓ∗ (the drift “up” is lower, so the

probability on the low offer must be higher). Hence, the buyer gains less from waiting

for the high utility, as it is less likely to arise soon. In turn, this means that the seller

has to compensate him less via the low offer. As one would expect, Û(ℓ∗) is decreasing

in r: the more patient the buyer, the more she must be offered as a compensation to

reveal his type.

This also means that the seller’s payoff from the low offer Û(ℓ∗) is increasing in α; as

a result, the net effect of α on ℓ∗ is ambiguous: the first term of (22) is decreasing

in α, reflecting the heightened risk of losing the heavy buyer when suitable outside

opportunities arise often. Similarly, a higher discount rate can either decrease or

26Taking into account how Uh,U l adjusts, the overall effect can be of either sign.
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Figure 3: (Light) buyer’s strategy (left) and buyer’s payoff (right) in the good news
case.27

increase ℓ∗, depending on parameters.

The buyer’s strategy is

σh
B(ℓ,U) =











In if U ≥ Uh,

Out otherwise,
(23)

σl
B(ℓ,U) =























In if ℓ > ℓ∗ and U ≥ Ǔ(ℓ),

In if ℓ ≤ ℓ∗ and U ≥ Û(ℓ),

Out otherwise,

(24)

where Ǔ(ℓ) is given by, for ℓ > ℓ∗,

Ǔ(ℓ) = U l + (Uh − U l) ·min

{

1,
λl

r
(1− α)

(

1−
(r + αλl)e−κ(ℓ−ℓ∗)

r + αλl + (λl − αλh)κ

)}

. (25)

The light buyer’s strategy and the buyer’s payoff are illustrated in Figure 3.

Note that the weights attached to the two utility levels of the lottery offered at ℓ∗

are pinned down by the requirement that ℓ∗ be a rest point of the belief dynamics. It

might well be that the higher utility level Uh appears with a high weight. This makes

it tempting for the l-type seller to pass on such realizations, and the utility level Û(ℓ∗)

reflects this: the higher is this weight, the higher is Û(ℓ∗). For some parameters, no-

tably, when the l-type is sufficiently patient, this could lead to Û(ℓ∗) above Uh (recall

that Û(ℓ∗) must compensate the l-type from revealing his type, which is particularly
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costly if he is patient). This cannot be, for otherwise the h-type would also accept this

offer. This leads to the necessary, and, as we show in appendix, sufficient condition for

this equilibrium to exist, namely, Û(ℓ) < Uh for all ℓ < ℓ∗, or, in terms of primitives,

given (25),

r(αλl + r) ≥ (λl − αλh)
(

(1− α)λl − r
)

κ. (26)

This defines a lower bound on r (fixing other parameters), as well as on α.

Perhaps more unexpectedly, there is another necessary condition: for the seller’s strat-

egy given by (20) to be optimal, it must be the case that she never prefers to make

an offer that both types reject. While Πh > 0 ensures that, under complete informa-

tion, exclusion is never optimal, this is not entirely obvious here, in particular, when

ℓ < ℓ∗ (as it turns out, she never wants to make an unacceptable offer for ℓ > ℓ∗,

see the proof of Theorem 4). Indeed, by making an unacceptable offer, the seller lets

the belief drift down, which means that the offer that she needs to make in order to

screen the l-type, Û(ℓ) goes down as well. Of course, this is a risky course of action,

as the buyer might find an attractive outside option in the meantime; nonetheless, it

cannot be ruled out without making an assumption on parameters. Specifically, let

H(ℓ) := Π(Û(ℓ)) +
λl

r
Πl

denote the seller’s continuation payoff when the buyer visits her (recall that Û(·) is

given by (25)).

Assumption A. It holds that ℓ < ℓ∗ ⇒ (r + αλl)H(ℓ) + α(λh − λl)H ′(ℓ) > 0.

Assumption A reduces to an assumption on the slope of Π(·), and is sufficient to

ensure that the seller does not want to make an unacceptable offer. Weaker sufficient

conditions exist (as well as less compact, but stronger assumptions stated directly in

terms of primitives), but some condition is needed: there are parameters for which

exclusion is optimal for some beliefs, despite Πh > 0. This is another difference with

the standard model in which private information pertains to valuations: here, the

27The parameters in this example are (r, α, λl, λh, R, c) = (1/6, 1/2, 3/4, 1, 3, 1). The light buyer’s
payoff is in red, the heavy buyer’s payoff is in blue.
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Figure 4: Seller’s payoff in the good news case.28

seller might benefit from (temporarily) excluding all types of buyers. Yet, we will

refrain from exploring what happens when the seller wants to do so and maintain

Assumption A throughout.

Theorem 4 The strategies given by (20), (23) and (24), and the belief updating rules

given by (5)–(6) constitute an equilibrium, provided λl > αλh and (26) holds, as well

as Assumption A.

For completeness, the rescaled seller’s value function is given by, for ℓ ≥ ℓ∗,

f(ℓ) = (λl + λheℓ)
Πh

r
+

λl

r

r(Π(Û(ℓ∗))− Πh)− λl(Πh − Πl)

(1 + κ)(λl + r + (λl − αλh)κ)
e−κ(ℓ−ℓ∗), (27)

and for ℓ < ℓ∗,

f(ℓ) = e
− r+λl

λl−αλh
(ℓ∗−ℓ)

f(ℓ∗)

+
λl

λl − αλh

∫ ℓ∗

ℓ

e
− λl+r

λl−αλh
(ℓ̃−ℓ)

[

Π(Û(ℓ̃)) +
λl

r
Πl

]

dℓ̃, (28)

where f(ℓ∗) is given by (27).

