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Abstract

Genomic data collected from viral outbreaks can be exploited to reconstruct the dispersal

history of viral lineages in a two-dimensional space using continuous phylogeographic infer-

ence. These spatially explicit reconstructions can subsequently be used to estimate dis-

persal metrics that can be informative of the dispersal dynamics and the capacity to spread

among hosts. Heterogeneous sampling efforts of genomic sequences can however impact

the accuracy of phylogeographic dispersal metrics. While the impact of spatial sampling

bias on the outcomes of continuous phylogeographic inference has previously been

explored, the impact of sampling intensity (i.e., sampling size) when aiming to characterise

dispersal patterns through continuous phylogeographic reconstructions has not yet been

thoroughly evaluated. In our study, we use simulations to evaluate the robustness of

3 dispersal metrics — a lineage dispersal velocity, a diffusion coefficient, and an isolation-

by-distance (IBD) signal metric — to the sampling intensity. Our results reveal that both the

diffusion coefficient and IBD signal metrics appear to be the most robust to the number of

samples considered for the phylogeographic reconstruction. We then use these 2 dispersal

metrics to compare the dispersal pattern and capacity of various viruses spreading in animal

populations. Our comparative analysis reveals a broad range of IBD patterns and diffusion

coefficients mostly reflecting the dispersal capacity of the main infected host species but

also, in some cases, the likely signature of rapid and/or long-distance dispersal events

driven by human-mediated movements through animal trade. Overall, our study provides

key recommendations for the use of lineage dispersal metrics to consider in future studies

and illustrates their application to compare the spread of viruses in various settings.
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Introduction

Unravelling the spatiotemporal dynamics of pathogenic spread constitutes a long-standing

challenge in epidemiology. When designing and implementing intervention strategies to miti-

gate outbreaks or endemic circulation of pathogens, evaluating the speed at which they spread

and circulate within host populations can be crucial. While geo-localised infectious cases can

be used to model and quantify the wavefront progression of an outbreak during its expansion

phase (see e.g., [1,2]), their analysis usually provides little information about the routes taken

by the underlying transmission chains. Genomic sequencing of fast-evolving pathogens, how-

ever, offers the possibility to infer evolutionary relationships among sampled cases. Estimated

through a phylogenetic tree, such inferred evolutionary links can for instance provide key

insights into the dispersal history and dynamics of a transmission chain [3]. This can be

achieved through phylogeographic inference, either performed in discrete [4–6] or continuous

space [7,8], which basically consists in mapping time-scaled phylogenetic trees of fast-evolving

organisms such as RNA viruses (see e.g., [9,10]) or, sometimes, DNA viruses (see e.g., [11,12])

or bacteria (see e.g., [13,14]).

In particular, continuous phylogeographic inference allows estimation of a spatially explicit

reconstruction of the dispersal history of the lineages leading to the sampled genomic

sequences. The reconstructions in two-dimensional space can subsequently be exploited to

gain valuable information about the dispersal dynamics of circulating lineages [15], including

their capacity to disperse in space and time. However, for a given outbreak, phylogeographic

reconstructions are generally conducted on genomic sequences from a limited proportion of

cases, with sampling intensities that can vary considerably among studies.

In the context of these heterogeneous sampling intensities, the goal of the present study is

to assess the usefulness of dispersal metrics to evaluate and compare the dispersal dynamic of

viral lineages. Specifically, we first aim to assess the robustness of 3 metrics — a lineage dis-

persal velocity, a diffusion coefficient, and an isolation-by-distance (IBD) signal metric — to

the sampling intensity, i.e., the number of genomic samples considered in the phylogeographic

analysis. In addition, we aim to exploit the metrics identified as robust to the sampling inten-

sity (i.e., sampling size) to compare the dispersal capacity across a variety of viruses of public

and one health importance (e.g., Lassa, rabies, avian influenza, or West Nile viruses).

At relatively large scales, dispersal dynamics of viruses primarily spreading within human

populations are generally better captured by discrete diffusion processes involving the rapid

exchange of viral lineages among remote locations — a typical pattern for remote locations

mainly connected by the air traffic network (see e.g., [16,17]). This is for instance the case for

seasonal human influenza virus H3N2, for which dispersal at the global scale has been demon-

strated to be better predicted by international air travel than geographic distances [18]. While

continuous phylogeographic analyses can also be performed to reconstruct the dispersal his-

tory of viruses spreading in human populations (see e.g., [19–21]), our study focuses on viruses

circulating in animal populations to target dispersal processes that are relatively strongly

dependent on geographic distance. Such dispersal patterns can in essence be modelled through

a continuous diffusion process, such as the relaxed random walk (RRW) diffusion model

implemented in the software package BEAST 1.10 [22], which is often used for continuous

phylogeographic inference.

