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Abstract

Given a ground-set of elements and a family of subsets, the set covering
problem consists in choosing a minimum number of elements such that each
subset contains at least one of the chosen elements. This research focuses on
the set covering polytope, which is the convex hull of integer solutions to the
set covering problem. We investigate the connection between the study of the
facets of the set covering polytope and tilting theory. This theory studies how
inequalities can be rotated around their contact points with a polyhedron in
order to obtain inequalities inducing higher dimensional faces. To study this
connection, we introduce the concept of tilting vectors which characterize
the degrees of freedom of rotation of an inequality. These vectors charac-
terize facet-defining inequalities and can be used to tilt inequalities with a
similar procedure to the one used for arbitrary polyhedra. Additionally, we
demonstrate that the computational effort needed to tilt an inequality can
be reduced when the inequality has many null coefficients. Finally, we use
the tilting vectors to extend several necessary and/or sufficient conditions
for facets of the set covering polytope presented by several previous works
of the literature.
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1. Introduction

Given a ground-set E of elements and a family S of subsets of E , the set
covering problem consists in choosing a minimum number of elements of E
such that each subset in S contains at least one of the chosen elements. A
feasible set of chosen elements is referred to as a cover.

To model this problem, one can use a binary matrix B whose columns
are indexed by the elements e P E and rows by the subsets s P S. The
coefficient Bse indicates whether the subset s contains the element e. If xe
takes the value 1 when element e is chosen, then the set covering problem
can be modeled using the following mixed integer linear program:

min
x

1x (1a)

subject to Bx ě 1 (1b)

x P t0, 1u|E|. (1c)

The set covering problem arises in many applications in a wide variety
of fields such as logistics management [Mihelic and Robic, 2004, Cacchiani
et al., 2014], crew scheduling [Caprara et al., 1999], manufacturing [Stanfel,
1989], data extraction and manipulation [Day, 1965], and medicine [Reggia
et al., 1983]. Thus, understanding the structural properties of this problem
and their impact on solution methods has very broad implications. Math-
ematically, we study the properties of the associated set covering polytope
QpBq which is the convex hull of the set P “ tx P t0, 1u|E| : Bx ě 1u. A
comprehensive polyhedral description of QpBq via valid inequalities would
allow solving the set covering problem using classical linear programming
tools. However, even a partial description of the polytope would enable the
design of fast and scalable enumeration-based methods.

Numerous families of valid inequalities have already been proposed in
the literature (see the thesis of Borndörfer [1998] for an overview). A central
question regarding these valid inequalities is whether they induce facets of
the polytope QpBq, i.e., whether they are necessary to describe the polytope.
There have been studies on proposing valid inequalities along with the condi-
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tions under which they induce facets of the set covering polytope [Cornuéjols
and Sassano, 1989, Nobili and Sassano, 1989, Balas and Ng, 1989].

Other polyhedral studies have approached the question by describing
necessary and/or sufficient conditions for known valid inequalities to induce
facets of QpBq. In this line of work, it is worth mentioning that Balas and
Ng [1989] characterized all the facets having coefficients and right-hand sides
in t0, 1, 2u. Similarly, Sánchez-García et al. [1998] and Saxena [2004] gave
necessary and sufficient conditions for the inequalities with coefficients and
right-hand sides in t0, 1, 2, 3u to be facets. Another class of inequalities for
which the characterization of facets has been studied is the rank inequalities,
i.e., inequalities with binary coefficients but with arbitrary right-hand sides.
Cornuéjols and Sassano [1989] proposed a necessary condition for these in-
equalities to be facets, while Sassano [1989] proposed a sufficient condition.

Instead of directly proposing facets of QpBq, a complementary approach
to finding facets of QpBq is to use dominance arguments to derive stronger
inequalities from inequalities that are not facet defining. The approach re-
ferred to as lifting answers this question by posing the problem of finding
the best set of coefficients for an inequality as a series of mixed-integer op-
timization problems [Padberg, 1973, Wolsey, 1976]. More recently, Chvátal
et al. [2013] introduced a more general approach called tilting. The authors
show that a non-facet defining valid inequality can be rotated around its
contact points with the polyhedron and remain valid. They also describe a
procedure to perform the largest such rotation and show that the resulting
inequality induces a face of higher dimension. Thus, by applying this proce-
dure at most as many times as the dimension of the ambient space, one ends
up with a facet-defining inequality. The number of linearly independent axes
on which a rotation can be performed corresponds to the degrees of freedom
associated with the possible rotations.

In this work, we aim to deepen the understanding of the set covering
polytope QpBq for inequalities with arbitrary coefficients. To that end, we
introduce a new mathematical object for the study of the facets of the set
covering polytope: the tilting vectors. The importance of tilting vectors is
twofold. First, they can be used to derive an alternative version of tilting
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specialized for set covering. Second, tilting vectors characterize facets of
the set covering polytope. Thus, they can be used as tools to provide new
facet characterization results and proofs. We investigate this strong mathe-
matical object leading to both methodological and topological contributions.
While some of our contributions revisit known results, other contributions
are entirely new. The revisiting contributions focus on the variation of tilting
specialized to set covering by using tilting vectors:

• We present how tilting vectors characterize the facets of the set covering
polytope.

• We show that under some conditions, facets can be obtained in one
tilting operation.

• We design a simple procedure that obtains, from a valid inequality and
a tilting vector, tilted inequalities that induce higher dimensional faces
than the original inequality.

Our new contributions are the following:

• We show that the number of computations required to tilt a sparse
inequality is significantly reduced compared to the dense case.

• We highlight that each null coefficient in a valid inequality may be as-
sociated with a specific tilting vector and that all the remaining tilting
vectors have their support included in the support of the inequality.
This implies that one can reduce the study of set covering facets from
general inequalities to inequalities without null coefficients.

• We use tilting vectors to extend several results from the set covering
literature. In particular, we extend from rank inequalities to arbitrary
inequalities the necessary and sufficient conditions of Cornuéjols and
Sassano [1989] and Sassano [1989].

• We provide an alternative proof for the characterization introduced by
Balas and Ng [1989] for the facet-defining inequalities with coefficients
and right-hand side in t0, 1, 2u. We also extend the results of Balas and
Ng [1989] by characterizing the tilting vectors for these inequalities.
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The remainder of this article is organized as follows. We begin by in-
troducing notations and basic results in Section 2. Section 3 is dedicated
to the introduction of the tilting vectors, their properties, and their specific
use in the context of tilting for set covering. We then focus in Section 4 on
how to exploit the null coefficients of set covering inequalities. In Section 5,
we extend the necessary and sufficient conditions of Cornuéjols and Sassano
[1989] and Sassano [1989] for rank inequalities to general inequalities. This
last section also contains an extension of the work of Balas and Ng [1989]
on inequalities with coefficients and right-hand sides in t0, 1, 2u. Finally,
Section 6 concludes this article.

