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COMPUTING REGULARIZED SPLINES IN THE RIEMANNIAN MANIFOLD
OF PROBABILITY MEASURES

Tien Tam Tran1, Ines Adouani2 and Chafik Samir3,*

Abstract. In this paper, we give new numerical methods to solve 𝐶2 splines for interpolating a finite
set of probability measures. Due to the difficulties of generalizing interpolations and solving them with
explicit expressions on manifolds, we first introduce a theoretical analysis with different structures on the
Riemannian manifold of probability measures 𝒫+(𝐼). Then, by combining standard numerical methods
and a new mathematical modeling we generalize interpolating splines as a minimizer of an energy
functional on 𝒫+(𝐼). Finally, we show the efficiency of the proposed methods and their computational
relevance with several applications including real medical data.
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1. Introduction

Interpolation problems of data lying on non-linear manifolds arise in different topics and scientific applica-
tions [3,5,7,17]. While this problem has successful numerical solutions on Euclidean spaces R𝑛, much effort has
been directed towards rigorous theoretical analysis and efficient numerical methods to encompass the variation
within the class of manifolds. In this paper, we introduce a novel mathematical model to fit a given set of
probability measures 𝜇(1), . . . , 𝜇(𝑁) ∈ 𝒫+(𝐼), where 𝒫+(𝐼) represents the space of probability measures on a
sample finite space 𝐼, defined roughly by

𝒫+(𝐼) =

{︃
𝜇 =

∑︁
𝑖∈𝐼

𝜇𝑖𝛿
𝑖 | 𝜇𝑖 > 0, ∀𝑖 ∈ 𝐼, and

∑︁
𝑖∈𝐼

𝜇𝑖 = 1

}︃
.

We formulate splines and give details for rigorous theoretical analysis on 𝒫+(𝐼) by exploiting the Riemannian
structure of the space of probability measures which helps make the solution computationally tractable. It can
be seen broadly, as an exploration of curves of measures, which are smooth and in some sense minimize the
mean acceleration of the fitting curve while interpolating data, as splines do in Euclidean space.

To make the problem and setting more concrete, consider 𝜇(0), . . . , 𝜇(𝑁) as an indexed set of probability
measures associated to a set of observation time 𝑡0, . . . , 𝑡𝑁 . Our purpose is to estimate a spline 𝜎 : [𝑡0, 𝑡𝑁 ] →
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𝒫+(𝐼) that minimizes the following functional

𝐸(𝛾) =
𝜆

2

∫︁ 𝑡𝑁

𝑡0

⟨
D2𝜎(𝑡)

D𝑡2
,

D2𝜎(𝑡)
D𝑡2

⟩
𝐹

+
1
2

𝑁∑︁
𝑖=0

𝑑2
𝐹

(︁
𝜎(𝑡𝑖), 𝜇(𝑖)

)︁
, (1)

where (𝜆 > 0) is a smoothing parameter, < ., . >𝐹 and 𝑑𝐹 denote the Fisher–Rao metric and the geodesic
distance on 𝒫+(𝐼). It is well-known that in the Euclidean setting the solution to this optimization problem
under the interpolation constraint

∑︀𝑁
𝑖=0 𝑑

2
𝐹 (𝜎(𝑡𝑖), 𝜇(𝑖)) = 0 are cubic splines. A vast number of methods have

appeared in the literature to solve the problem (1) for general Riemannian manifolds, which were motivated by
applications in many areas of engineering. In most cases, the Riemannian manifold is simply a Lie group or a
sphere.

These approaches includes variational interpretation [25], subdivision schemes [8,19,27], Lie-algebraic meth-
ods [24], intrinsic polynomial regression [11], extrinsic local regression [18], and global and local Fréchet regres-
sion [21]. In this framework, we seek 𝜎, solution of (1) on 𝒫+(𝐼), to satisfy the following properties: (i)
𝜎(𝑡𝑖) = 𝜇(𝑖), (ii) 𝜎 is of class 𝐶2. None of these previous methods can be used for constructing a 𝐶2 inter-
polating splines on 𝒫+(𝐼). To overcome such limitations, we introduce a generalization of Bézier spline on
Riemannian manifolds and construct an interpolation solution of the optimization problem (1) unique to the
setting of measures. We focus on Bézier spline interpolations due to their simplicity, flexibility, theoretical guar-
antees, and mean acceleration minimizing property. Note that various works have been introduced to construct
interpolating curves on Riemannian manifolds of class 𝐶1. Nevertheless, the problem of piecing generalized
Bézier curves into a 𝐶2 spline is much more complicated, except for a few cases such as compact Lie groups
and spheres [22].

In [23], a 𝐶2 continuity condition was developed on a more general Riemannian manifold. The solution
requires the computation of velocities and covariant derivatives at each joint point. Unfortunately, computing
the covariant derivative on a general Riemannian manifold is intricate because it brings up the inverse of
the derivative of the Riemannian exponential map. In [10], Geir et al. simplify the 𝐶2 continuity condition
given in [23] in some special cases of Riemannian symmetric spaces. The present work extends this toolbox by
developing a theoretical study of measure interpolation problems and seeking a 𝐶2 interpolating Bézier spline
on 𝒫+(𝐼) that reacts to the geometry of the manifold.

Recently much attention has been focused on the space of probability measures 𝒫+(𝐼) with different metrics
including Frobenius, Fisher–Rao, log-Euclidean, Jensen-Shannon and Wasserstein metrics. Works on linear
regression [1], transport of statistical model [13, 16], estimation [9], barycenters [14], have been deeply studied
and led to computational advances in statistical analysis [15,26]. Furthermore, the interpolation problem on the
space of probability measures 𝒫+(𝐼) equipped with Wasserstein metrics was well considered concurrently and
independently by several authors, see for instance [2, 4, 6]. To our knowledge, this work is the first to address
the interpolation problem of the space of probability measures 𝒫+(𝐼) equipped with Fisher–Rao metric, in the
spline context. This metric, remarkably important, has proved immensely fruitful in the statistical analysis of
Riemannian manifolds.

To tackle the optimization problem on 𝒫+(𝐼), we formulate the Riemannian geometric structures of 𝒫+(𝐼)
embedded with the Fisher–Rao metric. We obtain an explicit expression of the Christoffel symbols, and therefore
the Levi–Civita connection associated with the Fisher–Rao metric which allows the computation of the geodesic
curves joining two points on 𝒫+(𝐼). In this way, we exhibit an exact equation of the Levi–Civita parallel
transport of a tangent vector along a geodesic curve joining two probability measures on 𝒫+(𝐼). Furthermore,
we prove that 𝒫+(𝐼) is a locally symmetric space. Hence, taking into account these nice results, we present our
algorithm to generate a measure interpolating spline of class 𝐶2 on 𝒫+(𝐼). We prove the effectiveness of our
method with potential applications.

This paper is organized as follows. In Section 2, we derive the basic information geometry structure of the
space of probability measures 𝒫+(𝐼) equipped with Fisher–Rao metric. We present several useful theorems on
the Levi–Civita connection, minimal geodesics, and parallel transport with detailed proofs. In Section 3, we
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show how to take advantage of the results of Section 2 to construct a 𝐶2 Bézier spline on the set of probability
measures. In Section 4, the effectiveness of the proposed method is demonstrated by showing several examples
of interpolation Bézier spline on 𝒫+(𝐼). Finally, conclusions and suggested future research are provided in
Section 5.

2. A Riemannian structure for probability measures

In this section, we formulate the Riemannian geometric structures of the space of probability measures on
a sample finite space 𝐼 embedded with the Fisher–Rao metric. In particular, we derive computational tools of
interest, namely Levi–Civita connection, geodesics, and parallel transport. For a more detailed exposition of
these concepts, see [12].

2.1. Fisher–Rao

Let 𝐼 = {1, . . . , 𝑛, 𝑛 + 1}, 𝑛 ∈ N, be a finite sample space. Let ℱ(𝐼) = {𝑓 : 𝐼 → R} be the algebra of real
functions on it. Its unity function 1𝐼 or simply 1 is given by 1(𝑖) = 1. A canonical basis of ℱ(ℐ) is defined by

𝑒𝑖(𝑗) =

{︃
1, if 𝑖 = 𝑗,

0, otherwise,
(2)

and hence, every 𝑓 ∈ ℱ(𝐼) has the representation

𝑓 =
∑︁
𝑖∈𝐼

𝑓 𝑖𝑒𝑖, (3)

where 𝑓 𝑖 = 𝑓(𝑖). We will denote by 𝒮(𝐼) the dual space of ℱ(𝐼), the space of R-valued linear forms on ℱ(𝐼).
With the Riesz representation theorem, this vector space is interpreted as the vector space of signed finite
measures on 𝐼, namely

𝒮(𝐼) =

{︃
𝜇 : ℱ(𝐼) → R | 𝜇 =

∑︁
𝑖∈𝐼

𝜇𝑖𝛿
𝑖

}︃
, (4)

where 𝜇𝑖 = 𝜇(𝑒𝑖) and 𝛿𝑖 is the Dirac measure supported at 𝑖 ∈ 𝐼. It is also shown that 𝒮(𝐼) is a manifold. In
particular, the tangent space at 𝜇 ∈ 𝒮(𝐼) is given by

𝑇𝜇𝒮(𝐼) = {𝜇} × 𝒮(𝐼). (5)

Let us consider the following submanifolds of 𝒮(𝐼):

𝒮𝜖(𝐼) =

{︃
𝜇 =

∑︁
𝑖∈𝐼

𝜇𝑖𝛿
𝑖

⃒⃒⃒⃒
⃒∑︁

𝑖∈𝐼

𝜇𝑖 = 𝜖, 𝜖 ∈ R

}︃

and

ℳ+(𝐼) = {𝜇 ∈ 𝒮(𝐼) | 𝜇𝑖 > 0, ∀𝑖 ∈ 𝐼}

the space of finite strictly positive measures on 𝐼.

Definition 2.1. A probability measure on a finite sample space 𝐼 is a map 𝜇 : 𝐼 → R defined for any 𝐴 ⊂ 𝐼
by 𝜇(𝐴) =

∑︀
𝑖∈𝐴 𝜇𝑖 and which satisfies:

(1) For all 𝑖 ∈ 𝐼, 𝜇𝑖 ≥ 0 and 𝜇(∅) = 0.
(2)

∑︀
𝑖∈𝐼 𝜇𝑖 = 1.
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(3) 𝜇({𝑖}) = 𝜇𝑖.

We denote by 𝒫+(𝐼) the space of strictly positive probability measures on 𝐼,

𝒫+(𝐼) =

{︃
𝜇 =

∑︁
𝑖∈𝐼

𝜇𝑖𝛿
𝑖 | 𝜇𝑖 > 0, ∀𝑖 ∈ 𝐼, and

∑︁
𝑖∈𝐼

𝜇𝑖 = 1

}︃
.

We check at once that 𝒫+(𝐼) ⊂ ℳ+(𝐼) ⊂ 𝒮(𝐼). Therefore, as an open submanifold of 𝒮(𝐼), ℳ+(𝐼) has the
same tangent space at the point 𝜇 ∈ ℳ+(𝐼). 𝒫+(𝐼) is a submanifold of 𝒮(𝐼), and clearly, for 𝜇 ∈ 𝒫+(𝐼), we
have:

𝑇𝜇𝒫+(𝐼) = {𝜇} × 𝒮0(𝐼) =

{︃
(𝜇, 𝑣) | 𝜇 ∈ 𝒫+(𝐼) and 𝑣 =

∑︁
𝑖∈𝐼

𝑣𝑖𝛿
𝑖 ∈ 𝒮0(𝐼)

}︃
.

We want to endow 𝒫+(𝐼) with a Riemannian metric. To this end, we define a local coordinate map on 𝒫+(𝐼).
Let 𝑈 be an open set of R𝑛 given by

𝑈 =

{︃
𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 | 𝑥𝑖 > 0, ∀𝑖 ∈ 𝐼, and

𝑛∑︁
𝑖=1

𝑥𝑖 < 1

}︃
.

We define a map 𝜙 as

𝜙 : 𝒫+(𝐼) −→ 𝑈,

𝜇 =
∑︁
𝑖∈𝐼

𝜇𝑖𝛿
𝑖 ↦−→ (𝜙1(𝜇), . . . , 𝜙𝑛(𝜇)) = (𝑥1(𝜇), . . . , 𝑥𝑛(𝜇)),

such that (𝜙1(𝜇), . . . , 𝜙𝑛(𝜇)) = (𝜇1, . . . , 𝜇𝑛). Clearly, 𝜙 is an homomorphism and its inverse is given by

𝜙−1 : 𝑈 −→ 𝒫+(𝐼),

(𝑥1, . . . , 𝑥𝑛) ↦−→ 𝜇 =
𝑛∑︁

𝑖=1

𝑥𝑖𝛿
𝑖 +

(︃
1−

𝑛∑︁
𝑖=1

𝑥𝑖

)︃
𝛿𝑛+1.

Given a point 𝜇 ∈ 𝒫+(𝐼), let
𝜕

𝜕𝑥𝑖

⃒⃒⃒
𝜇

be the tangent vector at 𝜇 given by

𝜕

𝜕𝑥𝑖

⃒⃒⃒
𝜇

=
𝜕

𝜕𝑥𝑖

⃒⃒⃒
𝜙(𝜇)

𝜙−1 =
(︀
𝛿𝑖 − 𝛿𝑛+1

)︀
, for 𝑖 = 1, . . . , 𝑛.

Thus,
{︂

𝜕

𝜕𝑥𝑖

⃒⃒⃒
𝜇
, 𝑖 = 1, . . . , 𝑛

}︂
define a local frame field of 𝑇𝜇𝒫+(𝐼) at a point 𝜇 ∈ 𝒫+(𝐼). Similarly we can define

the dual basis of
𝜕

𝜕𝑥𝑖

⃒⃒⃒
𝜇
, the basis of the cotangent bundle 𝑇 *𝜇𝒫+(𝐼) = {𝜇} × (ℱ(𝐼)/R) by 𝑑𝑥𝑖 = 𝑒𝑖 + R, 𝑖 =

1, . . . , 𝑛.