Results and discussion

We here assess 3 distinct dispersal metrics: the weighted lineage dispersal velocity (WLDV)

[23], the weighted diffusion coefficient (WDC) [24], and an IBD signal metric that we here

propose to estimate as the Pearson correlation coefficient between the patristic and log-
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transformed great-circle geographic distances computed for each pair of tip nodes (which is

similar to the metric estimated by Pekar and colleagues [25]). The great-circle distance is the

geographic distance between points on the surface of the Earth and the patristic distance is the

sum of the branch lengths that link 2 tip nodes in a phylogenetic tree. While the WLDV aims

at measuring the distance covered per unit of time across phylogenetic history, the WDC mea-

sures the “diffusivity” [24], i.e., the velocity at which inferred lineages invade a two-dimen-

sional space:

WLDV ¼ ðSidiÞ=ðSitiÞ and WDC ¼ ðSid
2

i Þ=ðSi4tiÞ;

where di and ti are, respectively, the great-circle distance and the time elapsed on the i-th branch

of the phylogeny. The concept of IBD was first introduced by Sewall Wright [26] to describe the

accumulation of local genetic differences under geographically restricted dispersal [27,28]. IBD

analyses generally consist in determining the strength and significance of the relationship

between a genetic and geographic distance between individuals [29]. The IBD signal metric

considered here aims to measure to what extent phylogenetic branches are spatially structured

or the tendency of phylogenetically closely related tip nodes to be sampled from geographically

close locations. Note that this third metric is therefore not based on a continuous phylogeo-

graphic reconstruction but directly on a time-scaled phylogeny and sampling locations.

To evaluate the robustness of these 3 dispersal metrics to the sampling intensity (i.e., sam-

pling size), we have conducted phylogeographic simulations either based on a Brownian ran-

dom walk (BRW) or a RRW diffusion process. For this purpose, we have first implemented 2

distinct forward-in-time simulators, both jointly simulating time-scaled phylogenies and the

dispersal history of their branches on an underlying geo-referenced grid. At each time step of

the BRW simulation, both the longitudinal and latitudinal displacements of evolving lineages

are randomly drawn from a Gaussian distribution, while in the RRW simulations such longitu-

dinal and latitudinal displacements are randomly drawn from a Cauchy distribution before

randomly rotating the resulting displacement around its origin (see the Materials and methods

section for further detail). An example of a geo-referenced phylogeny simulated through a

Brownian diffusion process is displayed in Fig 1 (see Figure A in S1 Text for the example of a

RRW simulation). To investigate the potential impact of the phylogenetic tree inference on the

different dispersal statistic estimates, we have also conducted alternative phylogeographic sim-

ulations based on tree topologies simulated under a coalescent model considering a population

with a constant size (Figure B in S1 Text). The aim of all these simulations is to obtain continu-

ous phylogeographic reconstructions that can subsequently be subsampled to artificially gener-

ate data sets that would have been obtained through various levels of sampling intensity.

For each diffusion model considered, we have simulated 50 continuous phylogeographic

processes of more than 500 tips and then subsampled the resulting locations to only keep 500,

450, 400, 350, 300, 250, 200, 150, 100, and 50 tip locations (see the Materials and methods sec-

tion for further detail). We subsequently computed the 3 dispersal metrics on all the resulting

data sets to explore the impact of the sampling size on their estimates (Fig 2). Although associ-

ated with slightly more variability when estimated on the smaller data sets, both the diffusion

coefficient and IBD signal metrics appear to be robust to the sampling intensity (Fig 2). This is

however not the case for the lineage dispersal velocity metric for which estimates drastically

decrease with the number of tips (Fig 2). While Fig 2 reports the results obtained with the con-

tinuous phylogeographic simulations based on a Brownian diffusion process, we reach the

same conclusions based on the results obtained by the simulations following an RRW diffusion

process (Figure C in S1 Text) or when tree topologies are simulated under a coalescent instead

of a birth-death model (Figure D in S1 Text).
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In addition to the 3 main metrics investigated above, we have also used our simulations to

assess the robustness of alternative metrics, such as different ways to define the correlation

coefficient measuring the IBD signal (Figure E in S1 Text) or unweighted versions of the line-

age dispersal velocity and diffusion coefficient (Figure F in S1 Text). Overall, we reach the

same conclusion: while the lineage dispersal velocity estimates are impacted by the sampling
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Fig 1. Example of a continuous phylogeographic simulation based on a BRW diffusion process. Both graphs display the phylogenetic tree sampled during a

unique simulation, with its time-scaled visualisation in the left panel and its mapped visualisation in the right panel. Tree nodes are coloured according to time,

with internal and tip nodes coloured according to their time of occurrence and collection time, respectively. The data underlying this figure can be found in

https://doi.org/10.5281/zenodo.13984927. BRW, Brownian random walk.
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Fig 2. Robustness of lineage dispersal metrics to the sampling intensity. We here report 3 dispersal statistics estimated on 50 geo-referenced phylogenetic

trees simulated under a Brownian diffusion process: the WLDV (km/year), the WDC (km2/year), and the IBD signal has been estimated by the Pearson

correlation coefficient (rP) between the patristic and log-transformed great-circle geographic distances computed for each pair of tip nodes. Each specific tree is

represented by a specific grey curve obtained when re-estimating the dispersal metric on subsampled versions of the tree, i.e., subsampled trees obtained when

only randomly keeping 500, 450, 400, 350, 300, 250, 200, 150, 100, and 50 tip nodes; and the red curve indicate the median value across all simulated trees. The

data underlying this figure can be found in https://doi.org/10.5281/zenodo.13984927. IBD, isolation-by-distance; WDC, weighted diffusion coefficient; WLDV,

weighted lineage dispersal velocity.
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intensity, this does not seem to be the case for the diffusion coefficient estimates and all investi-

gated IBD signal metrics.

