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Abstract

To accurately identify local structures in atomic-scale simulations of complex materials is crucial for the study of numerous
physical phenomena including dynamic plasticity, crystal nucleation and glass formation. In this work, we propose a
data-driven method to characterize local atomic environments, and assign them to crystal phases or lattice defects.
After constructing a reference database, our approach uses descriptors based on Steinhardt’s parameters and a Gaussian
mixture model to identify the most probable environment. This approach is validated against several test cases :
polymorph identification in alumina, and dislocation and grain boundary analysis in the olivine structure.

1. Introduction

The last two decades have seen a spectacular increase
of computing power [1], and the rise of efficient, massively
parallelized simulation softwares [2]. Both have fueled sig-
nificant advances in the field of materials modeling where
large-scale molecular dynamics (MD) simulations can now
include up to hundreds of millions of atoms [3]. This has
called for the development of increasingly efficient tools for
analyzing simulations, such as central symmetry parame-
ter [4], common neighbor analysis [5, 6], topological cluster
classification [7], polyhedral template matching [8], which
have been widely applied to face-centered cubic (fcc), body
centered cubic (bcc), hexagonal close-packed (hcp), and
diamond lattices. All these methods are based on assign-
ing the local bonding network with a specific topological
fingerprint.

Meanwhile, more agnostic approaches consists first in
computing numerical descriptors able to characterize the
local ordering (eg. Behler-Parinello symmetry functions [9],
Steinhardt’s bond orientational order parameters [10, 11],
persistent homological descriptors [12] and effective en-
tropy [13, 14]) and then in determining the structure of
unknown atoms based on similarity in descriptor space.
Herein, different ways to define and measure similarity
have been developed including Euclidian distance [15], ker-
nel metrics [16, 17, 18] and Gaussian mixture model [12].
We note that this set of methods include both supervised
learning where a data-set of known structures is used for
comparison and unsupervised learning where a clustering
method enables for autonomously determining the local
structure.

∗Corresponding authors: jean.furstoss@univ-poitiers;
julien.lam@cnrs.fr

Beyond the characterization of crystal structures, be-
ing able to identify extended defects like dislocations rep-
resents a further challenging task. For that purpose, dis-
location extraction algorithm [19, 20] has been a pivotal
tool. Based on common neighbor analysis and a catalog
of known slip system in metals-like fcc, bcc or hcp struc-
tures, such tool have proved its robustness and efficiency
to identify and characterize dislocations microstructure.

A major drawback of all these methods is that they
are specifically tailored for specific lattice types and a
database of known defects. As a result, adding new types
of structures or defects requires significant adjustments of
the method. In particular, these tools are poorly suited
for studies of defects in complex ceramics. In cubic binary
oxides such as MgO or NiO with rock-salt lattice, one alter-
native to identify and visualize defects consists in applying
one (or several) of the above tools to a sub-lattice, e.g. the
oxygen sub-lattice. This bypass solution comes at the cost
of a lower sampling and hence a decreased accuracy. In
more complex materials however, such as compounds with
olivine structure, no existing tool is able to identify the
lattice itself nor its defects.

In this paper we introduce a new methodology for iden-
tifying local ordering, including extended defects, in com-
plex crystalline materials. The method, that we named
Steinhardt Gaussian Mixture Analysis (SGMA), consists
in a supervised learning approach relying on Steinhardt’s
bond orientational order parameters in combination with
a classical Gaussian mixture model. The accuracy and
transferability of SGMA are demonstrated on two com-
pounds of complex symmetry. On the one hand, alu-
mina Al2O3 has many important technological applica-
tions both in its bulk (corundum α phase) and nanoscale
forms [21, 22, 23]. It can exist under various crystalline
phases that can not be discriminated with classical meth-
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ods of structure identification. In particular, we focus on
the melting of α and γ nanoparticles and on the interfa-
cial crystal growth. On the other hand, the olivine lattice
can accommodate a wide variety of chemical compositions,
notably as the most abundant solid phase of Earth’s up-
per mantle (Mg, Fe)2SiO4 [24], as well as LiMPO4 mate-
rials (M=metal) used as cathodes in Li-battery applica-
tions [25]. As such there is a wide interest in the physical
and chemical properties of defects in this lattice, but a
lack of reliable characterization methods. In the following
we demonstrate the ability of SGMA to identify extended
defects in olivine systems, with the example of forsterite
Mg2SiO4.

