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Living systems are composed of discrete units, assembled through a hierarchy of structures, and
active, by locally extracting energy from their environment to produce mechanical work. Hydrody-
namic theories have been successfully applied to describe the large scale dynamics of active materials.
Yet, the hydrodynamic limit requires a separation of scales which is not necessarily fulfilled among
living systems. In this work, we propose a novel agent-based model of flexible rods exchanging active
force dipoles with nematic symmetry, allowing us to explore their behavior down to the sub-agent
scale. We obtain spontaneous flows and self-propulsion of +1/2 topological defects, hallmarks of the
hydrodynamic theory of active nematics, even on scales smaller than the individual agent! More-
over, our results go beyond the hydrodynamic framework, identifying novel correlations between
orientation and flows or strong asymmetries between contractile and extensile activity. Finally, we
show the versatility of our agent-based model by presenting spontaneous flows in three dimensions
and nematic tissue growth. Because living systems like cell tissues often exhibit several sources of
activity, our framework opens the way for more integrated descriptions of living materials.

I. INTRODUCTION

Living systems are maintained out of thermody-
namic equilibrium as its constituents continuously con-
vert chemical energy from its environment into other
forms of energy. For example, suspensions of pu-
rified cytoskeletal proteins can exhibit turnover (as-
sembly/disassembly), which can lead to self-propulsion
(treadmilling) [1–6], and contractile or extensile mechan-
ical stress generated by molecular motor activity [7–9].
Liquid crystalline order is present in numerous exam-
ples of living matter, such as the cytoskeleton, cultures
of elongated cells, among many other examples [10–15].
There, microscopic constituents usually have polar or ne-
matic anisotropy, and generate a nematic order at larger
scales [16, 17]. Together with the activity of living mat-
ter, liquid crystalline order often leads to anisotropic ac-
tive stress [18, 19], which plays a central role, for in-
stance, in chromosome segregation [20], establishment of
the anterior-posterior axis in Caenorhabditis elegans [21],
or convergence-extension during wing development in
Drosophila melanogaster [22]. The orientational order
is often associated with topological defects, which play
an important role in numerous biological processes such
as stress organization, shape formation or density accu-
mulation [23–26].

The physics of living matter has been studied theoret-
ically using two main approaches. Hydrodynamic theo-
ries describe the dynamics of a small number of coarse-
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grained physical variables [19]. The governing equations
have a firm basis in symmetry arguments and conserva-
tion laws. In this approach, the link between the coarse-
grained material parameters and the microscopic param-
eters is unknown and the length scales on which they
become valid are unclear. Hallmarks of active nematic
fluids such as spontaneous shear flows [27–30] or sponta-
neous defect unbinding [7, 31] were first discovered using
this type of approach. Several numerical methods have
been used to study the bulk properties of active nematics,
such as spectral methods [32], Lattice-Boltzmann [33] or
multi-particle collision dynamics [34–36]. Recent devel-
opments in numerical methods allow for studying active
nematic fluids on dynamic surfaces [37–39].

Agent-based models provide a complementary ap-
proach. The dynamics of individual agents depends on a
set of parameters that capture microscopic properties of
the agents. Bridging the gap to smaller length scales, and
allowing to test the validity of hydrodynamic models on
small length scales. Those models have led to the discov-
ery of long-range orientational order in two-dimensional
active systems [40], or illustrate concepts like homeostatic
pressure [41]. Most importantly however, an agent based
model allows to easily avoid common assumptions of con-
tinuum theory like constant density or homogeneity of
activity and retains the granular nature of active sys-
tems. This leads to important discoveries like motility-
induced phase separation or negative homeostatic pres-
sure. In this framework, activity is typically introduced
in the form of agent self-propulsion [40, 42, 43] or agent
turnover [41, 44].

Finally, living systems are complex and they often
present numerous active processes. For instance, cells
exert active force dipoles to their neighbors, while they
also crawl and self-replicate. Therefore, it is important
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to develop frameworks that allow to study possible in-
terplays among these ingredients with a minimal set of
variables and parameters.

In this work we develop a versatile agent-based model
for active nematics to uncover the role of granularity.
Basing our model on earlier models of tissue growth
[41, 45, 46] gives us a model that can easily be extended
to include other forms of activity, such as growth or di-
vision. In our model, each agent consists of a chain of
particles, interacting with other agents via passive forces
like excluded volume or short-ranged attraction, as well
as active force dipoles. We use this model to study the
spontaneous emergence of orientational order and flows
in active nematic fluids, and how granularity results in
further effects. Our simulations show, that phenomena
uncovered by hydrodynamic analysis can be found down
to sub-agent length scales. In channel geometries, we
found novel correlations between the nematic orienta-
tional field and the flows of agents. The fluctuations
naturally present in our simulations lead to dynamic flow
fields with bursts of activity and spontaneous creation of
topological defects. For large activity, we observe self-
propulsion of +1/2-defects with direction depending on
the sign of the activity parameter, as well as density vari-
ations around the defect core. Furthermore our results
evidences strong asymmetries in the collective behavior
of agents with either extensile or contractile force dipoles.
Finally, we show how this framework can be extended to
three dimensions or include other active processes present
in living systems like growth or self-propulsion.

II. AN AGENT-BASED MODEL OF AN
ACTIVE NEMATIC LIQUID

In this section, we introduce an off-grid agent based
model for an active nematic fluid. In our view, it is im-
perative that in the absence of an internal or external
driving, our model imposes conservation of momentum
and it relaxes to thermal equilibrium, i.e. it describes
systems in a canonical ensemble with conserved hydrody-
namic modes. To later introduce growth and division, we
take inspiration from the two-particle growth model [41],
which describes tissues of proliferating cells, and has al-
ready been extended to include polar activity [47, 48].
For non-conservative forces like activity and dissipation,
we use a framework based on dissipative particle dynam-
ics [49].

We consider N agents that each consist of Np particles
arranged in a stiff rod, Fig. 1a. Between two particles of
the same agent, harmonic links with potential energy

Vl ({r}) =
Kl

2

Np−2∑
p=0

(ℓ0 − rp,p+1)
2 (1)

fix the distance between particles, where rpq = |rpq| with
rpq = rp−rq and rp is the position of particle p. Besides,

a bending energy

Vb({r}) =
κb

2ℓ30

Np−2∑
p=1

|rp−1,p − rp,p+1|2 (2)

ensures a rod-like shape. The parameter Kl is the spring
constant for the harmonic potential, κb is the bending
rigidity, and ℓ0 is the equilibrium link length. The value
of κb is chosen large enough to ensure an almost inexten-
sible rod-like shape. Hence, the conservative part of the
shape force on particle p is F

(c,s)
p = F

(l)
p + F

(b)
p , where

F
(l)
p = −∂Vl/∂rp and F

(b)
p = −∂Vb/∂rp, see Fig. 1a.

Between two particles from different agents, a conser-
vative interacting force F

(c,i)
pq = F i(rpq)r̂pq with r̂pq =

rpq/rpq accounts for the steric repulsion of two agents
at short distances and their attraction at intermediate
distances. Specifically, we use

F i(r) =

{
f0

(
(rc/r)

3 − 1
)
− f1 if r < rc

0 otherwise
, (3)

where the constant f0 characterizes the repulsion between
two agents, f1 quantifies their attraction, whereas rc is
the cut-off-distance beyond which two particles do not
interact, see Fig. 1c.

In addition, all particles interact via pairwise dissipa-
tive F(d) and random F(r) forces, Fig. 1b. For two parti-
cles p and q, which can belong to the same or to different
agents, they are given by

F(d)
pq = −ξ ω(rpq)

2 [̂rpq · (vp − vq)]̂rpq, (4)

F(r)
pq =

√
2ξkBT/δt ω(rpq)ηpq r̂pq. (5)

Here, vp = drp/dt is the velocity of particle p, ω(r) is a
weight function of distance with ω(r < rc) = 1− r/rc or
ω(r ≥ rc) = 0, ξ has dimensions of a friction constant,
kBT is the effective thermal energy, and δt is the sim-
ulation time step. The random numbers ηpq are Gaus-
sian distributed with zero mean and unit variance. In
addition, ηpq = ηqp to ensure reciprocity of the interac-
tions. The form of the random and dissipative interaction
forces ensure that the (passive) system relaxes to thermal
equilibrium [49]. Furthermore, we consider two indepen-
dent sources of dissipation and noise for shape or inter-
agent interactions, with respective dissipative coefficients
ξ = ξs and ξ = ξi. Finally, since all force components are
central, that is, along the inter-particle axis, linear and
angular momentum are conserved.