Remark. Let 𝜇 ∈ 𝒫+(𝐼) and 𝑣 =
∑︀

𝑖∈𝐼 𝑣𝑖𝛿
𝑖 ∈ 𝑇𝜇𝒫+(𝐼). It can be easily seen that

𝑣 =
𝑛+1∑︁
𝑖=1

𝑣𝑖𝛿
𝑖 =

𝑛∑︁
𝑖=1

𝑣𝑖𝛿
𝑖 −

𝑛∑︁
𝑖=1

𝑣𝑖𝛿
𝑛+1 =

𝑛∑︁
𝑖=1

𝑣𝑖

(︀
𝛿𝑖 − 𝛿𝑛+1

)︀
=

𝑛∑︁
𝑖=1

𝑣𝑖
𝜕

𝜕𝑥𝑖
, (6)

since 𝑣 ∈ 𝒮0(𝐼).
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𝑆(𝐼) is a finite-dimensional linear space, and therefore, it can be naturally equipped with a metric. For
𝑣, 𝑤 ∈ 𝑇𝜇𝑆(𝐼), we define the inner product as

⟨𝑣, 𝑤⟩𝜇 = 𝜇

(︂
d𝑣
d𝜇
.
d𝑤
d𝜇

)︂
=
∑︁

𝑖

𝑣𝑖𝑤𝑖

𝜇𝑖
(7)

where d𝑣
d𝜇 =

∑︀
𝑖∈𝐼

𝑣𝑖

𝜇𝑖
𝑒𝑖 ∈ ℱ(𝐼), represents a simple version of the Radon–Nikodym derivative with respect to

𝜇. This metric induces a metric on ℳ+(𝐼). The probability manifold 𝒫+(𝐼) as a submanifold of ℳ+(𝐼), is
endowed with the Fisher–Rao metric. Hence, following the geometry structures in ℳ+(𝐼) equipped with Fisher
information metric, we derive the corresponding ones in 𝒫+(𝐼).

Definition 2.2. Let 𝜇 be a probability measure in 𝒫+(𝐼). Given two tangents vectors 𝑣 and 𝑤 in 𝑇𝜇𝒫+(𝐼), the
Fisher–Rao metric g𝜇 : 𝑇𝜇𝒫+(𝐼)× 𝑇𝜇𝒫+(𝐼) → R is defined by

g𝜇(𝑣, 𝑤) =
∑︁
𝑖∈𝐼

𝑣𝑖𝑤𝑖

𝜇𝑖
,

and ||𝑣||𝜇 =
√︀

g𝜇(𝑣, 𝑣). With respect to the coordinate map (𝒫+(𝐼), 𝜙), the Fisher–Rao metric is expressed as

𝑔𝑖𝑗(𝜇) =

{︃
1
𝜇𝑖

+ 1
𝜇𝑖+1

, if 𝑖 = 𝑗,
1

𝜇𝑛+1
, otherwise,

for 𝑖, 𝑗 = 1, · · · , 𝑛. And the components of the inverse matrix are given by

𝑔𝑖𝑗(𝜇) =

{︃
𝜇𝑖(1− 𝜇𝑖), if 𝑖 = 𝑗,

−𝜇𝑖𝜇𝑗 , otherwise.

Our goal to make 𝒫+(𝐼) as a Riemannian manifold is fully satisfied. Our next goal is to compute explicit
expressions of geometric structures on 𝒫+(𝐼), which will be essential to make our proposed solution of problem
(1) on 𝒫+(𝐼).

2.2. Levi–Civita connection on 𝒫+(𝐼)

Let 𝒳 (𝒫+(𝐼)) denote the set of smooth vector fields on 𝒫+(𝐼). Essentially, at each point 𝜇 ∈ 𝒫+(𝐼), the
Levi–Civita connection associated with the Fisher–Rao metric ∇ : 𝒳 (𝒫+(𝐼))× 𝒳 (𝒫+(𝐼)) → 𝒳 (𝒫+(𝐼)) gives a
new vector field, notated ∇𝑋𝑌 , telling us how the vector field 𝑌 is changing in the direction 𝑋 and satisfying
for all 𝑋,𝑌, 𝑍 ∈ 𝒳 (𝒫+(𝐼)), {︃

𝑋g(𝑌,𝑍) = g(∇𝑋𝑌,𝑍) + g(𝑌,∇𝑋𝑍),
∇𝑋𝑌 −∇𝑌 𝑋 = [𝑋,𝑌 ].

(8)

In the local coordinate map (𝒫+(𝐼), 𝜙), the Levi–Civita connection is defined by the Christoffel symbols Γ𝑘
𝑖𝑗 :

𝒫+(𝐼) → R such that
∇𝜕𝑥𝑖

𝜕𝑥𝑗 = Γ𝑘
𝑖𝑗𝜕𝑥𝑘. (9)

Proposition 2.1. With respect to the local coordinate map (𝒫+(𝐼), 𝜙), the Christoffel symbols associated with
the Fisher–Rao metric are given by

Γ𝑘
𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2

𝑥𝑘

1−
∑︀𝑛

ℎ=1 𝑥ℎ
, 𝑖 ̸= 𝑗,

1
2

𝑥𝑘

1−
∑︀𝑛

ℎ=1 𝑥ℎ
+

1
2
𝑥𝑘

𝑥𝑖
, 𝑖 = 𝑗 ̸= 𝑘,

1
2

𝑥𝑘

1−
∑︀𝑛

ℎ=1 𝑥ℎ
− 1

2
1− 𝑥𝑘

𝑥𝑘
, 𝑖 = 𝑗 = 𝑘,

(10)
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Proof. The smooth functions Γ𝑘
𝑖𝑗 are easily computed through the characterization of the Levi–Civita connection

by the Koszul formula obtained from (8) computed for all the circular permutations of 𝑋,𝑌, 𝑍 ∈ 𝒳 (𝒫+(𝐼)),

g(∇𝑋𝑌,𝑍) =
1
2
{𝑋g(𝑌, 𝑍) + 𝑌 g(𝑍,𝑋)− 𝑍g(𝑋,𝑌 ) + g([𝑋,𝑌 ], 𝑍)− g([𝑌,𝑍], 𝑋)− g([𝑋,𝑍], 𝑌 )}. (11)

Now, in the Koszul formula we set 𝑋 = 𝜕𝑥𝑖, 𝑌 = 𝜕𝑥𝑗 , 𝑍 = 𝜕𝑥𝑙. We get

Γ𝑘
𝑖𝑗 =

1
2

𝑛∑︁
𝑙=1

𝑔𝑘𝑙(𝑔𝑖𝑙,𝑗 + 𝑔𝑗𝑙,𝑖 − 𝑔𝑖𝑗,𝑙), for 𝑖, 𝑗, 𝑘 ∈ {1, . . . , 𝑛}, (12)

where 𝑔𝑖𝑙,𝑗 = 𝜕𝑔𝑖𝑙

𝜕𝑥𝑗
, 𝑔𝑗𝑙,𝑖 = 𝜕𝑔𝑗𝑙

𝜕𝑥𝑖
, and 𝑔𝑖𝑗,𝑙 = 𝜕𝑔𝑖𝑗

𝜕𝑥𝑙
. In the local coordinate system, the Fisher–Rao metric and its

inverse are given by

𝑔𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩
1
𝑥𝑖

+
1

1−
∑︀𝑛

ℎ=1 𝑥ℎ
, if 𝑖 = 𝑗,

1
1−

∑︀𝑛
ℎ=1 𝑥ℎ

, if 𝑖 ̸= 𝑗,

(13)

𝑔𝑖𝑗 =

{︃
𝑥𝑖(1− 𝑥𝑖), if 𝑖 = 𝑗,

−𝑥𝑖𝑥𝑗 , if 𝑖 ̸= 𝑗,
(14)

for 𝑖, 𝑗 = 1, . . . , 𝑛. Now if we take the derivative of (13) by 𝑥𝑙, we get

𝑔𝑖𝑗,𝑙 =

⎧⎪⎪⎨⎪⎪⎩
− 1

(𝑥𝑖)2
+

1
(1−

∑︀𝑛
ℎ=1 𝑥ℎ)2

, if 𝑖 = 𝑗 = 𝑙,

1
(1−

∑︀𝑛
ℎ=1 𝑥ℎ)2

, otherwise.
(15)

Replace (15) in (12), the formula follows. �

Definition 2.3. Let 𝑋 ∈ 𝒳 (𝒫+(𝐼)) be a vector field on 𝒫+(𝐼). Then in the local coordinate (𝒫+(𝐼), 𝜙), we
have the representation 𝑋 =

∑︀𝑛
𝑖=1𝑋𝑖𝜕𝑥𝑖. 𝑋 is called a constant vector field on 𝒫+(𝐼) if all 𝑋𝑖 are independent

of 𝜇.

Theorem 2.1. Given two constant vector fields 𝑋,𝑌 on 𝒫+(𝐼), the Levi–Civita connection at 𝜇 ∈ 𝒫+(𝐼) is
given by

∇𝑋𝑌 (𝜇) = −1
2

(︂
d𝑋
d𝜇

d𝑌
d𝜇

− g𝜇(𝑋,𝑌 )
)︂
𝜇. (16)

Proof. Let 𝑋 =
∑︀

𝑖∈𝐼 𝑋𝑖𝛿
𝑖, 𝑌 =

∑︀
𝑖∈𝐼 𝑌𝑖𝛿

𝑖 and 𝑍 =
∑︀

𝑖∈𝐼 𝑍𝑖𝛿
𝑖 be constant vector fields on 𝒫+(𝐼). Thus, we get

[𝑋,𝑌 ] = [𝑌,𝑍] = [𝑋,𝑍] = 0 and consequently (11) gives

g(∇𝑋𝑌,𝑍) =
1
2
{𝑋g(𝑌,𝑍) + 𝑌.g(𝑋,𝑍)− 𝑍.g(𝑋,𝑌 )}. (17)

Set 𝜇 =
∑︀

𝑖∈𝐼 𝜇𝑖𝛿
𝑖 ∈ 𝒫+(𝐼), and 𝛾(𝑡) = 𝜇+ 𝑣𝑡, a curve on 𝒫+(𝐼) such that 𝜇(0) = 𝜇 and �̇�(0) = 𝑣 = 𝑋(𝜇). We

have

𝑋g𝜇(𝑌, 𝑍) =
d
d𝑡

⃒⃒⃒
𝑡=0

g𝜇(𝑡)(𝑌,𝑍)

=
d
d𝑡

⃒⃒⃒
𝑡=0

∑︁
𝑖∈𝐼

𝑌𝑖𝑍𝑖

𝜇𝑖 + 𝑡𝑣𝑖
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= −
∑︁
𝑖∈𝐼

𝑣𝑖𝑌𝑖𝑍𝑖

𝜇2
𝑖

= −
∑︁
𝑖∈𝐼

𝑋𝑖𝑌𝑖𝑍𝑖

𝜇2
𝑖

·

Similarly, one obtains formulae for 𝑌 g(𝑋,𝑍) and 𝑍g(𝑋,𝑌 ). Now replacing the above results in (17), we get

g𝜇(∇𝑋𝑌, 𝑍) =
1
2

{︃
−
∑︁
𝑖∈𝐼

𝑋𝑖𝑌𝑖𝑍𝑖

𝜇2
𝑖

−
∑︁
𝑖∈𝐼

𝑋𝑖𝑌𝑖𝑍𝑖

𝜇2
𝑖

+
∑︁
𝑖∈𝐼

𝑋𝑖𝑌𝑖𝑍𝑖

𝜇2
𝑖

}︃

= −1
2

∑︁
𝑖∈𝐼

𝑋𝑖𝑌𝑖𝑍𝑖

𝜇2
𝑖

· (18)

On the other hand, we have ∑︁
𝑖∈𝐼

g𝜇(𝑋,𝑌 )𝑍𝑖 = g𝜇(𝑋,𝑌 )
∑︁
𝑖∈𝐼

𝑍𝑖 = 0, (19)

since 𝑍 is a vector field on 𝒫+(𝐼). Then (18) can be written as

g𝜇(∇𝑋𝑌, 𝑍) = −1
2

∑︁
𝑖∈𝐼

(︂
𝑋𝑖𝑌𝑖

𝜇2
𝑖

− g𝜇(𝑋,𝑌 )
)︂
𝜇𝑖
𝑍𝑖

𝜇𝑖

= g𝜇

(︂
−1

2

(︂
d𝑋
d𝜇

d𝑌
d𝜇

− g𝜇(𝑋,𝑌 )
)︂
𝜇,𝑍

)︂
.

This holds for every constant vector field 𝑍, which completes the proof. �

2.3. Geodesics curves on 𝒫+

Theorem 2.2. Let 𝜇 be a probability measure in 𝒫+(𝐼) and 𝑣 ∈ 𝑇𝜇𝒫+(𝐼) a unit tangent vector, i.e., ||𝑣||𝜇 = 1.

Then the geodesic 𝛾 that satisfies 𝛾(0) = 𝜇 and
𝜕𝛾

𝜕𝑡
|𝑡=0 = 𝑣 has the form represented by 𝛾(𝑡) =

∑︀
𝑖∈𝐼 𝛾𝑖(𝑡)𝛿𝑖

with

𝛾𝑖(𝑡) =
(︂

cos
𝑡

2
+
�̇�𝑖(0)
𝛾𝑖(0)

sin
𝑡

2

)︂2

𝛾𝑖(0), (20)

where 𝛾𝑖(0) = 𝜇𝑖 and �̇�𝑖(0) = 𝑣𝑖, for 𝑖 = 1, . . . , 𝑛.