2. Methodology

Our method is based on a supervised learning approach
thus requiring an initial training step with carefully cu-
rated model systems. In this work, SGMA is applied
to two different types of materials, alumina Al2O3 and
forsterite which leads to the construction of two databases.
All molecular dynamics (MD) and statics (MS) simula-
tions are carried on with LAMMPS [2], and visualization
is performed with OVITO [26]. As detailed below, the
selected systems used for training are extracted along a
linear heating ramps performed within classical thermo-
stat and barostat of Nose-Hoover type as implemented into
LAMMPS. It is worth noticing that by purposely sampling
the same structures during the heating ramp, we induce a
diversity in the structural landscape which is expected to
ensure a higher transferability of SGMA especially towards
different regimes of temperature and pressure.

2.1. Database for alumina Al2O3

Alumina Al2O3 is chosen as an archetype complex bi-
nary oxide with polymorphic stability crossover when re-
ducing its size from bulk to nanoscale [27]. Our database
incorporates four different types of structures, represented
in Fig. 1: (a)α crystal or sapphire, which is hexagonal and
the stable phase in ambient conditions; (b) metastable fcc-
packing lattice γ, which is stabilized at nanoscale due to its
lower surface energy [27]; (c) snapshots from liquid state;
(d) snapshots of a liquid free surface. All calculations are
performed using the interatomic potential developed by
Streitz and Mintmire [28], which relies on a variable charge
electrostatic potential associated with an embedded-atom
method potential. We chose this potential for its ability
to successfully model Al2O3 at nanoscale [29]. In prac-
tice, the liquid state is obtained by first heating sapphire
at 10000K during 500 ps to ensure a complete melting,
and then thermalizing at 2000K during 100 ps. Frozen liq-
uid configurations are obtained by quenching several snap-
shots from MD through energy minimization. Finally, four
of these initial configurations are submitted to a heating
ramp, performed in isothermal-isobaric (NPT ) ensemble,
up to 2500K during 1 ns. For the two crystal phases, we

(a) (b)

(c) (d)

Figure 1: Illustration of the different structures considered in the
aluminium oxyde database, (a) α phase, (b) γ phase, (c) Liquid
regime and (d) Liquid free surface with a vacuum buffer of 25Å.

proceed with the same heating ramp. The atomic configu-
rations incorporated in the database are randomly selected
during this last stage. The number of different reference
points in the database was increased until achieving an ac-
curate identification of defects in the different test cases
(see Appendix A). At the end for Al2O3 system, our
database contains 21 α and γ crystalline configurations,
21 liquid states and 21 free surfaces.

2.2. Database for forsterite Mg2SiO4

As mentioned in the introduction, forsterite Mg2SiO4
is chosen in this study to highlight the efficiency of SGMA
method to identify extended defects. For that purpose,
we include in the database the following configurations, as
presented in Fig. 2: (a) perfect crystal of forsterite with
various applied elastic strains; (b) a high-angle 60°//[100](011)
tilt grain boundary (GB) taken from [30]; (d,e) infinite
straight screw dislocations of Burgers vectors (d) [100] and
(e) [001]. It is worth noticing that the [100] and [001] dis-
locations are the only possible intracrystalline dislocations
in Mg2SiO4 [31, 32] making our database complete re-
garding slip systems in forsterite. Calculations are carried
out using the rigid-ion potential developed by Pedone and
co-workers [33], which includes long-range Coulomb inter-
actions, and where a Morse function mimics short-range
interactions. This interatomic potential accurately repro-
duces the physical properties of forsterite crystal [34], and
was used recently to model tilt and twist GB in forsterite
[30]. Sampling of the atomic systems is achieved by select-
ing atomic configurations at random during linear heating
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Figure 2: Illustration of the different structures considered in the forsterite database, (a) Defect-free crystal phase, (b) Grain boundary system,
(c-e) [100] and [001] dislocations along with the schematic representation.

up to 800 K for 10 ps. When searching the number of point
in the database needed for an accurate identification of the
different test cases, we found that the Mg2SiO4 system re-
quires much larger database than the Al2O3 one (see Ap-
pendix A). For the perfect crystal, 98 configurations are
included into the database, corresponding to various elas-
tic deformations, up to 10% for simple shear ϵij , and up
to 15% in uniaxial shear ϵii. For the GB, 251 configura-
tions are extracted from the heating MD simulation. Fi-
nally, 501 screw dislocations configurations are extracted.
A so-called periodic cluster approach is used, where the
system is periodic along the dislocation line, and top and
bottom layers are maintained fixed (see e.g. [35, 36]). A
single screw dislocation of Burgers vector b = [100] or
[001] is introduced in the middle of the cell, as depicted in
Fig. 2c. To substantially increase the sampling of atomic
arrangements along the dislocation lines, the line length is
extended to 8b.