The system evolves in time according to Newton’s
equation of motion for each particle p

m
dvp

dt
= F(ext)

p + F(c,s)
p +

∑
q ̸=p

same agent

(F(d,s)
pq + F(r,s)

pq )

+
∑
q ̸=p

different agents

(F(c,i)
pq + F(d,i)

pq + F(r,i)
pq + F(a)

pq ) (6)
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Figure 1. A multi-particle agent-based model with internal active flows. (a): Multi-particle agents (here Np = 4 particles)
have conservative shape interactions F(c,s) = F(l) + F(b) between intra-agent particles, with link and bend components to
ensure agent shape integrity. (b): The interaction between two particles comprises conservative (c), dissipative (d) and random
components (r), for both intra-agent and inter-agent cases. (c): Inter-agent forces F(i) between particles p1, q1 of different
agents are short-ranged with cutting radius rc (dotted circle). (d): An active force dipole is implemented as an internal
treadmilling flow v

(a)
q (convergent here) over the particles of each agent, oriented along the agent axis with nematic symmetry.

This flow renormalizes the velocities of particles vp 7→ vp +v
(a)
p in the dissipative part of the inter-agent force F (d,i), giving an

active force contribution F(a). (e): Snapshot of an active system in the channel geometry, with periodic boundary conditions
at x = ±L/2 and confining wall at y = ±W/2. Agents are color-coded according to their nematic orientation, indicated by the
angle θα with respect to the horizontal axis.
Parameters are N = 30× 15, va = −3.

The external force F
(ext)
p could, for example, account for

a confining wall. Besides, we can also consider a back-
ground friction force resulting from interactions with an
underlying substrate in the form F

(d,ext)
p = −ξevp. In

this case, to maintain thermal properties in the passive
case, we also need to add to Eq. (6) the random force
F

(r,ext)
p =

√
2ξekBT/δtηp, where ηp is a vector with

random components distributed as a Gaussian with zero
mean and unit variance. The active force F

(a)
pq is the cen-

tral part of our work and is detailed below. This system
of equations is solved by temporal discretization, using a
modified velocity-Verlet algorithm [50]. Further details
of the numerical scheme used to integrate the dynamic
equations can be found in Sect. S4.B-D [51].

So far, this system of equations describes a passive
anisotropic material when F

(a)
pq = 0. Next, we introduce

an active force that is inspired by the retrograde flows
of cytoskeletal filaments in cells, see Fig. 1d. Each par-
ticle p of an agent α generates a virtual active flow with

a prescribed velocity va,p = va,pûα oriented along the
agent axis ûα (see SI Sect. 5 [51] for definition). The
flow amplitude is

va,p = va

(
1− 2p

Np − 1

)
(7)

for p = [0, Np − 1], which varies linearly from peripheral
to central particles and is controlled by the parameter
va. Note that the velocity of the end particles is va =
va,0 = −va,Np−1. Hence, for va > 0, the agent generates
internal convergent flows, which we expect to result in
a contractile active force dipole. Conversely, for va < 0,
the force dipole is expected to be extensile.

The force of particle q on particle p generated in this
active process is given by

F(a)
pq = −ξi ω(rpq)

2 [̂rpq · (va,p − va,q)]̂rpq, (8)

which has the same form as the dissipative interaction
forces F(d) in Eq. (4). The parameter ξi is the dissi-
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pative coefficient from inter-agent interactions. We ig-
nore active self-interactions between particles of the same
agent. Consequently, a particle p with kinetic velocity vp

will affect a neighbor q from another agent through an
effective velocity v∗

p = vp + va,p, which combines kinetic
and active effects.

To show the out-of-equilibrium nature of Eq. (8),
we employ the formalism of the Rayleigh dissipation
function R [52]. The dissipative force on a particle
p in Eq. (4), can be written as F

(d)
p =

∑
q ̸=p F

(d)
pq =

−∂R/∂vp, where R = 1
2

∑
(p,q) ξω(rpq)

2 [̂rpq · (vp −vq)]
2

and the sum is over all interacting pairs (p, q). The scalar
function R is positive-definite and is even under time re-
versal and corresponds to energy dissipation. Similarly,
the active force on a particle p can be derived from an ac-
tive Rayleigh function Ra, such that F

(a)
p = −∂Ra/∂vp

with

Ra =
1

2

∑
(p,q)

ξiω(rpq)
2 [̂rpq · (vp − vq)].[̂rpq · (va,p − va,q)]

(9)
Importantly, Ra is not positive-definite and is odd under
time reversal, so that it describes a power input. This
procedure can be compared to the active Rayleigh func-
tion from the continuum theory of 2D incompressible ac-
tive nematics [52], where one writes Ra =

∫
dS u : σa

with the strain rate tensor u = (∇v + (∇v)T )/2 and
the active stress σa. Again, Ra is odd under time-
reversal and one obtains the active force density from
∇ · σa = −δRa/δv.

The parameters of the model and their values are sum-
marized in Table I in Sect. S4.A[51]. The units are chosen
such that m = rc = 1 and δt = 10−3. To limit the in-
fluence of inertia on the system, parameter combinations
are chosen such that inertial time scales are smaller than
other relaxation time scales, see Sect. S4.A[51].

In this work, we choose a parameter set for which the
system is in a nematic fluid phase at equilibrium, va = 0,
Sect. S1[51]. Specifically, we choose a number of parti-
cles per agent Np = 14 (i.e. particles of aspect ratio 7),
a packing fraction pf = 0.8 (Sect. S4.F[51]), and a tem-
perature kBT = 0.1. The mean-squared displacement
and the nematic orientation of the system varies with the
packing fractions and with the temperatures as expected
for other models of nematic liquid crystals [53, 54], see
Fig. S1. Furthermore, unless otherwise stated, the ini-
tial condition corresponds to a set of evenly distributed
agents that are aligned in the same direction, which is
typically horizontal, Sect. S4.E[51].

In the following, we apply this new framework to clas-
sical situations of active nematics, and show that two
hallmarks of active nematics, spontaneous flows and de-
fect self-propulsion, are recovered.

III. SPONTANEOUS CHANNEL FLOW

To demonstrate the power of our model, we first study
its behavior in the geometry of a 2d channel and show
that spontaneous shear flows emerge for sufficiently large
activity. For an active nematic fluid in a channel, the
transition from a quiescent ordered state to a sponta-
neous flowing state was found using hydrodynamic the-
ories [28, 33]. This phenomenon relies on an instability
induced by the interplay between active stresses and the
alignment of the nematic field to shear flows. For an as-
sembly of rod-like agents, the instability occurs for exten-
sile active stress at a finite threshold of activity [28, 33].
As we will show below, our agent-based model goes be-
yond hydrodynamic theories. For example, fluctuations
lead to a non-monotonic dependence of the nematic or-
der parameter on the activity of agents, as well as, cor-
relations between shear flows and the nematic field for
contractile activity.

Specifically, we simulate an assembly of active agents
as introduced in Section II, confined in an infinite channel
with periodicity L and width W , Fig. 1e. The longitudi-
nal direction is represented by the coordinate x and the
transverse direction by the coordinate y. We thus impose
periodic boundaries in x and use harmonic confinement
in y, with non-zero potential Vconf(y) = Kw(|y| −W/2 +
rc/4)

2/2 for |y| > W/2− rc/4, Sect. S4.C[51]. While the
potential confines the agents in the y-direction, it does
not affect their instantaneous velocity in the x-direction,
equivalent to a perfect slip wall. Furthermore, the con-
fining potential introduces an effective anchoring in y as
agents tend to align parallel to the boundaries.

The system is characterized through a velocity and a
nematic tensor fields v(r) and Q(r), which are computed
by locally averaging the velocities and orientations of in-
dividual agents, respectively, see Sect. S5.B[51] for de-
tails. Furthermore, the nematic tensor field can be ex-
pressed as Q = sn(2n̂n̂ − 1), where the variable sn(r)
measures the local degree of nematic order: for a disor-
dered phase sn = 0 and for a perfectly nematic phase
sn = 1. Besides, the director field n̂(r) represents the
averaged orientation of a group of agents.

For sufficiently extensile activity, va < 0, a shear flow
emerges, Fig. 2a. Indeed, in the two regions within the
boundaries, the velocity field is mainly aligned along the
x axis and it has opposite directions near y = ±W/2. In-
dividual agents exhibit persistent motion near the bound-
aries, whereas the trajectories of agents in the central
region of the channel are more erratic Fig. 2b. Further-
more, the local nematic order parameter sn is largely
uniform throughout the channel and the director field n̂
aligns with the boundaries on average, see Fig. 2c. At any
given time point, there is no consistent tilt of n̂ along the
channel main axis.