2. Notations and preliminaries

Following the notations in Sassano [1989], Cornuéjols and Sassano [1989],
a set covering instance is associated with a bipartite graph G “ pE ,S, Aq.
The arc set A is composed of the pairs pe, sq P E ˆS such that e P s. In this
case, a cover is a subset of nodes of E such that each node in S is connected
to at least one node in the cover. An illustrative example can be found in
Figure 1.

e1e2e3

s1s2s3

Figure 1: The bipartite graph associated with a set covering instance where E “ t1, 2, 3u

and S “ tt1, 2u, t1, 3u, t2, 3uu. An example of cover (circled) is t1, 2u.

For a given subset E Ď E , NpEq “ ts P S | De P E, pe, sq P Au denotes
the neighbors of the elements in E. In this context, a cover can equivalently
be defined as a set of nodes in E whose set of neighbors is S. We will denote
QpGq the polytope of a set covering instance associated with a bipartite
graph G.

Given a polyhedron Q and a valid inequality αx ě k for this polyhedron,
the face associated with this inequality is F “ tx P Q | αx “ ku. A facet of
a polyhedron is a face whose dimension is the dimension of the polyhedron
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minus one. To prevent our explanations from becoming too heavy and uneasy
to read, we will not always differentiate the inequalities from the face they
induce on the polyhedron QpGq. For the same reason, we will not always
differentiate covers from their incidence vectors. This allows us, for example,
to abuse the vocabulary and say that some covers are affinely independent
or that an inequality is a facet. We will also denote xE the incidence vector
of a subset E of E (typically xc for a cover c).

For any vector α P R|E| and any sub-family S Ă S, we will denote
by γpα, Sq the minimum value of αx over the binary vectors x P t0, 1u|E|

representing a set of elements covering all the subsets in S. For simplicity,
we will use γpαq in place of γpα,Sq. In this work, when considering an
inequality αx ě k, we assume that its right-hand side is minimum, i.e.,
k “ γpαq “ minxPQpGq αx. To make this explicit, from now on we will
denote αx ě γpαq everywhere. Moreover, for a vector α and an integer p, we
denote Eppαq “ te P E | αe “ pu the set of indices for which α has coefficient
p.

A central object to the analysis of the strength of an inequality αx ě γpαq

is the set of covers that satisfy this inequality to equality. This set is denoted
C“pαq and contains most of the relevant information about the inequality.
In particular, by definition, the inequality is a facet if and only if there is
a number affinely independent covers in C“pαq equal to the dimension of
QpGq.

We now state a proposition taken from Nobili and Sassano [1989] that
highlights some basic properties of the set covering polytope.

Proposition 1 (Nobili and Sassano [1989]).

• QpGq is empty if and only if at least one subset in S is empty;

• QpGq is full-dimensional if and only if no subset in S is a singleton.

If QpGq is full-dimensional then, for each e P E:

• the inequality xe ě 0 defines a (trivial) facet of QpGq unless for some
subset s P S, szteu is a singleton;
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• the inequality xe ď 1 defines a (trivial) facet of QpGq;

• every non-trivial facet of QpGq is defined by an inequality of the form
αx ě γpαq where α ě 0 and γpαq ą 0.

From now on, we will consider that the set covering polytope QpGq is
full-dimensional. This happens if and only if no subset in S is a singleton
and one can reduce any set covering instance to this case by setting to one
the variable corresponding to elements present in singleton. Moreover, we
will assume when considering an inequality αx ě γpαq that α ě 0, γpαq ą 0.

3. Tilting for set covering

In this section, we introduce the main concept of this article, the tilting
vectors. After presenting how tilting vectors characterize the dimension of
the face induced by an inequality, we discuss how tilting vectors can be
used to tilt inequalities in the context of set covering. Finally, we discuss
some computational aspects of the tilting procedure. For a presentation of
tilting in the context of a general polyhedron see Appendix A or the work
of Chvátal et al. [2013].

3.1. Tilting vectors

Let us now introduce the main concept of this article, the tilting vectors.

Definition 1. Let αx ě γpαq be a valid inequality for QpGq and let Mα

be the matrix whose rows are the covers in C“pαq. A tilting vector β is a
solution of the system Mαβ “ 0.

In other words, a vector β is a tilting vector of the inequality αx ě γpαq if
it is orthogonal to all the covers in C“pαq. Note that, as the solution of a lin-
ear system, the set of tilting vectors of an inequality is a vector space. More-
over, although we should write “the tilting vectors of inequality αx ě γpαq",
for the sake of brevity, we will omit the reference to the studied inequality
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when this creates no confusion. A more graphical way to define tilting vec-
tors, illustrated in Figure 2, is the following. Let Hpαq “ pE , C“pαqq be the
hypergraph with node set E and with each hyper-edge representing a cover
of C“pαq. A tilting vector is an assignment of weights βe to the nodes of
Hpαq such that the sum of the weights on the nodes of each hyper-edge is
zero.

e1

e2

e3

e4

e5

s1

s2

s3

s4

s5

s6

(a) An instance of set covering

´1 ´1 ´1

1 1

e1 e2 e3

e4 e5

(b) The hypergraph Hpαq for the inequality
x1`x2`x3`x4`x5 ě 2 and the coefficients
of a tilting vector

e1 e2 e3

e4 e5

(c) The hypergraph Hpαq for the inequality
x1 ` x2 ` x3 ` 2x4 ` 2x5 ě 3 for which the
only tilting vector is null

Figure 2: A set covering instance: hypergraphs and tilting vectors corresponding to two
inequalities

As mentioned earlier, tilting vectors can be used to tilt inequalities. A
tilted inequality is defined as follows.

Definition 2. A tilted inequality corresponding to an inequality αx ě γpαq

and a tilting vector β is any valid inequality of the form pα ` ϵβqx ě γpαq

where ϵ is a scalar.
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A tilted inequality is a rotation of the original inequality around its set of
contact points C“pαq with the polytope QpGq. Indeed, each contact point
of the original inequality is also a contact point of the tilted inequality. This
is induced by βxc “ 0 for all c P C“pαq in the definition of the tilting vector
β. This is illustrated in Figure 3.

α
β

α ` ϵβ

Figure 3: A valid inequality (blue) for a polyhedron with normal vector α, a tilting vector
β (green), and the corresponding tilted inequality (red).

What makes the strength of the tilting vectors is that they can be used
as tilting directions to obtain inequalities inducing higher dimensional faces
and that they are a useful tool to study and characterize the facets of the
set covering polytope. In the next sections, we introduce some of their basic
relations to facets and their role in tilting.

3.2. Characterizing facets with tilting vectors

In this section, we highlight the relationship between the space of tilting
vectors of an inequality and the dimension of the face it induces. More
precisely, the following theorem links the dimension of the space of tilting
vectors and the dimension of the face induced by an inequality.
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Proposition 2. Let αx ě γpαq be a valid inequality for QpGq, let Dα be the
dimension of its induced face, and let Dβ be the dimension of the space of
its tilting vectors. Then, Dα ` Dβ “ |E | ´ 1.

Proof is given in Appendix B.
With the above theorem we obtain as corollary that the existence of

tilting vectors characterizes whether an inequality is a facet or not.