2.3. Descriptors and Gaussian mixture model
Fig. 3 outlines the steps followed by SGMA. Once the

database is constructed, each structure must be encoded
into fingerprints respecting physical symmetries of rota-
tion, translation and permutation invariances. In SGMA
we choose to work with Steinhard’s parameters. In com-
parison with other types of structural descriptors, like Behler
Parinello descriptor [9] or the Smooth Overlap of Atomic
Positions [37] developed especially for the design of machine-
learning interaction potentials, Steinhard’s parameters are

physically more sensible and offer a good compromise be-
tween completeness and computational cost. Moreover,
they have been widely employed for the identification of
crystal and liquid structures [38, 11, 10, 15]. In this work,
we employ the averaged version of these parameters, as
originally introduced by Lechner and Dellago [10]:

q̄il =

√√√√√ 4π

2l + 1

l∑
m=−l

∣∣∣∣∣∣ 1

|N i(rc)|

Ni(rc)∑
k=0

qklm

∣∣∣∣∣∣
2

(1)

where the sum over k counts ion i itself and its neigh-
bors inside the cutoff radius rc (represented by N i(rc)),
and qilm represent the non-averaged Steinhardt’s parame-
ters defined as follows:

qilm =
1

|N i(rc)|

Ni(rc)∑
j=1

Ylm(θij , ϕij) (2)

where Ylm are the spherical harmonics, and θij and
ϕij are the colatitude and azimuthal angles between ions
i and j, respectively. The cutoff radii are chosen with re-
spect to the radial distribution functions of the different
crystals. Their values allow to enclose the main peaks of
these functions. Then, the cutoff radius is set to rc = 5 Å
in Al2O3 and rc = 8 Åin Mg2SiO4. For the values of
the spherical harmonics degrees l, they are chosen after
increasing value of l and until the different structures do
not strongly overlap in the descriptor space. This step is
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Figure 3: Schematic of the steps involved in SGMA. A database is created from (a) atomistic trajectories obtained using Molecular Dynamics.
(b) The neighbors of each atom are found using a cutoff radius of 8 Å. (c) The Steinhardt parameters are then computed for all atoms in
each snapshot of the trajectory. Multiple Gaussian Mixture Models are then trained on the points in the database corresponding to each
atom species. (d) For each model, the number of Gaussian clusters to be used is determined by minimizing the BIC. (e) The parameters
of the Gaussian clusters are initialized using the Kmeans algorithm and are then optimized using the Expectation-Maximization algorithm
(f). Steps (e) and (f) are performed 100 times and the parameters with the best results are kept. (g) Classification is then performed on the
structures in the database and on new test structures.

helped by graphical tools we developed in order to visual-
ize database points (see example in Appendix C), which
are provided in the release of the code. Here, the averaged
Steinhardt parameters are computed with l up to 12 and 20
respectively for Al2O3 and Mg2SiO4 systems respectively,
meaning that 12 or 20 numerical values per atom are used
for training. It is worth mentioning that for the studied
systems, using only two Steinhardt’s parameters, such as
the couple q4/q6 that is widely employed in simpler crys-
tals, is not sufficiently informative and discriminant (see
Appendix B). As such, a more extensive sampling is nec-
essary for robust identification, due to the complexity of
structural landscapes. Furthermore, while we can simply
use the whole set of atoms for crystalline and liquid struc-
tures, a prior selection of atoms stored in the database for
dislocations and grain boundary structures is performed
based on the value of q20 (shown in Fig.2b, d and e). Fi-
nally, the database is divided per atomic species for which
a separate classifier is trained leading to 2 and 3 distinct
databases for Al2O3 and Mg2SiO4, respectively. This lat-
ter point enhances the quality of the structural analysis
by allowing each sub-lattices to have different local atomic
environments associated to a given structure.