To quantify the spatial organization of the velocity
field, we projected the instantaneous velocity of individ-
ual agents onto a set of orthonormal modes: the product
of a Fourier mode with wavenumber kx = 2πnx/L in the
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Figure 2. Spontaneous channel flow. (a): Coarse-grained velocity field v(r) for va = −3, W = 46rc, at t = 2500. The
colorscale indicates the velocity magnitude |v(r)|. (b): Sequence of displacements of individual agents for a time interval
t = [4550− 5000]. The time sequence evolves from light to dark color. (c): Coarse-grained director field n̂(r) in gray lines, for
va = −3, W = 46rc, at t = 2500, superposed with individual agent positions as in Fig. 1e. The gray colorscale indicates the
local nematic order sn(r). (d): Shear flow amplitude |Vx| as a function of va, for three values of W . (e): Global nematic order
Sn as a function of va and different W , averaged over times and independent realizations. (f): Correlation of shear velocity Vx

with director angle θn, as a function of va and W . (g): Correlation of shear flow amplitude |Vx| with global nematic order Sn

(gray), as a function of va and W . (h): Superposed nematic texture and particle positions indicating the presence of +1/2 and
−1/2 defects, for va = −5 at t = 1500. (i): Density of ±1/2 defects averaged over time, as a function of va, for three values of
W .
Parameters are N = Nx×Ny with Nx = 30 and Ny = [5, 15, 30] corresponding to W = [15, 46, 90]rc and L = 92rc, tsim = 5000,
Nsim = [10, 20, 10]. Curves indicate mean quantities averaged over independent runs, shaded regions indicate one standard
deviation around the mean.

x direction and a Legendre polynomial with index ny in
the y direction, see Sect. S5.E[51] for details. Therefore,
each mode is characterized by two integer numbers nx

and ny. The mode associated with a pure shear of the x
component of the velocity field is (nx, ny) = (0, 1), and
we name its amplitude the shear flow amplitude |Vx|.

Representing |Vx| for varying values of va reveals a tran-
sition to spontaneous shear flows when va < 0, Fig. 2d.
For extensile activity va < 0, as the agent’s activity va de-
creases or as the channel width increases, the magnitude
of the shear flow increases. Notably, shear flows were ob-
served even for channel width as small as tens of particle
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diameters (W = 15rc), Fig. 2d and Fig. S2, where the
hydrodynamic limit is expected to break down. For suf-
ficiently large channel width, the magnitude of the shear
mode saturates and the flow organization becomes more
complex than a simple shear flow, Fig. S3. Finally, for
contractile activity va > 0, the magnitude of the shear
flow is nearly vanishing irrespective of the channel width.

Up to now, our findings are in qualitative agreement
with past results from hydrodynamic theories. How-
ever, several observations in our simulations challenge
this paradigm.

(i) In hydrodynamic theories, the instability occurs at
a critical value of the active stress coefficient αc that
depends on the channel width W as αc ∝ −1/W 2 when
the director field is strongly anchored to the boundaries
[28, 29]. In our agent-based simulations, the transition is
observed in a range of the parameter va between −1 and 0
that does not depend on W , see Fig. 2d. Furthermore, for
fixed channel width W and activity va, our simulations
show that a critical value of the particles per agent Np ≥
N∗

p ≈ 10 is necessary to trigger spontaneous shear flows,
Fig. S4.

(ii) The hydrodynamic theories show that the shear
flow state features a well-defined tilt of the director field
[28, 29], which, together with the active stresses, in-
fluences the strength and the direction of shear flows.
Specifically, for an extensile (contractile) fluid, a counter-
clockwise tilt of the director angle θn > 0 induces
flows with vx > 0 (vx < 0) in the upper boundary,
and vice-versa. However, in our simulations, the di-
rector field largely aligns with the channel boundaries
and tilts in both clockwise and counterclockwise di-
rections, Fig. 2c. We then define the global director
n̂(t) = (cos θn(t), sin θn(t)) by averaging the agents ori-
entation over the whole channel, see Sect. S5.A[51]. The
equal-time correlation between the sign of the director
angle sgn(θn) and the sign of the shear flow amplitude
sgn(Vx) shows a correlation for va < 0, and a weaker
anti-correlation for both va > 0 and narrow channels,
Fig. 2f. Finally, a correlation between the magnitude of
the shear flows and the global nematic order parameter
Sn is found for va < 0 and increases in magnitude as
the channel width increases, see Fig. 2g. For va > 0, an
anti-correlation appears, see Fig. 2g.

(iii) For both contractile activity va > 0, as well as
extensile activity va < 0 and sufficiently large chan-
nel width, the nematic field presents half-integer topo-
logical defect pairs that continuously nucleate and an-
nihilate, see Fig. 2h-i and Sect. S5.C[51] for detection
method. Concurrently, the global nematic order param-
eter Sn, defined in Sect. S5.A[51], depends on parame-
ters as shown in Fig. 2e. Contractile activity (va > 0)
reduces Sn, whereas extensile activity increases Sn for
sufficiently narrow channels, Fig. 2e case W = 15rc. In-
terestingly, one observes a decrease of Sn at larger am-
plitudes of va < 0 for sufficiently wide channels, Fig. 2e
cases W = 46rc and W = 90rc. This is consistent with
the increased density of half-integer topological defect

pairs, Fig. 2i. For a fixed value of va, the density of de-
fects increases by increasing the channel width W , which
leads to a decrease in Sn. The combination of Fig. 2e,g,i
shows that the flow profile alternates between coherent
phases with high nematic order, and uncoherent phases
with nematic topological defects.

The results in this section confirm our expectation that
the active forces due to internal flows can generate ne-
matic activity: for va > 0 (va < 0) contractile (extensile)
active stress is produced.

IV. BULK PROPERTIES - BEND-INSTABILITY
INDUCED SPONTANEOUS FLOW

REORIENTATION

In this section, we study the emergence of spontaneous
flows in the bulk, and therefore without constraining
walls. To model bulk properties, we use periodic bound-
ary conditions in both directions with a fixed period set
as L = 30rc. Here, we first focus on a small system size,
for which the system exhibits coherent collective motion.
In the next section, we will discuss a larger system size,
for which the collective dynamics is more irregular and
topological defect abound.

Hydrodynamic theories of active nematic fluids show
that for sufficiently large activity the bulk fluid exhibits
dynamic flows and director patterns. However there are
differences in the behavior near the instability thresh-
old of an ordered state. Some works that in addition
included a concentration field linked to the strength of
the active stresses showed that above threshold, the fluid
reaches a state where the director field alternates contin-
uously between horizontal and vertical alignments with
intermediate burst of activity and flows [55]. Some other
works reported, dynamic and irregular velocity and di-
rector fields for low activity regimes [56]. Finally, other
works that considered a defect-free active nematic fluid
found above threshold that the system reaches a steady-
state with a spatially-varying director and velocity fields
[32].

For the same parameters as in Fig. 2a, an initial ir-
regular velocity pattern self-organizes over time into an
array of streams along the horizontal axis, Fig. 3b. The
velocity within each stream alternates between the two
horizontal directions, leading to shear flows between adja-
cent streams. In a second phase, the flow pattern evolves
from a horizontal to a vertical arrangement of streams
and the velocity within each stream alternates between
the two vertical directions. Concurrently, the director
field changes forms a horizontal alignment in the first
phase, and then changes to a vertical alignment in the
second phase, see Fig. 3a. During the transition peri-
ods, the director field bends and some topological defect
pairs are created, see Fig. 3a third panel. At later times,
the system keeps on repeating this sequence of events,
and continuously switches between horizontal and verti-
cal alignments, see Movie XX.
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The previous results suggest a temporal correlation be-
tween the director field and the velocity field. To quan-
tify the direction of streams, we define a phenomenolog-
ical nematic tensor Qv = ⟨2vαvα − |vα|21⟩α/⟨|vα|2⟩α
from the agent velocities vα. The average is performed
over all agents in the periodic domain. Analogously
to the nematic tensor field, Qv can be expressed as
Qv = Sv(2n̂vn̂v−1), where the variable Sv measures the
degree of global nematic alignment of the set of agent’s
velocities. Besides, the field n̂v = (cos(θv), sin(θv)) rep-
resents the averaged nematic orientation of agent’s veloc-
ities, where θv is the phase with respect to the horizontal
axis. Recall that we introduced above similar variables
for the nematic tensor field of agent’s orientation, where
Sn and θn are the global nematic order parameter and
the global nematic phase, respectively.

The values of Sn and Sv fluctuate in time and are cor-
related with a correlation factor that decreases for in-
creasing activity, see Fig. 3c,e. The phases θn and θv also
fluctuate in time and their distributions peak at both 0 or
π/2 radians, corresponding to a horizontal and a vertical
nematic alignment respectively, see Fig. 3d. The phases
θn and θv are also correlated for the range of activity
that was explored, see Fig. 3e. Indeed, the switching
events between horizontal and vertical alignments occur
almost concurrently for the director and velocity fields,
see Fig. 3d. Besides, the distribution of the switching
times between two consecutive events is well approxi-
mated by a single exponential, see Fig. S5a-d. The fit-
ted characteristic time Tres decreases as the magnitude
of agent activity increases, see Fig. 3f. This suggests
that the switching events are asynchronous and there is
no well-defined temporal period. Finally, the switching
times match to the time points when Sn and Sv are nearly
vanishing, see Fig. 3c,d.