The value function itself (V (ℓ) = f(ℓ)/(1+ eℓ)) is differentiable and strictly quasicon-

vex, but the minimum can occur on either side of ℓ∗, depending on the parameters.

Figure 4 illustrates.

Determining the probability that the heavy customer is eventually lost requires more

work than in the bad news case. Let p(ℓ∗) denote the probability that the heavy

customer remains indefinitely with the seller, starting from belief ℓ∗, and q(ℓ∗+ j) the
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probability that the seller’s belief eventually hits ℓ∗ starting from ℓ∗ + j. Note that

p(ℓ∗) solves

p(ℓ∗) = β(1− q(ℓ∗ + j) + q(ℓ∗ + j)p(ℓ∗)) + (1− β)(1− α)p(ℓ∗), (29)

where β = λl−αλh

(1−α)λh is the probability that the buyer’s utility from the seller is Uh

when he has a need to trade. Note that, from (16), q(ℓ∗ + j) = e−j = λl

λh , and so

p(ℓ∗) = 1− αλh

λl . Next, we note that, for ℓ < ℓ∗

P
σ[ℓ∗ is eventually hit | k = h] = e

− αλh

λl−αλh
(ℓ∗−ℓ)

,

so that the probability that the heavy customer is eventually lost starting from ℓ < ℓ∗

is given by

1− e
− αλh

λl−αλh
(ℓ∗−ℓ)

p(ℓ∗) = 1−

(

1−
αλh

λl

)

e
− αλh

λl−αλh
(ℓ∗−ℓ)

.

If instead the initial belief is ℓ ≥ ℓ∗, then, recalling (16), this probability is equal to

(1− p(ℓ∗))e−(ℓ−ℓ∗) =
αλh

λl
e−(ℓ−ℓ∗).

The comparative statics of these probabilities are ambiguous, because the impact on

ℓ∗ of changes in α, r are ambiguous (see discussion below (22)).

Finally, the equilibrium described in Theorem 3 also exists in the good news case,

under the same restriction on parameters. The seller’s payoff in these two equilibria

is compared in Figure 5. Formally:

Theorem 5 The strategies given by (18) and (19), and the belief updating rules given

by (5)–(6) constitute an equilibrium, provided λl > αλh and r < (1− α)λl.

Note that, if r ≥ (1 − α)λl, so that the equilibrium of Theorem 5 does not exist,

then (26) is automatically satisfied (the RHS of the inequality is negative), so that

the equilibrium of Theorem 4 does exist. Whenever both exist, the seller is better off

(and the buyer worse off) in the equilibrium described by Theorem 4.

28The parameters in this example are (r, α, λl, λh, R, c) = (1/6, 1/2, 3/4, 1, 3, 1).
29The parameters in this example are (r, α, λl, λh, R, c) = (1/6, 1/2, 3/4, 1, 3, 1). The pure pooling

equilibrium is illustrated in red, the equilibrium where the seller uses a cutoff strategy is illustrated
in blue.
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Figure 5: Seller’s payoff comparison in the good news case.29

4.4 Uniqueness

Markov equilibria are not unique –indeed, as mentioned, the equilibria of Theorem 5

and Theorem 4 exist in parameter regions that overlap. Worse, there are many more

Markov equilibria.

To understand the cause of multiplicity, consider the following variation on the equi-

librium of Theorem 3. Replace Uh in (18) and (19) by (1 + γ)Uh, for some γ > 0

such that Π((1 + γ)Uh) > 0. That is, the buyer offers strictly more than Uh at every

belief. Suppose that any lower offer, if accepted, leads the seller to the conclusion

that the buyer is of the l-type. Then buyers of either type have no incentive to accept

such lower offers, provided that r is low enough. To be sure, an offer in the interval

(Uh, (1 + γ)Uh) is tempting to the h-type buyer as well, but he would rather forfeit

such an opportunity, if it means giving up on all the future opportunities to trade at

(1 + γ)Uh.

A similar, perhaps more perverse example can be constructed even when the seller

believes that the buyer is of the l-type. The seller offers (1 + γ)Uh (γ > 0, Π((1 +

γ)Uh) > 0), and interprets the acceptance of any lower offer as evidence that the

buyer is of the h-type, in which case Uh is offered forever. Here again, if r is low

enough, no buyer’s type has an incentive to deviate.

We view these two examples as unconvincing. The seller’s deviations to lower offers are

deterred by beliefs that “punish” both buyers’ types. We could lower γ, and thus the

offer the seller makes, and maintain the same on-path inferences without disrupting
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the equilibrium. The offer is maintained at an arbitrarily high level in a way that we

perceive as artificial. We now argue that the equilibria described in Theorems 2–5 are

those that survive a refinement, which further selects a unique one among them when

two co-exist for a given set of parameters.

Following Hart and Tirole (1988), we focus on the equilibria that arise as limits of

equilibria of the finite-horizon game. On the one hand, there are many reasons to

be suspicious of such a selection; on the other hand, this refinement is sufficiently

stringent that the Markov assumption need no longer be imposed. Markov behavior

is a result, not an assumption.