Corollary 1. Let αx ě γpαq be a valid inequality for QpGq. It is a facet of
QpGq if and only if its only tilting vector is the null vector.

Corollary 1 is similar to Lemma 1 from Chvátal et al. [2013] for general
tilting. The generalization from Corollary 1 to Proposition 2 can also be
made for arbitrary polyhedra.

3.3. Tilting inequalities

Corollary 1 and Proposition 2 show that the existence of non-null tilting
vectors certifies that the corresponding inequality is not a facet of QpGq.
In such a case, it would be helpful to derive a facet or at least a higher
dimensional face. This can be achieved by tilting the inequality. The next
proposition shows that facets can be obtained in one tilting operation.

Proposition 3. Let αx ě γpαq be a valid inequality for QpGq. For each
non-trivial facet containing C“pαq, there exists a tilting vector that can be
used to tilt the valid inequality into the facet.

Proof. Since we are considering non-trivial facets of the set covering poly-
tope, the facet can be written α1x ě γpαq through the right scaling. Take
ϵ “ 1 and β “ α1 ´ α as tilting vector. It is indeed a tilting vector since for
each cover c in C“pαq we have βxc “ pα1 ´ αqxc “ γpαq ´ γpαq “ 0. Note
that if αx ě γpαq was already a facet, then the only facet containing C“pαq

is αx ě γpαq and the corresponding tilting vector β is equal to zero.

Although one can obtain any facet containing C“pαq in one tilting oper-
ation, this requires the knowledge of the corresponding tilting vector which
can be as difficult to obtain as the facet. However, any tilting vector can
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be used to increase the dimension of the face of an inequality by at least
one. Since tilting using tilting vectors does not change the right-hand side
of the inequality, tilting operations cannot reach the trivial facets (which do
not have a positive right-hand side). Thus, two special cases are required to
handle the two types of trivial facets (x ď 1 and x ě 0). We first show in
Proposition 4 that tilting with tilting vectors does lead to higher dimensional
faces outside of the two special cases. The cases x ď 1 and x ě 0 are dealt
with in Propositions 5 and 6, respectively. Note that for ease of reading, we
have put the proofs of Propositions 4-6 in Appendix B.

Proposition 4. Let αx ě γpαq be a valid inequality for QpGq such that,
for each element e P E, there is at least one cover in C“pαq that contains e,
and one that does not. Let β be a non-null tilting vector for that inequality.
Then, there exist positive numbers ϵ`, ϵ´ such that the tilted inequalities

pα ` ϵ`βqx ě γpαq (2)
pα ´ ϵ´βqx ě γpαq (3)

are both valid inequalities inducing faces of strictly higher dimension.

Proposition 4 shows that under a unique condition, any non-facet defining
inequality with positive coefficients can be decomposed as the sum of two
non-trivial inequalities that induce faces of higher dimension. When this
condition is not satisfied, it can be decomposed as the sum of one of the
trivial facets (xe ě 0 or xe ď 1) and one other non-trivial inequality. These
particular cases yield similar results and are treated in the next two theorems.
These results are closely related to the theory of lifting inequalities that can
be found in the literature [Padberg, 1973, Wolsey, 1976].

Proposition 5. Let αx ě γpαq be a valid inequality and e an element of E.
Let η be such that η ` γpαq is the minimum of αxc over the set of covers c
not containing e. The following propositions are equivalent:

(i) e is contained in all covers in C“pαq;

(ii) α ´ γpαqxteu is a tilting vector;
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(iii) η is positive and αx ě γpαq is the sum of ´ηxe ě ´η and αx ` ηxe ě

γpαq ` η with both inequalities being valid and the last one inducing a
face of higher dimension.

Proposition 6. Let αx ě γpαq be a valid inequality and e an element of E.
Let η be such that η ` γpαq is the minimum of αxc over the set of covers c
containing e. The following propositions are equivalent:

(i) e is not contained in any cover of C“pαq;

(ii) xteu is a tilting vector;

(iii) η is positive and αx ě γpαq is the sum of ηxe ě 0 and αx´ηxe ě γpαq,
with both inequalities being valid and the last one inducing a face of
higher dimension.

In the context of the separation of a point from QpGq, it is convenient to
be able to decompose a separating inequality as the sum of two valid inequal-
ities inducing faces of higher dimension. Indeed, since the inequalities of the
decomposition sum to the original inequality, then at least one of them must
also separate the point x̂ from QpGq. Thus, given a separating inequality, one
can always generate through tilting another separating inequality of higher
dimension. In the case of Proposition 6, only the non-trivial inequality is
guaranteed to be stronger than the original one (in Proposition 5, the trivial
inequality is always a facet). This is, however, not an issue in practice. In-
deed, in most cases, when a point is separated from QpGq, it is the solution
of a (linear) relaxation of the set covering model. In this case, the separated
point satisfies the trivial inequalities. Thus, the non-trivial inequality of the
decomposition, which is guaranteed to be stronger, must be separating the
point from QpGq.

3.4. Computation of the tilted inequalities

Let us now discuss how to compute the tilted inequalities that do induce
higher dimensional faces. We start by discussing the two special cases treated
in Propositions 5 and 6, where one of the tilted inequalities is one of the
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trivial facets (xe ě 0 or xe ď 1). We then focus on the general case given by
Proposition 4.

Special cases of Propositions 5 and 6: to be able to apply Propo-
sition 4 and rule out the cases treated in Propositions 5 and 6, one needs
to tilt the original inequality αx ě γpαq so that each element e P E is con-
tained in a cover of C“pαq and not contained in another cover of C“pαq.
Assuming that at least one cover c in C“pαq is known (it can be obtained
by minimizing αx over QpGq), then for each element e P E , we know that
either e P c P C“pαq or e R c P C“pαq. Thus, one needs to check only one of
the two conditions of each element e. This can be done for each element by
minimizing αx over QpGq with the additional constraint xe “ 1´xce. Let us
call η the minimal value and x˚ the minimizer. If xce “ 1, then Proposition 5
tells us to replace the original inequality αx ě γpαq by αx` ηxe ě γpαq ` η;
otherwise Proposition 6 tells us to replace the original inequality αx ě γpαq

by αx ´ ηxe ě γpαq. In both cases, the face induced by the new inequality
contains xc and the minimizer x˚ which correspond to one cover containing
e and one cover not containing e. Overall, the special cases can be treated
in one initial call to the set covering oracle plus one call for each element.