V. DEFECT DYNAMICS

The results of the previous section point towards an
important role of topological defects for the organization
of the flow field in our agent-based system. Doubling the
period at L = 60rc, topological defects appear for va < 0
as well as for va > 0, Fig. 4a-c. Contrarily to a passive
nematic material, there is a continuous creation of ±1/2
defect pairs driven by activity, balanced by annihilation
events. However, the number of defects scales differently
with va depending on the sign of va. Whereas their num-
ber continues to increases linearly with |va| for va < 0,
their number starts to saturate for va ≳ 3, Fig. 4b. This
is in contrast to the hydrodynamic theory, where the
number of defects depends on the absolute value of the
activity |α| [57].

On can associate an orientation p̂ = ∇ · Q/|∇ · Q|
with +1/2 defects that points from their head to their
tail, Fig. 4b. Due to the broken head-tail symmetry of
the comet shape, +1/2 defects in active fluids can self-
propel [7]. In our simulations, the fluid velocity v+1/2

at the position of +1/2 defects points on average in the
direction of −p̂ if va < 0, Fig. 4a,d,e. In the opposite
case, v+1/2 points into the direction of p̂, but its corre-
lation with the defect direction is smaller, Fig. 4c,e,f. In
parallel, we find that the component of v+1/2 orthogonal
to p̂ vanishes on average for all values of va, Fig. S5e. We
conclude that the direction of the fluid velocity v+1/2 at
the position of +1/2 defects is different for va > 0 and
va < 0, Fig. 4d. With the hydrodynamic framework,
+1/2 defects move along the orientation of p̂, into the
direction of their head in the case of an extensile fluid
and in the opposite direction in the case of a contractile
fluid [58–60]. This is again in agreement with our no-
tion that va < 0 (va > 0) corresponds to an extensile
(contractile) fluid.

One advantage of our particle-based framework is the
intrinsic compressibility of the system, which allows to
extract a coarse-grained density field. In Figure 4g,i
we show the relative variation ∆ρ̂ = [ρ(r) − ρ̄]/ρ̄ of
the local density ρ(r) with respect to the global density
ρ̄ = N/(LxLy). We compute the dipole Dρ,+1/2 of den-
sity variations at +1/2 defect sites, as defined in Fig. S5f-
h. We find that, on average, for va < 0 there is a region
of compression at the head and a region of dilation at
the tail of a +1/2 defect and vice versa for va ≳ 0. This
is in agreement with results from calculations within the
hydrodynamic framework [61].

As for the spontaneous flow instability, the behavior of
topological defects in our simulation framework exhibits
on average features that are similar to that obtained
from the hydrodynamic theory despite a small number
of agents.

VI. SCOPE

While so far we have explored the active nematic fluid
in two dimensional geometries, the key strength of our
model lies in its versatility to include other boundary
geometries and other forms of activity. The field of ac-
tive matter is typically divided in subfields like dry or
wet, polar or nematic active forces, mass conserving or
growing matter [16, 44]. This division of fields is also re-
flected in the division of theoretical descriptions [62]. But
while the fields are divided, the systems are not. Bacte-
ria swim and divide, actin filaments are active nematics,
while they also grow by assembly. Cells in eukaryotic
tissues can crawl, generate nematic active stresses, and
divide. These examples highlight the necessity of a broad
and versatile model that would incorporate all forms of
activity. Our model does exactly that.

While up to this point, we have explored assemblies in
two dimensions, the particle-based nature of our model
means that an extension to three dimensions does not
require any change, except dimensionality and boundary
conditions. To demonstrate this, we simulate a setup
very similar to the channel geometry as in section III.
Agents are confined to a channel along dimensions y, z,
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t=400 t=800 t=1200 t=1600

Figure 3. Spontaneous flow in PBCs. (a): Snapshots of the coarse-grained nematic field or agents positions for va = −3, at
respective times t = 400, 800, 1200, 1600. (b): Snapshots of the coarse-grained velocity field for va = −3, corresponding to the
times in (a). (c,d): Temporal evolution of nematic order Sn (c) and director orientation |θ| (d) for agent shape in black and
agent velocity in purple. Same data as in (a,b). (e): Instantaneous correlation between Sn and Sv (gray) or between |θn| and
|θv| as a function of activity va. (e): Exponential time Tres as a function of activity va, obtained from a fit of the distributions
of switching times from horizontal to vertical velocity alignment.
Parameters are N = 10× 10, L = 30rc, tsim = 20000, Nsim = 20.

with periodic boundary conditions along x. Fig. 5a shows
a snapshot of the system and the resulting flow and orien-
tation maps. We observe a shear flow pattern similar to
Fig. 2a, but the flows are less localised to the walls. The
escape of agents towards the third dimension appears to
limit the nematic order and the coherency of the active
flows.

Furthermore, our model is based on the two-particle
growth model [41], which allows us to implement sim-
ilarly growth, splitting and deletion mechanisms with
mechanical feedback (see S4.G [51]). To further show
the versatility in boundary conditions, Fig. 5b displays a
group of agents growing on a circular patch with absorb-
ing boundary. Agents escaping the patch are removed
from the simulation. We see nematic order with typically
two +1/2 defects close to the center, Fig. 5b. We observe

transient, spiral-like flows, reminiscent of those predicted
for polar active gels [27, 63]. Divisions are primarily lo-
cated at the periphery, as observed for tumor spheroids
and in the two-particle growth model [46, 64–66].

These results demonstrate that our model can readily
be extended to further forms of activity. In future works,
we will also include polar activity - both dry and wet,
in order to arrive at one model for all forms of activity
within one framework.

VII. DISCUSSION

In this work, we present a new theoretical framework
to describe active nematic fluids with a particle-based
approach. We showed for finite system sizes that in-
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Figure 4. Defect nucleation and self-propulsion. (a,d,g): Snapshots of the periodic system for va = −4, showing the agent
orientations and nematic texture (a), the velocity field (d) and the relative density variations (g). (b): Variation of the +1/2
(red) and −1/2 (blue) defect densities as a function of activity, with net defect charge density ∆n = n+1/2 − n−1/2 (black).
(c,f,i): Snapshots of the periodic system for va = 4, showing the agent orientations and nematic texture (c), the velocity field
(f) and the relative density variations (i). (e): Density histogram as a function of activity of the +1/2-defect core velocity
v+1/2 projected along the defect polarity p̂. (h): Density histogram as a function of activity of the density dipole Dρ,+1/2,
representing the local variation of density along the axis defined by the polarity p̂ (inset), over a surface patch A. Here A is
7× 7 pixels centered on the defect core position r+1/2, with one pixel≈ 2.1rc.
Parameters are N = 20× 20, L = 60rc, Nsim = 20.

corporation of internal active flows with nematic sym-
metry give rise to spontaneous flows and self-propulsion
of +1/2-defects, which are well-known hallmarks of ac-
tive nematic fluids. This establishes a qualitative corre-
spondence between the mesoscopic scale where individual
agents generate active force dipoles, and the hydrody-
namic scale with the active nematic stress σ(a) = αQ.

There are several motivations for the introduction
of this new framework. The difficulty to design well-
controlled experimental systems of active matter makes
in silico experiments provided by agent-based simula-

tions useful to decipher between hypothetical mecha-
nisms. For instance, the ability to control the forces ex-
changed by individual units facilitates intuition and will
help to clarify the emergence of active stress. Second,
experimental realisations of active systems like cell tis-
sues or cell cytoskeleton often involve few hundreds or
thousands of agents. The continuous limit of hydrody-
namics is an approximation, where higher order terms
are usually neglected for simplicity, and it is important
to check at a mesoscopic scale if the expected results
from the hydrodynamic theory are preserved for small
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Figure 5. 3D flow and 2D tissue growth. (a): 3D system with confinement along y, z directions and periodic boundary conditions
along x, with N = 10×10×4, va = −1, kBT = 0.05 and ξs = 20, ξi = 40. Top panel indicates a snapshot of particles positions,
middle panel the coarse-grained velocity field projected in the xy-plane at z = 0, and bottom panel the coarse-grained nematic
field, at t = 1500. (b): 2D system with cell divisions and absorbing boundary (circle of radius R = 18rc), initiated with N = 1
agent, Np = 8 particles per agent, va = 0, ξs = 20, ξi = 40 and κb = 120. Top panel indicates a snapshot of particles positions
superposed with the nematic texture, middle panel the coarse-grained velocity field, and bottom panel the spatial distribution
of the cumulated number of divisions.

number of agents. Third, fluctuations can play an im-
portant role, especially near a phase transition, or when
number of constituents is small. Our agent based model
also naturally accounts for fluctuations. And indeed,
we see that these fluctuations for example cause a re-
orientation of global flow patterns. In particular, agent
turnover is intrinsically a micro-scale process, and it is
important to account for the discreteness of the active
entities [44]. Third, another advantage of agent-based
models over continuous descriptions is the emergent rhe-
ological response, for instance activity might trigger local
compression in the system and reduce fluidity through

effective viscosity. These density-dependent effects are
difficult to capture at the hydrodynamic level except by
postulating specific dependencies on chosen parameters.
Last, but importantly, our agent-based model is versatile
and can easily be extended to more complex geometries,
composite systems, and multiple sources of activity, in
particular agent turnover or agent self-propulsion.
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S1. PASSIVE NEMATIC FLUID (2D)

Here we consider a two dimensional passive system
with channel geometry along the x-direction, as described
in Fig. 2 of the main text for va = 0. We vary the packing
fraction pf and temperature kBT , Fig. S1. Note that for
a fixed value of Np, packing fraction pf and agent den-
sity N/Ω are equivalent. Here the initial distribution of
orientations for agents is horizontal.