Formally, consider the game in which, up to some time T = J∆, where J ∈ N,

∆ > 0, the seller gets to choose a utility (or a lottery over utilities) at all times

t = j∆, j = 1, . . . , J . In each interval ((j − 1)∆, j∆], j ∈ N, the buyer with type

k gets a need to trade with probability 1 − e−λk∆. Needs to trade are independent

across time intervals. In the event that such a need arises for some j ≤ J , the buyer

gets to choose at time t = j∆ between the seller’s supplied utility UJ,∆
j and the

outside option, which is modeled as before, namely, a lottery between Uo and 0,

with probability α on Uo. As in the baseline model, the buyer irreversibly leaves the

seller if a suitable outside option is found. Note that we do not restrict the seller to

trade only in those rounds j ≤ J , but after time T only the outside option remains

available. Let σJ,∆
S (·) denote the seller’s strategy, with J rounds to go, and interval

length ∆, as a function of the initial belief; similarly, define σl,J,∆
B (·), σh,J,∆

B (·), and

σJ,∆(·) = (σJ,∆
S (·), σl,J,∆

B (·), σh,J,∆
B (·)).

Theorem 6 Assume λl−αλh < 0. The game admits an essentially unique equilibrium

for all J ∈ N, ∆ > 0.30 Moreover, the equilibrium strategy profile σJ,∆(·) converges

to the Markov equilibrium of Proposition 2, that is, for all ℓ ∈ R,

lim
∆→0

lim
J→∞

σJ,∆(ℓ) = σ(ℓ),

where σ = (σS(·), σ
l
B(·), σ

h
B(·)) is given by (12), (13) and (19).

30“Essentially” refers to the seller’s indifference at the cutoff belief.
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Figure 6: Seller’s payoff with 50 periods to go (infinite horizon in red) in the good
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Figure 7: Seller’s cutoff ℓ∗J with J rounds to go.32

We prove Theorem 6 in Online Appendix D.

In the good news case, because of the recurrence of the random walk that describes

the seller’s belief in discrete time, there is little hope to derive a formal result along

the lines of Theorem 6.33 Nonetheless, as we illustrate in Figures 6 and 7, numerical

simulations suggest that the equilibrium of the discrete-time game converges (as J →

∞ and ∆ → 0) to the equilibrium strategies as described in Theorem 4 whenever it

exists, and to those of Theorem 5 whenever it does not.34 Figures 6 and 7 illustrate

31Parameters are (r, α, λl, λh, R, c,∆) = (5.2680, 0.4232, 38.6252, 75.7875, 3, 1, 0.02).
32Parameters are (r, α, λl, λh, R, c,∆) = (5.2680, 0.4232, 38.6252, 75.7875, 3, 1, 0.02).
33Recall that this random walk has unequal step size; thus, its distribution cannot be solved in

closed form.
34This assumes that parameters satisfy Assumption A, so that no exclusion ever occurs in the

continuous-time game. We have not explored what happens when Assumption A is violated, whether
in continuous time, or in the finite-horizon, discrete-time game.

31



convergence of the seller’s payoff as well as the seller’s cutoff.

4.5 Discussion

As mentioned, the particular microfoundation for the reservation utilities Uh,U l high-

lights that no heterogeneity among buyers has to be assumed, aside from the frequency

with which trading needs arise. It reflects the fact that informational asymmetries are

one of the main sources of switching costs (see the review article of Klemperer, 1995).

But one could also replace the uncertainty about the suitability of the alternative

product with a switching cost c > 0: Uk then solves

Uk +
λk

r
Uk = Uo +

λk

r
Uo − c,

which also yields Uh > U l.

These reservation utilities could also be the net present value delivered by non-

stationary, history-dependent strategies from competing sellers –in particular, these

could be equilibrium objects in a larger game between sellers. It is unclear how much

additional insight would be gained from fleshing out such a model: regardless of the

reservation utilities that would arise, each seller’s problem would be identical to the

one considered here, and so would be the structure of the equilibrium strategies.

4.6 A Comparison with Hart and Tirole (1988)

In the Section 4 of their paper, Hart and Tirole consider the problem of a seller

without commitment who faces a buyer whose binary type pertains to the value of

the object, vh > vl. There is no uncertainty about the arrival rate, which, for the sake

of comparison, we take to be λ > 0.35 Suppose that the statu quo involves the seller

posting a price p = vl –so, a “pooling” offer that leads to no updating. Under which

circumstances would the high type accept a (one-shot) seller’s deviation to a slightly

higher offer, say, vl + ε? The buyer’s tradeoff would be

vh − (vl − ε) +W h ≷ α

(

Uo,h +
λ

r
Uo,h

)

+ (1− α)
λ

r
(vh − vl), (30)

35In their discrete-time model, they assume that the buyer comes in every round, and there is no
outside option, equivalently, α = 0.
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where W h is the buyer’s payoff from always sampling the outside option –if the buyer

accepts the offer vl + ε, the seller’s later offers will keep him down to this payoff. The

left-hand side of (30) is the payoff from accepting the offer, whereas the right-hand

side is the payoff from once sampling the outside option instead. Explicitly,36

W h =
λ

r

λ+ r

αλ+ r
αUo,h. (31)