Proof. Let 𝛾(𝑡) =
∑︀

𝑖∈𝐼 𝛾𝑖(𝑡)𝛿𝑖 and �̇�(𝑡) =
∑︀

𝑖∈𝐼 𝛾𝑖(𝑡)𝛿𝑖. Then for each 𝑡, we have{︃∑︀
𝑖∈𝐼 𝛾𝑖(𝑡) = 1, and 𝛾𝑖(𝑡) > 0, ∀𝑖 ∈ 𝐼,∑︀
𝑖∈𝐼 𝛾𝑖(𝑡) = 0.

(21)

Set 𝑋 a constant vector field in 𝒫+(𝐼). From the condition (8) of Levi–Civita connection, we have

g𝛾(𝑡)(∇�̇�(𝑡)�̇�(𝑡), 𝑋) = �̇�(𝑡)
(︀
g𝛾(𝑡)(�̇�(𝑡), 𝑋)

)︀
− g𝛾(𝑡)(�̇�(𝑡),∇�̇�(𝑡)𝑋). (22)

With the properties of Levi–Civita connection, to compute ∇�̇�(𝑡)𝑋, the tangent vector �̇�(𝑡) can be considered
as a constant vector field on 𝒫+(𝐼) when 𝑡 is fixed. Therefore, applying (16) for �̇�(𝑡) and 𝑋 we get,

∇�̇�(𝑡)𝑋 = −1
2

(︂
d�̇�(𝑡)
d𝛾(𝑡)

d𝑋
d𝛾(𝑡)

− g𝛾(𝑡)(�̇�(𝑡), 𝑋)
)︂
𝛾(𝑡)

= −1
2

∑︁
𝑖∈𝐼

⎛⎝ �̇�𝑖(𝑡)
𝛾𝑖(𝑡)

𝑋𝑖

𝛾𝑖(𝑡)
−
∑︁
𝑗∈𝐼

�̇�𝑗(𝑡)𝑋𝑗

𝛾𝑗(𝑡)

⎞⎠𝛾𝑖(𝑡)𝛿𝑖. (23)
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Taking into account of (21), the last term in (22) becomes

g𝛾(𝑡)(�̇�(𝑡),∇�̇�(𝑡)𝑋) = −1
2

∑︁
𝑖∈𝐼

�̇�𝑖(𝑡)
𝛾𝑖(𝑡)

⎛⎝ �̇�𝑖(𝑡)
𝛾𝑖(𝑡)

𝑋𝑖

𝛾𝑖(𝑡)
−
∑︁
𝑗∈𝐼

�̇�𝑗(𝑡)𝑋𝑗

𝛾𝑗(𝑡)

⎞⎠𝛾𝑖(𝑡)

= −1
2

∑︁
𝑖∈𝐼

(︂
�̇�𝑖(𝑡)
𝛾𝑖(𝑡)

)︂2

𝑋𝑖. (24)

Now, we compute the second term in (22). We have

�̇�(𝑡)
(︀
g𝛾(𝑡)(�̇�(𝑡), 𝑋)

)︀
=

d
d𝑡

g𝛾(𝑡)(�̇�(𝑡), 𝑋)

=
∑︁
𝑖∈𝐼

d
d𝑡

(︂
�̇�𝑖(𝑡)
𝛾𝑖(𝑡)

)︂
𝑋𝑖. (25)

Combining (24) and (25) in (22), we get

g(∇�̇�(𝑡)�̇�(𝑡), 𝑋) =
∑︁
𝑖∈𝐼

(︃
d
d𝑡

(︂
�̇�𝑖(𝑡)
𝛾𝑖(𝑡)

)︂
+

1
2

(︂
�̇�𝑖(𝑡)
𝛾𝑖(𝑡)

)︂2
)︃
𝑋𝑖. (26)

Let’s define the function 𝐶(𝑡) as

𝐶(𝑡) = −
∑︁
𝑖∈𝐼

(︃
d
d𝑡

(︂
�̇�𝑖(𝑡)
𝛾𝑖(𝑡)

)︂
+

1
2

(︂
�̇�𝑖(𝑡)
𝛾𝑖(𝑡)

)︂2
)︃
𝛾𝑖(𝑡)

= −
∑︁
𝑖∈𝐼

d
d𝑡

(︂
�̇�𝑖(𝑡)
𝛾𝑖(𝑡)

)︂
𝛾𝑖(𝑡)−

1
2
g𝛾(𝑡)(�̇�(𝑡), �̇�(𝑡)). (27)

Hence, the measure

𝑣(𝑡) =
∑︁
𝑖∈𝐼

(︃
d
d𝑡

(︂
�̇�𝑖(𝑡)
𝛾𝑖(𝑡)

)︂
+

1
2

(︂
�̇�𝑖(𝑡)
𝛾𝑖(𝑡)

)︂2

+ 𝐶(𝑡)

)︃
𝛾𝑖(𝑡)𝛿𝑖

belongs to 𝑇𝛾(𝑡)𝒫+(𝐼). In this way, (26) can be written as

g(∇�̇�(𝑡)�̇�(𝑡), 𝑋) = g(𝑣(𝑡), 𝑋). (28)

Since 𝑋 is an arbitrary constant vector field, we get

∇�̇�(𝑡)�̇�(𝑡) = 𝑣(𝑡) =
∑︁
𝑖∈𝐼

(︃
d
d𝑡

(︂
�̇�𝑖(𝑡)
𝛾𝑖(𝑡)

)︂
+

1
2

(︂
�̇�𝑖(𝑡)
𝛾𝑖(𝑡)

)︂2

+ 𝐶(𝑡)

)︃
𝛾𝑖(𝑡)𝛿𝑖. (29)

Therefore, 𝛾(𝑡) =
∑︀

𝑖∈𝐼 𝛾𝑖(𝑡)𝛿𝑖 is a geodesic if and only if⎧⎨⎩ d
d𝑡

(︁
�̇�𝑖(𝑡)
𝛾𝑖(𝑡)

)︁
+ 1

2

(︁
�̇�𝑖(𝑡)
𝛾𝑖(𝑡)

)︁2

+ 𝐶(𝑡) = 0, ∀𝑖 ∈ 𝐼,∑︀
𝑖∈𝐼 �̇�𝑖(𝑡) = 0, ∀𝑡.

(30)

Our next goal is to solve (30). We may remark that if 𝛾 is a geodesic then g𝛾(𝑡)(�̇�(𝑡), �̇�(𝑡)) is constant along
𝛾(𝑡). Consequently, taking into account of the assumption that ||�̇�(0)||𝜇 = 1, we can assert that

g𝛾(𝑡)(�̇�(𝑡), �̇�(𝑡)) =
∑︁
𝑖∈𝐼

�̇�2
𝑖 (𝑡)
𝛾𝑖(𝑡)

≡ 1. (31)
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Thus ∑︁
𝑖∈𝐼

d
d𝑡

(︂
�̇�𝑖(𝑡)
𝛾𝑖(𝑡)

)︂
𝛾𝑖(𝑡) =

d
d𝑡

∑︁
𝑖∈𝐼

(︂
�̇�𝑖(𝑡)
𝛾𝑖(𝑡)

𝛾𝑖(𝑡)
)︂
−
∑︁
𝑖∈𝐼

(︂
�̇�2

𝑖 (𝑡)
𝛾𝑖(𝑡)

)︂
= −1. (32)

Which gives that 𝐶(𝑡) = 1
2 . Substituting this result in (30), we obtain

d
d𝑡

(︂
�̇�𝑖(𝑡)
𝛾𝑖(𝑡)

)︂
+

1
2

(︂
�̇�𝑖(𝑡)
𝛾𝑖(𝑡)

)︂2

+
1
2

= 0, ∀𝑖 ∈ 𝐼. (33)

Set 𝜔𝑖(𝑡) = �̇�𝑖(𝑡)
𝛾𝑖(𝑡)

. Equation (33) is written as

�̇�𝑖(𝑡) +
1
2
𝜔2

𝑖 (𝑡) +
1
2

= 0, ∀𝑖 ∈ 𝐼. (34)

The solution of this differential equation is given by 𝜔𝑖 = tan(− 𝑡
2 +𝐴𝑖), where 𝐴𝑖 is constant, 𝑖 ∈ 𝐼. Hence, we

have
�̇�𝑖(𝑡)
𝛾𝑖(𝑡)

= tan
(︂
− 𝑡

2
+𝐴𝑖

)︂
, for 𝑖 ∈ 𝐼. (35)

So 𝛾𝑖(𝑡) = 𝐵𝑖 cos2(− 𝑡
2 +𝐴𝑖), where 𝐵𝑖 is constant, and 𝑖 ∈ 𝐼. By the initial conditions, we find that

𝐴𝑖 = arctan
(︂
�̇�𝑖(0)
𝛾𝑖(0)

)︂
, (36)

𝐵𝑖 =
𝛾2

𝑖 (0) + �̇�2
𝑖 (0)

𝛾𝑖(0)
· (37)

Which proves the theorem. �

Corollary 2.1. The geodesic 𝛾(𝑡) with 𝛾(0) = 𝜇 and �̇�(0) = 𝑣, where 𝑣 is a nontrivial tangent vector (not
necessary unit), is given by

𝛾(𝑡) =
∑︁
𝑖∈𝐼

(︂
cos

𝑡‖𝑣‖𝜇

2
+

𝑣𝑖

𝜇𝑖‖𝑣‖𝜇
sin

𝑡‖𝑣‖𝜇

2

)︂2

𝜇𝑖𝛿
𝑖. (38)

Proposition 2.2. The Fisher–Rao distance 𝑑𝐹𝑅 : 𝒫+(𝐼)× 𝒫+(𝐼) → [0, 𝜋) between two measures 𝜇, 𝜈 ∈ 𝒫+(𝐼)
under the Fisher–Rao metric is given by

𝑑𝐹𝑅(𝜇, 𝜈) = 2 arccos

(︃∑︁
𝑖∈𝐼

√
𝜇𝑖𝜈𝑖

)︃
. (39)

To prove Proposition 2.2, we will show the following lemma given in [1].

Lemma 2.1. Let

S(0,2),+(𝐼) =

{︃
𝑓 ∈ ℱ(𝐼) | 𝑓 𝑖 > 0,∀𝑖 ∈ 𝐼 and

∑︁
𝑖∈𝐼

(𝑓 𝑖)2 = 4

}︃
be the positive sector of the sphere centered at 0 with radius 2. As a submanifold of ℱ(𝐼) it carries the induced
standard metric of ℱ(𝐼). That is for a given point 𝑓 ∈ S(0,2),+(𝐼) and two tangents vectors 𝑝, 𝑞 ∈ 𝑇𝑓S(0,2),+(𝐼),
we have

⟨𝑝, 𝑞⟩𝑓 =
∑︁
𝑖∈𝐼

𝑝𝑖𝑞𝑖. (40)

Then the map Φ : 𝒫+(𝐼) −→ S(0,2),+(𝐼) defined by 𝜇 =
∑︀

𝑖∈𝐼 𝜇𝑖𝛿
𝑖 ↦−→ 2

∑︀
𝑖∈𝐼

√
𝜇𝑖𝑒𝑖 is a global isometry.
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Proof of the Lemma. It is clear that Φ is bijective. Now, let 𝑣, 𝑤 be in 𝑇𝜇𝒫+(𝐼). We have⟨
𝜕Φ
𝜕𝑣

(𝜇),
𝜕Φ
𝜕𝑤

(𝜇)
⟩

=
⟨

d
d𝑡

Φ(𝜇+ 𝑣𝑡)
⃒⃒⃒⃒
𝑡=0,

d
d𝑡

Φ(𝜇+ 𝑤𝑡)
⃒⃒⃒⃒
𝑡=0

⟩
=

⟨∑︁
𝑖∈𝐼

𝑣𝑖√
𝜇𝑖
𝑒𝑖,
∑︁
𝑖∈𝐼

𝑤𝑖√
𝜇𝑖
𝑒𝑖

⟩
=
∑︁
𝑖∈𝐼

𝑣𝑖𝑤𝑖

𝜇𝑖
= g𝜇(𝑣, 𝑤).

�

Proof of the Proposition. By virtue of Lemma 2.1, we get 𝑑𝐹𝑅(𝜇, 𝜈) = 𝑑(Φ(𝜇),Φ(𝜈)) = 2 arccos(
∑︀

𝑖∈𝐼

√
𝜇𝑖𝜈𝑖).

�

Lemma 2.2. Let 𝑡 → 𝛾(𝑡) be a curve on 𝒫+(𝐼) and 𝑣 ∈ 𝑇𝜇𝒫+(𝐼) a vector field along 𝛾. Let Φ : 𝒫+(𝐼) →
S(0,2),+(𝐼) be the Riemannian isometry, then

(1) The covariant derivative of a vector fields along 𝛾 is preserved, that is

Φ*(𝐷𝑡𝑣) = 𝐷𝑡(Φ*𝑣). (41)

(2) The Riemannian curvature endomorphism is isometry invariant, that is

𝑑Φ𝜇𝑅(𝑣(1), 𝑣(2), 𝑣(3)) = 𝑅(𝑑Φ𝜇𝑣
(1), 𝑑Φ𝜇𝑣

(2))𝑑Φ𝜇𝑣
(3), ∀𝑣(𝑖) ∈ 𝑇𝜇𝒫+(𝐼), 𝑖 = 1, 2, 3. (42)

Theorem 2.3. Let 𝜇, 𝜈 be two different probability measures in 𝒫+(𝐼). Then there exists a unique geodesic
𝛾 : [0, 𝑙] → 𝒫+(𝐼), 𝑡→ 𝛾(𝑡), joining two points 𝜇 and 𝜈, with 𝛾(0) = 𝜇, 𝛾(𝑙) = 𝜈 and 𝑙 = 𝑑𝐹𝑅(𝜇, 𝜈), given by

𝛾(𝑡) =
(︂

cos
𝑡

2
+ sin

𝑡

2
d𝑣
d𝜇

)︂2

𝜇

=
∑︁
𝑖∈𝐼

(︂
cos

𝑡

2
+ sin

𝑡

2
d𝑣
d𝜇

(𝑖)
)︂2

𝜇𝑖𝛿
𝑖, (43)

where 𝑣 is the unit tangent vector in 𝑇𝜇𝒫+(𝐼) defined by

𝑣 =
1

sin 𝑙
2

∑︁
𝑖∈𝐼

⎛⎝√︃d𝜈
d𝜇

(𝑖)−
∑︁
𝑗∈𝐼

√︃
d𝜈
d𝜇

(𝑗)𝜇(𝑗)

⎞⎠𝜇𝑖𝛿
𝑖. (44)

Proof. The proof falls naturally into three parts.