First, we compute the global nematic order S (see
Methods) on Fig. S1b. At low temperature, a high pack-
ing fraction induces a large nematic order [53], Fig. S1c,
whereas the nematic order remains small for low pf
Fig. S1a. At larger temperature, fluctuations are too
large to maintain agent-agent alignment and nematic or-
der decreases [54]. Thus, the parameters chosen in the
main text, kBT = 0.1 and pf = 0.8 correspond to a
regime of high nematic order.

To ensure that a high nematic order corresponds to a
nematic phase, we compute the mean square displace-
ment (MSD) of agents as a function of packing frac-
tion for temperature kBT = 0.1, Fig. S1d. At long
times, the MSD is diffusive (linear in time), and becomes
larger than the squared agent length over a characteris-
tic time smaller than the simulation time. This indicates
that neighbor exchange events occur, as expected in a
liquid phase. Note that for temperatures smaller than
kBT = 0.1, the dynamics progressively becomes jammed
(data not shown), and we chose parameters to avoid this
solid-like phase.

In addition, we compute the auto-correlation functions
(ACF) for orientation, C̄uu, and velocity, C̄vv, using from
agents α their orientation ûα and velocity vα (see meth-
ods). The orientation ACF relaxes approximately to S2

at equilibrium [REF], and Fig. S1e confirms that nematic
order increases with pf. The relaxation time to a steady-
state value occurs over a characteristic time τu ≈ 150,
significantly smaller than the total simulation time. In
addition, velocity ACF shows an exponential relaxation
of velocity correlations Fig. S1f,i, over a characteristic
time τv ≈ 20.

Thus, we confirm that the parameters pf = 0.8 and
Tn = 0.1 in the main text correspond to a nematic-like
phase. The equilibrium properties of the passive nematic
fluid described here can be probed over simulation times
much longer than τu and τv, hence the choice tsim ≥ 5000
in the main text or tsim = 2000 here.

(a) (b) (c)

(d) (e) (f)

Figure S1. Supplementary results for a passive system in
channel geometry, with Np = 14, N = 100, tsim = 2000.
(a,c): Snapshot of the system at last simulation time point
t = 2000, for pf = 0.5 (a) or pf = 0.8 (c) with kBT = 0.1.
Agents are colored depending on their orientation, see the in-
set in (a) for the nematic color wheel. (b): Global nematic
order S as a function of temperature kBT and packing frac-
tion pf. Dots represent time-averaged S from each simulation.
(d-f): Agent mean-square displacement MSD (d), agent ori-
entation auto-correlation function (ACF) Cuu (e) and agent
velocity ACF Cvv (f) as a function of time difference ∆t, vary-
ing pf at fixed kBT = 0.1. The dashed line on (d) indicates
the square of the agent length la = r0(Np − 1) + rc. The
color dashed lines on (e) indicate average S2 values for each
condition.
Averages are performed over Nsim = 10 independent simula-
tions, with Nb = 4 time blocks for MSD and orientational
ACF, and Nb = 9 time blocks for velocity ACF. Averages are
indicated by full lines (b,d,e,f), and filled regions represent
deviations from the mean of one standard error (d-f).
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Figure S2. Narrow channel width as a function of activity.
(a-c): Snapshots of particle positions (a), nematic field (b)
and velocity field (c) at va = −3.
Parameters N = 30× 5 and Np = 14, simulation time tsim =
5000, Nsim = 10 independent simulations per condition.

Figure S3. Large channel width as a function of activity. (a-
c): Snapshots of particle positions (a), nematic field (b) and
velocity field (c) at va = −3.
Parameters N = 30×30 and Np = 14, simulation time tsim =
5000, Nsim = 10 independent simulations per condition.

(b) (c)(a)

Figure S4. Narrow channel width as a function of the number
of particles per agent Np. (a): Snapshot of the particle posi-
tions (top), velocity field (middle) and nematic field (bottom)
at Np = 6. (b): Change of the maximal mode amplitude
of velocity Fourier-Legendre projection LG[v] as a function
of the number of particles per agent. (c): Correlation plot
between the velocity magnitude |LGv| and nematic order S
(gray), or between the velocity LGv and director angle θn
(red), for a change of the number of particles per agent.
Parameters N = 30 × 5 and Np = 14, simulation time
tsim = 5000, Nsim = 10 independent simulations per con-
dition.

S2. SUPPLEMENTARY RESULTS

Here we detail supplementary results for Fig. 2 in
the main text, Figs. S2-4, and supplementary results for
Fig. 3,4 in the main text, Fig. S5.

(a) (b) (c)

(f) (g)

(d)

(e) (h)

Figure S5. Active system with PBCs and pc = 14, N = 400,
Nsim = 20. (a,d): Histogram of the distribution of switching
times for |θv| >< π/4 (top), and reciprocal cumulative dis-
tribution function (CDF) in log-space (bottom). The black
dots represent the time interval over which the exponential
fit is performed, indicated by a dashed line. (e): Density
histogram as a function of activity of the +1/2-defect core
velocity v+1/2 projected in the direction perpendicular to the
defect polarity, p̂⊥ = (− sin θp, cos θp). (f): Instantaneous
correlation between defect position r±1/2 and relative density
∆ρ/ρ. (g): Sketch for the definition of the density dipole
Dρ,+1/2. The black dot indicates the defect center r+1/2, and
defines a displacement vector ∆rA = rA − r+1/2 around a
square patch A centered at r1/2. One defines the density
dipole as D+1/2 = ⟨(p̂ ·∆r̂A)∆ρ̂⟩A with ∆r̂A = ∆rA/|∆rA|.
The square patch A = L2 has a length L = 2nn + 1 in pixel
units defined by coarse-grained fields, with nn ≥ 1. (h):
Average density dipole at sites of +1/2-defects as a func-
tion of activity, for different next-neighbor patches with area
A = (2nn + 1)2 (g).
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S3. PROGRAM METHODS

A. Parameter values

The parameters are

• geometric: particles per agent Np, pair potential
range rc, bond length ℓ0,

• kinetic: mass m, temperature kBT ,

• dissipative: ξs (shape), ξi (inter-agent), ξe (exter-
nal substrate),

• conservative: link stiffness Kl, bending rigidity κb,
repulsive coefficient f0, attractive coefficient f1,

• active: active internal flow va.

Note that the bending rigidity κb of a flexible chain is
often written as a function of a persistence length lp such
that κb = kBT lp. We then have lp = 50 for κb = 5 and
kBT = 0.1, to be compared with agent length lα = 7.5
for Np = 14 and ℓ0 = 0.5 (see below for definition of lα).

The various interactions define under-damped char-
acteristic times: relaxational ts = m/ξs = 0.05,

ti = m/ξi ≃ 0.03 or vibrational Tb =
√

m/Kb ≃ 0.2,
Tl =

√
m/Kl ≃ 0.2, Tg =

√
m/Kg ≃ 0.3,

Ti =
√
m/K0 ≃ 0.6 and Ta =

√
m/Ka.

This is associated with characteristic stiffnesses
(force/length) Kb = κb/ℓ

3
0 = 40, Kl = 20, Kg = fg/ℓ0 =

10, K0 = f0/rc = 2.4, Ka = ξi Max[va]/rc = 200. Then,
the corresponding over-damped characteristic times are
τb = ξs/Kb ≃ 0.5, τl = ξs/Kl = 1, τg = ξs/Kg ≃ 2,
τi = ξi/K0 ≃ 17 and τa = ξi/Ka ≃ 0.2. Under-damped
time scales should be smaller than over-damped time
scales to have large scale properties independent from
inertial effects. One only needs T/τ =

√
mK/ξ ≪ 1

because t/τ = mK/ξ2 = (T/τ)2, and one gets

• Tb/τb =
√
mKb/ξs ≃ 0.3,

• Tl/τl =
√
mKl/ξs ≃ 0.2,

• Tg/τg =
√

mKg/ξs ≃ 0.2,

• Ti/τi =
√
mK0/ξi ≃ 0.04,

• Ta/τa =
√
mKa/ξi ≃ 0.4.