Here and in (30), we take the outside option Uo,h to depend on h, as there is no

reason to assume that it doesn’t depend on the buyer’s valuation. Indeed, let us take

Uo,h = vh − vl, to capture the idea that the suitable alternatives are sellers posting

the same price. Taking ε ↓ 0 in (30), such an offer by the seller is unattractive if

r ≤ (1− α)λ. (32)

Strikingly, this is the same condition as the one in Theorem (3) and (5), mutatis

mutandis. The more patient the buyer, or the more likely the outside option turns

out to be suitable, the less likely it is that the seller can screen the types. Hart and

Tirole (1988) is the special case α = 0.37 Indeed, they assume that (32) holds strictly,

and prove that the seller posting vl in every round is the unique equilibrium outcome

that is the limit of the equilibrium outcome in the finite horizon game, as the horizon

grows large.38

If (32) does not hold, and fixing Uo,h to vh − vl, then, provided that the seller places

a high enough prior probability on the buyer being of the high type, there exists an

equilibrium in which the seller screens the types with an initial offer above vl: indeed,

she then sets a price that makes (30) hold with equality. No further learning occurs.

However, it might make more sense to assume that the outside option consists of

sellers posting the same price p to new customers, followed by either vl if that offer is

rejected, or whatever price yields continuation payoff W h to the high-type buyer –so

that other sellers follow exactly the same strategy as the seller under consideration.

36This is simply the net present value of (1), with λh = λ.
37In discrete time, r ≤ λ is equivalent to δ ≥ 1/2, which is the assumption of their Proposition 5.
38Taking the horizon length to infinity is a reasonable refinement, but so are many others, and it

is an approach that is not particularly tractable in continuous time. See Section 4.4.
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In that case, if (32) is violated, the “Diamond paradox” kicks in, and the only solution

involves p = vh.39

Therefore, while the condition that delineates when pooling is an equilibrium or not

is the same whether the private information pertains to the buyer’s arrival rate or the

buyer’s valuation, the dynamics are quite different, since no arrival is not informative

per se in the latter case: all the “action” takes place in the first round.

Under commitment (see Proposition 1 of Hart and Tirole), the solution to the seller’s

problem is simple: depending on the prior, she sets the price equal to either vl, so that

the buyer purchases, independent of his type, or to vh, excluding the low type from

trade. It simply is not possible to have both types trade, yet extract their surplus

nonetheless.

5 Concluding Comments

There are several limitations to our analysis. First, competition is modeled as an

exogenous outside option. In particular, there is an obvious tension here between the

seller’s pricing strategy, which varies over time, and the way this outside option is

assumed to be constant, once a suitable match is found. In applications in which there

are only a few sellers, it might be fruitful to explicitly model the game these sellers

play. Of course, this raises the standard difficulties with repeated games: whether

other sellers’ prices are observed or not, “folk-theorem” constructions can be devised.40

The Markov restriction would not help: in the unobserved case, higher-order beliefs

become payoff-relevant; in the observed case, it loses its bite, since histories can be

encoded in the price vector, which is payoff-relevant. These difficulties do not make

such an analysis less relevant. As mentioned, however, our entire analysis goes through

while treating Uh,U l as exogenous parameters. Therefore, whatever (possibly history-

dependent) strategies other sellers might use does not affect the conclusions of our

39Eqn. (30) becomes vh− p+Wh ≷ α
(

vh − p+Wh
)

+(1−α)λ
r
(vh− vl), with Wh = λ

r
α(vh − p).

Simplification yields (32).
40See Bergemann and Välimäki (2002) for an exception (when attention is restricted to pure

strategies) to this rule of thumb.
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analysis, provided that the environment is stationary, and that a customer who leaves

for a (not necessarily uncertain) outside option never returns. These two assumptions

seem plausible in environments with many competing sellers.

Second, we do not allow the buyer to hide past purchases. We note, however, that

the optimal mechanism under commitment is robust to such an option, as the buyer

can only gain from revealing past trades. Under non-commitment, matters are more

subtle: on the one hand, the seller can no longer fleece a buyer who is revealed to

be light, decreasing her incentives to screen; on the other hand, screening becomes

easier, because a light buyer is no longer bothered by the information he might reveal.

Non-pooling equilibria can be devised, under some parameter restrictions.

The optimal mechanism under commitment is also robust to other modeling variations.

Replacing the uncertainty about the match quality with a switching cost, for instance,

as a friction the buyer faces, does not affect its structure. Under non-commitment, a

search cost would yield similar results to the “no news is bad news case,” since beliefs

would drift down independently of the seller’s strategy.41

An interesting direction of future research involves the dynamics in case fundamentals

change. Commitments have little value when crises hit. Evidently, airlines have no

qualms about changing their loyalty programs if a pandemic abruptly affects business.

If, say, the seller’s costs go up, and so her profit function shifts down, how should

the seller adjust her policy? Shall she sacrifice the heavy customer, decreasing quality

supplied to all of them, or focus on the light ones?