Step 1. First, let us check that 𝑣 is a unit tangent in 𝑇𝜇𝒫+(𝐼). Indeed,

1
sin 𝑙

2

∑︁
𝑖∈𝐼

⎛⎝√︃d𝜈
d𝜇

(𝑖)−
∑︁
𝑗∈𝐼

√︃
d𝜈
d𝜇

(𝑗)𝜇(𝑗)

⎞⎠𝜇𝑖

=
1

sin 𝑙
2

⎛⎝∑︁
𝑖∈𝐼

√︃
d𝜈
d𝜇

(𝑖)𝜇𝑖 −
∑︁
𝑗∈𝐼

√︃
d𝜈
d𝜇

(𝑗)𝜇(𝑗)

⎞⎠
= 0. (45)
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Then, since ⎛⎝∑︁
𝑗∈𝐼

√︃
d𝜈
d𝜇

(𝑗)𝜇(𝑗)

⎞⎠2

=

⎛⎝∑︁
𝑗∈𝐼

√
𝜇𝑗𝜈𝑗

⎞⎠2

= cos2
𝑙

2
, (46)

it follows that

⟨𝑣, 𝑣⟩𝜇 =
1

sin2 𝑙
2

∑︁
𝑖∈𝐼

⎛⎝√︃d𝜈
d𝜇

(𝑖)−
∑︁
𝑗∈𝐼

√︃
d𝜈
d𝜇

(𝑗)𝜇(𝑗)

⎞⎠2

𝜇𝑖

=
1

sin2 𝑙
2

⎛⎜⎝∑︁
𝑖∈𝐼

𝜈(𝑖)−

⎛⎝∑︁
𝑗∈𝐼

√︃
d𝜈
d𝜇

(𝑗)𝜇(𝑗)

⎞⎠2
⎞⎟⎠

=
1

sin2 𝑙
2

(︂
1− cos2

𝑙

2

)︂
= 1 (47)

hence 𝑣 is a unit tangent vector.
Step 2. Now let us examine that the curve 𝛾(𝑡) defined by equation (43) satisfies 𝛾(0) = 𝜇 and 𝛾(𝑙) = 𝜈. It is

easily seen that for 𝑡 = 0, 𝛾(0) = 𝜇. Now for 𝑡 = 𝑙, we have

𝛾(𝑙) =
∑︁
𝑖∈𝐼

(︂
cos

𝑙

2
+ sin

𝑙

2
d𝑣
d𝜇

(𝑖)
)︂2

𝜇𝑖𝛿
𝑖. (48)

By (44) we get

sin
𝑙

2
d𝑣
d𝜇

=
∑︁
𝑖∈𝐼

⎛⎝√︃d𝜈
d𝜇

(𝑖)−
∑︁
𝑗∈𝐼

√︃
d𝜈
d𝜇

(𝑗)𝜇(𝑗)

⎞⎠𝑒𝑖

=
∑︁
𝑖∈𝐼

(︃√︃
d𝜈
d𝜇

(𝑖)− cos
𝑙

2

)︃
𝑒𝑖. (49)

Hence,

𝛾(𝑙) =
∑︁
𝑖∈𝐼

(︃
cos

𝑙

2
+

√︃
d𝜈
d𝜇

(𝑖)− cos
𝑙

2

)︃2

𝜇𝑖𝛿
𝑖 =

∑︁
𝑖∈𝐼

𝜈𝑖𝛿
𝑖 = 𝜈. (50)

Step 3. Now we go to prove the uniqueness of the curve. Let 𝛾(𝑡) and 𝛾(𝑡) be unit speed geodesics corresponding
with tangent vectors 𝑣 and 𝑣, and satisfying 𝛾(0) = 𝛾(0) = 𝜇 and 𝛾(𝑙) = 𝛾(𝑙) = 𝜈. By Theorem 2.2, we have

𝛾(𝑡) =
∑︁
𝑖∈𝐼

(︂
cos

𝑡

2
+

d𝑣
d𝜇

sin
𝑡

2

)︂2

𝜇𝑖𝛿
𝑖, (51)

𝛾(𝑡) =
∑︁
𝑖∈𝐼

(︂
cos

𝑡

2
+

d𝑣
d𝜇

sin
𝑡

2

)︂2

𝜇𝑖𝛿
𝑖. (52)

From later condition, we have(︂
cos

𝑙

2
+

d𝑣
d𝜇

(𝑖) sin
𝑙

2

)︂2

=
(︂

cos
𝑙

2
+

d𝑣
d𝜇

(𝑖) sin
𝑙

2

)︂2

, ∀𝑖 ∈ 𝐼 (53)
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⇒ cos
𝑙

2
+

d𝑣
d𝜇

(𝑖) sin
𝑙

2
= ±

(︂
cos

𝑙

2
+

d𝑣
d𝜇

(𝑖) sin
𝑙

2

)︂
, ∀𝑖 ∈ 𝐼. (54)

Define

𝐼± =
{︂
𝑖 ∈ 𝐼

⃒⃒⃒
cos

𝑙

2
+

d𝑣
d𝜇

(𝑖) sin
𝑙

2
= ±

(︂
cos

𝑙

2
+

d𝑣
d𝜇

(𝑖) sin
𝑙

2

)︂}︂
. (55)

Then we have 𝐼 ∪ 𝐼+ = 𝐼. Moreover 𝐼 ∩ 𝐼+ = ∅. Indeed, if there exists 𝑖 ∈ 𝐼 ∩ 𝐼+ then

𝜈𝑖 =
(︂

cos
𝑙

2
+

d𝑣
d𝜇

sin
𝑙

2

)︂2

𝜇𝑖 = 0, (56)

contradict the fact that 𝜈 ∈ 𝒫+. Sine 0 < 𝑙 < 𝜋, we have

𝐼+ = {𝑖 ∈ 𝐼|𝑣𝑖 = 𝑣𝑖}, (57)

𝐼 =
{︂
𝑖 ∈ 𝐼|𝑣𝑖 + 𝑣𝑖 = −2𝜇𝑖 cot

𝑙

2

}︂
· (58)

Suppose 𝐼 ̸= ∅, since 𝑣 and 𝑣 are unit tangent vectors at 𝜇, we have∑︁
𝑖∈𝐼+

𝑣𝑖 +
∑︁
𝑖∈𝐼

𝑣𝑖 =
∑︁
𝑖∈𝐼+

𝑣𝑖 +
∑︁
𝑖∈𝐼

𝑣𝑖 = 0 (59)

⇒
∑︁
𝑖∈𝐼

(︂
𝑣𝑖 + 2𝜇𝑖 cot

𝑙

2

)︂
+
∑︁
𝑖∈𝐼

𝑣𝑖 = 0. (60)

Since (60) we see that if 𝐼 = 𝐼, then cot 𝑙
2 = 0 contradicts to 0 < 𝑙 < 𝜋. So 𝐼 ̸= 𝐼. We have the claim below.

Claim 1. For all 𝜇 ∈ 𝒫+ and 0 < 𝑙 < 𝜋. If 𝑣, 𝑣 ∈ 𝑇𝜇𝒫+. Let

𝐼+ = {𝑖 ∈ 𝐼|𝑣𝑖 = 𝑣𝑖}, (61)

𝐼 =
{︂
𝑖 ∈ 𝐼|𝑣𝑖 + 𝑣𝑖 = −2𝜇𝑖 cot

𝑙

2

}︂
, (62)

then 𝐼 = ∅.
By means of the claim, we prove the uniqueness of the geodesic (43) defined with the unit tangent vector

(44).
�

Proof of the Claim. We proof the claim by induction on the degree of 𝐼. If |𝐼| is one or two the claim is true
since 𝐼+ is not empty. Suppose the claim is true for |𝐼| = 𝑛. We go to prove the claim for |𝐼| = 𝑛 + 1. Let
𝜇, 𝑣, 𝑣 and 𝑙 as in the claim. Suppose 𝐼 ̸= ∅ then |𝐼 | ≥ 2. Let 𝑔, ℎ be two distinct index in 𝐼 , this means
𝑣𝑔 + 𝑣𝑔 = −2𝜇𝑔 cot 𝑙

2 and 𝑣ℎ + 𝑣ℎ = −2𝜇ℎ cot 𝑙
2 . Now let 𝑘 ∈ 𝐼+ and define three measures 𝑣′, 𝑣′, 𝜇′ on 𝐼 ∖ {𝑘}

as follow

𝑣′ =
∑︁

𝑖∈𝐼,�̸�=𝑘,ℎ,𝑔

𝑣𝑖𝛿
𝑖 + 𝑣𝑔𝛿

𝑔 + (𝑣ℎ + 𝑣𝑘)𝛿ℎ, (63)

𝑣′ =
∑︁

𝑖∈𝐼,�̸�=𝑘,ℎ,𝑔

𝑣𝑖𝛿
𝑖 + (𝑣𝑔 + 2𝑣𝑘)𝛿𝑔 + (𝑣ℎ − 𝑣𝑘)𝛿ℎ, (64)

𝜇′ =
∑︁

𝑖∈𝐼,�̸�=𝑘,ℎ,𝑔

𝜇𝑖𝛿
𝑖 + (𝜇𝑔 + 𝜇𝑘)𝛿𝑔 + 𝜇ℎ𝛿

ℎ. (65)

We have 𝑣′, 𝑣′ ∈ 𝑇𝜇′𝒫+(𝐼 ∖ {𝑘}), and ℎ ∈ 𝐼 ̸= ∅. This contradicts to the hypothesis. This shows the claim for
|𝐼| = 𝑛+ 1. �
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Corollary 2.2. Let 𝜀 = {(𝜇, 𝑣) |𝛾(𝑡, 𝜇, 𝑣) is defined on an interval containing [0, 𝑙]}. The exponential map
exp𝜇 : 𝜀 −→ 𝒫+(𝐼) is defined as

exp𝜇(𝑣) =
∑︁
𝑖∈𝐼

(︂
cos

‖𝑣‖𝜇

2
+

𝑣𝑖

𝜇𝑖‖𝑣‖𝜇
sin

‖𝑣‖𝜇

2

)︂2

𝜇𝑖𝛿
𝑖. (66)

Similarly, given two points 𝜇 and 𝜈 on 𝒫+(𝐼), the inverse exponential map (also known as the logarithmic map)
at 𝜇 is given as follows

log𝜇 : 𝒫+(𝐼) −→ 𝜀

𝜈 ↦−→ log𝜇(𝜈) =
𝑙

sin 𝑙
2

∑︁
𝑖∈𝐼

⎛⎝√︃d𝜈
d𝜇

(𝑖)−
∑︁
𝑗∈𝐼

√︃
d𝜈
d𝜇

(𝑗)𝜇(𝑗)

⎞⎠𝜇𝑖𝛿
𝑖. (67)

Theorem 2.4. 𝒫+(𝐼) equipped with the Fisher–Rao metric is a locally symmetric space.

To show that 𝒫+(𝐼) is a locally symmetric space, we need the following proposition.

Proposition 2.3. A locally symmetric space is a Riemannian manifold whose curvature tensor is parallel, i.e.,
∇𝑅 = 0.

Proof of Theorem 2.4. It follows by Lemma 2.2 as 𝒫+(𝐼) is isometric to the symmetric space S(0,2),+(𝐼). Hence,
around any point 𝜇 ∈ 𝒫+(𝐼) there is a geodesic ball 𝐵𝑟(𝜇) which is isometric to a ball 𝐵𝜖(𝑓) on S(0,2),+(𝐼).
Therefore, there is an isometry 𝜅𝜇 : 𝐵𝑟(𝜇) → 𝐵𝑟(𝑓) such that 𝜅𝜇(𝜇) = 𝜇 and the differential d𝜅𝜇(𝜇) = −𝐼𝑑.
Let 𝑣(1), 𝑣(2), 𝑣(3), 𝑣(4) ∈ 𝑇𝜇(𝒫+(𝐼)). Let us show that ∇𝑣(1)𝑅(𝑣(2), 𝑣(3), 𝑣(4)) = 0. Set 𝑣 = ∇𝑣(1)𝑅(𝑣(2), 𝑣(3), 𝑣(4))
and applying d𝜅𝜇 on both sides of this equation, we obtain that 𝑣 will be changed by −𝑣 and 𝑣(𝑖) to −𝑣(𝑖),
for 𝑖 = 1, . . . , 4. Thus the left-hand side changes sign while the right-hand side stays the same. Moreover, we
mention that the curvature tensor is preserved by d𝜅𝜇. Consequently, ∇𝑅 = 0 and the proof is complete. �

2.4. Parallel transport on 𝒫+(𝐼)

On the Riemannian manifold 𝒫+(𝐼), each tangent vector 𝑣 belongs to a tangent space 𝑇𝜇𝒫+(𝐼) specific to
its root point 𝜇. Hence tangent vectors from different tangent spaces cannot be compared directly. Parallel
transport is a unique mathematical tool capable of transporting vectors between tangent spaces while retaining
the information they contain. Let us consider two points 𝜇, 𝜈 ∈ 𝒫+(𝐼), a tangent vector 𝑣 ∈ 𝑇𝜇𝒫+(𝐼) and a
geodesic curve 𝛾 : [0, 𝑙] → 𝒫+(𝐼) on 𝒫+(𝐼) such that 𝛾(0) = 𝜇 and 𝛾(𝑙) = 𝜈. We would like to map 𝑣 from
𝑇𝜇𝒫+(𝐼) = 𝑇𝛾(0)𝒫+(𝐼) to 𝑇𝜈𝒫+(𝐼) = 𝑇𝛾(𝑙)𝒫+(𝐼). We introduce 𝑋, a vector field defined along the geodesic 𝛾,
such that 𝑋(𝜇) = 𝑣 and ∇�̇�(𝑡)𝑋(𝛾(𝑡)) = 0. We say that the tangent vector 𝑣 is constant along the geodesic
curve 𝛾 with respect to ∇.