From a mechanistic perspective, the lack of robustness of the lineage dispersal velocity met-

ric is expected from a Brownian motion process, which has paths with infinite variation on

any interval (see e.g., Corollary 2.17 in [30]). This implies that, the more densely sampled the

trajectory is, the larger the WLDV becomes, making the estimation of an average speed sam-

pling inconsistent. In contrast, the Brownian motion has finite quadratic variation (see e.g.,

Proposition 2.16 in [30]), so that the WDC, which uses quadratic distances instead of linear

ones, should not be sensitive to the number of samples. To illustrate these theoretical expecta-

tions, we consider the case of a strict one-dimensional Brownian diffusion process of position

X along a time interval equal to 1, with N being the total number of regular time intervals

dt = 1/N, di the distance travelled during time interval i, Xi the position at the end of interval i,
and Xpa(i) the position at the end of the previous time interval. Under a strict Brownian pro-

cess, we have that Xi−Xpa(i) is a Gaussian random variable, so that the distance covered on one

interval di ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXi � XpaðiÞÞ
2

q

¼ jXi � XpaðiÞj is distributed as a half normal variable:

di ¼ jXi � XpaðiÞj � Nþð0; s
2dtÞ and EðdiÞ ¼ s

ffiffiffiffiffi
dt
p ffiffiffiffiffiffiffiffi

2=p
p

;

which allows to determine the expected value for the WLDV as follows:

E WLDVð Þ ¼

PN
i¼1

EðdiÞ
PN

i¼1
dt
¼

PN
i¼1
ðs

ffiffiffiffiffi
dt
p ffiffiffiffiffiffiffiffi

2=p
p

Þ
PN

i¼1
dt

¼ s

ffiffiffi
2

p

r PN
i¼1

ffiffiffiffiffi
dt
p

PN
i¼1

dt
¼ s

ffiffiffi
2

p

r PN
i¼1

ffiffiffiffiffiffiffiffiffi
1=N

p

1

¼ s

ffiffiffi
2

p

r
N
ffiffiffiffi
N
p ¼ s

ffiffiffi
2

p

r
ffiffiffiffi
N
p

:

This indicates that lineage dispersal velocity depends, on average, on the number of time

intervals N and thus the duration of these time intervals: the shorter these intervals, the larger

the estimate. Because the phylogenetic branch lengths (durations) will on average decrease

with the number of tip nodes, this implies, by extension, that the lineage dispersal velocity

depends on the number of tip nodes included in the tree, as also illustrated by our simulations

(Fig 2). Further, the quadratic distance d2
i is in this special case a scaled χ2 random variable

with one degree of freedom, so that:

d2
i

s2dt
¼
ðXi � XpaðiÞÞ

2

s2dt
� w2 k ¼ 1ð Þ; E d2

i

� �
¼ s2dt and

E WDCð Þ ¼

PN
i¼1

Eðd2
i ÞPN

i¼1
4dt

¼

PN
i¼1
s2dt

4
PN

i¼1
dt
¼ s2

PN
i¼1

dt
4

¼
s2

4
:

Therefore, WDC is proportional to the squared net lineage displacement per unit of time

(σ2) and does not depend on N, so that it can be used to compare the dispersal capacities of dif-

ferent pathogens. Note that this relationship between the WDC and σ2 is only valid in this toy

model of a one-dimensional Brownian diffusion where the process is measured at all time

steps dt. In a phylogenetic context, the geographic position of internal nodes of the tree is

unknown, and the WDC is typically computed with inferred ancestral positions, so that the

relationship between the WDC and σ2 is not that simple in general and depends on the ances-

tral reconstruction method being used. The WDC metric should hence not be used as a

replacement for classical estimators of the diffusion coefficient of a Brownian model, either

based on the (restricted) maximum likelihood [31] or, in the context of this study, Bayesian

inference [7].
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In addition to the simulations conducted with a birth-death or coalescent approach, we

have also conducted continuous phylogeographic simulations by simulating RRW diffusion

processes along the branches of an empirical phylogenetic tree, i.e. the maximum clade credi-

bility (MCC) tree previously obtained from the phylogeographic analysis of the West Nile

virus in North America [32] (Figure G in S1 Text; see also the Materials and methods section

for further detail). The specific aim of these additional simulations is to assess the robustness

of the dispersal metrics to the sampling intensity, as well as to a scenario of sampling bias, but

this time also considering the uncertainty associated with phylogenetic inference. As illustrated

in Figure H in S1 Text, our results indicate that when explicitly considering the uncertainty

associated with the inference of the time-scaled tree topologies, the impact of various scenarios

of sampling intensity on the dispersal metrics is less evident. Indeed, the posterior distribution

of the dispersal metric estimates appears to be often quite large, sometimes preventing a clear

distinction of any impact of sampling intensity on these estimates. Furthermore, in order to

take into account the uncertainty related to phylogenetic inference, this additional simulation

framework required performing a continuous phylogeographic inference based on each subset

of geo-referenced tips sampled from the original simulation for generating various scenarios

of sampling intensity (see the Materials and methods section for further detail). Because of this

additional inference step, it seems that the random selection of sequences has often more

impact on the dispersal metric estimates than the number of samples that were subsampled,

especially when the sampling size decreases (Figure H in S1 Text). The later result thus high-

lights the stochastic impacts of the sampling itself, independently of the impact of the sampling

size. Finally, we also note that use of an RRW instead of a BRW diffusion model to conduct

these continuous phylogeographic simulations could also contribute to the relatively large vari-

ability observed among simulations; a phenomenon that was already observed when compar-

ing the results obtained when considering either a BRW or an RRW model to conduct the

simulations under a birth-death process (Fig 1 and Figure C in S1 Text).