Appendices

A Proof of Theorem 1

Fix T > 0. We pick U I ,UF such that Zλl

0 = λl

r
U l, Zλh

0 = λh

r
Uh, that is, both types are

held to their outside option; in particular, lying does not benefit either type at the

41A buyer who is still attentive is a buyer who had no other offer, which is statistical evidence
that he is a light buyer.
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reporting stage. Note that if UF ≥ U I , either type strictly prefers to visit the seller

if he gets the opportunity to do so during the window of length T that opens after

a visit. Hence, conditional on reporting heavy, either type of buyer visits the seller

whenever the opportunity arises. To confirm UF ≥ U I , simple algebra gives

UF − U I =

r(1− α)α(λh − λl)e−rT ((2λh + r)e(r+λh)T − λh)((2λl + r)e(r+λl)T − λl)Uo

(αλl + r)(αλh + r)
(

r(λh − λl)e(r+λh+λl)T − λh(λl + r)eλlT + λl(λh + r)eλhT
) ,

which is of the sign of the denominator, that is, of

g(r) := r(λh − λl)e(r+λh+λl)T − λh(λl + r)eλ
lT + λl(λh + r)eλ

hT ,

which is positive. To see this, note that (i)

g(0) = λhλl
(

eλ
hT − eλ

lT
)

≥ 0,

(ii) g is convex since

g′′(r) = T (2 + rT )(λh − λl)e(λ
h+λl+r)T

and (iii)

g′(0) =
e(λ

h+λl)T

T

(

λhT
(

1− e−λhT
)

− λlT
(

1− e−λlT
))

≥ 0,

(the function x 7→ x(1− e−x) being increasing).

Algebra also gives

lim
T↓0

U I =
α
(

αλhλl + rα(λh + λl) + r2
)

(αλh + r)(αλl + r)
Uo ≥ 0,

and so U I ,UF are both positive for small enough T .42

B Proofs of Theorems 2–5

All four theorems require verification that the strategy profiles referred to in the

statements, alongside the updating rules given by (5) and (6), constitute equilibria

of the game. We note that, fixing the strategy profiles, and the updating rules, we

can view the game as a stochastic game with the seller’s belief as a state variable, as

42Whether or not UI is positive for T arbitrarily large depends on parameters. The difference
UF −UI is actually decreasing in T : a seller whose cost is convex prefers a larger T among this class
of mechanisms.
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explained at the end of Section 2, and so we can apply the one-shot deviation principle

to verify optimality. Recall that we assume that, given any deviation, play proceeds

as it would on path, given the updated belief (the strategies have been specified for

any belief ℓ ∈ R).

Further, we note that the buyer’s best-reply must be a cutoff rule, given the specified

strategy profile: an acceptance of a higher offer leads to a weakly higher posterior

belief, and the buyer’s payoff is non-decreasing in the belief (as we verify below, see

e.g., (33)). Hence, if a buyer of type k = h, l accepts offer U with positive probability,

given belief ℓ, it is also optimal for him to accept U ′ > U . Hence, it suffices to verify

indifference at the specified cutoffs ((15), (17), (21) and (25)).

Further, we note that the buyer’s h-type cutoff must be Uh: indeed, he can at any

time secure the equivalent continuation payoff from sampling the outside option, and

the seller never supplies any strictly higher utility given the specified profile, so there

is no potential “upside” from turning down an off-path offer above Uh. Hence, the

buyer’s h-type problem is trivial, and we ignore it from now on.

Hence, accepting any offer U ≥ Uh leads to an increase in the seller’s belief (whereas

the belief evolves continuously in case of a rejection). Therefore, because in the spec-

ified equilibria the l-type’s payoff is non-decreasing in the belief, the l-type must also

accept any such offer; hence, his cutoff is no larger than Uh. Recall that, as stated in

Section 2, we assume throughout that the acceptance of an offer both types should

reject leads to an updated belief ℓ = −∞. Hence, in all four equilibria, accepting an

offer U < Uh leads to belief ℓ = −∞.

In each case, we first derive the l-type’s payoff as a function of the belief, and verify

that he is indifferent at the specified cutoffs. For clarity, in the derivations, we assume

that this payoff is differentiable in ℓ, but this is directly verified, since these derivations

yield differentiable closed-form solutions. We then turn to the seller, and show that,

in each relevant interval of belief, the one-shot deviation principle holds. Note that

only three offers are candidate optima: Uh (which both types accept, according to the
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specified strategies), the l-type’s cutoff (denoted Û(ℓ) or Ǔ(ℓ)), which is the lowest

offer the l-type accept, or any lower offer, that both types reject. We first ignore this

last possibility, but verify ex post that it is unprofitable.

Throughout, let us write Z l(ℓ) for the l-type’s ex ante equilibrium payoff, given ℓ.

B.1 Proof of Theorem 2

Let δl denote the probability with which the seller makes a screening offer (assuming

such an offer exists, i.e., it is less than Uh); let δb denote the probability with which

the seller makes the pooling offer (Uh), and δ∅ denote the probability with which

she makes an unacceptable offer. On the seller’s side, taking the buyer’s behavior as

given by the equilibrium strategies given by (13) and (19), we have to verify that the

value function f(·) given by (9) for ℓ ≥ ℓ∗ and f(ℓ) = λlΠl/r for ℓ < ℓ∗ satisfies the

following HJB equation:

(r + λl)f(ℓ) = max
δ∅,δb,δl

δb
(

(λheℓ + λl)Πh + λlf(ℓ+ j)
)

+ λlδl

(

Π̂(ℓ) +
λl

r
Πl

)

+
(

δl(λ
l − αλh)− δ∅α(λ

h − λl)− δb(λ
h − λl)

)

f ′(ℓ) + (1− α)λlδ∅f(ℓ).