Definition 2.4. A metric parallel transport on 𝒫+(𝐼) is the map

Γ𝛾(0) ↦→𝛾(𝑡) : 𝑇𝛾(0)𝒫+(𝐼) → 𝑇𝛾(𝑡)𝒫+(𝐼) (68)

such that for any 𝑣, 𝑤 ∈ 𝑇𝜇𝒫+(𝐼), and for 𝑡 ∈ [0, 𝑙] we have

g𝛾(0)(𝑣, 𝑤) = g𝛾(𝑡)

(︀
Γ𝛾(0)→𝛾(𝑡)(𝑣),Γ𝛾(0)→𝛾(𝑡)(𝑤)

)︀
. (69)

And let Γ be the Levi–Civita parallel transport of a tangent vector 𝑣 along a geodesic curve 𝛾 on 𝒫+(𝐼) with
the Fisher–Rao metric.
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Rewriting equation ∇�̇�(𝑡)𝑋(𝛾(𝑡)) = 0, we conclude that computing 𝑋(𝑡) = 𝑋(𝛾(𝑡)) requires solving a linear
first order differential equations on 𝒫+(𝐼) given by

d𝑋𝑘

d𝑡
+
∑︁
𝑖,𝑗

Γ𝑘
𝑖𝑗

d𝛾𝑖

d𝑡
𝑋𝑗 = 0, for 𝑘 = 1, . . . , 𝑛. (70)

We check at once that it is difficult to solve equation (70) directly. Hence we will use equation (16).

Theorem 2.5. Let 𝜇 be a probability measure in 𝒫+(𝐼) and 𝑣 ∈ 𝑇𝜇𝒫+(𝐼) a unit tangent vector, i.e., ||𝑣||𝜇 = 1.
Let 𝛾 : [0, 𝑙] → 𝒫+(𝐼) be a geodesic curve such that 𝛾(0) = 𝜇 and �̇�(0) = 𝑣. The Levi–Civita parallel transport
of a vector 𝑤 ∈ 𝑇𝜇𝒫+(𝐼) to 𝑇𝛾(𝑡)𝒫+(𝐼), is given by

Γ𝛾(0) ↦→𝛾(𝑡)(𝑤) =
∑︁
𝑖∈𝐼

√︀
𝛾𝑖(𝑡)

(︂
−𝐶(0)

√
𝜇𝑖

(︂
2 sin

𝑡

2
− 2

𝑣𝑖

𝜇𝑖
cos

𝑡

2

)︂
+

𝑤𝑖√
𝜇𝑖
− 2𝐶(0)

𝑣𝑖√
𝜇𝑖

)︂
𝛿𝑖, (71)

where 𝐶(0) = 1
2g𝜇(𝑣, 𝑤).

Proof. We can proceed analogously to the proof of Theorem 2.2. Thus, let 𝛾(𝑡) =
∑︀

𝑖∈𝐼 𝛾𝑖(𝑡)𝛿𝑖 be a geodesic
curve, and define �̇�(𝑡) =

∑︀
𝑖∈𝐼 �̇�𝑖(𝑡)𝛿𝑖. Consider the vector field 𝑋 on 𝛾 defined by 𝑋(𝛾(𝑡)) =

∑︀
𝑖∈𝐼 𝑋𝑖(𝛾(𝑡))𝛿𝑖,

for 𝑡 ∈ [0, 𝑙], as the parallel transport of vector 𝑤 along 𝛾. Then{︃
∇�̇�(𝑡)𝑋(𝑡) = 0
𝑋(0) = 𝑤,

(72)

where we write 𝑋(𝛾(𝑡)) simply 𝑋(𝑡) when no confusion can arise. Let 𝑌 be a constant vector field (in the sense
of Def. 2.3) on 𝒫+(𝐼), we have

g𝛾(𝑡)

(︀
∇�̇�(𝑡)𝑋(𝑡), 𝑌

)︀
= �̇�(𝑡)

(︀
g𝛾(𝑡)(𝑋(𝑡), 𝑌 )

)︀
− g𝛾(𝑡)

(︀
𝑋(𝑡),∇�̇�(𝑡)𝑌

)︀
. (73)

Applying Theorem 2.1, we get

∇�̇�𝑌 = −1
2

∑︁
𝑖∈𝐼

⎛⎝ �̇�𝑖

𝛾𝑖

𝑌𝑖

𝛾𝑖
−
∑︁
𝑗∈𝐼

�̇�𝑗𝑌𝑗

𝛾𝑗

⎞⎠𝛾𝑖𝛿
𝑖. (74)

Hence the last term in (73) becomes

g𝛾(𝑋,∇�̇�𝑌 ) = −1
2

∑︁
𝑖∈𝐼

𝑋𝑖

𝛾𝑖

⎛⎝ �̇�𝑖

𝛾𝑖

𝑌𝑖

𝛾𝑖
−
∑︁
𝑗∈𝐼

�̇�𝑗𝑌𝑗

𝛾𝑗

⎞⎠𝛾𝑖

= −1
2

∑︁
𝑖∈𝐼

𝑋𝑖𝑌𝑖�̇�𝑖

𝛾2
𝑖

· (75)

Let us now compute the second term in (73). We obtain

�̇�(𝑡)
(︀
g𝛾(𝑡)(𝑋,𝑌 )

)︀
=

d
d𝑡

g𝛾(𝑡)(𝑋(𝑡), 𝑌 ) =
∑︁
𝑖∈𝐼

d
d𝑡

(︂
𝑋𝑖

𝛾𝑖

)︂
𝑌𝑖. (76)

Consequently, equation (73) becomes

g𝛾(∇�̇�𝑋,𝑌 ) =
∑︁
𝑖∈𝐼

(︂
d
d𝑡

(︂
𝑋𝑖

𝛾𝑖

)︂
+

1
2
𝑋𝑖�̇�𝑖

𝛾2
𝑖

)︂
𝑌𝑖. (77)
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Define the function 𝐶(𝑡) by

𝐶(𝑡) = −
∑︁
𝑖∈𝐼

(︂
d
d𝑡

(︂
𝑋𝑖

𝛾𝑖

)︂
+

1
2
𝑋𝑖�̇�𝑖

𝛾2
𝑖

)︂
𝛾𝑖(𝑡)

= −
∑︁
𝑖∈𝐼

d
d𝑡

(︂
𝑋𝑖

𝛾𝑖

)︂
𝛾𝑖(𝑡)−

1
2
g𝛾(𝑡)(𝑋(𝑡), �̇�(𝑡)). (78)

Then, ∀𝑡 ∈ [0, 𝑙], the probability measure

𝜈(𝑡) =
∑︁
𝑖∈𝐼

(︂
d
d𝑡

(︂
𝑋𝑖

𝛾𝑖

)︂
+

1
2
𝑋𝑖�̇�𝑖

𝛾2
𝑖

+ 𝐶(𝑡)
)︂
𝛾𝑖𝛿

𝑖

belongs to 𝑇𝛾(𝑡)𝒫+(𝐼). Thus, equation (77) can be written as

g𝛾(∇�̇�𝑋,𝑌 ) = g𝛾(𝜈, 𝑌 ). (79)

Since 𝑌 is an arbitrary constant vector field, we get

∇�̇�𝑋 = 𝜈 =
∑︁
𝑖∈𝐼

(︂
d
d𝑡

(︂
𝑋𝑖

𝛾𝑖

)︂
+

1
2
𝑋𝑖�̇�𝑖

𝛾2
𝑖

+ 𝐶(𝑡)
)︂
𝛾𝑖𝛿

𝑖. (80)

Therefore, 𝑋(𝑡) is the parallel transport of the vector 𝑤 along the geodesic curve 𝛾(𝑡) if and only if⎧⎨⎩
d
d𝑡

(︂
𝑋𝑖

𝛾𝑖

)︂
+

1
2
𝑋𝑖�̇�𝑖

𝛾2
𝑖

+ 𝐶(𝑡) = 0, ∀𝑖 ∈ 𝐼,

𝑋(0) = 𝑤.
(81)

Our next concern will be to solve equation (81). We remind that g𝛾(𝑡)(𝑋(𝑡), �̇�(𝑡)) = g𝛾(0)(𝑋(0), �̇�(0)). Moreover∑︁
𝑖∈𝐼

d
d𝑡

(︂
𝑋𝑖

𝛾𝑖

)︂
𝛾𝑖 =

d
d𝑡

∑︁
𝑖∈𝐼

(︂
𝑋𝑖

𝛾𝑖
𝛾𝑖

)︂
−
∑︁
𝑖∈𝐼

(︂
𝑋𝑖�̇�𝑖

𝛾𝑖

)︂
= −g𝛾(0)(𝑋(0), �̇�(0)). (82)

Which gives that 𝐶(𝑡) is a constant function and 𝐶(𝑡) = 𝐶(0) = 1
2g𝛾(0)(𝑋(0), �̇�(0)). Hence, substituting this

result in equation (81) we get

d
d𝑡

(︂
𝑋𝑖

𝛾𝑖

)︂
+

1
2
𝑋𝑖�̇�𝑖

𝛾2
𝑖

+ 𝐶(0) = 0, ∀𝑖 ∈ 𝐼. (83)

Set 𝜔𝑖 = 𝑋𝑖

𝛾𝑖
. Equation (83) can be written as

d
d𝑡
𝜔𝑖 +

1
2
𝛾𝑖

𝛾𝑖
𝜔𝑖 + 𝐶(0) = 0, ∀𝑖 ∈ 𝐼. (84)

Solution of the first order differential equation (84) is given by

𝜔𝑖(𝑡) =
1√︀
𝛾𝑖(𝑡)

(︂
−𝐶(0)

√︀
𝛾𝑖(0)

(︂
2 sin

𝑡

2
− 2

�̇�𝑖(0)
𝛾𝑖(0)

cos
𝑡

2

)︂
+𝐴𝑖

)︂
, for 𝐴𝑖 constant, 𝑖 ∈ 𝐼. (85)

Therefore,

𝑋𝑖 =
√︀
𝛾𝑖(𝑡)

(︂
−𝐶(0)

√︀
𝛾𝑖(0)

(︂
2 sin

𝑡

2
− 2

�̇�𝑖(0)
𝛾𝑖(0)

cos
𝑡

2

)︂
+𝐴𝑖

)︂
, for 𝐴𝑖 constant, 𝑖 ∈ 𝐼. (86)
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According to the initial conditions, it follows that

𝐴𝑖 =
𝑤𝑖√
𝜇𝑖
− 2𝐶(0)

𝑣𝑖√
𝜇𝑖
· (87)

We conclude that

𝑋𝑖(𝑡) =
√︀
𝛾𝑖(𝑡)

(︂
−𝐶(0)

√
𝜇𝑖

(︂
2 sin

𝑡

2
− 2

𝑣𝑖

𝜇𝑖
cos

𝑡

2

)︂
+

𝑤𝑖√
𝜇𝑖
− 2𝐶(0)

𝑣𝑖√
𝜇𝑖

)︂
, 𝑖 ∈ 𝐼 (88)

and it is easy to check that, ∀𝑡 ∈ [0, 𝑙], 𝑋(𝑡) =
∑︀

𝑖∈𝐼 𝑋𝑖(𝑡)𝛿𝑖 ∈ 𝑇𝛾(𝑡)𝑃+(𝐼) and it is the Levi–Civita parallel
transport of the vector 𝑤 along the geodesic curve 𝛾(𝑡). �

Theorem 2.6. Given two distinct probability measures 𝜇 and 𝜈 in 𝒫+(𝐼), a nontrivial tangent vector 𝑤 ∈
𝑇𝜇𝒫+(𝐼) and a geodesic curve 𝛾 : [0, 𝑙] → 𝒫+(𝐼) such that 𝛾(0) = 𝜇 and 𝛾(𝑙) = 𝜈. The Levi–Civita parallel
transport, Γ𝜇↦→𝜈 : 𝑇𝜇𝒫+(𝐼) → 𝑇𝜈𝒫+(𝐼), that transports a vector 𝑤 from 𝑇𝜇𝒫+(𝐼) = 𝑇𝛾(0)𝒫+(𝐼) to 𝑇𝜈𝒫+(𝐼) =
𝑇𝛾(𝑙)𝒫+(𝐼) given by

Γ𝜇↦→𝜈(𝑤) =
∑︁
𝑖∈𝐼

√
𝜈𝑖

(︂
−𝐶(0)

√
𝜇𝑖

(︂
2 sin

𝑙

2
− 2

𝑣𝑖

𝜇𝑖
cos

𝑙

2

)︂
+

𝑤𝑖√
𝜇𝑖
− 2𝐶(0)

𝑣𝑖√
𝜇𝑖

)︂
𝛿𝑖, (89)

where 𝑙 = 2 arccos
∑︀

𝑖∈𝐼

√
𝜇𝑖𝜈𝑖, 𝐶(0) = 1

2g𝜇(𝑤, 𝑣), and 𝑣 is the unit tangent vector

𝑣 =
1

sin 𝑙
2

∑︁
𝑖∈𝐼

⎛⎝√︃d𝜈
d𝜇

(𝑖)−
∑︁
𝑗∈𝐼

√︃
d𝜈
d𝜇

(𝑗)𝜇(𝑗)

⎞⎠𝜇𝑖𝛿
𝑖. (90)

Proof. It suffices to use the equation of the geodesic curve 𝛾(𝑡) joining two points 𝜇 and 𝜈 given by Theorem 3.2
together with taking 𝑡 = 𝑙 in Theorem 2.5, the proof follows. �

In the next section, we will show how to take advantage of these results to represent our geometric algorithm
that generates a 𝐶2 Bézier spline on the space of probability measures 𝒫+(𝐼).