These descriptors q̄il are then transferred into a Gaus-
sian Mixture Model (GMM), which is a machine learn-
ing clustering method, as implemented in the Python li-
brary scikit-learn [39]. The unknown parameters of the
GMMs are iteratively estimated using the Expectation-
Maximization algorithm [40] with full covariance matrices
and 100 k-means initializations. We note that applying
the GMM does not necessary require that each structure
in the database follows a unique Gaussian distribution. As
such, the ideal number of Gaussian distributions must be
estimated for each GMM. For that purpose, multiple mod-
els are trained with different numbers of Gaussian clusters,
and the number of clusters that minimize the Bayes Infor-
mation Criterion (BIC) [41] is finally chosen.

2.4. Softly-labeled Gaussian Mixture Model and classifica-
tion

The NVT simulations for all structures present in the
databases that we perform to obtain statistical diversity
are conducted at temperature and pressure conditions where
the structure is known to be stable, and the label on the
data points is then conserved. During the simulations
there may be atoms in a different environment to the rest,
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but assuming that this happens rarely it will not be of sta-
tistical importance when performing the Gaussian fitting.
In the case of the dislocations or GB, since they are very
localized structures, a preliminary selection is made using
the descriptors as tools to spatially locate the core of the
defects (see section 2.2).

After computing the descriptors we then obtain clouds
of data points with a certain label. On this database we
perform the Gaussian fitting, which is not label aware.
However, since we assigned labels to the original data point
clouds, we can compare the obtained Gaussian clusters and
assign them the label of the cloud they are covering. In
this way we are also able to assess if our clustering was
successful and all the database structures are represented.

Once the GMM are trained and labeled, classification is
performed using the Maximum Likelihood Classifier (MLC)
where the probability of an object xi to belong to class ωk

is computed as:

p(ωk|xi) =
αkN (xi|mk,Ck)∑K
j=1 αjN (xi|mj ,Cj)

(3)

with αk designating the mixture proportions, and mk

and Ck being the mean vector and the covariance matrix
of each Gaussian component ωk. The mixture proportions
satisfy the conditions 0 ≤ αk ≤ 1 and

∑K
k=1 αk = 1.

These values can then be interpreted as the probability
of an atom to belong to one of the structures contained
in the database. Then probabilities are compared, and
an atom is considered as belonging to the structure with
the highest probability. As MLC generally provides near-
100% values, we consider the identification unreliable if it
falls below 95%, and exclude it during visualization. This
misidentification may have different causes. First, it might
reflect an important deviation from the local atomic envi-
ronments present in the database. Second, it could be the
results of the overlapping of the different structures in the
descriptor space leading for local atomic environment in
the overlap region to a reduced MLC. Finally, it could re-
flect that the local atomic environment associated to a low
MLC does not represent any of the structures present in
the database. In this case, that we do not believe to occur
in our systems, the given local atomic environment can be
isolated, further studied, and added in the database before
fitting again the GMM to include the new structure in the
SGMA. In the following section, the percentage of ions as-
sociated with MLC lower than 95% are provided for each
test cases.

In closing, previous structure identifications also em-
ployed Gaussian Mixture Models [42, 43, 44]. In com-
parison, SGMA brings three innovative features. First,
our atomic fingerprints are based on Steinhardt’s parame-
ters which are physical parameters, while the other works
chose to employ machine-learning oriented structural de-
scriptions (namely neural-network encoder and persistent
homology). This enables for a higher control on the stabil-
ity of the method and a lower computational cost. Second,

we use a softly-labeled database instead of unsupervised
learning, which allows to pinpoint the classified structures.
And third, we rely on separate GMMs for each atom type,
which proves to be crucial for complex chemistry systems.

A release of the code also containing extended docu-
mentation for retrieving the results presented in the article
as well as using the method in other complex materials, is
freely available at https://github.com/JeanFurstoss/AtomHIC/releases.
This C++ oriented object program uses OpenMP paral-
lelization to efficiently compute Steinhardt’s parameters as
shown in Appendix D.

3. Results and discussion

3.1. Melting of alumina nanoparticles
We begin with the characterization of alumina nanopar-

ticles. In particular, two different nanoparticles made of
5000 atoms are constructed by spherically cutting from a
bulk of α and γ crystal phases. Molecular dynamics sim-
ulations are carried out in the NVT ensemble during 1ns
while increasing temperature from 2000K to 3000K.