General case of Proposition 4: the value of ϵ`, and similarly ϵ´, can
be determined with the following linear program:

max ϵ (4)

s. t. pα ` ϵβqxi ě γpαq @xi P QpGq (5)

ϵ P R. (6)

This linear program can be solved with row generation and deciding whether
there exists a row cutting off a value ϵ˚ amounts to minimize pα`ϵ˚βqx over
QpGq. This is simply a call to a set covering oracle. At the end of the
row generation, the only active row will correspond to a point that satisfies
the tilted inequality to equality and is not orthogonal to β (otherwise ϵ

would disappear from the constraint). This second fact implies that the
point is affinely independent from the points in C“pαq. Note that since
the above linear program has only one variable, no real linear programming
machinery is required to solve it. Thus, the row generation algorithm can
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be replaced by a simple algorithm iteratively calling a set covering oracle.
This algorithm generates a sequence of candidates ϵ˚

1 , ϵ
˚
2 , ... together with a

sequence x˚
1 , x

˚
2 , ... where x˚

i minimizes pα` ϵ˚
i βqx over QpGq. This iterative

algorithm and sequences are illustrated in Figure 4.

α ` ϵ˚
1β

x˚
0

α ` ϵ˚
2β

x˚
1

α ` ϵ˚
3β

x˚
2

α

Figure 4: Illustration of the iterative algorithm solving the problem (4) - (6).

Another approach that finds ϵ` in only one call to a Branch & Cut
algorithm is the following. For each point y P QpGq with βy ă 0, one can
define ϵy “

γpαq´αy
βy and y then satisfies the inequality pα ` ϵyβqx ě γpαq to

equality. This inequality is either invalid if there is a point of QpGq violating
it, or it is the optimal tilted inequality we are looking for. Thus, the point
of QpGq maximizing the smallest violation of this set of inequalities is on
the optimal tilted inequality. Therefore, the following mixed integer linear
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program computes the optimal tilted inequality:

max z (7)

subject to

z ď γpαq ´ pα ´ ϵyβqx @y P QpGq | βy ă 0 (8)

x P QpGq (9)

z P R. (10)

This program can be solved with a Branch & Cut algorithm. One can start
with only one of the constraints (8) and every time an integer solution y˚ with
positive objective value is found, one can add to the problem the constraint
associated with y˚.

4. Taking advantage of the null coefficients in set covering inequal-
ities

In this section, we show how to take advantage of the null coefficients in
an inequality. In particular, we highlight that each null coefficient in a valid
inequality may be associated with a specific tilting vector and that all the
remaining tilting vectors have their support included in the support of the
inequality. The implications are twofold. First, we will show that one can
reduce the study of facets from general inequalities to inequalities without
null coefficients. Second, we show that the number of computations required
to tilt a sparse inequality is significantly reduced compared to the dense case.

4.1. Tilting vectors associated with null coefficients of α

The next theorem highlights the special place that occupies the null co-
efficients of an inequality. In short, for an element e0 P E0pαq, i.e., such that
αe0 “ 0, an important information is to know whether e0 is contained in all
the covers of C“pαq. If this is not the case, all tilting vectors have a null
coefficient for e0. Otherwise, pα ´ γpαqxte0uq is a tilting vector.

Theorem 1. Let αx ě γpαq be a valid inequality for QpGq. Let E˚
0 be the

set of elements of E0pαq contained in all the covers of C“pαq. A basis of the
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space of tilting vectors is pα´γpαqxte0uqe0PE˚
0

Ypβ1, ..., βpq, where pβ1, ..., βpq

is a basis of the tilting vectors satisfying βe0 “ 0 for each e0 P E0pαq.

Proof. The vectors pα´γpαqxte0uqe0PE˚
0

are tilting vectors since the elements
of E˚

0 are contained in all the covers of C“pαq.
A vector α ´ γpαqxte0u is linearly independent from the other vector of

this form and from pβ1, ..., βpq since it is the only vector in the basis that
has a non-zero coefficient for e0. Moreover, it is assumed that the vectors
pβ1, ..., βpq are independent from each other so that they can be part of a
basis. Thus, we only need to show that all tilting vectors can be generated
using the aforementioned vectors.

Let us now consider a tilting vector β. Note that for all e0 in E0pαq Ă E˚
0 ,

there is a cover c in C“pαq not containing e0. Also note that cYte0u belongs
to C“pαq. Thus, βe0 “ βpxcYte0u ´ xcq “ 0 ´ 0 “ 0. Let us denote δe0 the
vector βe0

γpαq
pα ´ γpαqxte0uq. It must be a tilting vector since α ´ γpαqxte0u

is one. Note that δe0 has only null coefficients for the elements in E0pαq

expect for e0 for which the coefficient is βe0 . Thus, the vector β´
ř

e0PE˚
0
δe0

is a tilting vector with null coefficients for all elements in E0pαq. Thus, it
can be decomposed as a linear combination of the pβ1, ..., βpq. Therefore,
β can be decomposed as a linear combination of the pβ1, ..., βpq and the
pα ´ γpαqxte0uqe0PE˚

0
.

The above theorem shows that apart from the vectors pα´γpαqxte0uqe0PE˚
0
,

the other tilting vectors have null coefficients for elements for which α does.
As it turns out, these remaining tilting vectors correspond to the tilting vec-
tors of α1x ě γpαq for the polytope QpGzE0pαqq, where α1 is the vector α

without its zero coefficients. Recall that replacing QpGq by QpGzte0uq is the
same as enforcing xE0 “ 1, i.e., enforcing e0 to be in all covers.

Proposition 7. Let αx ě γpαq be a valid inequality for QpGq. The tilting
vectors satisfying βe0 “ 0 for each e0 P E0pαq are exactly the tilting vectors of
the inequality α1x ě γpαq for the polytope QpGzE0pαqq with additional zero
coefficients for E0pαq where α1 is the vector α without its zero coefficients.
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Proof. The tilting vectors for αx ě γpαq are the vectors that satisfy βxc “ 0
for each cover c of C“pαq. When, the condition βe0 “ 0 for each e0 P E0pαq is
imposed, this is the same as having βxczE0pαq “ 0 for each cover c of C“pαq.
The sets pczE0pαqqcPC“pαq are exactly the covers in C“pα1q for the polytope
QpGzE0pαqq. Thus, the two sets of tilting vectors mentioned in the theorem
are the solution set of the same system of equations. They are thus equal
(up to the additional null coefficients).

By combining the above two results, we can show that the study of set
covering facets can be reduced from arbitrary inequalities to inequalities
without null coefficients. This result is crystallized in Proposition 8 which
contains a necessary and sufficient condition for arbitrary inequalities to be
facets. Although presented in a different manner, this result can be found
in [Laurent, 1989, Cornuéjols and Sassano, 1989] for the special case of rank
inequalities. It is also present in all facet characterizations for special cases
we are aware of, such as those for facets with coefficients 0, 1, and 2 by Balas
and Ng [1989] and 0, 1, 2, and 3 by Saxena [2004] and Sánchez-García et al.
[1998].

Proposition 8. Let αx ě γpαq be a valid inequality for QpGq. It is a facet
if and only if both of the following conditions are satisfied:

(i) α1x ě γpα1q is a facet of the polytope QpGzE0pαqq, where α1 is the
vector α without its zero coefficients;

(ii) for all e P E0pαq, there is a cover of C“pαq not containing e.

With the above proposition, one can see that when searching for charac-
terizations of facets, the study can be restricted to inequalities without null
coefficients. Indeed, the conditions required in the general case will be the
ones from the restricted case together with condition (ii) of Proposition 8.