3. Splines on space of probability measures

3.1. Problem formulation

Now, an interpolation spline on 𝒫+(𝐼) can be created using geodesic operations introduced in the previous
section. A general formulation of the interpolation problem is given by: Given 𝜇(0), . . . , 𝜇(𝑁) an indexed finite
set of probability measures associated to a set of observation times 𝑡0, . . . , 𝑡𝑁 such that 𝑡𝑖 = 𝑖, for 𝑖 = 0, . . . , 𝑁 .
The aim is to develop a method for smooth interpolation on the space of probability measures 𝒫+(𝐼). More
precisely, we seek a spline 𝜎 : [𝑡0, 𝑡𝑁 ] → 𝒫+(𝐼) that interpolates the given set of probability measures: 𝜎(𝑡𝑖) =
𝜇(𝑖), 𝑖 = 0, . . . , 𝑁 and is of class 𝐶2. For simplicity we may consider the time interval [0, 𝑁 ] instead of [𝑡0, 𝑡𝑁 ].
Solutions to this problem will be called measure interpolation spline and attempt to minimize the total cost
functional,

𝐸(𝜎) =
∫︁ 𝑡𝑁

𝑡0

⟨
D2𝜎(𝑡)

D𝑡2
,

D2𝜎(𝑡)
D𝑡2

⟩
𝐹

d𝑡.

To attack the problem of defining and computing splines of measures, we propose a new optimization method
based on the generalized De Casteljau algorithm on manifolds. The implementation of the De Casteljau algorithm
on 𝒫+(𝐼) provides the groundwork to obtain the solution of the optimization problem (1) for the probability
measures space 𝒫+(𝐼). The resulting interpolating spline is known in the literature as the Bézier spline. Moreover,
we will decouple the interpolation problem into two steps: First, solve a 𝐶1 interpolation spline on 𝒫+(𝐼). Then,
taking into account the local symmetries at interpolation points, we derive equations for control points that
generate the requested 𝐶2 Bézier spline. The effectiveness of the method is demonstrated by designing several
measure interpolation splines on 𝒫+(𝐼) and applying them to various applications.
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3.2. Measure interpolation spline using De Casteljau algorithm

The De Casteljau algorithm is a well-known algorithm used to generate polynomial spline curves on Euclidean
spaces. The method is theoretically sound and excellent, due to its simple geometric construction based on simple
successive linear interpolation. The generalizations of De Casteljau’s algorithm on Riemannian manifolds are
made in an obvious way by simply trading straight lines by minimal geodesic between two points, see [20]. Since
the space of probability measures is not geodesically complete, thus an explicit formula for the geodesic that
joins two points may be unknown in some particular situations. So, in this case, the implementation of the De
Casteljau algorithm is restricted to a convex open subset of the manifold where the expression to compute the
geodesic arc joining two points is well-defined.

From now on, we will consider 𝜎𝑗 : [0, 1] → 𝒫+(𝐼) the Bézier curve of order 𝑗 defined by (𝑗+1) control points
𝑉 (0), . . . , 𝑉 (𝑗) ∈ 𝒫+(𝐼). Set (𝑉 (𝑖))0(𝑡) = 𝑉 (𝑖), and for 𝑖 = 0, . . . , 𝑗 − 𝑘, 𝑘 = 1, . . . , 𝑗 we define(︁

𝑉 (𝑖)
)︁𝑘

(𝑡) = 𝜎𝑘

(︁
𝑡, 𝑉 (𝑖), . . . , 𝑉 (𝑖+𝑘)

)︁
= 𝛾

(︂
𝑡,
(︁
𝑉 (𝑖)

)︁𝑘−1

,
(︁
𝑉 (𝑖+1)

)︁𝑘−1
)︂
, 𝑡 ∈ [0, 1],

where 𝛾 is the geodesic curve on 𝒫+(𝐼) given by equation (20). In this framework, the Bézier spline 𝜎 : [0, 𝑁 ] →
𝒫+(𝐼) will be constructed by a sequence of 𝑁 Bézier curve 𝜎𝑖

𝑗 of order two and three such that the first and
the last ones are quadratic Bézier curves while all the others are cubic. Bézier curves of order 𝑗 are polynomial
functions parametrized by a set of control points such that the first and last control points are the endpoint of
the curve, but the intermediate control points are in general not on the curve. Moreover, the number of control
points determines the degree 𝑗 of the polynomial spline. Additionally, let us denote ((̂︀𝜂(𝑖))−, (̂︀𝜂(𝑖))+) the control
points on the left and on the right-hand side of the interpolation point 𝜇(𝑖) for 𝑖 = 1, . . . , (𝑁 − 1). The Bézier
spline 𝜎 : [0, 𝑁 ] −→ 𝒫+(𝐼) is then given by

𝜎(𝑡) =

⎧⎪⎨⎪⎩
𝜎0

2(𝑡;𝜇(0), (̂︀𝜂(1))−, 𝜇(1)), 0 ≤ 𝑡 ≤ 1,
𝜎𝑖

3(𝑡− 𝑖;𝜇(𝑖), (̂︀𝜂(𝑖))+, (̂︀𝜂(𝑖+1))−, 𝜇(𝑖+1)), 𝑖− 1 ≤ 𝑡 ≤ 𝑖

𝜎𝑁−1
2 (𝑡− (𝑁 − 1);𝜇(𝑁−1), (̂︀𝜂(𝑁−1))+, 𝜇(𝑁)), 𝑁 − 1 ≤ 𝑡 ≤ 𝑁 .

Since the Bézier spline 𝜎 interpolates the first and the last control points of each Bézier curve 𝜎𝑖
𝑗 , 𝑗 ∈

{2, 3}, 0 ≤ 𝑖 ≤ 𝑁 − 1, therefore the continuity of 𝜎 at joint points is well satisfied. Let us now state the
conditions needed to ensure the 𝐶1 continuity along the curve. To address this concern, we propose to shift the
problem to the tangent space 𝑇𝜇(𝑖)𝒫+(𝐼), for 𝑖 = 1, . . . , 𝑁 − 1 and then bring back the solution to the space
of probability measures 𝒫+(𝐼). Our algorithm only requires the Riemannian exponential and logarithm maps.
Accurately, given 𝜇(0), . . . , 𝜇(𝑁) an indexed set of probability measures on 𝒫+(𝐼). By making use of Riemannian
logarithmic map given by equation (67), we lift data points 𝜇(0), . . . , 𝜇(𝑁) in each tangent space 𝑇𝜇(𝑖)𝒫+(𝐼),
𝑖 = 1, . . . , 𝑁 − 1. The mapped data are then defined by Φ𝑖 = ((Φ(0))𝑖, . . . , (Φ(𝑁))𝑖) with (Φ(𝑘))𝑖 = Log𝜇(𝑖)(𝜓(𝑘))
for 𝑘 = 0, . . . , 𝑁 . Let 𝛽 : [0, 𝑁 ] → 𝑇𝜇(𝑖)𝒫+(𝐼) denote the Bézier spline on 𝑇𝜇(𝑖)𝒫+(𝐼), 𝑖 = 1, . . . , 𝑁 − 1 defined
by 𝑁 Bézier curves 𝛽𝑖

𝑗 , 𝑗 ∈ {2, 3}, 0 ≤ 𝑖 ≤ 𝑁 − 1. Hence, the optimization problem (1) can be formulated as
follows on 𝑇𝜇(𝑖)𝒫+(𝐼):

min
((𝑏(1))𝑖)−,...,((𝑏(𝑁−1))𝑖)−

𝐸
(︀(︀
𝑏(1)
)︀𝑖)︀−, . . . , (︀(︀𝑏(𝑁−1)

)︀𝑖)︀−)︀ (91)

:= min
((𝑏(1))𝑖)−,...,((𝑏(𝑁−1))𝑖)−

∫︁ 1

0

⃦⃦(︀
𝛽𝑖

2

)︀0(︀
𝑡;
(︀
Φ(0)

)︀𝑖
,
(︀(︀
𝑏(1)
)︀𝑖)︀−

,
(︀
Φ(1)

)︀𝑖)︀‖22 (92)

+
𝑁−2∑︁
𝑖=1

∫︁ 1

0

⃦⃦
𝛽𝑖

3

(︀
𝑡;
(︀
Φ(𝑖)

)︀𝑖
,
(︀(︀
𝑏(𝑖)
)︀𝑖)︀+

,
(︀(︀
𝑏(𝑖+1)

)︀𝑖)︀−
,
(︀
Φ(𝑖+1)

)︀𝑖)︀⃦⃦2

2
(93)

+
∫︁ 1

0

⃦⃦
𝛽𝑁−1

2

(︀
𝑡;
(︀
Φ(𝑁−1)

)︀𝑖
,
(︀(︀
𝑏(𝑁−1)

)︀𝑖)︀+
,
(︀
Φ(𝑁)

)︀𝑖)︀⃦⃦2

2
(94)
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where ((𝑏(1))𝑖)− and ((𝑏(1))𝑖)+ denote control points on the left and on the right-hand side of the interpolation
point (Φ(𝑖))𝑖 for 𝑖 = 1, . . . , (𝑁 − 1) on 𝑇𝜇(𝑖)𝒫+(𝐼). Since the tangent space is a vector space, the problem (94)
is treated similarly as the Euclidean case R𝑚. Actually, in this case, we prove that solutions to the problem of
minimization of the mean square acceleration of the Bézier curve 𝛽 are exactly the control points of the curve.
Besides, we give conditions under which the Bézier curve 𝛽 is of class 𝐶2. The details to obtain equations that
govern the control points of the 𝐶2 Bézier spline on R𝑚 are given in Appendix A. Finally, the Riemannian
exponential map Exp𝜇(𝑖) defined on 𝒫+(𝐼) by equation (66) will move control points of the 𝐶2 Bézier curve 𝛽
from the tangent space 𝑇𝜇(𝑖)𝒫+(𝐼) to 𝒫+(𝐼). The resulting control points in 𝒫+(𝐼) are optimal, and we assert
that the curve is of class 𝐶1.

Theorem 3.1. Given 𝜇(0), . . . , 𝜇(𝑁) a set of (𝑁 + 1) data points on 𝒫+(𝐼), and 𝐵𝑖 =
[((𝑏(1))𝑖)−, . . . , ((𝑏(𝑁−1))𝑖)−]𝑇 a matrix of size (𝑚(𝑁 − 1) × 𝑚) containing the (𝑁 − 1) control points
that generate the 𝐶2 Bézier curve 𝛽𝑖 in each tangent space 𝑇𝜇(𝑖)𝒫+(𝐼), for 𝑖 = 1, . . . , 𝑁 − 1. Then, the Bézier
spline 𝜎 : [0, 𝑁 ] → 𝒫+(𝐼) interpolating the data points 𝜇(𝑖) on 𝒫+(𝐼) is of class 𝐶1 and is uniquely defined by
the set of control points ̂︀𝜂 = [(̂︀𝜂(1))−, . . . , (̂︀𝜂(𝑁−1))−]𝑇 ∈ R𝑚(𝑁−1)×𝑚 given by:(︀̂︀𝜂(𝑖)

)︀− = Exp𝜇(𝑖)

(︀
�̃�(𝑖)
)︀
, 𝑖 = 1, . . . , 𝑁 − 1, (95)

where �̃�(𝑖), represent the row 𝑖 of 𝐵𝑖 in 𝑇𝜇(𝑖)𝒫+(𝐼), for 𝑖 = 1, . . . , 𝑁 − 1.

Proof. Similar to the Euclidean space R𝑚, the differentiability condition at the interpolation points allows us
to express control points ((𝑏(1))𝑖)− in terms of ((𝑏(1))𝑖)+ as(︀(︀

𝑏(1)
)︀𝑖)︀− =

(︀
Φ(𝑖)

)︀𝑖 + 𝜆𝑖

(︀(︀
(𝑏(1)

)︀𝑖)︀+ − (︀Φ(𝑖)
)︀𝑖)︀
. (96)

Considering that log𝑝(𝑏) = 𝑏 − 𝑝 in the Euclidean case, hence the generalization of equation (96) on 𝒫+(𝐼) is
given by (︀̂︀𝜂(𝑖)

)︀+ = Exp𝜇(𝑖)

(︁
𝜆𝑖Exp−1

𝜇(𝑖)((̂︀𝜂𝑖)−)
)︁

(97)

which assert the 𝐶1 differentiability condition on 𝒫+(𝐼). �

Remark. The interpolation point (Φ(𝑁))𝑖 is modified under the 𝐶2 differentiability condition of the curve 𝛽𝑖 on
𝑇𝜇(𝑖)𝒫+(𝐼), for 𝑖 = 1, . . . , 𝑁 − 1, therefore the point 𝜇(𝑁) is changed and the new (𝑁 + 1) interpolation points
on 𝒫+(𝐼) are given by:

�̃�(𝑘) = Exp𝜇(𝑖)

(︀(︀
Φ̃(𝑘)

)︀𝑖)︀
, 𝑘 = 0, . . . , 𝑁 ; 𝑖 = 1, . . . , 𝑁 − 1, (98)

where Φ̃𝑖 = [(Φ̃(0))𝑖, . . . , (Φ̃(𝑁))𝑖]𝑇 a matrix of size 𝑚(𝑁 + 1) × 𝑚 containing the new (𝑁 + 1) interpolation
points in each tangent space 𝑇𝜇(𝑖)𝒫+(𝐼). We give more details in Appendix A.

Algorithm 1 synthesizes all steps needed to construct the 𝐶1 solution on 𝒫+(𝐼).