After MD simulations, SGMA is used to identify local
environments, and associate each atom with a phase from
the database, i.e. crystalline α or γ phases, liquid state,
or free surface. Fig. 4(a,b) displays snapshots where atoms
are colored according to their identified environment. One
can observe that the method correctly characterizes both
crystal phases even at high temperature with large thermal
noise. As expected, melting occurs from free surfaces, as
evidenced by violet nuclei, and progressively propagates
through the whole particle. Final snapshots (t = 650 ps)
correspond to fully liquid particles, and atoms near free
surfaces are still identified as such.

The onset of melting is usually characterized by an
abrupt change of the system’s internal energy. Fig. 4(c,d)
shows the evolution of the internal energy during the simu-
lation (black curves) with a rapid increase of energy occur-
ring around 600 ps. SGMA also provides a count of atoms
in each of the identified structures. Fig. 4(c,d) shows the
temporal evolution of the number of atoms NX associated
with each phase, and normalized to the total number of
atoms Ntot. We observe that the number of atoms belong-
ing to the surface (green curves) remains constant through-
out the simulation. The number of atoms in a crystalline
phase (red or blue curves), initially large, shows a rapid de-
crease around 400−600 ps, associated with a rapid increase
of atoms belonging to the liquid state (violet curves). Thus
a good correlation is found between the energy increase
and the atom count, which demonstrates the validity of
our approach.

3.2. Phase growth in alumina
Now we model the interface between two crystal phases

α and γ, submitted to a temperature ramp from 2000 to
3000 K as before. In the whole simulation box, the num-
ber of atoms is equal to 5520. Again after MD simulations,
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Figure 4: (a-b) Slices of Al2O3 nanoparticles during melting simulations. Atoms are coloured according to their environment identified by
SGMA : α (red), γ (blue), liquid (violet), and free surface (green). (c-d) Temporal evolution of internal energy per atom (E/Etot, black
curve) and number of atom in each phase (NX/Ntot) : α (red curve), γ (blue curve), liquid (violet curve), free surface (green curve).

Figure 5: (a) Slice of the α//γ interface during melting. Coloring is obtained by the structural analysis methodology. (b) Corresponding
temporal evolution of the different structure proportion and of the energy per number of atom.

SGMA is applied to identify local environments. Fig. 5(a)
illustrates the obtained identification. Initially both α and
γ phases are correctly identified. Throughout the simula-
tion we observe melting of the γ phase, followed by crys-
tallization into the α phase. At the end of the simulation
(t > 500 ps) the system contains a single crystal of α alu-
mina.

Fig. 5(b) shows the internal temporal evolution of the
internal energy. We observe a drop in the energy around
450 ps which corresponds to the liquid to α phase tran-
sition. Again SGMA provides a count of atoms in each
phases, represented in Fig. 5(b) (coloured curves). At t =
0 ps most atoms are identified as belonging to either the
α or γ crystal, with only few atoms assigned to free sur-
face. Between 150−300 ps the number of atoms in γ phase
decreases sharply, while the number of atoms in liquid in-
creases, consistent with what was observed before. Then
around 450 ps, the number of atoms in liquid decreases

sharply to the point of vanishing, while almost 100% of
atoms are identified as belonging to the α phase. We note
that some atoms at the interface are wrongly identified as
belonging to a free surface (atoms in green in Fig. 5(a)).
However this artefact does not hinder visualization, and
involves only a very small number of atoms (green curve
in Fig. 5(b)).

In this simulation, the observed melting of the γ phase
and a subsequent recrystallization into the α phase is con-
sistent with experimental results[45]. Yet, in experiments,
the phase transformation occurs at a lower temperature
regime. Such difference can be attributed to a flaw in the
employed force field or to the employed heating ramp that
is much faster than in experimental conditions. It remains
that our simulation still serves the purpose of showing the
capabilities of SGMA in complex multi-phase systems.