4.2. Faster computation of tilting vectors for sparse inequalities

Most of the algorithms presented in Section 3.4 rely on calls to a set
covering oracle for QpGq to compute the tilted inequality (the arguments of
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this section also work for the algorithm of the last paragraph of Section 3.4
relying on Branch & Bound). When the oracle is given an objective function
with many null coefficients, one can expect the oracle to run much faster in
practice. Indeed, setting the variables corresponding to these null coefficients
to one does not increase the cost of the solution but covers several of the
subsets to be covered. As a consequence, a smaller set covering problem can
be solved without compromising the optimality of the solution. In particular,
oracle calls for sparse objective functions may be much faster than finding
a minimum cardinality cover. In the case of tilting, the objective function
given to the oracle is always α ` ϵβ for ϵ P r0, 1s. Thus, if the tilting vector
β has its support (set of non-zero coefficients) included in the one of α, the
objective vector is as sparse as α. Note that in this case the tilted inequality,
if non-trivial, will have a support included in the support of α, allowing one
to re-apply tilting to the new equality with the same sparsity properties.

One can accelerate the computation of the tilted inequality when the tilt-
ing vector has its support included in the support of α. However, some tilting
vectors have a larger support than α. This is the case of the tilting vector
α ´ γpαqxteu appearing in Proposition 5 when e is outside of the support
of α. However, one can greatly increase the dimension of original inequality
by using only tilting vectors as sparse as α. In fact, once all sparse tilting
vectors have been exploited, there only remain the aforementioned tilting
vectors of Proposition 5. This fact is apparent in the following corollary of
Theorem 1.

Corollary 2. Let αx ě γpαq be a valid inequality for QpGq. Let E˚
0 be the

set of elements of E0pαq “ te P E | αe “ 0u contained in all the covers
of C“pαq. Assume that the only tilting vector satisfying βe0 “ 0 for all
e0 P E0pαq is β “ 0. Then, a basis of the vector space of tilting vectors is
pα ´ γpαqxte0uqe0PE˚

0
.

Thus, given a sparse initial inequality, one can tilt it into a stronger
inequality by using only tilting vectors whose support is included in the
initial inequality. This will require only calls to a set covering oracle with
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sparse objective functions which can be much quicker. Afterward, Corollary 2
shows that it only remains to check that the conditions in Proposition 5 are
verified for the elements of E0pαq which can be done with |E0pαq| calls to
the set covering oracle. Unfortunately, at each of these steps, the support
of the inequality may increase its size which may slow down the last oracle
calls.

5. Extending necessary and sufficient conditions for facets

In this section, we revisit several conditions from the literature that char-
acterize facets of the set covering polytope. In particular, we extend the
conditions of Cornuéjols and Sassano [1989] and Sassano [1989] from rank
inequalities to arbitrary inequalities. We also give an alternative proof for
the characterization of Balas and Ng [1989] on facets having coefficients and
right-hand side in t0, 1, 2u. We finally complement their result by character-
izing the tilting vectors for these inequalities.

5.1. Necessary conditions of Cornuéjols and Sassano [1989]

In their work, Cornuéjols and Sassano [1989] (Proposition 1) proposed
a condition under which a rank inequality (i.e., inequalities having only
binary coefficients) is not a facet. We derive a new proof showing that under
this condition one can pinpoint a tilting vector. The proof is not specific
to rank inequalities which enables us to generalize their result to arbitrary
inequalities. In this section, we consider inequalities without null coefficients
but null coefficients can be taken into account by using Proposition 8.

To state the extended theorem and its proof, let us introduce a few nota-
tions and concepts. For any vector α and set of elements E, we will denote
αE the vector whose coefficient is αe if e belongs to E and zero otherwise.
Let us also introduce the concept of cutset as it is done in Cornuéjols and
Sassano [1989]. This is based on the representation of set covering prob-
lems using graphs (see Section 2). Let E be a set of elements of E and let
sE “ EzE. For each E Ă E , the cutset SE is the set of nodes adjacent to at
least one node in E and one node in sE, i.e. SE “ NpEq XNp sEq. Let us also
recall that γpα, Sq denotes the minimum value of αx over the binary vectors
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representing a cover of the subsets in S. Note that the result of Cornuéjols
and Sassano [1989] corresponds to the special case α “ 1.

Proposition 9. Let αx ě γpαq be a valid inequality for QpGq with α ą 0.
If there is a non-critical cutset (i.e., for some E Ă E, γpαq “ γpα,SzSEq),
then the inequality αx ě γpαq is not a facet.

Proof. We will prove that if a cutset is not critical, one can derive a tilting
vector.

Let us assume that for some E Ă E , the cutset SE is not critical, i.e.,
γpαq “ γpα,SzSEq. We show that in this case, c ÞÑ αEx

c is constant over
all covers c in C“pαq. To that end, let us consider two covers c and c1 of S
in C“pαq. Note that both cXE and c1 XE cover NpEqzNp sEq and also that
both c1 X sE and c X sE cover Np sEqzNpEq. Thus, both pc X Eq Y pc1 X sEq

and pc1 X Eq Y pc X sEq cover of SzSE . If one of these two covers of SzSE

satisfied αx ą γpαq then the other one would satisfy αx ă γpαq which would
contradict the criticality of SE . Thus, they both satisfy αx “ γpαq. Thus,
we have:

αEx
c1

` α
sEx

c “ γpαq

“ αxc

“ αEx
c ` α

sEx
c,

which implies αEx
c1

“ αEx
c. Thus, c ÞÑ αEx

c is constant over all covers
c in C“pαq. This means that c ÞÑ α

sEx
c “ γpαq ´ αEx

c is also constant.
Thus, one can see that the vector pα

sEx
cqαE ´ pαEx

cqα
sE is a tilting vector

for αx ě γpαq.

In the proof above, we have shown that when a cutset SE is not critical,
then αEx

c “ αEx
c1 for all c, c1 P C“pαq and this enables us to highlight a

tilting vector.
At this point, it is important to note that there are set covering instances

where αEx
c “ αEx

c1 for all c, c1 P C“pαq but where for every E1 Ă E the
cutset SE1 is critical.
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Example. Let us consider a set covering instance with E “ t1, 2, 3, 4, 5, 6u,
a set E “ t1, 2, 3u and α “ 1. The family of subsets S of the set cover-
ing instance is S “ ts Ă E | |s| “ 3 and |s X E| ‰ 2u. There are two
types of inclusion-wise minimal covers: the subset of E of size 3 whose in-
tersection with E has size 1; and the three covers formed of t1, 2, 3, eu for
e P t4, 5, 6u. Among these inclusion-wise minimal covers, only the first type
also has minimum size. Thus, all the minimal sized covers have an inter-
section with E of size 1 which means αEx

c “ αEx
c1 for all c, c1 P C“pαq.

However, every cutset is critical in this set covering instance. For instance,
SzSE “ tt1, 2, 3u, t4, 5, 6uu, which can be covered with t1, 4u.