B. Algorithmic program structure

To describe an evolving tissue with potential divisions
and deaths, one uses fixed arrays for the 9 particle vari-
ables {rp,i}, {vp,i}, {Fp,i} with spatial components i,
of respective sizes Np.Nmax determined by the expected
maximal number of agents Nmax. The later can be easily
determined from the system size Ω in the large packing
limit with balls of radius rc/2 and d-dimensional volume
Vd(rc): Np.Nmax ∼ Ω/Vd(rc). The advantage of fixed
arrays is to avoid the computational costs of dynamic
reallocation (vectors), which becomes important when
turnover is allowed.

Each array is then composed of the dynamic vari-
ables of living agents and irrelevant data for empty
slots (voids). One constructs a STATUS array of size
Nmax and indices s = [0, Nmax − 1] to assign −1 to
living agents, and the memory position of the previous
void otherwise. This generates a linked list structure
of voids in STATUS, thanks to a variable (head) which
contains the memory position of the first void in STA-
TUS, such that s1 = STATUS[head] gives the next one,
s2 = STATUS[s1], etc..., until STATUS[sn] = −1 termi-
nates the list of voids. This structure allows to add voids
to the linked list when a agent is removed, or to fill head
voids with new agents when division occurs. See [REF]
below for detailed description.

After initialisation of arrays {rp,i}, {vp,i} for a given
number of agents, one computes all the forces {Fp,i}
and starts the temporal evolution. This uses a modi-
fied velocity-Verlet algorithm [REF], which accounts for
the velocity dependence of forces due to the dissipative
interaction. From a time t to a time t+ δt, one updates

variables as

vp(t+ δt/2) = vp(t) +
δt

2
Fp(t)

rp(t+ δt) = rp(t) + δtvp(t+ δt/2)

= rp(t) + δtvp(t) +
δt2

2
Fp(t)

→ [division and/or death algorithms]

F(c,r)
p (t+ δt) = F(c,r)

p [r(t+ δt)]

F(d)
p (t+ δt) = F(d)

p [r(t+ δt),vp(t+ δt/2)]

v̄p(t+ δt) = vp(t+ δt/2) +
δt

2
F(c,r)

p (t+ δt)

= vp(t) +
δt

2
[Fp(t) + F(c,r)

p (t+ δt)]

→ [iterative loop on vp and F(d)
p at t+ δt]

vp(t+ δt) = v̄p(t+ δt) +
δt

2
F(d)

p (t+ δt)

F(d)
p (t+ δt) = F(d)

p [r(t+ δt),v(t+ δt)] (S10)

where Fp = F
(c)
p + F

(d)
p + F

(r)
p and F

(c,r)
p = F

(c)
p + F

(r)
p .

C. Boundary types

The code is written to account for different bound-
ary types along each dimension: periodic, confining, ab-
sorbing or free. Confinement is implemented with a
soft (quadratic) potential, and absorption deletes agents
when their center-of-mass crosses the boundary. Then,
one constructs the respective index bci = 0, 1, 2, 3 for
each dimension i, corresponding respectively to peri-
odic, confining, absorbing, free, and build a global index
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Table I. List of parameter values used in the simulations. Parameters with symbols in parenthesis are only present for a
proliferating material. Varied parameters have their values indicated under square brackets. The units are chosen so that
m = rc = 1 and δt = 10−3.

Parameter Value Description

Nsim [10, 20] number of simulations per condition
δt 10−3 time step
tsim [5000, 20000] simulation time
(ka) 0.1 rate of agent death
Np 14 particles per agent
pf 0.8 2D packing fraction
N [400, 450, 2500] number of agents in 2D
rc 1 pair potential range
ℓ0 0.5 shape link length
(ℓd) 1.5 ℓ0(Np − 1) division length threshold
(ud) 0.1 daughter particle displacement
m 1 particle mass
Kl 20 shape link stiffness
Kw 20 external wall stiffness
κb 5 shape bending rigidity
(fg) 5 shape division growth force
f0 2.4 inter-agent repulsive coefficient
f1 0.5 inter-agent attractive coefficient
va [−5 : 5] active flow amplitude
ξs [5, 20] shape dissipative coefficient
ξi [10, 40] inter-agent dissipative coefficient
(ξe) 0 external (substrate) dissipative coefficient
kBT 0.1 temperature (noise)

bc ↔ bc = (bcx, bcy, ...). In d = 3 dimensions, one gets
4d = 64 possibilities with bc = bcy + 4.bcx + 16.bcz. The
results presented in the main text for 2D (bcz = 0) corre-
spond to bc = 0 (periodic in x and y directions), bc = 1
(periodic in x, confining in y) and bc = 10 (circular ab-
sorbing). In 3D, walls along y, z and periodicity along x,
or bc = (0, 1, 1), gives a global index bc = 17.

For a confining wall at yw = ±W/2, one applies a soft
potential Vw(y) = 1

2Kw(y ± d − yw)
2 and Vw(y) = 0

when y < yw − d or y > yw + d, with force Fw(y) =
−∂Vw/∂r. Similarly for a confining disc at rw = R, one
uses Vw(r) =

1
2Kw[r + d−R]2. The parameter d = rc/4

is a penetration length inside the channel over which the
wall potential is non-zero.

D. Neighbour list algorithm

The calculation of inter-agent particle forces requires
O(N2

tot) loop calculations per time step for Ntot particles.
For elongated agents (Np ∼ 10), this scaling becomes
quickly inefficient as N increases to few hundreds. Instad,
one obtains a O(Ntot) scaling by the use of a neighbour
list algorithm [67].

It consists in dividing the available space into Nb regu-
lar boxes with Nb = Nbx.Nby.Nbz, and assign each parti-
cle to a box. Each box of indices (bx, by, bz) is assigned to
a unique index b = bx+ by.Nbx+ bz.Nbx.Nby = [0, Nb−1]
with bi = [0, Nbi−1]. In 2D, one fixes Nbz = 1 and bz = 0.
The size rb of boxes is chosen to be rb ∼ rc = 1.2 rc so
that one only needs to loop over nearest neighbour boxes
when calculating inter-agent interactions. Since the list
of particles for each box is evolving at each time, the best
algorithmic structure for this purpose is a linked list.

For each box of index b, the memory index p =
[0, Ntot] of the first particle found is assigned to the en-
try HEAD[b] = p of a HEAD list of size Nb. If the box
remains empty, HEAD[b] = −1. The next particle p′

found in the box is linked to the previous one with a
LINK list of size Ntot, initialized to LINK[p] = −1, so
that LINK[p′] = HEAD[b]. This particle becomes the
new head of the list hence HEAD[b] = p′. By repeti-
tion, this creates a linked list of particles q = LINK[p]
belonging to each box b, starting from the head par-
ticle phead = HEAD[b]. The linkage terminates when
LINK[p] = −1.

One needs to reconstruct this linked structure at every
time step (O(Ntot)), but the inter-agent interactions are
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now performed in a loop over boxes with O(Nb.nn) where
the number of neighbour boxes is nn ∼ 3d/2. The factor
of 2 is due to adjacent boxes sharing neighbours, so that
one can only loop over half of them for each box (usually
upper-right corner). Since Nb ∼ Ntot because rb ∼ rc,
one replaces a double loop of scaling O(N2

tot) by two loops
of scaling O(Ntot), one for generating the linked list and
one for computing interaction forces.

To identify neighbour boxes, one needs to be careful
about boundary conditions. Boxes are defined on the
system’s volume Ω, such that Nb,k = floor(Lb,k/rb) with
Lb,k = Lk and rb,k = Lb,k/Nb,k. In case of soft confine-
ment or absorbing conditions, particles can exist away
from the defined system’s volume and one must increase
{Lb,k} accordingly to ensure that all particles are as-
signed to a box. Next, one adds an extra layer called
ghost boxes, which link the boxes from opposite sides in
case of periodic boxes and are empty otherwise. Ghost
boxes serve to define a unique displacement map from a
box to its neighbour boxes. For instance in 2D, a box
b = (bx, by) has 4 independent neighbours b+∆, where
∆x = {1, 1, 1, 0} and ∆y = {−1, 0, 1, 1} link b to the
upper-right corner of nearest neighbours (starting from
lower right neighbour box).

E. Initial configuration

The large aspect ratio of agents requires care for the
initial preparation of the system when Nc(ti) > 1, to
avoid agent overlap. Each agent’s center-of-mass is as-
signed a position on a regular grid of length steps {ak}
in each direction k, such that ak = Lk/Nk. The position
is rk,f = −Lk/2+ak. (f +1/2) with −Lk/2 < rk < Lk/2
for f = [0, Nk − 1]. We prepare the system into either
isotropic or nematic states.

For an isotropic state, agent orientation ûα =
(sin θα cosϕα, sin θα sinϕα, cos θα) is sampled over uni-
form random generators (ϕα = 2π.rand[0, 1], θα =
π.rand[0, 1]). One fixes θα = π/2 in two dimensions. Ini-
tial agent bond length l0i is reduced to avoid particle col-
lisions, such that the agent length satisfies l0i.(Np−1) <
min({ak}).