6



3.3. Dislocations in forsterite
We now proceed with the study of forsterite Mg2SiO4

with olivine lattice. As a first benchmark, we test our
method on a bulk crystal of forsterite containing four dislo-
cations. The dislocations are of pure screw character with
straight lines, with Burgers vectors ±[001] in a quadrupo-
lar arrangement. After initial relaxation, the system is
equilibrated at 800 K and 0 GPa during 50 ps in the NPT
ensemble. Then a constant shear strain rate of 108 s−1

is applied for 1 ns to promote glide in (010) planes. Be-
cause such a configuration of dislocations is unstable under
stress, dislocations of opposite Burgers vectors glide in op-
posite directions.

Snapshots of the MD simulation are processed with
SGMA. To validate results, we also compute the disreg-
istry functions ϕ [46] in the (010) planes containing the
dislocations, as well as their derivatives dϕ/dx along the
glide direction. As Mg and O sub-lattices have respectively
2 and 3 different crystallographic sites in perfect crystal,
we compute the disregistry function using only the Si sub-
lattice. Fig. 6 shows the resulting SGMA results, where
atoms in perfect crystal are hidden for sake of clarity, along
with the derivative of disregistries. In the initial state, the
four dislocations are well identified by SGMA, at posi-
tions that coincide with those obtained from disregistry
functions. The extensions of the cores also seem consis-
tent, with a width of approximately 10 Åinferred from the
disregistries. As shear is increased and dislocations glide,
SGMA successfully identifies and tracks the [001] dislo-
cations, with positions that match those obtained from
disregistries but with higher spatial extension in the glide
plane and in the direction of motion. This discrepancy
with the dislocation core spreading from disregistry could
be explained by the fact that the disregistries are com-
puted considering Si sub-lattice only while the core of the
moving dislocations might be more extended in the Mg
and O sub-lattices. Eventually as dislocations of opposite
Burgers vectors cross periodic boundaries and meet, they
annihilate and leave only perfect crystal. Again SGMA
correctly recognizes that there are no more dislocation in
the system, and assigns all atoms to perfect crystal envi-
ronment, even though it is highly strained (ϵyz = 0.18, see
Fig. 6d). It is worth noticing that despite the elastic field
of dislocations that causes long-range distortions of the
lattice [47], the method still recognizes defect-free crystal.

3.4. Dislocation loops in forsterite
Our second test related to forsterite Mg2SiO4 deals

with dislocation loops with Burgers vector [100]. A glissile
circular loop is introduced in a periodic crystal of forsterite
in both the (010) and the (001) planes. Such a glissile
loop is unstable and would collapse due to line tension and
strong attraction between opposite loop segments. To cir-
cumvent that, shear stress σxz=2 GPa is applied. Molecu-
lar dynamics is then performed at 800 K for 50 ps.

Fig. 7(b,c) illustrates the identification of these loops
following SGMA. Again disregistry is computed in two

planes passing through the loops for comparison. In both
cases, SGMA is able to identify atoms in the vicinity of
dislocations, at positions that match those obtained from
disregistries. Remarkably, edge and mixed components are
well captured, even though the database included only dis-
locations of screw character. This highlights the robust-
ness of the method to assign the correct Burgers vector
to a dislocation, no matter its character, and even when
not included in the database. Thanks to SGMA, visual-
ization clearly shows that the loops in two different planes
adopt different curvatures. In (010) the loop seems circu-
lar, while in (001) it is almost square shaped. This is due to
higher lattice friction in (001), which favors straight dislo-
cation lines with perfect edge or screw characters [36, 48].

In the case of the loop in (001), some atoms are wrongly
identified as belonging to a dislocation with [001] Burgers
vector (blue atoms in Fig. 7b). Moreover, a relatively high
number of ions are associated with MLC lower than 95%
(i.e. 19.2%). This is not unexpected given that the system
is highly distorted. This may also be caused by a system
size effect, dislocation segments being very close to the
boundaries and therefore to periodic images of the loop.
Again this artifact is not crippling as it affects only a few
atoms, and therefore does not prevent efficient visualiza-
tion of defects.

3.5. Twist grain boundary in forsterite
Grain boundaries are another important type of defects

present in materials. Twist GB are a particular type of GB
where two grains share equivalent surfaces and are twisted
around the axis normal to their interface. When the twist
angle is low (typically below 15◦), such GB relaxes into a
network of intersecting screw dislocations [49]. Hence they
offer a good testing ground for our identification method.