Thus, Proposition 9 can be extended as follows.

Proposition 10. Let αx ě γpαq be a valid inequality for QpGq with α ą 0.
If there exists a set E Ă E such that αEx

c “ αEx
c1 for all c, c1 P C“pαq then

the inequality αx ě γpαq is not a facet.

5.2. Sufficient conditions of Sassano [1989]

In his work, Sassano [1989] presented a result (Lemma 3.1) giving a
sufficient condition for the rank inequality 1x ě γp1q to be a facet. We
will discuss the underlying ideas of this lemma and generalize it to arbitrary
inequalities. To that end, let us denote Npe, e1q “ Npteuq X Npte1uq the
common neighbors to elements e and e1. The lemma of Sassano [1989] is
built on the following notion of criticality.

Definition 3 (Critical graph, Sassano [1989]). The critical graph G˚ of the
rank inequality 1x ě γp1q has E as node set and contains an edge pe, e1q P E2

if and only if Npe, e1q is critical i.e. γp1q ą γp1,SzNpe, e1qq.

The lemma is then the following:

Lemma 1 (Sassano [1989]). If the critical graph G˚ is connected, then the
inequality 1x ě γp1q is a facet of QpGq.

In order to generalize the lemma to arbitrary inequalities, let us introduce
an adequate notion of criticality.
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Definition 4 (Critical graph). The critical graph G˚ of the inequality αx ě

γpαq has E as node set and contains an edge pe, e1q between two elements for
which αe “ αe1 if and only the following equivalent conditions are verified :

(i) γpαq “ γpα,SzNpe, e1qq ` αe;

(ii) there exists two covers c Y teu and c Y te1u in C“pαq.

Equivalence. (i)ñ(ii) Let us call c a cover of SzNpe, e1q that achieves the
value γpα,SzNpe, e1qq. Then, c Y teu and c Y te1u both cover S and satisfy
αxcYteu “ αxcYte1u “ γpαq, which shows that condition (i) is satisfied.

(ii)ñ(i) Let c Y teu and c Y te1u be two covers of C“pαq. We know that
c covers SzNpteuq since pcq Y teu is a cover. Similarly, it covers SzNpte1uq.
Thus, c covers SzNpe, e1q and its incidence vector satisfies αxc “ αxcYteu ´

αe “ γpαq ´αe. Thus, we must have γpα,SzNpe, e1qq ď γpαq ´αe. Since we
also know that we always have γpα,SzNpe, e1qq ě γpαq ´αe, we have proved
that condition (ii) is verified.

Note that the common neighbors to e and e1 are critical when their
removal induces a maximal decrease of the right-hand side from γpαq to
γpαq´αe. Indeed, we always have γpαq ě γpα,SzNpe, e1qq ě γpαq´αe. Also,
note that the critical graph can only contain edges between pairs of elements
that share the same coefficients in the inequality. Indeed, the existence of
two covers c Y teu and c Y te1u in C“pαq implies that

αe ´ αe1 “ αxcYteu ´ αxcYte1u

“ γpαq ´ γpαq

“ 0.

We are now ready to generalize the lemma of Sassano [1989] as follows.

Lemma 2. Let αx ě γpαq be a valid inequality for QpGq with α ą 0. If each
connected component of its critical graph contains a cover of C“pαq then it
is a facet.

Proof. The existence of two covers cY teu and cY te1u in C“pαq means that
for any tilting vector β, we have:
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βe ´ βe1 “ βxcYteu ´ βxcYte1u

“ 0 ´ 0

“ 0.

Hence, the presence of an edge in the critical graph implies that the two
corresponding coefficients of any tilting vector are equal. Thus, the nodes
in a connected component of the critical graph share the same coefficients
in any tilting vector. If a connected component contains a cover c then
ř

ePc βe “ 0 which means all the coefficients of the component are null since
they are all equal. Thus, if each connected component contains a cover then
the only tilting vector is the null vector and by Corollary 1, the inequality
αx ě γpαq induces a facet of QpGq.

Let us recall that an edge pe, e1q in the critical graph can exist only
when αe “ αe1 . Therefore, the connected components of the critical graph
subdivide the sets of elements with equal coefficients. In some cases, one may
not be able to prove that an inequality is a facet because not all connected
components of the critical graph may contain a cover of C“pαq. However,
even if only one component does, we can show that the coefficients of its
elements in all tilting vectors are null. As shown in the following theorem,
this has consequences on the facets obtainable from the original inequality
αx ě γpαq. More precisely, the coefficients of the facet will be equal to the
ones of α for these elements.

Theorem 2. Let αx ě γpαq be a valid inequality for QpGq with α ą 0. If,
for all tilting vectors β we have βe “ 0 for some element e P E, then all the
non-trivial facets α1x ě γpαq containing the face associated with αx ě γpαq

satisfy α1
e “ αe.

Proof. Since we are considering non-trivial facets of the set covering poly-
tope, the facet can be written α1x ě γpαq through the right scaling. The
vector α1 ´ α is a tilting vector since for each cover c in C“pαq (which is
included in C“pα1q by hypothesis) we have pα1 ´ αqxc “ γpαq ´ γpαq “ 0.
Thus, we have α1

e ´ αe “ pα1 ´ αqe “ 0 which means α1
e “ αe.
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5.3. Inequalities with coefficients and right hand side in {0,1,2}

In their seminal paper, Balas and Ng [1989] studied all the inequali-
ties for the set covering polytope with coefficients and right-hand side in
t0, 1, 2u. In particular, they characterized the ones that induce facets of
the set covering polytope. To understand their characterization, recall that
Eipαq “ te P E |αe “ iu and let us introduce the 2-cover graph corresponding
to an inequality αx ě 2. Its node set is E1pαq and it contains an edge be-
tween e and e1 when E0pαq Y te, e1u is a cover (and thus belongs to C“pαq).
Theorem 3 below states the characterization of Balas and Ng [1989] in a
slightly different manner in order to fit the notations of this article. The
three conditions are indexed with 0, 1, and 2 because they can be associated
with the sets of all the coefficients 0, 1, and 2, respectively.

Theorem 3 (Balas and Ng [1989]). Let αx ě 2 be a valid inequality for
QpGq with α P t0, 1, 2ut|E|u. It is a facet if and only if the following three
conditions hold:

0. for each e P E0pαq, there is a cover of C“pαq not containing e;

1. each connected component of the 2-cover graph contains an odd cycle
(i.e. is not bipartite);

2. for each e P E2pαq, E0pαq Y teu is a cover.

The above theorem characterizes facets corresponding to αx ě 2 with
three conditions. We complement this result by characterizing the tilting
vectors of these inequalities. In particular, each of the three conditions cor-
responds to a family of tilting vectors. In order to understand the tilting
vector characterization, note that a classical result from graph theory is that
a graph is bipartite if and only if it does not contain an odd cycle (see The-
orem 1.2 in Bondy and Murty [1976]). Moreover, if a bipartite graph is
connected, then it has a unique bipartition.
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Theorem 4. Let αx ě 2 be a valid inequality for QpGq with α P t0, 1, 2ut|E|u.
A basis of the space of its tilting vectors is given by the juxtaposition of the
following three families:

0. α ´ 2xteu for each e P E0pαq such that all covers of C“pαq contain e;

1. xU ´ xV for each bipartite connected component of the 2-cover graph
where U, V is the bipartition of the connected component;

2. xteu for each e P E2pαq such that E0pαq Y teu is a not cover.