3.3. 𝐶2 spline on 𝒫+(𝐼)

The task is now to show that Bézier curves 𝜎𝑖
𝑗 , 𝑗 ∈ {2, 3}, 𝑖 = 0, . . . , 𝑁 − 1 can be organized such that

the 𝐶2 differentiability at joint points is satisfied and thereby allow 𝜎 to be a 𝐶2 spline. The basic geometric
ingredient used to achieve this goal is the local symmetries at interpolation points offered on the Riemannian
manifold 𝒫+(𝐼). In fact, since the space of probability measures is a locally symmetric space, hence at every
point 𝜇 ∈ 𝒫+(𝐼), there exists a local isometry 𝜙 of 𝒫+(𝐼) defined on a neighborhood of 𝑈 of 𝜇 such that
𝜙(𝜇) = 𝜇 and the differential 𝑑𝜙𝜇 = −𝐼𝑑. Lemma B.1 and Theorem B.1 in Appendix B examine in detail the
relation made between local symmetries at interpolation points and the 𝐶2 differentiability of the Bézier spline
on symmetric spaces. Once more, we will make use of this relevant material to compute control points of the 𝐶2
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Algorithm 1. 𝐶1 solution on 𝒫+(𝐼).
Input: 𝑛 ≥ 3, 𝜇 = [𝜇(0), . . . , 𝜇(𝑁)]𝑇 a matrix of size 𝑚(𝑁 +1)×𝑚 containing the (𝑁 +1) interpolation points on 𝒫+(𝐼).
Output: ̂︀𝜂 and �̃�.
1: for 𝑖 = 1 : 𝑁 − 1 do
2: Compute Φ𝑖 = [(Φ(0))𝑖, . . . , (Φ(𝑁))𝑖]𝑇 a matrix of size 𝑚(𝑁 + 1)×𝑚 containing the (𝑁 + 1) interpolation points

on 𝑇𝜇(𝑖)𝒫+(𝐼):
3: for 𝑘 = 0 : 𝑁 do
4: (Φ(𝑘))𝑖 = Log𝜇(𝑖)(𝜇(𝑘)): (Φ(𝑘))𝑖 are determined by (67).

5: Compute 𝐵𝑖 = [((𝑏(1))𝑖)−, . . . , ((𝑏(𝑁−1))𝑖)−]𝑇 a matrix of size 𝑚(𝑁 − 1) ×𝑚 containing the (𝑁 − 1) control
points of the 𝐶2 Bézier curve 𝛽𝑖 on 𝑇𝜇(𝑖)𝒫+(𝐼), and Φ̃𝑖 = [(Φ̃(0))𝑖, . . . , (Φ̃(𝑁))𝑖]𝑇 a matrix of size 𝑚(𝑁 + 1) × 𝑚
containing the new interpolation points on 𝑇𝜇(𝑖)𝒫+(𝐼) using Appendix A.

6: Compute control point (̂︀𝜂(𝑖))− of 𝐶1 Bézier curve on 𝒫+(𝐼):
7: (̂︀𝜂(𝑖))− = Exp𝜇(𝑖)(((𝑏(𝑖))𝑖)−).
8: Compute the new interpolation points on 𝒫+(𝐼):
9: �̃�(𝑘) = Exp𝜇(𝑖)((Φ̃(𝑘))𝑖).

10: end for
11: end for
12: return ̂︀𝜂 and �̃�.

Bézier spline 𝜎 on 𝒫+(𝐼). Let us consider (𝜂(𝑖))− and (𝜂(𝑖))+ the new control points on the left and on the right
side of the interpolation point (�̃�(𝑖)). Similar to the Euclidean case R𝑚, we might know (𝜂(1))− (and therefore
(𝜂(1))+ by the 𝐶1 differentiability condition settled on the first step) and wish to define iteratively (𝜂(𝑖))− for
𝑖 = 2, . . . , 𝑁 − 1 (and obviously (𝜂(𝑖))+ in much the same way as (𝜂(1))+).

Theorem 3.2. Consider �̃�(0), . . . �̃�(𝑁) the new interpolation points on 𝒫+(𝐼) given by equation (98) at
times 𝑡𝑖 = 𝑖 and 𝛾 the geodesic joining two points on 𝒫+(𝐼) given by equation (43). For a given 𝐵𝑖 =
[((𝑏(1))𝑖)−, . . . , ((𝑏(𝑁−1))𝑖)−]𝑇 , 𝑖 = 1, . . . , 𝑁 − 1, a matrix of size (𝑚(𝑁 − 1) × 𝑚) containing the (𝑁 − 1)
control points that generate the 𝐶2 Bézier curve 𝛽𝑖 in each tangent space 𝑇𝜇(𝑖)𝒫+(𝐼), for 𝑖 = 1, . . . , 𝑁 − 1, the
Bézier spline 𝜎 : [0, 𝑁 ] → 𝒫+(𝐼) is of class 𝐶2 and it is uniquely defined by a set of control points given by the
row of the matrix 𝜂 = [(𝜂(1))−, . . . , (𝜂(𝑁−1))−]𝑇 ∈ R𝑚(𝑁−1)×𝑚 by

(1) (𝜂(1))− = Exp�̃�(1)(((𝑏(1))1)−),
(2) (𝜂(2))− = Exp(𝜂(1))+

(︀
1
3

(︀
(𝑑𝜙�̃�(1))(𝜂(1))−

(︀
�̇�(1, �̃�(0), (𝜂(1))−)

)︀
− 4�̇�(0, (𝜂(1))−, �̃�1)

)︀)︀
,

(3) (𝜂(𝑖+1))− = Exp(𝜂(𝑖))+
(︀(︀

(𝑑𝜙�̃�(𝑖))(𝜂(𝑖))−
(︀
�̇�(1, (𝜂(𝑖−1))+, (𝜂(𝑖))−)

)︀
− 2�̇�(0, (𝜂(𝑖))−, �̃�(𝑖))

)︀)︀
, 𝑖 = 2, . . . , 𝑁 − 2.

Proof. The proof strongly depends on the results given in [23]. Hence, all technical details of the proof will be
given in Appendix B. For convenience, we remind the main ideas:

(1) In [23] they compute the covariant derivative of a tangent vector along a curve and provide the explicit 𝐶2

condition on symmetric spaces in terms of the derivative of exponential and symmetry functions. We make
use of this result and Theorem 3.1 to simplify the derivative of the inverse of the exponential map.

(2) We express the derivative of the symmetry as a function of the tangent vector along the Bézier spline 𝜎𝑗
𝑖

at 𝑡 = 0 and 𝑡 = 1 which simplify the 𝐶2 condition in [23] and help us to obtain an explicit expression for
control points that generate the Bézier spline 𝜎.

The resulting spline is then reconstructed with the De Casteljau algorithm. �

Algorithm 2 synthesizes all steps needed to construct a 𝐶2 solution on 𝒫+(𝐼).
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Algorithm 2. 𝐶2 solution on 𝒫+(𝐼).
Input: 𝑛 ≥ 3, �̃� = [�̃�(0), . . . , �̃�(𝑁)]𝑇 a matrix of size 𝑚(𝑁 +1)×𝑚 containing the (𝑁 +1) interpolation points on 𝒫+(𝐼).
1:

Output: 𝑄.
2:

3: Calculate ̂︀𝜂 = [(̂︀𝜂(1))−, . . . , (̂︀𝜂(𝑁−1))−]𝑇 control points of 𝐶1 Bézier spline on 𝒫+(𝐼) using Algorithm 1.
4: Set (𝜂(1))− = (̂︀𝜂(1))−.
5: Calculate control point (𝜂(1))+:
6: (𝜂(1))+ = Exp�̃�(1)(− 2

3
Exp−1

�̃�(1)((𝜂
(1))−))

7: Calculate control point (𝜂(2))−:

8: (𝜂(2))− = Exp(𝜂(1))+

(︁
1
3

(︁
(𝑑𝜙�̃�(1))(𝜂(1))−

(︁
�̇�(1, �̃�(0), (𝜂(1))−)

)︁
− 4�̇�(0, (𝜂(1))−, �̃�(1))

)︁)︁

9: for 𝑖 = 2 : 𝑁 − 2 do
10: (𝜂(𝑖))+ = Exp�̃�(𝑖)(−Exp−1

�̃�(1)(𝜇
(𝑖))−)

11: (𝜂(𝑖+1))− = Exp(𝜇(𝑖))+

(︁(︁
(𝑑𝜙�̃�(𝑖))(𝜂(𝑖))−

(︁
�̇�(1, (𝜂(𝑖−1))+, (𝜂(𝑖))−)

)︁
− 2�̇�(0, (𝜂(𝑖))−, �̃�(𝑖))

)︁)︁

12: end for
13: Calculate control point (𝜂(𝑁−1))+:
14: (𝜂(𝑁−1))+ = Exp�̃�(𝑁−1)(− 2

3
Exp−1

�̃�(𝑁−1)((𝜂
(𝑁−1))−))

15: return 𝑄.

Figure 1. Two illustrating examples of splines interpolating different ROIs on the brain.
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Figure 2. Example 1: the first row, from left to right, displays the control PDFs, the velocity
along the 𝐶1 path, and the velocity along the 𝐶2 path. The second row displays the 𝐶1 path
and last row displays the 𝐶2 path as surfaces.

4. Applications

In many applications, it is of great interest to study the changes in densities as a function of time or space
positions. In the following examples, we will show how the proposed methods can be used to capture dynamics
as a smooth path interpolating the key observations. For example, it is essential to study the changes in densities
of Regions Of Interest (ROIs) in the brain. Broad aims in the study of brain dynamics are to investigate how
densities as features fold into a 3D functional path and to estimate the full range of such functional path for
given functional ROIs. We illustrate this idea in Figure 1 where we display two different examples. For each
example, ROI 𝑃𝑖≤5 has a different color and is represented by a PDF. We use our methods to construct 𝐶1 and
𝐶2 splines that interpolate 𝑃𝑖≤5 and we display the results using 25 equally spaced frames.

4.1. Numerical examples

Before we show results on Brain, we illustrate 𝐶1 and 𝐶2 paths on PDFs manifold with several examples
where densities vary from simple to complicated shapes. For this application a temporal subsequence of 5
densities equally spaced in time is taken and we consider our method for predicting densities in between the
observed ones. We display the 𝐶1 and 𝐶2 paths in Figures 2 and 3.
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Figure 3. Example 2: the first row, from left to right, displays the control PDFs, the velocity
along the 𝐶1 path, and the velocity along the 𝐶2 path. The second row displays the 𝐶1 path
and last row displays the 𝐶2 path as surfaces.

To better visualize the differences between 𝐶1 and 𝐶2 solutions we first display each path as a surface where
the domain of definition and time interval plays the role of 𝑥 and 𝑦 axes while 𝑧 gives the value of the PDF. We
show the surfaces from two different points of view for a better illustration. The color bar displays the amplitude
of the surface. We then compute and display the norm of the derivative with respect to time.

4.2. Medical examples

An important application of the proposed method is that smooth solutions between different key observations
can be explored, visualized and analyzed. This is important information about the evolution (variation) during
a trajectory. To show how this could be applied in a medical context we consider a dataset of averages of
morphological features sampled from brain cortical surfaces for a population. The morphological measures from
surfaces are derived from atlas-based registrations of individual cortices from subjects. Following registration,
the cortex is parcellated into distinct regions of interest, and measures such as cortical thickness, gray matter
volume, or sulcal depths over the ROIs. In this work we focus on thickness only and show trajectories crossing
of the most relevant and neighboring ROIs.

An attractive feature of the spline fit is that smooth paths between different states can be explored, to
investigate possible transitions in shape from one step to another. For the smooth prediction we have used the
observations at integer times but have predicted at equally spaced time points between observations. In Figure 4
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Figure 4. Spline paths on Brain’s ROIs: the first row from left to right displays the control
PDFs, the velocity along the 𝐶1 path, and the velocity along the 𝐶2 path. The second row
displays the 𝐶1 path and last row the 𝐶2 path as surfaces.

we display the predicted shape change in the transition to a state in a later part of the simulation using the
cubic spline, at times 𝑡 = 1 to 𝑡 = 25 at equally spaced intervals. We can see that the smooth path predicts the
density change between data points well, and that the evolution is seen in the smoothed predicted path in 𝒫.