As introduced above, we have also used these simulations of RRW diffusion processes

along empirical tree branches to estimate the dispersal metrics from simulations based on a

scenario of sampling bias where only a restricted area of the spread has been sampled (see the

Materials and methods section for further detail). Such a sampling bias scenario has previously

been shown to strongly affect continuous phylogeographic reconstructions [33]. Again, our

results based on this simulation scenario and explicitly considering phylogenetic uncertainty

do not indicate a clear impact of sampling bias on the estimates (Figure H in S1 Text). So with

this simulation framework, we do not manage to distinguish a clear difference between the dis-

persal metrics estimated for the scenarios of various sampling intensity and sampling bias. The

impact of such spatial sampling bias on the outcomes of continuous phylogeographic inference

has been more thoroughly investigated in previous studies [8,33]. For example, Kalkaukas and

colleagues have explored the impact of 3 sampling bias scenarios on the estimation of the

squared net lineage displacement per unit of time (σ2, referred to as the “diffusion parameter”

in their work [33]), which is directly related to a metric like WDC investigated here (see

above). Their analyses reveal that all considered scenarios of sampling bias — a central sam-

pling bias, a diagonal sampling bias, and a one-side sampling bias scenario similar to the one

explored in this study — lead to an underestimation of the diffusion parameter. Further con-

firmed by additional investigations of sampling bias scenarios by Guindon and De Maio [8],

these results thus indicate that sampling bias can lead to an underestimation of the dispersal

capacity as quantified by a metric like WDC.

In the second part of our study, we use the 2 dispersal metrics identified above as the most

robust to the sampling intensity — the WDC and IBD signal — to quantify and compare the

dispersal capacity of viruses spreading in animal populations. We here target viruses of public
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and one health importance and for which comprehensive genomic data sets have at some

point been exploited to conduct continuous phylogeographic reconstructions that we have

managed to retrieve. The selected data sets encompass viruses associated with a broad range of

host species (Table A in S1 Text): moles (Nova virus), rodents (Puumala, Lassa, and Tula

viruses), deer (Powassan virus), poultry and waterfowl (avian influenza virus (AIV)), domestic

pigs (Getah virus and porcine deltacoronavirus), cattle (lumpy skin disease virus), (migratory)

bird species (West Nile virus), as well as raccoons, skunks, bats, and dogs (rabies virus). By def-

inition, the transmission cycles of the 3 considered arboviruses involve transmission events

through biting by infected arthropods such as ticks of the Ixodes and Dermacentor genera for

the Powassan virus, as well as mosquito species of the Culex genus for the West Nile virus and

also Aedes genus in the case of the Getah virus.

Our results highlight substantial differences among the data sets, both in terms of diffusion

coefficient and IBD signal (Fig 3). By far, the 2 virus data sets associated with the lowest diffu-

sion coefficient are the Nova virus and Puumala virus genomic sequences collected in Belgian

mole (Talpa europaea) and bank vole (Myodes glareolus) populations, respectively [49,50]. The

very limited diffusion coefficient estimated for these 2 hantaviruses is coherent with the limited

dispersal capacity of their host species. The Lassa virus data set [48] is next in the ranking with

a WDC estimated at approximately 40 km2/year (Fig 3 and Table A in S1 Text). Lassa virus is

an arenavirus that also circulates in a rodent species: the Natal multimammate mouse (Mast-
omys natalensis). Interestingly, these 3 first data sets all reveal a relatively high IBD signal

reflecting an important phylogeographic structure (Fig 3 and Table A in S1 Text).

A large fraction of genomic data sets result in diffusion coefficient estimates between 100

and 2,000 km2/year (Table A in S1 Text). They range from the Powassan virus data set [47]

from the United States (WDC = ~130 km2/year) to the avian influenza virus (AIV) H3N1 data

set [37] corresponding to a specific Belgian outbreak (~1,800 km2/year). In between these 2

diffusion coefficient estimates, we find the diffusion coefficients estimated from a series rabies

virus data sets (Fig 3 and Table A in S1 Text): ~250 km2/year for the bat rabies virus data set

from eastern Brazil [46], almost ~600 km2/year for the raccoon [44] and skunk [43] rabies

virus data sets from the USA, ~700 km2/year for the bat rabies virus data set in Argentina [42],

~1,100 km2/year for the dog rabies data sets, respectively, from the Yunnan province (China)

and northern Africa [41], ~1,400 km2/year for the bat rabies dataset from Peru [39], and