The inequalities (35), (36) and (37) directly verify this equation.

Buyer’s problem: Given ℓ < ℓ∗, Z l(ℓ) = U l, and it immediately follows that the

l-type is indifferent between the outside option and the seller’s offer if, and only if,

U = U l.

Given ℓ ≥ ℓ∗, l-type’s payoff satisfies

(r + λl)Z l(ℓ) = λl
(

Uh + Z l(ℓ+ j)
)

− (λh − λl)(Z l)′(ℓ),

where we recall that j = ln λh

λl . Given the boundary conditions limℓ→∞Z l(ℓ) = λl

r
Uh

and Z(ℓ∗) = λl

r
U l, the unique solution to this delay-differential equation is

Z l(ℓ) =
λl

r
Uh −

λl

r

(

Uh − U l
)

e−κ(ℓ−ℓ∗), (33)

where κ is given by (10). This is increasing in ℓ, which, as discussed above, implies

that he accepts any offer U ≥ Uh. The l-type’s choice is to accept or reject an offer
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U < Uh depending on

U +
λl

r
U l ≷ α

(

Uo + Zo,l
)

+ (1− α)Z l(ℓ), (34)

an equation that holds with equality if, and only if, U = Ǔ(ℓ), where Ǔ(ℓ) is given by

(15).

Seller’s problem: Given ℓ < ℓ∗, the seller’s (re-scaled) payoff function f is given

by λl

r
Πl. Given ℓ ≥ ℓ∗, this function solves the delay-differential equation given in the

text, see (8), whose solution, given the boundary conditions, is given by (9).

For ℓ < ℓ∗ (resp., ℓ > ℓ∗), we must check that deviating to Uh (resp., Ǔ(ℓ)) is

suboptimal. For ℓ < ℓ∗, this means verifying that

rf(ℓ) + (λh − λl)f ′(ℓ) ≥ (λl + λheℓ)Πh + λl(f(ℓ+ j)− f(ℓ)). (35)

Since f(ℓ) is constant, while f(ℓ + j) is non-decreasing in ℓ, it suffices to establish

this inequality for ℓ = ℓ∗.

For ℓ > ℓ∗, we must show that

λl

(

Π̌(ℓ) +
λl

r
Πl − f(ℓ)

)

− (αλh − λl)f ′(ℓ) ≤ rf(ℓ), (36)

where Π̌(ℓ) := Π(Ǔ(ℓ)). Since Ǔ(ℓ) is non-decreasing in ℓ, Π̌(ℓ) is non-increasing in ℓ,

whereas it is readily verified that (r+ λl)f(ℓ)− (λl −αλh)f ′(ℓ) is increasing in ℓ (see

the good news case, where the calculation is carried out), given (9). Hence, here as

well, it suffices to check this equation for ℓ = ℓ∗.

Yet, ℓ = ℓ∗ is precisely the value of ℓ such that both (35) and (36) hold with equality,

concluding the proof.

It remains to show that, as mentioned above, deviating to an unacceptable offer (that

is, one that neither type accepts) is unattractive. This requires showing that, for all

ℓ,

g(ℓ) := (r + αλl)f(ℓ) + α
(

λh − λl
)

f ′(ℓ) ≥ 0. (37)

This is trivial for ℓ < ℓ∗ (since f(ℓ) = 0), and is immediate upon computation (using

(9)) for ℓ > ℓ∗.

39



B.2 Proof of Theorem 4

The proof follows exactly the same steps as the proof of Theorem 2, but involves more

tedious calculations. The same remarks as at the start of Section B.1 apply. Recall

that Theorem 4 assumes that (26) holds.

Buyer’s problem: Given ℓ > ℓ∗, l-type’s payoff satisfies

(r + λl)Z l(ℓ) = λl
(

Uh + Z l(ℓ+ j)
)

−
(

λh − λl
)(

Z l
)′
(ℓ), (38)

where we recall that j = ln λh

λl . At ℓ∗, because the l-type accepts either offer

Z l(ℓ∗) =
λl

λl + r

(

δ
(

Uh + Z l(ℓ∗ + j)
)

+ (1− δ)

(

Û(ℓ∗) +
λl

r
U l

))

, (39)

where the buyer’s utility Û(ℓ∗) solves

Û(ℓ∗) +
λl

r
U l = α

(

Uo + Zo,l
)

+ (1− α)Z l(ℓ∗), (40)

and δ = λh−λl

(1−α)λh .

Plugging (40) into (39), we get Z l(ℓ∗) as a function of Z l(ℓ∗ + j), which is pinned

down by the solution to the delay-differential equation. Given the boundary condition

limℓ→∞ Z l(ℓ) = λl

r
Uh, the unique solution to this delay-differential equation is

Z l(ℓ)−
λl

r
Uh =

(

Z l(ℓ∗)−
λl

r
Uh

)

e−κ(ℓ−ℓ∗), (41)

where κ is the unique root of

r + λl = λl

(

λh

λl

)−κ

+
(

λh − λl
)

κ.