We will now prove the characterization of tilting vectors, i.e., Theorem 4
which implies the theorem of Balas and Ng [1989] through Corollary 1. For
this proof, we will use a lemma from the graph theory literature. For this
lemma, we will define the notion of basis subgraph of an undirected graph
G “ pU,Eq. An example of graph and basis subgraph is given in Figure 5.
Note that the basis subgraph is not always uniquely defined. Let us denote
G1, . . . Gn the subgraphs corresponding to the connected components of G.
The basis subgraph has U as node set and contains a connected component
G1

i for each Gi. If Gi is bipartite then the edges in G1
i are the edges of a

spanning tree of Gi. If Gi is not bipartite then it contains an odd cycle c.
Let us call e one of the edges of c. Then the edges of G1

i are composed of e
and the edges of a spanning tree of Gi containing cze (thus G1

i contains c).
All of the components G1

i form the basis subgraph of G. In this lemma, we
will not always differentiate an edge pu, vq from its incidence vector. This
incidence vector has a null coefficient for each node of the graph except for
u and v for which it has coefficient one.

Lemma 3. Let G “ pU,Eq be a graph. A basis of the linear span of the
edges in E is given by the edges of a basis subgraph of G.

For completion sake, we give a proof a Lemma 3 in Appendix B. We are
now in a position to prove Theorem 4.

Proof. (Theorem 4) Let us denote Nβ the number of tilting vectors men-
tioned in the theorem. We will prove that 1) these vectors are indeed tilting
vectors of the inequality, 2) they are linearly independent and 3) they can
be used to generate all tilting vectors.

25



(a) A graph with two connected components (b) The corresponding basis subgraph

Figure 5: An undirected graph and its basis subgraph

1) If, for some e P E2pαq, E0pαq Y teu is a not cover, then, no cover of
C“pαq contains e. Thus, according to Proposition 6, xteu is a tilting vector.
Second, the vectors α´2xteu are given by the Proposition 5. Third, note that
the covers in C“pαq take only two forms, E0 Y te2u and E0 Y te1, e

1
1u, where

E0 is a subset of E0pαq, e2 belongs to E2pαq, and e1, e
1
1 belong to E1pαq.

We want to show that for each of these covers c we have pxU ´ xV qxc “ 0.
It is clear for the first type of covers since the support of xU ´ xV and
xE0Yte2u are disjoint. For the second type, by definition of the 2-cover graph,
pe1, e

1
1q is an edge of the 2-cover graph. If this edge is not contained in the

connected component associated with xU ´ xV then again the support of
xU ´xV and xE0Yte1,e1

1u are disjoint. Finally, if the edge pe1, e
1
1q is contained

in the connected component associated with xU ´xV —since this connected
component is bipartite— we either have pe1, e

1
1q P U ˆV or pe1, e

1
1q P V ˆU .

In both cases, we have pxU ´ xV qxc “ ´1 ` 1 “ 0. Thus, xU ´ xV is
orthogonal to all covers of C“pαq which makes it a tilting vector.

2) The tilting vectors in the second and third families are linearly inde-
pendent as all their supports are disjoint. As for the first family of tilting
vectors, they are also linearly independent of the others as each of them
correspond to an element of E0pαq for which they are the only one having a
non-zero coefficient.

3) Let us now derive |E | ´ Nβ linearly independent covers of C“pαq.
Thanks to Proposition 2, this implies that the number of independent tilting
vectors of αx ě 2 is less than Nβ . This, in turn, means that the Nβ tilting
vectors of the theorem can be used to generate all the tilting vectors since
they are independent. The covers will be separated into three families:

0. c Y pE0pαqze0q for each e P E0pαq for which a cover c not containing e
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exists;

1. E0pαq Y te1, e
1
1u for each edge pe1, e

1
1q of the basis subgraph of the

2-cover graph;

2. E0pαq Y te2u for each e2 P E2pαq for which E0pαq Y te2u is a cover.

Note that a basis subgraph has a number of edges equal to its number of
nodes minus its number of bipartite connected components. Thus, one can
see by pairing the above families of covers and the families of tilting vectors
from the Theorem, that we have characterized |E0pαq| ` |E1pαq| ` |E2pαq| “

|E | objects, covers and tilting vectors, in this proof. Hence, there is indeed
a total of |E | ´ Nβ covers of C“pαq in the three previous families.

Let us now discuss the linear independence of the covers in the above
three families. To that end, we will consider their incidence vectors as the
columns of a matrix and show that this matrix is full column rank. If the
first columns are the vectors of the family 0, then those of family 1 and then
family 2, the matrix can be written as follows:

¨

˝

1 ´ J0 1 1
Y1 X 0
Y2 0 J2

˛

‚

In the previous matrix, J0 is composed of an identity matrix of size η0 — the
size of the family 0 — on top of |E0pαq| ´ η0 rows of zeros. J2 is composed
of an identity matrix of size η2 — the size of the family 2 — on top of
|E2pαq| ´ η2 rows of zeros. Finally, X is the edge-node incidence matrix of
the basis subgraph of the 2-cover graph. For each cover c associated with
e0 P E0pαq in family 0, the cover c Y te0u is either a cover of family 2 or it
is equal to E0pαq Y te1, e

1
1u for some edge pe1, e

1
1q of the 2-cover graph. In

this second case, Lemma 3 tells us that the edge pe1, e
1
1q can be written as

a linear combination of the edges in the basis subgraph. Note that the sum
of the coefficients in the combination is 1. Thus, in both cases, the cover
c Y te0u can be written as an affine combination of the covers in families
2 and 1. Therefore, by column manipulations, we can replace the previous
matrix with the following matrix that has the same rank:

¨

˝

´J0 1 1
0 X 0
0 0 J2

˛

‚

Since the matrices J0, J2, and X are full column rank, the complete matrix
must also be.
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6. Concluding remarks

In this work, we introduced a new mathematical object, the tilting vec-
tors, which are derived from a variation of the tilting concepts introduced by
Chvátal et al. [2013]. These vectors can be used to tilt set covering inequal-
ities and provide tools to derive properties and proofs for facets of the set
covering polytope. In particular, thanks to the tilting vectors, we were able
to generalize some facet characterizations from rank inequalities to arbitrary
inequalities. We also showed that the null coefficients in a set covering in-
equality can be treated separately. Indeed, one can study/tilt a set covering
inequality by first ignoring its null coefficients. Special properties or tilting
procedures can then be used to take them into account.