~1,600 km2/year for the dog/wild carnivore rabies data set from Iran [38]. Interestingly,

although the diffusion coefficient estimated for the bat rabies data set from Peru is compara-

tively high, rabies viruses circulating in bats do not seem to be associated with a notably higher

diffusion coefficient compared to other non-flying host species. Furthermore, it has previously

been hypothesised that the relatively higher diffusion coefficient estimated for the dog rabies

virus data sets compared to other rabies virus datasets could be the result of occasional rapid

(long-distance) dispersal events driven by human-mediated movements [41,51]. Of note, we

observe an important heterogeneity among the IBD signals estimated for the different rabies

virus data sets, the IBD signal metric being centred on zero for the dog rabies data set from

Yunnan or close to zero for the raccoon one from the USA, and higher than ~0.65 for the dog

rabies data set from northern Africa and the bat rabies data set from Peru.

We subsequently identify 3 data sets with diffusion coefficient estimates ranging from

~20,000 to ~26,000 km2/year including an AIV H5N1 data set from the Mekong region [36]

and 2 genomic data sets of viruses infecting domestic pig populations in China [34,35]: the

Getah virus, a re-emerging arbovirus China, and the porcine deltacoronavirus. Similarly to the

hypothesis formulated for the dog rabies data sets such as the one from northern Africa, the

relatively high diffusion coefficient for those 2 pig virus data sets may potentially be explained

by long-distance dispersal through animal trade. It is also interesting to note the very limited
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or absent IBD signal estimated for the deltacoronavirus and Getah virus data sets, respectively,

which is consistent with the notable spatial inter-mixing of lineage dispersal events that would

be induced by animal trade across the Chinese territory [34,35].

Finally, with posterior median estimates >50,000 km2/year, the North American West Nile

virus [32] and lumpy skin disease virus [11] data sets yield the highest diffusion coefficient esti-

mates. Upon first detection in 1999 in New York City, the West Nile virus spread through the

North American continent, carried by numerous (migratory) birds and reaching the West

Coast of the United States within a period of only 3 years [52]. Lumpy skin disease virus was

first detected in 1929 in northern Rhodesia (now Zambia) and initially circulated within the

African continent. During the last decades, it has however spread eastward and to southeastern

Europe [53]. Transmitted by a variety of arthropod vectors (ticks, mosquitoes, and biting

flies), the main hosts of this virus are cattle and buffalos while the role of other wild animals in

its transmission and spread remains uncertain [53]. The continuous phylogeographic recon-

struction of the lumpy skin disease virus dissemination considered here is a global one involv-

ing long-distance lineage dispersal events among continents. Also in this case, the high

diffusion coefficient estimated for this data set is potentially related to the transport of infected

1 10 100 1000 10000 100000

Nova virus, Belgium
Puumala virus, Belgium

Lassa virus, Africa
Powassan virus, USA

Rabies virus (bats), eastern Brazil
Tula virus, European clade

Rabies virus (raccoons), USA
Rabies virus (skunks), USA

Rabies virus (bats), Argentina
Rabies virus (dogs), Yunnan (CH)
Rabies virus (dogs), North Africa

Rabies virus (bats)**, Peru
Rabies virus (dogs), Iran

AIV H3N1, Belgium
AIV H5N1, Mekong region

Getah virus, China
Porcine deltacoronavirus, China

Lumpy skin disease virus*
West Nile virus, North America

Weighted diffusion coefficient (km2/year)

0 0.5 1

IBD signal (rP)

Fig 3. Comparison of dispersal metrics estimated for different genomic data sets of viruses spreading in animal populations. Specifically, we here report

posterior estimates obtained for 2 metrics estimated from trees sampled from the posterior distribution of a Bayesian continuous phylogeographic inference:

the WDC and the IBD signal estimated by the Pearson correlation coefficient (rP) between the patristic and log-transformed great-circle geographic distances

computed for each pair of virus samples. We report the posterior distribution of both metrics estimated through continuous phylogeographic inference for the

following data sets: West Nile virus in North America [32], Lumpy skin disease virus [11], Porcine deltacoronavirus in China [34], Getah virus in China [35],

AIV in the Mekong region [36] and H3N1 in Belgium [37], rabies virus (dogs) in Iran [38], rabies virus (bats) in Peru [39], rabies virus (dogs) in northern

Africa [40,41], rabies virus (bats) in Argentina [42], rabies virus (skunks) in the USA [43], rabies virus (raccoons) in the USA [44], Tula virus in central Europe

[45], rabies virus (bats) in eastern Brazil [46], Powassan virus in the USA [47], Lassa virus in Africa [48], Puumala virus in Belgium [49], and Nova virus in

Belgium [50]. (*) Estimates based on the analysis of the wild-type strains (see [11] for further detail); (**) estimates based on the combined analysis of lineages

L1 and L3. See also Table A in S1 Text for the related 95% HPD intervals and number of samples associated with each data set. The data underlying this figure

can be found in https://doi.org/10.5281/zenodo.13984927. AIV, avian influenza virus; HPD, highest posterior density; IBD, isolation-by-distance; WDC,

weighted diffusion coefficient.

https://doi.org/10.1371/journal.pbio.3002914.g003
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cattle to naive regions [11]. It is also worth noting that the IBD signal estimated for the West

Nile virus and lumpy skin disease virus data sets are drastically different, being centred on zero

for the former and approximately 0.8 for the latter. This result really reflects the phylogeo-

graphic patterns reconstructed for both outbreaks, the West Nile virus one displaying an

important amount of longitudinal, and to some extent latitudinal, back and forth lineage dis-

persal events during the endemic phase of the North American outbreak, and the lumpy skin

disease virus spread mainly consisting in long-distance dispersal events establishing more local

transmission chains.