This implies in particular that Z l(ℓ∗ + j) is given by:

Z l(ℓ∗ + j)−
λl

r
Uh =

(

Z l(ℓ∗)−
λl

r
Uh

)(

λh

λl

)−κ

. (42)

Plugging (42) into (39) gives Z l(ℓ∗) in terms of primitives:

Z l(ℓ∗) =
λl
((

αλl + r
)

U l +
(

λl − αλh
)

Uhκ
)

r(r + λlκ+ α(λl − λhκ))
. (43)
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Given ℓ, the l-type’s choice is to accept or reject an offer U < Uh depending on

U +
λl

r
U l ≷ α

(

Uo + Zo,l
)

+ (1− α)Z l(ℓ), (44)

an equation that holds with equality if, and only if, U = Ǔ(ℓ), where Ǔ(ℓ) is given by

(21).

Given ℓ < ℓ∗, the l-type is indifferent between visiting the seller offering U(ℓ) and the

outside option if, and only if,

U(ℓ) +
λl

r
U l =α

(

Uo + Zo,l
)

+ (1− α)

(
∫ τℓ

0

αλle−(r+αλl)t
(

Uo + Zo,l
)

dt+ e−(r+αλl)τℓZ l(ℓ∗)

)

,

where τℓ :=
ℓ∗−ℓ

λl−αλh is the time it takes for the belief to reach ℓ∗ when starting at ℓ.

This can be simplified to

U(ℓ) = U l + (1− α)e
− r+αλl

λl−αλh
(ℓ∗−ℓ)

(

Z l(ℓ∗)−
λl

r
U l

)

. (45)

Using (44),we can then write it as

U(ℓ) = U l + (1− α)e
(αλl+r)(ℓ−ℓ∗)

λl−αλh
λl(λl − αλh)κ

r(r + λlκ+ α(λl − λhκ))

(

Uh − U l
)

. (46)

Seller’s problem: Given ℓ ≥ ℓ∗, the seller’s re-scaled payoff function f solves the

delay-differential equation given in the text; that is, equation (8), whose solution is

given by (27) and (28).

For ℓ < ℓ∗, the seller’s payoff function f is given by (24).

For ℓ < ℓ∗, we must check that deviating to Uh is suboptimal, that is, that it holds

that

rf(ℓ) + (λh − λl)f ′(ℓ) ≥ (λl + λheℓ)Πh + λl(f(ℓ+ j)− f(ℓ)). (47)

Using the defining differential equation for f ′, this is equivalent to
(

r +
(λh − λl)(r + λl)

λl − αλh

)

f(ℓ) +
(λh − λl)λl

λl − αλh
H(ℓ)

≥ (λl + λheℓ)Πh + λl(f(ℓ+ j)− f(ℓ)), (48)

where H(ℓ) := Π(Û(ℓ))+ λl

r
Πl is the seller’s continuation payoff when the buyer visits

her (a non-increasing function of ℓ, since Û(·) is non-decreasing and Π(·) is decreasing).
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To prove this inequality, we shall introduce an auxiliary payoff function for the seller,

namely, the one in which the screening offer U(ℓ) for ℓ < ℓ∗ is equal to Û(ℓ∗), rather

than Û(ℓ) (and is accepted by the l-type) for all ℓ < ℓ∗. This is the only change: all

dynamics, etc., remain unchanged, except for this collected (one-time) reward. Denote

by f̃ the corresponding normalized payoff. Evidently, f(ℓ) ≥ f̃(ℓ), since Û(ℓ∗) ≥ Û(ℓ).

Further, a coupling argument shows that

f(ℓ)− f̃(ℓ) ≥ f(ℓ+ j)− f̃(ℓ+ j).

(The gain from the screening offer being Û(ℓ) rather than Û(ℓ∗) is greater, the lower

the belief, since Û(·) is increasing, and the hitting time of ℓ∗ is larger.)43 Hence,

f(ℓ+ j)− f(ℓ) ≤ f̃(ℓ+ j)− f̃(ℓ).

Hence, to show (48), it suffices to prove the corresponding inequality with f replaced

by f̃ . We have, for ℓ < ℓ∗,

f̃(ℓ) =
λl

r + λl
H(ℓ∗) +

(r + λl)f(ℓ∗)− λlH(ℓ∗)

r + λl
e

r+λl

λl−αλh
(ℓ−ℓ∗)

.

Hence, computing the difference, we obtain, bounding H(ℓ) below by H(ℓ∗),
(

r +
(λh − λl)(r + λl)

λl − αλh

)

f̃(ℓ) +
(λh − λl)λl

λl − αλh
H(ℓ∗)

−(λl + λheℓ)Πh − λl(f̃(ℓ+ j)− f̃(ℓ)) (49)

=
rλl

r + λl

(

H(ℓ∗)−
r + λl

r
Πh

)

− λhΠheℓ + γe
r+λl

λl−αλh
ℓ
, (50)

for some γ ∈ R whose expression we omit. Because r+λl

λl−αλh ≥ 1, the expression in

(13) is concave in x := eℓ if γ < 0, and hence, the expression in (12) is positive if

it is positive for ℓ = −∞, ℓ∗. If γ > 0, so that (13) is convex in x, then algebra

shows the derivative at (13), evaluated at ℓ = ℓ∗ is negative, so it suffices then to

check at ℓ∗. Hence, we are left with checking the condition at ℓ = −∞, ℓ∗. At ℓ = ℓ∗,

note that f(ℓ∗) = f̃(ℓ∗), as well as H(ℓ) = H(ℓ∗) (our bounds are tight), and so (12)

holds with equality, by definition of ℓ∗. At ℓ = −∞, (13) is positive as well, since