For that purpose, we use atomic configurations of a
(010) twist GB in forsterite with disorientation angle of
4◦, that we published earlier [50]. After thermalization at
800 K and 0 GPa during 50 ps in the NPT ensemble, we ap-
ply simple shear with a rate equal to 109 s−1 in a direction
maximizing resolved stress in the (010)[001] slip system.
Fig. 8.a displays the results of our SGMA analysis, where
atoms belonging to perfect crystal are hidden. The method
clearly identifies two sets of dislocations, those with [100]
Burgers vector (in red), and those with [001] Burgers vec-
tor (in blue). As shear is increased, SGMA correctly tracks
the movement of the [001] dislocations along the GB plane.
Despite the elevated temperature, large applied deforma-
tion, and the complex dislocation junctions, the method
successfully discriminates between perfect crystal and dis-
location environments, with close to none mislabeling.

3.6. Polycrystalline forsterite
More generally, grain boundaries in polycrystalline ma-

terials correspond to a wide distribution of disorientations
between adjacent grains. Here we constructed a 2D poly-
crystal consisting of tilt GB disoriented around the [100]
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(a) (b) (c) (d)Ɣ = 0 Ɣ = 0.03 Ɣ = 0.09Ɣ = 0.06

[010]

[100][001]

Ɣ

[001] dislocation

dφ
/d

x
dφ

/d
x

Figure 6: [001] screw dislocation quadrupole (a) sheared at a rate equal to 108 s−1 at 3 (b), 8 (c) and 9 % (d) of finite shear strain, the curves
represents the spatial derivative of disregistry functions computed for the upper and lower dislocation dipoles considering only the silicon
sub-lattice. The different colors in the disregistry curves represent the function along the dislocation lines. Atoms identified as the defect-free
forsterite are hidden for visual clarity. In this systems about 6.4% of ions are associated with a MLC lower than 95%.

(a) (b)

[010]

[100][001]
[010]

[100]

[001]

[100] dislocation [001] dislocation Grain boundary

d φ/dx
d φ/dx

Figure 7: [100] dislocation loop respectively in (010) (a) and in (001)
(b) planes after 50 ps thermalization, the blue curves represent the
derivative of disregistry functions along the green lines. Atoms iden-
tified as the defect-free forsterite are hidden for visual clarity. About
6.2% and 19.2% of ions are associated with a MLC lower than 95%
in (a) and (b), respectively.

axis using the atomsk software [51]. In order to ensure
the electroneutrality of the system, we remove ions hav-
ing very closed neighbors (typically at the grain bound-
aries) until retrieving the stoichiometry of Mg2SiO4. The
obtained polycrystal is then relaxed at 0K and analyzed
using the SGMA, as presented in Fig. 9. While the major-
ity of the ions in the vicinity of GB are well identified by
the method, a non-negligible part of GB ions are identified
as belonging to [100] dislocation structure. This mislabel-
ing can originate from the structural proximity of [100]
tilt grain boundaries with [100] screw dislocation. Nev-
ertheless, only one complexion of Mg2SiO4 tilt GB was
used for the construction of the database and the SGMA
successfully identified GB structurally different from this
complexion. In order to improve the identification, other
type of GB might be considered in the database to account
for the structural diversity of GB in such type of materials.

4. Conclusion and perspectives

We present an innovative method named Steinhard
Gaussian Mixture Analysis (SGMA), based on the com-
bination of physically driven bond-order parameters for
structural fingerprinting and Gaussian mixture model for
classification. We demonstrated the ability of the method
to characterize local environments in binary and ternary
oxides. In alumina the different polymorphic phases are
accurately identified, even during high-temperature molec-
ular dynamics simulations. In forsterite, the method can
discriminate between dislocations with different Burgers
vectors and track them during high-temperature defor-
mation. Planar defects such as general grain boundaries
can also be monitored. A key feature of the method is
that atoms can still be correctly assigned to defective re-
gions, even if the defect was not explicitly included in the
database, if the temperature is high, or if the system is
highly distorted, which makes it very robust.