Furthermore, the relatively large diffusion coefficient estimated for the West Nile virus data

set appears to be partially due to the expansion phase of this outbreak: when computing a dis-

tinct diffusion coefficient for the expansion and endemic phases — here approximated by con-

sidering phylogenetic branches occurring before or after 2004 [32], respectively — we obtain

an estimate that is between 2 and 3 times higher for the expansion phase (Table A in S1 Text),

illustrating the impact of the distinction of those epidemic phases on the metric. In the case of

the West Nile virus spread across the North American continent, the invasion was in part

driven by long-distance dispersal events, which can transform the spread of a pathogen from a

wave-like to a fast “metastatic” growth pattern [54]. Overall, the comparison of the estimates

based on the West Nile virus data set highlights that a metric like the diffusion coefficient can

notably be impacted by the epidemic phase of the considered outbreak, an expansion phase

being more likely to be associated with higher estimates than an endemic phase.

Finally, while we have previously established that the 2 dispersal metrics estimated on those

empirical data sets appear to be robust to the sampling intensity, they remain impacted by

sampling bias like any outcome of a phylogeographic inference. As reported in Figure I in S1

Text, we see that the sampling maps of the different empirical data sets display an important

variability in terms of sampling patterns, with a varying degree of sampling site clustering. The

associated sampling bias is however difficult to evaluate in practice given that the actual spatial

distribution of individuals/infectious cases is frequently unknown, especially when studying

pathogens spreading in wild animal populations. We can nevertheless clearly speculate that

infected areas were likely under or even unsampled for a good number of those data sets. As

established in previous works [8,33], we cannot exclude that such sampling bias could lead to a

significant underestimation of the dispersal capacity as measured by the WDC metric.

Limitations, conclusions, and perspectives

Our study comes with a number of limitations. First, while our simulation framework explores

the impact of sampling intensity (i.e., heterogeneity in the absolute sampling effort) and, to a

more limited extent, sampling bias (i.e., spatial heterogeneity in the sampling effort), it does

not explicitly explore the impact of border effects, which can also affect the target statistics.

Furthermore, Layan and colleagues have illustrated that the extent of the study area can impact

the diffusion coefficient estimates [55]. As an interpretation, they put forward that “larger sam-

pling areas are expected to be associated with higher probabilities to sample long-distance dis-

persal events that will, on average, more likely correspond to fast dispersal events than short-

distance dispersal events” [55], which is also in line with the underestimation of the diffusion

parameter σ2 highlighted by Kalkaukas and colleagues when considering a “one-side” sampling

bias scenario [33], i.e., a scenario where only a restricted part of the distribution area is actually

sampled. As detailed in Table A in S1 Text, we however see that the different datasets analysed

here encompass a large range of study area sizes that are not necessarily following the trend of

diffusion coefficient estimates.
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Second, our simulation framework does not involve the generation of actual genomic

sequences. From a computational perspective, adding a genomic sequence simulation step

would also have drastically increased the computation time and resources required to conduct

each Bayesian phylogeographic analysis. This would indeed imply running no less than 1,000

continuous phylogeographic analyses (corresponding to both Brownian and RRW simula-

tions, times 50 simulations, times the generation of 10 subsampled data sets with a decreasing

number of tip nodes). To circumvent this limitation, we have considered an additional simula-

tion framework to still consider the phylogenetic uncertainty but while avoiding the simula-

tion and time-consuming analyses of genomic sequences. As detailed in the Materials and

methods section, this simulation framework is made of 3 distinct steps: (i) a continuous phylo-

geographic simulation along an empirical time-scaled phylogeny; (ii) the subsampling (accord-

ing to a scenario of sampling intensity/bias) of the tip nodes whose position has been

simulated on the map and, for each resulting data set; (iii) the continuous phylogeographic

inference based on the simulated coordinates of the selected tip nodes while integrating over

posterior trees retrieved from the phylogeographic inference previously conducted on the

actual data set. Interestingly, due to a relatively higher impact of phylogenetic uncertainty or

the subsampling itself of tip nodes, these additional simulations do not allow to distinguish

any clear trend on the impact of sampling intensity/bias on the estimates of the different dis-

persal metrics evaluated here.

Spatially explicit phylogeographic reconstructions are relatively widely applied thanks to

popular implementations of the RRW model [7,15,56], but there is a need for robust metrics

allowing a direct comparison of lineage dispersal dynamics for different viral variants/out-

breaks or even distinct viruses. Our simulations highlight that, among the 3 different kinds of

dispersal metrics investigated here, only 2 of them appear to be robust to the sampling inten-

sity: the diffusion coefficient and the IBD signal metrics, the first one being estimated from

continuous phylogeographic inference and the second one being directly estimated from a

(time-scaled) phylogeny and sampling locations. The lineage dispersal velocity estimated from

continuous phylogeographic inference on the other hand increases with the number of sam-

ples in the phylogeographic analysis. We subsequently confirmed that this trend can be

explained by a mechanistic dependence of this metric on the number of genomic sequences

(tip nodes) considered in the analysis.