For a nematic state, its direction is set as n̂ =
(sin θn cosϕn, sin θn sinϕn, cos θn). We only consider ne-
matic directions êx, êy or êz for simplicity. Here agents
are placed on the defined grid, but shifted alternatively in
a chosen orthogonal direction n̂⊥ by an amount ±a⊥/4.
Thus for agent indices α along the nematic direction
and α⊥⊥ perpendicular to the plane containing n̂, n̂⊥ (in
three dimensions), one writes r⊥,α = r⊥,α + a⊥(2α%2−
1)(2α⊥⊥%2 − 1)/4 where % is the modulo operation.
For elongated agents, the effective transverse spacing is
then a⊥/2, and one chooses the initial bond length l0i
such that 2a∥− l0i.(Np− 1) ∼ a∥/2 to have similar agent
spacing in the longitudinal direction. This choice has
the advantage to reduce the need of initial compaction,
and also to start the simulation from a non-crystallized

structure. The orientation of each agent ûα follows
ϕα = ϕn + ∆ϕ.rand[−1, 1], θα = θn + ∆θ.rand[−1, 1]
where ∆θ = ∆ϕ = 0.1.

After the generation of particle positions, one creates
the LINK list for the neighbour list algorithm (see above).

In addition, one assigns for each particle and
each spatial component i an initial velocity vp,i =√
Tn/m.N (0, 1), where N (0, 1) is a random variable dis-

tributed over a normalised centered Gaussian. This
means that the initial velocity distribution is Maxwell-
Boltzmann and satisfies the equipartition theorem. The
net linear momentum per particle is then calculated and
subtracted from each vp,i to start with a global system
at rest.

F. Effective aspect ratio and packing fraction

Instead of fixing the number density of agents, we es-
timate the effective d-dimensional volume V

(d)
α occupied

by a agent and fix a packing fraction pf = N Vα/Ω where
Ω is the system’s volume.

Because of the contact interaction limited by the
cut-off range rc, agents can be represented as sphero-
cylinders (circo-rectangles in two dimensions) of width
rc, and length lα = (Np − 1)ℓ0 + rc. This allows to
define an effective aspect ratio of agents ar = lα/rc =
1+ (Np − 1)ℓ0/rc. The limit of a unit aspect ratio corre-
sponds to a sphere (circle) with Np = 2 and ℓ0 = 0.

The agent volume is then V
(3)
α = 4π

3 (rc/2)
3 +

π(rc/2)
2 (Np − 1)ℓ0 in three dimensions, and V

(2)
α =

π(rc/2)
2 + rc (Np − 1)ℓ0 in two dimensions. One then

chooses the number of agents N and packing fraction
pf for a simulation, and determines the system’s size
L = Ω1/d = (NVα/pf)

1/d. To obtain different sizes in
different spatial directions i, j, one chooses the individ-
ual number of agents per dimension {Nk}dk=1 such that
N = Πd

k=1 Nk. Then, one computes the system’s length
in a direction i with Li = Ni (Vα/pf)

1/d whereas other
directions j ̸= i have sizes Lj = (Nj/Ni)Li. This ensures
that Ω = Πd

k=1 Lk = NVα/pf.
Alternatively, to reach nematic order in three dimen-

sions, one can start from the two dimensional packing
fraction pf(2) = N∥N⊥V

(2)
α /(L∥L⊥) in the plane contain-

ing n̂, n̂⊥, with N = N∥N⊥N⊥⊥ and Ω = L∥L⊥L⊥⊥ (see
previous section on nematic intialization). To ensure that
inter-agent distances are similar in the two directions per-
pendicular to the nematic direction, one imposes a trans-
verse inter-agent distance a⊥⊥ = a⊥/2 and define L⊥⊥ =
N⊥⊥ a⊥⊥ = (N⊥⊥/N⊥)L⊥. Calling v the dimensionless

ratio of volumes v = 2V
(3)
α /

[
V

(2)
α

]3/2
, the 3D packing

fraction is written as pf(3) = NV
(3)
α /Ω = v

[
pf(2)

]3/2
.

For the chosen parameters pf(2), rc, Np and ℓ0, one gets
v ≃ 0.57 and pf(3) ≃ 0.41.
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G. Division and Death

Division of agents is introduced by adding a con-
stant growth force fg to the shape link force F (l)(r) =
Kl(ℓ0 − r) + fg. This defines an effective link length
ℓ0g = ℓ0 + fg/Kl and one triggers division when the
agent size ℓ0g.(Np−1) reaches a critical size ℓd such that
ℓ0.(Np − 1) < ℓd < ℓ0g.(Np − 1). For an elongated agent
of axis n̂α, division can be performed transversely to the
agent axis or longitudinally, and we choose the later case
here.

The first case means creating clones of all particles
p = [0, Np − 1] of the "mother" agent and apply-
ing displacements ∆r = ±ud n̂⊥,α to the "daughter"
agent particles with ud ≪ ℓ0. In memory, one simply
needs to copy p into a new slot, given by the first void
(head) in the linked list of STATUS. Then the next void
STATUS[head] = newhead becomes the new head and
STATUS[head] is assigned −1 because the "daughter"
agent is alive.

The second case means to separate the agent with par-
ticles p = [0, Np − 1] into two "daughter" agents with
particles p1 = [0, Np/2 − 1], p2 = [Np/2, Np − 1], and
cloning all particles. In memory, one replaces the p-
allocations by p1 and copies p2 into a new slot. New par-
ticles are assigned a fixed displacement along the agent
axis ∆r = ±ud n̂α, forward for p1 and backward for p2 to
ensure a bijective relation between spatial organization
and memory allocation.

In our simulations, we choose to use the algorithm for
longitudinal division. Note that both cases preserve the
local nematic order of agents.

If allowed in the program, agent death (akin to
cell apoptosis) is tested for each agent at each time
step, and done if a random variable r = rand[0, 1]
satisfies r < kaδt, where ka is the apoptotic rate and δt
the time step. The agent life time is then distributed
exponentially. If a living agent s with STATUS[s] = −1
is removed, this creates a new void and it is linked
to previous head by STATUS[s] = head followed by
head = s so that s becomes the new head void.

S4. ANALYSIS METHODS

A. Nematic order

In d spatial dimensions, the global nematic tensor Q
of a set of N agents with orientations ûα is given by

Q =
1

N(d− 1)

N∑
α=1

(d ûαûα − 1) ≃ S

d− 1
(dn̂n̂− 1)

(S11)
where S is the global nematic order and n̂ the global di-
rector. The second equality assumes a uniaxial nematic,
which is expected to be a good approximation for rod-like
particles in 3D, but is exact only in 2D. Operationally,
S = [0; 1] is the largest positive eigenvalue of Q and n̂ the
corresponding eigenvector. Perfect nematic order S = 1
is achieved when ûα = n̂ for all α. From the end-to-end
agent displacement ∆rα = rα[Np−1]−rα[0], one defines
the agent orientation ûα = ∆rα/|∆rα|.
In two dimensions, one can show explicitly that S[2D] =√
(Q : Q)/2 =

√
Q2

xx +Q2
xy with n̂ = cos θnêx+sin θnêy

and θn = 1/2 arctan2(Qxy/Qxx). In 2D, the nematic ten-
sor has two degrees of freedom {Qxx, Qxy}, which allows
to determine exactly S and θn in the director represen-
tation.
In three dimensions, the nematic tensor has five degrees
of freedom {Qxx, Qxy, Qxz, Qyy, Qyz} but the director
representation only involves three parameters {S, θn, ϕn}
with n̂ = sin θn[cosϕnêx +sinϕnêy] + cos θnêz. This dif-
ference originates from the possibility of biaxial nematic
order in 3D, with two principal directions n̂1, n̂2 with
respective orders S1 and S2. This gives five degrees of
freedom with the orthogonality condition n̂1 · n̂2 = 0.
In that case, one needs to diagonalize Q, and identify
S as the largest positive eigenvalue of Q with the corre-
sponding eigenvector n̂. A test for biaxiality is done by
comparing the second largest eigenvalue S2 with −S/2.
Indeed, we observe that fluctuations introduce transient
ordering such that |S2 + S/2| ≠ 0 in average.

Similarly, one constructs a nematic tensor associated
to the particle velocities {vp}, which reads in dimensional
or dimensionless versions

Qv =
1

Ntot(d− 1)

Ntot∑
p=1

(dvpvp − |vp|21), (S12)

Q̂v =
1

Ntot(d− 1)

Ntot∑
p=1

(d v̂pv̂p − 1) (S13)

where v̂p = vp/|vp|. In two dimensions, one can write
Q̂v = Sv(2 n̂vn̂v − 1), with the velocity order parameter
Sv and the corresponding velocity director n̂v.