This novel methodology paves the way for the study of
extended defects in crystals with complex chemical compo-
sition or low-symmetry lattice. We hope it will be useful to
the community for analyzing and visualizing simulations
of deformation or diffusion in complex materials, with an
efficiency comparable to long-time existing tools developed
for metals or semiconductors. Meanwhile, because the
same tool also allows for probing phase transformations
even in complex systems, we anticipate that it will open
up new avenues for the investigation of mechanisms such
as crystal nucleation.[52, 53] along with amorphization[54,
55]. In particular, innovative collective variables employed
to force the crossing of free energy barriers in rare-event
sampling could be developed based on SGMA[56, 57, 58].
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AtomHIC that is freely available at:
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Appendix A. Number of point in database

As no generic method exists to determine the num-
ber of datapoint needed for a complete representation of
the different structure in the descriptor space, we adopt
here an incremental approach. By progressively increas-
ing the number of point in the database, we compare the
results obtained by the SGMA method on the different test
cases presented section 3. For the Al2O3 system, a rela-
tively small number of datapoint was need to achieve an
accurate identification of the different structures. In com-
parison, the Mg2SiO4 system requires much more points in
the database to identify correctly the different local atomic
environments. As an example, Fig.A.10 represents the re-
sults of the SGMA method for the [100] dislocation loop
in (001) plane (see section 3.4) test case of the Mg2SiO4

system and for different database with increasing number
of point. It is clearly shown that an accurate identification
of all part of the dislocation loop requires a database with
a high number of points.

(a) (b) (c) (d)

Figure A.10: [100] dislocation loop in (001) plane (see section 3.4)
identified with the SGMA method with different size of the database
for GMM training. For the largest database (used for all cases pre-
sented in the main article) with 1.4 millions of ions (a), with 700,000
(b), 350,000 (c) and 100,000 ions (d).

Appendix B. The limitation of the classical Q4/Q6

structural analysis

A classical analysis in ordered or disordered materials
lies with the separation of different structures or environ-
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ments in the Q4/Q6 subspace of Steinhardt parameters
[59]. Relying on the computation of only 2 Steinhart pa-
rameters, such a method may appear computationally ef-
ficient. However, The Q4 and Q6 values do not necessar-
ily allow to discriminate the various structures, specially
in complex materials such as those investigated here (as
shown Fig.B.11). Therefore, it justifies the current devel-
opment of the SGMA method.

(a)

(b)

Figure B.11: Q4 and Q6 values for Mg2SiO4 (a) computed with l =
20 and rc = 8 Åfor Mg (left), Si (center) and O (right) ions and for
Al2SiO4 (b) computed with l = 12 and rc = 5 Åfor Al (left) and O
(ions), for the different structures considered in this work.

Appendix C. Choice of spherical harmonics de-
gree

The choice of the spherical harmonics degree l for the
computation of the average Steinhardt’s parameters is done
for effectively separating the different structures in the
descriptor space. This is helped by visualizing the data
through a matrix-type plot representing 2D slices in the
descriptor space. An example of such type of plot is given
in Fig.C.12 for the Al ions in the Al2O3 system studied
here. The python script used to generate such kind of plot
is provided in the release of the AtomHIC code (see docu-
mentation in https://github.com/JeanFurstoss/AtomHIC/releases).

Appendix D. Computational cost

The main computational cost of the SGMA lies with
the computation of the Steinhardt parameters and the
fitting of the GMM. In fact the classification, which is
done through the computation of the Maximum Likelihood
Classifier is numerically very efficient. Thus, as the GMM
fitting is only performed once, the most time consuming
part of the SGMA is the computation of the descriptors
themselves. The AtomHIC C++ code (https://github.com/JeanFurstoss/AtomHIC/releases),
developed and used for all steps of SGMA method includes
optimized neighbor research and OpenMP parallelization.
Figure D.13 shows typical computational time for the com-
putation of the Steinhardt parameters as function of the

Figure C.12: Example of a matrix-type plot representing 2D slices in
the descriptor space for Al ions in the Al2O3 systems. Colors refer to
the different structures considered for this system. Such type of plot
can be generated using a python script provided with the AtomHIC
code.

number of atoms, the degree of the parameters and the
cutoff radius. As shown by these results, the algorithm
complexity is O(N, l2, r3c ) where N is the number of atom,
l is the degree of the Steinhardt parameters and rc is the
cutoff radius. The parallelization efficiently reduces the
computational cost by a factor almost equal to the num-
ber of threads used for the calculation.
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Figure D.13: Computational times as a function of the number of
atom for Mg2SiO4 (a) and Al2O3 (b) systems, the degree l of the
Steinhardt parameters (c) and the cutoff radius rc (d).
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