The 2 metrics identified as robust are measuring complementary aspects of the overall dis-

persal pattern: while the diffusion coefficient allows estimating dispersal capacity, the IBD signal

metric will quantify to what extend the geo-referenced phylogenies are spatially structured, i.e.,

the tendency for phylogenetically related lineages to evolve in a close vicinity. In terms of read-

ability, the diffusion coefficient (WDC) can also be used to estimate the quadratic mean — also

called root mean square — of the effective displacement by unit of time, which is equal to

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4WDC
p

. Furthermore, if the mean time needed for a pathogen to infect successive hosts

by contagion (a kind of generation time, T) was known, the root mean square dispersal distance

between infection locations of 2 successive hosts could be estimated as sT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4WDC∗T
p

.

In the second part of our study, we have taken advantage of these 2 robust metrics to com-

pare the dispersal pattern of viral lineages informed by the available continuous phylogeo-

graphic reconstruction of a large range of published data sets of genomic sequences. Our

results confirm and highlight an important heterogeneity in the dispersal capacity of viruses

primarily spreading in animal populations, directly reflecting the dispersal capacity and/or the

human-mediated movement of the main host species carrying those viruses. Future studies

applying continuous phylogeographic analyses to new genomic data sets can further build on

the comparison of dispersal metric estimates that we initiated here. In practice, the GitHub
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repository referenced below can be used to add additional data sets in the comparison reported

in Fig 3 and Table A in S1 Text, with the perspective to further unveil and understand the

velocity at which viruses can circulate in various host populations.

In our view, the field of phylogeography, or phylodynamic in general, applied to fast-evolv-

ing pathogens such as RNA (and DNA) viruses faces a series of (new) challenges. A first chal-

lenge lies in the recent and impressive increase in the amount of genomic information that can

be exploited in phylodynamic analyses. Driven by technological developments in next-genera-

tion sequencing [57–59] and important national budgets unlocked for genomic surveillance in

the context of the COVID-19 pandemic, the number of geo-referenced genomic sequences

available for conducting phylogeographic reconstruction of some viruses of public health

importance has exploded, which is particularly true for SARS-CoV-2 with>16.5 million full

genomes available on the GISAID platform to date (March 2024, https://gisaid.org/). Unfortu-

nately, Bayesian approaches that jointly infer phylogeny and phylogeographic history to

accommodate uncertainty in both processes reach their computational limit when analysing

datasets consisting of a few thousand genomes. While recent developments have been dedi-

cated to the phylogenetic inference of large-scale genomic data sets (see e.g., [60,61]), facing

computational limitations will continue to be a timely challenge in the development of phylo-

dynamic approaches aiming to look below the tip of the iceberg by exploiting the large amount

of pathogen genetic information at our disposal in order to get quantitative insights into or

test hypotheses on ongoing epidemics. Another challenge likely lies in the perspective to go

beyond the retrospective aspect of phylodynamic analyses and feed the knowledge obtained

through such reconstructions into predictive frameworks.

Materials and methods

We conducted continuous phylogeographic simulations based on both a Brownian (BRW)

and a relaxed (RRW) random walk diffusion process on an underlying geo-referenced grid

(raster) with a resolution of 0.5 arcmin, and also along phylogenetic trees inferred from actual

genomic data in the case of the RRW diffusion process.

Continuous phylogeographic simulations based on a birth-death process

We first implemented a forward-in-time birth-death approach to simulate the dispersal history

of viral lineages over 20 years while considering a time step of one day. Specifically, each simu-

lation started from an index case placed in the centre of the grid. At each time step, each ongo-

ing lineage had (i) a first probability to give birth to another lineage (pbirth = 0.6 per year, so

0.0016 per day); and (ii) a second probability to be “sampled” (psampling = 0.4 per year, so

0.0011 per day), i.e., to stop evolving and leave the simulation. Of note, we defined a sampling

window so that evolving lineages could not be sampled during the first 2 years of the simula-

tion/outbreak. In between the probability to give birth and the probability to be sampled,

ongoing lineages also had the opportunity, at each time step, to move on the grid. This dis-

placement was defined by a two-steps procedure. In the BRW simulations, the longitudinal

and latitudinal displacements were first sampled by respectively drawing an horizontal dx and

vertical dy displacement value from a Gaussian distribution with mean equal to zero and stan-

dard deviation here arbitrarily set to 0.0125, and in the RRW simulations, the longitudinal and

latitudinal displacements were first sampled by respectively drawing an horizontal dx and ver-

tical dy displacement value from a Cauchy distribution with a position parameter set to zero

and a scale parameter set to 2.5 × 10−4. In both cases, the resulting displacement on the map

was then randomly rotated around the previous location point. In particular for the RRW sim-

ulations, this stochastic rotation step prevents rare long-distance displacement to only occur
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along a latitudinal or longitudinal direction. Overall, we conducted 200 BRW and 200 RRW

simulations and retained in each case the first 50 simulations leading to simulated phylogenies

with at least 500 tip nodes. Selected phylogeographic simulations were then eventually subsam-

pled to obtain geo-referenced time-scaled phylogenies only including 500, 450, 400, 350, 300,

250, 200, 150, 100, and 50 tip nodes. The script used to conduct the BRW and RRW simula-

tions was implemented in a new function named “simulatorRRW2” and included in the R

package “seraphim” [23,62] (the “simulatorRRW1” function corresponding to another simula-

tor previously implemented to conduct RRW simulations along fixed tree topologies [19]).