43More formally, for ℓ < ℓ∗,

f(ℓ)− f̃(ℓ) = E[e−rτ(ℓ)(Π(Û(ℓτ(ℓ)))−Π(Û(ℓ∗)))],

where τ(ℓ) is the first time that the l-type visits the buyer before ℓ∗ is reached (if he does), starting
from belief ℓ. Note that the inequality is trivially satisfied when ℓ+ j ≥ ℓ∗.
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H(ℓ∗) = Π(Û(ℓ∗)) + λl

r
Πl > r+λl

r
Πh is positive.

For ℓ ≥ ℓ∗, we must check that deviating to Ǔ(ℓ) is suboptimal, that is, that it holds

that

λl

(

Π̌(ℓ) +
λl

r
Πl − f(ℓ)

)

+
(

λl − αλh
)

f ′(ℓ) ≤ rf(ℓ),

where Π̌(ℓ) := Π(Ǔ(ℓ)), or equivalently,

λl

(

Π̌(ℓ) +
λl

r
Πl

)

≤ (r + λl)f(ℓ)− (λl − αλh)f ′(ℓ). (51)

Since Ǔ(ℓ) is non-decreasing in ℓ, Π̌(ℓ) is non-increasing in ℓ, and so is the LHS of

the inequality. Because

d

dℓ

(

(r + λl)f(ℓ)− (λl − αλh)f ′(ℓ)
)

=
(

eℓ−ℓ∗ − e−κ(ℓ−ℓ∗)
)

(r + αλh)
λhΠh

r
eℓ

∗

≥ 0,

(using the definition of ℓ∗ to eliminate the constant Π(Û(ℓ∗)) that appears in the

definition of f), the right-hand side of (51) is increasing in ℓ, all ℓ ≥ ℓ∗. Hence, it

suffices to check the inequality (51) for ℓ = ℓ∗. Inserting the formula for f and ℓ = ℓ∗

yields an equality (as should be expected, by construction).

It remains to show that deviating to an unacceptable offer is unattractive. This re-

quires showing that, for all ℓ,

g(ℓ) := (r + αλl)f(ℓ) + α
(

λh − λl
)

f ′(ℓ) ≥ 0. (52)

For ℓ ≥ ℓ∗, we compute

r
d
(

eκℓg(ℓ)
)

dℓ
= Πheκℓ

(

λl(r + αλl)κ+ λh(r + αλh)(1 + κ)eℓ
)

≥ 0,

so it suffices to show that g(ℓ∗) ≥ 0. Explicitly (using the definition of ℓ∗ to eliminate

Π(Û(ℓ))),

rg(ℓ∗)

Πh
= λl(r + αλl) +

(1 + κ)λh(r + αλh)
(

r + αλl + κ(λl − αλh)
)

eℓ
∗

κ(r + λl + κ(λl − αλh))
≥ 0.

Consider then ℓ < ℓ∗. Recall that on this interval f solves

(r + λl)f(ℓ) = λl

(

Π̂(ℓ) +
λl

r
Πl

)

+ (λl − αλh)f ′(ℓ).

Solving for f ′, we can simplify (52) to

(1− α)(r + αλh)

α(λh − λl)
f(ℓ) ≥ Π̂(ℓ) +

λl

r
Πl. (53)
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Since

lim
ℓ→−∞

f(ℓ)

λl

λl+r

(

Π̂(ℓ) + λl

r
Πl

) = 1,

(53) is also satisfied as ℓ → −∞, since (1−α)(r+αλh)
α(λh−λl)

> λl

λl+r
. Now, computing g′(ℓ) and

solving g′(ℓ) = 0 for the integral term that appears in the definition of f(ℓ) when

ℓ < ℓ∗; re-inserting into g(ℓ) gives

g(ℓ)
∣

∣

∣

g′(ℓ)=0
ℓ<ℓ∗

> 0 ⇔ (r + αλl)H(ℓ) + α(λh − λl)H ′(ℓ) > 0,

where H(ℓ) := Π(Û(ℓ))+ λl

r
Πl is the seller’s continuation payoff when the buyer visits

her. By assumption, however, ℓ < ℓ∗ ⇒ (r + αλl)H(ℓ) + α(λh − λl)H ′(ℓ) > 0, and so

g(·) can only admit positive local minima on {ℓ < ℓ∗}.

B.3 Proof of Theorems 3 and 5

Recall that these two theorems assume r < (1 − α)λl. Recall also that the seller is

supposed to set U(ℓ) = Uh for all ℓ, which both types accept. Suppose for sake of

contradiction that there exists an offer U < Uh that the l-type accepts. This requires

U +
λl

r
U l ≥ α

(

U0 + Zo,l
)

+ (1− α)
λl

r
Uh, or U ≥ Û ,

where Û is given by (17). As explained in Section 2, if r < (1 − α)λl, Û > Uh, a

contradiction. Hence, the seller cannot screen the l-type. Her choice is to either offer

Uh, and have both types accept, or make an unacceptable offer. Given that Πh > 0,

the former dominates the latter.
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