5. Conclusions

The paper introduces an effective algorithm for generating a 𝐶2 Bézier spline on the space of probability
measures 𝒫+(𝐼) while interpolating the given ordered set of probability measures. In this work, we consider
𝒫+(𝐼) as a Riemannian manifold equipped with the Fisher–Rao metric. With the help of the geometric interpre-
tation, we derive explicit theoretical expression of important geometric structures on 𝒫+(𝐼), namely Levi–Civita
connection, minimal geodesic, parallel transport, exponential, and logarithm maps. Using these newly devised
geodesic operations, the Bézier splines are generalized on 𝒫+(𝐼) and applied for medical data. Following the
step-by-step construction, The proposed method is simple to implement and easy to compute.
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Appendix A. 𝐶2 Bézier spline on R𝑚

Let us consider the Euclidean case R𝑚. Given a list of (𝑁 + 1) interpolation points 𝑝0, . . . , 𝑝𝑁 and the control points
̂︀𝑏+

𝑖 and ̂︀𝑏−𝑖 in the right and in the left of 𝑝𝑖, 𝑖 = 0, . . . , 𝑁 . The 𝐶1 differentiability condition at knots 𝑝𝑖 allows us to

express control points ̂︀𝑏+
𝑖 in terms of ̂︀𝑏−𝑖 as:

̂︀𝑏+
1 =

5

3
𝑝1 −

2

3
̂︀𝑏−1 , (A.1)

̂︀𝑏+
𝑖 = 2𝑝𝑖 −̂︀𝑏−𝑖 , 𝑖 = 2, . . . , 𝑁 − 2 (A.2)

̂︀𝑏+
𝑁−1 =

5

2
𝑝𝑁−1 −

3

2
̂︀𝑏−𝑁−1. (A.3)

Hence, the task now is reduced to search only control points ̂︀𝑏−𝑖 , for 𝑖 = 1, . . . , 𝑁 − 1, that generate the 𝐶1 Bézier
spline 𝛽 in R𝑚. Replacing the new optimization variables in problem (1) gives (94), which is merely the problem of
minimization of the mean square acceleration of the Bézier curve 𝛽 in the Euclidean space R𝑚. The optimal solution

𝑌 = [̂︀𝑏−1 , . . . ,̂︀𝑏−𝑁−1]
𝑇 ∈ R(𝑁−1)×𝑚 of that problem is the unique solution of a tridiagonal linear system

𝑌 = 𝐴−1𝐶𝑃 = 𝐷𝑃 with

𝑗=𝑁+1∑︁

𝑗=0

𝑑𝑖𝑗 = 1 (A.4)

where 𝐴 is a tridiagonal sparse square matrix of size (𝑁 − 1) × (𝑁 − 1) with a dominant diagonal, 𝐶 a matrix of size
(𝑁 − 1)× (𝑁 + 1) and 𝑃 the matrix of 𝑝𝑖’s of size (𝑁 + 1)×𝑚 given by:

⃒⃒
⃒⃒
⃒⃒
⃒⃒

𝐴(1,1:2) = [16 6] 𝐶(1,1:2) = [16 6] (A.5)
𝐴(2,1:3) = [6 36 9] 𝐶(2,2:3) = [6 36 9] (A.6)

𝐴(𝑖,𝑖−1:𝑖+1) = [9 36 9], 𝐶(𝑖,𝑖:𝑖+1) = [9 36 9], 𝑖 = 3, . . . , 𝑛− 2 (A.7)
𝐴(𝑁−1,𝑁−2:𝑁−1) = [9 36] 𝐶(𝑁−1,𝑁−1:𝑁+1) = [9 36]. (A.8)

We may now write the 𝐶2 differentiability condition. It is obvious that with this 𝐶2 condition the position of the

control points ̂︀𝑏−𝑖 and ̂︀𝑏+
𝑖 that generate the curve 𝛽 will be modified. Therefore, it is more convenient to use another

notation. Let us denote by 𝑏−𝑖 and 𝑏+
𝑖 the new control points on the left and on the right hand side of the interpolation

point 𝑝𝑖, for 𝑖 = 1, . . . , 𝑁 − 1. Computing the acceleration of 𝛽 on respective intervals and taking into account that 𝛽 is
𝐶1, we shall replace 𝑏+

1 by (A.1), 𝑏+
𝑖 by (A.2), and 𝑏+

𝑁−1 by (A.3). We deduce that:

𝑏−2 =
1

3
𝑝0 −

1

2
𝑏−1 +

8

3
𝑝1, (A.9)

𝑏−𝑖+1 = 𝑏+
𝑖−1 + 4𝑝𝑖 − 4𝑏−𝑖 , 𝑖 = 2, . . . , 𝑁 − 2 (A.10)

𝑝𝑁 = 2𝑝𝑁−1 + 2𝑏+
𝑁−1 − 6𝑏−𝑁−1 + 3𝑏+

𝑁−2. (A.11)

We see at once that points that will be modified by the additional 𝐶2 condition are ̂︀𝑏−𝑖 and hence ̂︀𝑏+
𝑖 , for 𝑖 = 2, . . . , 𝑁−1.

The point ̂︀𝑏−1 remains invariant and consequently it will be the case for ̂︀𝑏+
1 . According to the 𝐶1 differentiability condition

mailto:subscribers@edpsciences.org
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ensured at the first step, one can take 𝑏−1 = ̂︀𝑏−1 , with ̂︀𝑏−1 is the first row of the matrix 𝑌 obtained as a solution of the
optimization problem (94). However, the endpoint 𝑝𝑁 is affected as we can deduce from equation (A.11). Nevertheless,
it follows that giving the control point 𝑏−1 allows us to find all the other control points including 𝑏−2 with equation (A.9)
and hence 𝑏+

2 with (A.2), then 𝑏−𝑖+1 for 𝑖 = 2, . . . , 𝑁 − 2 with (A.10) and therefore 𝑏+
𝑖 , for 𝑖 = 3, . . . , 𝑁 − 2 with (A.2)

and 𝑏+
𝑁−1 with (A.3).

Appendix B. Proof of Theorem 3.2

We now prove Theorem 3.2. The proof is based on the following two results given in [23].

Lemma B.1. Let 𝜇1 ∈ 𝒫+(𝐼).

(1) (𝑑𝜙𝜇(1))
−1

𝜇(2) = (𝑑𝜙𝜇(1))𝜙
𝜇(1) (𝜇

(2)), for all 𝜇(2) ∈ 𝒫+(𝐼).

(2) (𝑑𝜙𝜇(1))Exp
𝜇(1) (𝐻) ∘ (𝑑Exp𝜇(1))𝐻 = −(𝑑Exp𝜇(1))−𝐻 for all 𝐻 ∈ 𝑇𝜇(1)𝒫+(𝐼).

Theorem B.1. Let 𝑡 −→ 𝜎𝑗(𝑡, 𝑉
(0), . . . , 𝑉 (𝑗)) be the Bézier curve of order 𝑗 on 𝒫+(𝐼) with a number of control points

𝑉 (𝑗) for 𝑖 = 0, . . . , 𝑗. Then, 𝜎𝑗(𝑡; 𝑉
(0), . . . , 𝑉 (𝑗)) satisfies:

(1) D
d𝑡
|𝑡=0 �̇�𝑗(𝑡; 𝑉

(0), . . . , 𝑉 (𝑗)) = 𝑗(𝑗 − 1)Ω0, where

Ω0 :=

⎧
⎨

⎩
�̇�(0, 𝑉 (1), 𝑉 (2)), if 𝑉 (0) = 𝑉 (1)

(𝑑Exp𝑉 (0))
−1

�̇�(0,𝑉 (0),𝑉 (1))

(︁
�̇�(0, 𝑉 (1), 𝑉 (2))− �̇�(1, 𝑉 (0), 𝑉 (1))

)︁
, if 𝑉 (0) ̸= 𝑉 (1).

(2) D
d𝑡
|𝑡=1 �̇�𝑗(𝑡; 𝑉

(0), . . . , 𝑉 (𝑗)) = 𝑗(𝑗 − 1)Ω𝑗, where

Ω𝑗 :=

⎧
⎨

⎩
−�̇�(0, 𝑉 (𝑗−2), 𝑉 (𝑗−1)), if 𝑉 (𝑗−1) = 𝑉 (𝑗)

(︀
𝑑Exp𝑉 (𝑗)

)︀−1

−�̇�(1,𝑉 (𝑗−1),𝑉 (𝑗))

(︁
�̇�(0, 𝑉 (𝑗−1), 𝑉 (𝑗))− �̇�(1, 𝑉 (𝑗−2), 𝑉 (𝑗−1))

)︁
, if 𝑉 (𝑗−1) ̸= 𝑉 (𝑗).

We will exploit a modified form of the Theorem B.1 to obtain the proof of the Theorem 3.2.

Proof of Theorem 3.2. Part (i) follows from Theorem 3.1. We now prove (ii). The Bézier spline 𝜎 is 𝐶2 on 𝒫+(𝐼) if and

only if it satisfies the 𝐶2 differentiability condition at joint points �̃�(𝑖), for 𝑖 = 1, . . . , 𝑁−1. At the point �̃�(1), this means:

D

d𝑡

⃒⃒
⃒⃒
𝑡=1

�̇�2

(︀
𝑡; �̃�(0),

(︀
𝜂(1))︀−, ˜𝜇(1)

)︀
=

D

d𝑡

⃒⃒
⃒⃒
𝑡=0

�̇�3

(︀
𝑡; �̃�(1),

(︀
𝜂(1))︀+,

(︀
𝜂(2))︀−, �̃�(2))︀. (B.1)

Applying Theorem B.1 yields: 𝜎 is 𝐶2 on �̃�(1) if and only if Ω2 − 3Ω0 = 0 with:

Ω2 − 3Ω0 =
(︀
𝑑Exp�̃�(1)

)︀−1

−�̇�(1,(𝜂(1))−,�̃�(1))

(︁
�̇�
(︀
0,
(︀
𝜂(1))︀−, �̃�(1))︀− �̇�

(︀
1, �̃�(0),

(︀
𝜂(1))︀−)︀)︁

− 3
(︀
𝑑Exp�̃�(1)

)︀−1

�̇�(0,�̃�(1),
(︀

𝜂(1)
)︀+

)

(︁
�̇�
(︀
0,
(︀
𝜂1)︀+,

(︀
𝜂2)︀−)︀− �̇�

(︀
1, �̃�(1),

(︀
𝜂1)︀+)︀)︁. (B.2)

Since 𝛽1 is a 𝐶1 Bézier curve on 𝑇𝜇(1)𝒫+(𝐼), we get that �̇�(1, (𝜂(1))−, �̃�(1)) = �̇�(0, �̃�(1), (𝜂(1))+). By Lemma B.1, we
have

(︀
𝑑Exp�̃�(1)

)︀−1

�̇�(0,�̃�(1),(𝜂(1))+)

(︁
�̇�
(︀
0,
(︀
𝜂(1))︀+,

(︀
𝜂(2))︀−)− �̇�

(︀
1, �̃�(1),

(︀
𝜂(1))︀+)

)︁

= −
(︀
𝑑Exp�̃�(1)

)︀−1

−�̇�(0,�̃�(1),(𝜂(1))+)

(︁(︀
𝑑𝜙�̃�(1)

)︀
(𝜂(1))+

(︁
�̇�
(︀
0,
(︀
𝜂(1))︀+,

(︀
𝜂(2))︀−)︀− �̇�

(︀
1, �̃�(1),

(︀
𝜂(1))︀+)︀)︁)︁.

It follows that

Ω2 − 3Ω0 = (𝑑Exp�̃�(1))
−1

−�̇�(0,�̃�(1),(𝜂(1))+)

(︁
�̇�(0, (𝜂(1))−, �̃�(1))− �̇�(1, �̃�(0), (𝜂(1))−)

)︁

+ 3(𝑑Exp�̃�(1))
−1

−�̇�(0,�̃�(1),(𝜂1)+)

(︁
(𝑑𝜙�̃�(1))(𝜂(1))+

(︁
�̇�(0, (𝜂(1))+, (𝜂(2))−)− �̇�(1, �̃�(1), (𝜂(1))+)

)︁)︁
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= (𝑑Exp�̃�(1))
−1

−�̇�(0,�̃�(1),(𝜂(1))+)

[︁
3(𝑑𝜙�̃�(1))(𝜂(1))+

(︁
�̇�(0, (𝜂(1))+, (𝜂(2))−)

)︁

− 3(𝑑𝜙�̃�(1))(𝜂(1))+

(︁
�̇�(1, �̃�(1), (𝜂(1))+)

)︁
+ �̇�(0, (𝜂(1))−, �̃�(1))− �̇�(1, �̃�(0), (𝜂(1))−)

]︁
.

Hence, Ω2 − 3Ω0 = 0 if and only if

= 3
(︀
𝑑𝜙�̃�(1)

)︀
(𝜂(1))+

(︁
�̇�(0, (𝜂(1))+, (𝜂(2))−)

)︁
− 3
(︀
𝑑𝜙�̃�(1)

)︀
(𝜂(1))+

(︁
�̇�
(︀
1, �̃�(1), (𝜂(1))+

)︀)︁

+ �̇�(0, (𝜂1)−, ˜𝜇(1))− �̇�
(︀
1, �̃�(0), (𝜂(1))−

)︀
= 0. (B.3)

Nevertheless 𝜙 ˜
𝜇(1)(𝛾(𝑡, �̃�(1), (𝜂(1))+)) = 𝛾(1− 𝑡, (𝜂(1))−, �̃�(1)), ∀𝑡 ∈ [0, 1]. Differentiate this identity with respect to 𝑡,

we obtain (︀
𝑑𝜙�̃�(1)

)︀
(𝜂(1))+

(︁
�̇�
(︀
1, �̃�(1),

(︀
𝜂(1))︀+)

)︁
= −�̇�

(︀
0,
(︀
𝜂1)︀−, �̃�(1))︀.

Accordingly, equation (B.3) becomes

3
(︀
𝑑𝜙�̃�(1)

)︀
(𝜂(1))+

(︁
�̇�
(︀
0,
(︀
𝜂(1))︀+,

(︀
𝜂(2))︀−)︀)︁ = �̇�

(︀
1, ˜𝜇(0),

(︀
𝜂(1))︀−)︀− 4�̇�

(︀
0,
(︀
𝜂(1))︀−, �̃�(1))︀. (B.4)

Now, Lemma B.1 shows that

(︀
𝑑𝜙�̃�(1)

)︀
(𝜂(1))+

(︁
�̇�
(︀
0,
(︀
𝜂(1))︀+,

(︀
𝜂(2)

)︀−)︀)︁
=
(︀
𝑑𝜙�̃�(1)

)︀
𝜙

�̃�(1) ((𝜂
(1))−)

(︁
�̇�
(︀
0,
(︀
𝜂(1))︀+,

(︀
𝜂(2))︀−)︀)︁

=
(︀
𝑑𝜙�̃�(1)

)︀−1

(𝜂(1))−

(︁
�̇�
(︀
0,
(︀
𝜂(1))︀+, (𝜂(2))−

)︀)︁
.

It follows that (𝑑𝜙�̃�(1))
−1

(𝜂(1))−

(︁
�̇�(0, (𝜂(1))+, (𝜂(2))−)

)︁
= 1

3

(︁
�̇�(1, �̃�(0), (𝜂(1))−)− 4�̇�(0, (𝜂(1))−, �̃�(1))

)︁
.

Consequently, with the exponential map at the point 𝜂+
1 , we get

(𝜂(2))− = Exp(𝜂(1))+

(︂
1

3

(︁
(𝑑𝜙�̃�(1))(𝜂(1))−

(︁
�̇�(1, �̃�(0), (𝜂(1))−)

)︁
− 4�̇�(0, (𝜂(1))−, �̃�(1))

)︁)︂
. (B.5)

The proof of Part (iii) follows in much the same way as Part (ii). �
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