Continuous phylogeographic simulations based on a coalescent process

Secondly, in addition to the simulations with phylogenetic trees simulated under a birth-death

model, we conducted BRW simulations along trees primarily simulated under a coalescent

model. To perform these coalescent simulations, we used the function “rcoal” of the R package

“ape.” Longitudinal and latitudinal displacements were then simulated along the resulting tree

topologies with the “fastBM” function of the R package “phytools” [63]. As for the simulations

based on a birth-death model, we conducted 200 simulations and retained in each case the

first 50 simulations leading to simulated phylogenies with at least 500 tip nodes, and those phy-

logeographic simulations were eventually subsampled to obtain geo-referenced time-scaled

phylogenies only including 500, 450, 400, 350, 300, 250, 200, 150, 100, and 50 tip nodes.

Continuous phylogeographic simulations conducted along a tree topology

Thirdly, we also conducted RRW simulations along the branches of an empirical phylogenetic

tree: the MCC tree obtained from the continuous phylogeographic reconstruction based on

801 West Nile virus genomes collected between 1999 and 2016 in North America [32]

(Figure G in S1 Text). To this end, we used the “simulatorRRW1” function implemented in

the R package “seraphim” to conduct RRW simulations along time-scaled tree topologies [19].

Specifically, we simulated distinct forward-in-time RRW diffusion processes along the

branches of the considered MCC tree using the precision matrix parameters and root node

location inferred by the original continuous phylogeographic analysis, this location having

been inferred in the vicinity of New York City [19]. These simulations were either spatially

unconstrained or constrained to the contiguous area of the United States, and 5 distinct simu-

lations were conducted for each of these 2 categories of simulations (see Figure G in S1 Text

for the example of one spatially constrained simulation). Again, we subsequently subsampled

each simulation to obtain time-scaled phylogenies only including 500, 450, 400, 350, 300, 250,

200, 150, 100, and 50 tip nodes associated with sampling coordinates simulated by the RRW

diffusion process along the original MCC tree. In order to investigate the robustness of the dis-

persal metrics to the sampling intensity while considering the uncertainty associated with the

phylogenetic inference, we then performed a new continuous phylogeographic reconstruction

based on each resulting data set. To incorporate the uncertainty associated with phylogenetic

inference, we performed all phylogeographic reconstructions while integrating over 100 poste-

rior trees retrieved from the phylogeographic inference previously conducted on the actual

West Nile virus data set [32]. In this way, we account for tree topology uncertainty when

assessing the robustness of the dispersal metrics to the sampling intensity without the need to

confront inference from sequence data.

Finally, we also exploited the RRW simulations conducted along a tree topology to explore

the impact of 2 scenarios of sampling bias on the robustness of the 3 dispersal metrics consid-

ered in our study. For this purpose, we used the simulation procedure described above, but

instead of randomly subsampling each simulation to obtain data sets associated with various

PLOS BIOLOGY How fast are viruses spreading in the wild?

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002914 December 3, 2024 12 / 17

https://doi.org/10.1371/journal.pbio.3002914


sampling intensity, we performed a subsampling corresponding to a scenario of spatial sam-

pling bias where only a restricted area of the spatial distribution of the virus spread was sam-

pled. In the case of the spatially unconstrained simulations, the subsampling was performed to

only retain all tip nodes simulated east of the tree root location. In the case of the spatially con-

strained simulations, the subsampling was performed to only retain all tip nodes simulated fur-

ther east of the 86th West meridian, which roughly corresponds to a subsampling restricted to

the first eastern third of the contiguous USA area that was invaded by the West Nile virus.

Dispersal statistics estimation

Dispersal statistics were all computed using the “spreadStatistics” function in the R package

“seraphim” [23,62], which now also allows the estimation of the IBD signal computed as the

Pearson correlation (rP) between the patristic and log-transformed great-circle geographic dis-

tances computed for each pair of virus samples. 95% highest posterior density (HPD) intervals

were computed with the “hdi” function of the R package “HDInterval”, and the ridgeline plots

were generated using the “ridgeline” R package. As mentioned above, in complement to the

WLDV and WDC metrics, we also computed and tested unweighted versions — the mean

lineage dispersal velocity (MLDV) [23] and mean diffusion coefficient (MDC) [15]:

MLDV ¼
1

n

Xn

i¼1

di

ti

� �

and MDC ¼
1

n

Xn

i¼1

d2
i

4ti

� �

;

where n is the number of phylogenetic branches, di the geographic (great-circle) distance, and

ti the time elapsed on the i-th branch of the phylogeny.
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