To eliminate the fast velocity fluctuations and focus
on large scale coherent motion, one replaces in sub-
sequent analysis the instantaneous velocities {vp} by
mean velocities {v̄p}, where v̄p(t) = up(t, δt)/δt. The
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temporal displacement up is forward (backward) for
the first (last) time point, and central otherwise with
up(t, δt) = 1/2[rp(t + δt) − rp(t − δt)]. One chooses
δt = [1000, 10000] × δt = [1, 10] depending on the data
writing frequency.

B. Coarse-grained fields

From a given configuration of particles {rp, v̄p}, one
builds coarse-grained spatial fields for number density
n(r), velocity v̄(r) and nematic order Q(r) over a reg-
ular spatial grid of points {r}. This requires the coarse-
graining of microscopic distribution functions with a
weight function W (R)

n(r) =
∑
p

δ(r− rp) →
∑
p

W (r− rp) (S14)

n(r)v̄(r) =
∑
p

v̄p δ(r− rp) →
∑
p

v̄p W (r− rp)

n(r)Q(r) =
∑
p

Qp δ(r− rp) →
∑
p

Qp W (r− rp)

≃ n(r)s(r)

d− 1
[d n̂(r)n̂(r)− 1]

The individual nematic tensor Qp is defined for each par-
ticle p belonging to an agent α as Qp = (1/Np)(d ûαûα−
1)/(d− 1).

The weight function is defined such that∫
ddRW (R) = 1, and one chooses for simplic-

ity an isotropic step function W (R) = If[R ≤
rw, 1/Vd(rw)],Else[0] parameterized by the window
radius rw and dependent on the d-sphere volume Vd(rw)
of the window. The advantage of a step function
compared to a smooth (gaussian) kernel is that the
spatial integration of the function is not sensitive to
the spatial grid resolution. Note that for non-periodic
boundaries defined at spatial points {rb}, Vd(rw) de-
pends on the distance |r − rb| because spatial points
external to the system are excluded (precisely to avoid
boundary effects). For instance at a boundary point
of a flat wall, only half the volume Vd(rw), internal
to the system, must be considered. This effect is
captured by a simple linear scaling with the normal
distance to boundary sn = |r − rb,n| ≤ rw such that
Vd(rw, r) = Vd(rw).{If[sn ≤ rw, (sn/rw + 1)/2],Else[1]}.

The window radius rw is defined from the total number
of particles Ntot and the system size Ω such that the win-
dow spherical volume Vd(rw) contains a certain number
of particles Nw in the bulk. This imposes the relation
Nw/Vd(rw) = Ntot/Ω. One chooses the free parame-
ter Nw = 112, corresponding to 8 agents per window or
rw ≃ 3.8rc with the particle density considered in results.

C. Detection of defects in two dimensions

From the coarse-grained nematic field Q(r) and associ-
ated director field n̂(r) = (cos θn(r), sin θn(r)), one com-
putes the winding number field q(r) = (1/2π)

∮
C(r) dθn(r)

around a closed loop C(r). We use a CCW nearest-
neighbour grid contour around each spatial point r, such
that the displacement map from the point r is {uc}
with {uc,x} = ∆x.{+,+, 0,−,−,−, 0,+,+} and {uc,y} =
∆y.{0,+,+,+, 0,−,−,−, 0}. The winding number q(r)
is computed from an oriented integration of the direc-
tor angle [REF]. Defining the contour positions as {rc =
r+uc} with c = [0, Nc] and 0 ≡ Nc, one defines the angle
difference ∆θn = θn(rc+1)−θn(rc) for each displacement
and adds up the total charge q += (1/2π)[∆θn +B(θn)]
from all c, where B(x) = {If[x > π/2,−π],Elif[x <
−π/2, π],Else[0]}. Then, one applies an aggregation al-
gorithm to merge topological defects of the same charge
which are nearest neighbours on the spatial grid. Finally,
the defect polarity p̂ of +1/2-defects is computed using
the unit nematic divergence [REF] p̂ = ∇ · Q/|∇ · Q|,
with derivatives defined also from nearest neighbour dif-
ferences.

For non-periodic boundaries, one cannot define a
closed contour to compute a winding number. Instead,
one defines a half-contour and count the number of
half-rotations, so that q += (1/π)[∆θn + B(θn)] with
{uc} = ±[∆x,∆y].{[+, 0], [+,+], [0,+], [−,+], [−, 0]}.
Derivatives are also adapted near boundaries (back-
ward/forward instead of central depending on direction)
to compute the defect polarity p̂ of +1/2-defects.

D. Correlation functions

In two dimensions, we compute temporal Auto-
Correlation Functions (ACF) from individual agents or
particles as follows,

• orientation ACF

C̄uu(∆t) = ⟨2[ûα(t0 +∆t) · ûα(t0)]
2 − 1⟩α,t0

• velocity ACF for particles

C̄(p)
vv (∆t) = ⟨vp(t0 +∆t) · vp(t0)⟩p,t0/⟨v2

p(t)⟩p,t

• mean-square displacement

MSD(∆t) = ⟨|δrp(t0 +∆t)− δrp(t0)|2⟩p,t0

is averaged over particles and initial times t0, with
δrp = rp − rcom the particle position shifted from
the center of mass rcom of the system.

where ⟨Xp⟩p = 1/Ntot

∑
p Xp and ⟨Xα⟩α = 1/N

∑
α Xα

for any quantity X.
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E. Spectral decomposition of velocity

1. Periodic boundary conditions

To analyse the spatial modes of the velocity field, we
perform a Fourier projection over the mean velocities
{v̄p} at positions {rp}, for the Ntot particles. This is pre-
ferred to a discrete Fourier transform on a regular grid,
where one would need to compute a coarse-grained ve-
locity field for all acquired times, adding more expensive
computations. With a Fourier projection, one can di-
rectly use the off-grid information on particles positions.

Each Fourier mode for the velocity component in di-
rection i is defined by a wave-vector k = (kx, ky), and
one obtains complex coefficients

Ci(k) =
1

Ntot

∑
p

v̄p,i exp[−i rp · k] (S15)

Because particle velocities are real, one has the spectral
redundancy Ci(−k) = C∗

i (k). Note that the zero mode
Ci(0) corresponds to the center-of-mass velocity. For
periodic boundary conditions, the wave-vectors k form
a discrete set of modes along each spatial dimension i,
ki = 2π/Li.Z where Z is the ensemble of signed integers.

To account for temporal director switches, we also
project the velocities along k̂ = k/|k| and k̂⊥ =
(−ky, kx)/|k|, such that the Fourier coefficients are

C∥(k) =
1

Ntot

∑
p

(v̄p · k̂) exp[−i rp · k], (S16)

C⊥(k) =
1

Ntot

∑
p

(v̄p · k̂⊥) exp[−i rp · k] (S17)

An inverse Fourier projection can be defined on a reg-
ular grid of spatial points {r} such that

v̄i(r) =
∑
k

Ci(k) exp[i r · k] (S18)

Note that contrarily to a discrete Fourier transform, the
projection on the irregular grid of particle’s positions
{rp} implies a loss of information when reconstructing
the velocities, hence v̄(r) can be seen as a parameter-
free coarse-grained velocity field with weight function
W (R) = 1/Ω

∑
k cos[R·k] for a system size Ω = Πd

i=1 Li.

2. Channel geometry

In the channel geometry, due to the confining bound-
aries, we decompose velocities on an hybrid basis. It is
made of Legendre polynomials Pn(Y ) in the transverse
direction, where Y = [−1; 1], and trigonometric functions
exp[−ixkx] in the longitudinal direction. The complex
coefficients are

Ci(kx, ny) =
2ny + 1

Ntot

∑
p

v̄p,iPny
(2yp/W ) exp[−ixpkx]

(S19)

with ny ∼ N is a positive integer and kx = 2π/Lx.Z as
before. An inverse projection can be defined on a regular
grid of spatial points {r} such that

v̄i(r) =
∑
kx,ny

Ci(kx, ny)Pny (2y/W ) exp[ixkx] (S20)

For a simple shear flow vx = 2v0 y/W with kx = 0 and
y = [−W/2;W/2], one finds coefficients

Cx(ny) =
2ny + 1

Ntot

∑
p

vp,xPny
(2yp/W ) (S21)

≃ v0(ny + 1/2)

∫ 1

−1

dY Y Pny (Y )

= v0
(2ny + 1) sin(πny)

π(2− ny − n2
y)

One thus finds Cx(1) = v0 and Cx(ny) = 0 for
ny ̸= 1. A Legendre decomposition is favored here
because the Fourier projection of a simple shear flow
vx = v0 sin(πy/W ) does not select the pure mode k =
(0, π/W ) as additional modes are non-zero, i.e. the
Fourier basis is only complete for periodic functions. For
instance, one finds Cx(ky) = 2i v0 z cos(zπ/2)/[π(1−z2)]
for ky = (π/W )z.
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