Although the study of the structure of the set covering problem has not
received much recent attention, we believe that it remains an important topic
of research. The set covering problem can be used to model any problem
whose set of solutions X is monotonic (x P X and x ď y implies y P X).
This includes a wide variety of problems, such as covering problems (such as
vertex covering, or feedback sets, for instance), packing problems (such as
set packing, node packing, or independent sets), knapsack problems (single
knapsack, multiple knapsack), and others. Thus, advances in understanding
the structure of the set covering problem can be directly applied to multiple
other optimization problems.
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Appendix A. Tilting for general polyhedra

In this section, we present the tilting procedure introduced by Chvátal
et al. [2013]. Let Q Ă Rn be a polyhedron and let αx ě γpαq be a valid
inequality separating a point from Q and inducing a face F . The main idea
of tilting is to rotate the inequality around its contact points Q in order to
create a separating inequality inducing a face of dimension higher than the
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one of F . This process can be repeated until a facet is obtained. Let us now
formally introduce the concept of rotation of an inequality around a set of
points.

Definition 5. Let πx ě π0 be an inequality satisfied at equality by a set of
points X, i.e., X Ď tx P Rn : πx “ π0u. A rotation of πx ě π0 around X is
another inequality µx ě µ0 such that X Ď tx P Rn : µx “ µ0u.

Now let QK be the vector space defining the implicit equations of Q, i.e.,
QK is the set of the vectors q for which qx is constant over Q. Also assume
that we know a set tx1, ..., xiu of affinely independent vectors of the face F

and a set tq1, ..., qKu of linearly independent vectors of QK. They can both
be empty initially and their size is denoted by I and K, respectively. By
definition, a facet of Q is a face of Q that contains dimpQq affinely inde-
pendent points. Since dimpQq ` dimpQKq “ n, if we can tilt the inequality
αx ě γpαq while extending the sets tx1, ..., xiu and tq1, ..., qKu until their
sizes I and K sum to n, the resulting tilted inequality will be a facet of Q.

Tilting the inequality αx ě γpαq corresponds to rotating it around its
contact points with Q. Instead of considering all the possible degrees of
freedom of rotation at once we will consider only one degree of freedom at a
time and characterize it with a tilting direction. Formally, a tilting direction
is a tuple pβ, µq P Rn ˆ R such that

βxi “ µ @i P t1, ..., Iu. (A.1a)

One can construct rotations of the inequality αx ě γpαq by taking any linear
combination of the inequalities αx ě γpαq and βx ě µ. In particular, for a
scalar λ, let us denote Ipλ, α, β, µq the following rotation:

pλα ` p1 ´ λqβqx ě λγpαq ` p1 ´ λqµ (A.2)

When no confusion is induced, we will simply use Ipλq instead of Ipλ, α, β, µq.
Using the above concepts and a procedure illustrated in Algorithm 1, one can
tilt an inequality until it becomes a facet. In the remainder of this section,
we detail each step of the procedure.

Step 0. Check whether αx ě γpαq is an implicit equation of Q:
this can be done by maximizing αx over Q. If the optimal value is γpαq,
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Algorithm 1 Sketch of the tilting procedure
Step 0: Check whether αx ě γpαq is an implicit equation of Q;
while I ` K ă n do Ź I “ |tx1, ..., xiu| and K “ |tq1, ..., qKu

Step 1: Obtain a tilting direction pβ, µq;
Step 2: Compute λ˚ the smallest scalar such that Ipλ˚q is valid for Q.

At the same time a point x˚ P Q affinely independent from
tx1, ..., xiu and satisfying Ipλ˚q to equality will be computed;

if Ipλ˚q is an implicit equation of Q then
Step 3a: add the coefficient vector Ipλ˚q to tq1, ..., qKu;

else Ź Ipλ˚q is a proper face of Q
Step 3b: add x˚ to tx1, ..., xiu and replace the inequality

to be tilted by Ipλ˚q

then αx ě γpαq is an implicit equation. Otherwise, as a by-product, the
maximization yields a point sx of Q satisfying αsx ą γpαq. This makes sx

affinely independent from the face F .
Step 1. Obtaining a tilting direction: to that end, let us consider a

non-null solution pβ, µq of the following system:

βqk “ 0 @k P t1, ...,Ku (A.3a)

βxi “ µ @i P t1, ..., Iu (A.3b)

βsx “ µ. (A.3c)

Note that if the system above admits the null vector as a unique solution,
then the inequality αx ě γpαq is already a facet [Chvátal et al., 2013].

Step 2. Tilt the inequality: Upon finding a tilting direction pβ, µq,
we find the smallest scalar λ˚ such that the inequality Ipλ˚q remains a valid
inequality for Q. The resulting inequality is called the tilted inequality. Note
that λ˚ must be greater than 0 because for all λ ă 0, Ipλq is not valid for sx

and thus not valid for Q. An illustration of an original inequality, a tilting
direction pβ, µq and a tilted inequality is provided in Figure A.6. This tilting
step revolve around the following central result of the tilting routine.

Theorem 5. The tilted inequality Ipλ˚q is satisfied to equality by a point x˚

of Q affinely independent from tx1, ..., xiu.
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α

β

λ˚α ` p1 ´ λ˚qβ

sx

x1

x˚

Figure A.6: A valid inequality (blue) for a polyhedron with normal vector α, a tilting
direction β (green), and the corresponding tilted inequality (red).

Proof. Let us first exclude the case λ˚ “ 0 since in this case we can take
x˚ “ sx.

Let pλjqjPN be a sequence converging towards λ˚ with λ˚ ą λj ą 0. By
definition of λ˚, for every term in this sequence, the inequality Ipλjq is not
valid for Q. Thus, let us associate each λj with a point yj of Q not satisfying
the inequality Ipλjq. Let us note that since the inequality Ipλjq is not valid
for Q, either a vertex of Q does not satisfy it, in which case, we set yj equal to
this vertex; or an extreme ray r of Q exists such that pλjα`p1´λjqβqr ă 0,
in which case, we set yj to be xi ` r (which does not satisfy Ipλjq since xi

satisfies it to equality).
Now, since there is only a finite number of vertices and extreme rays of

Q, the sequence pxjqjPN is a converging sequence over a finite set. Thus, it
contains a constant sub-sequence. Let us define the candidate point x˚ as
the unique point in this constant sub-sequence and let us denote pλ1

jqjPN the
associated sub-sequence of λj .

If x˚ could be written as an affine combination of the points in tx1, ..., xiu
then it would satisfy to equality all the inequalities Ipλ1

jq. Since this is not
true by construction of the sequence pxjqjPN and thus by construction of x˚,
the point x˚ is affinely independent from tx1, ..., xiu.

Let us now finish the proof by showing that x˚ is satisfying the tilted
inequality Ipλ˚q to equality. To that end let us denote δpλq “ pλα ` p1 ´
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λqβqx˚ ´ λγpαq ` p1 ´ λqµ. Since the tilted inequality Ipλ˚q is valid for Q
we have δpλ˚q ě 0. Moreover, since the sequence pλ1

jqjPN converges towards
λ˚ and x˚ does not satisfy Ipλ1

jq, the sequence pδpλ1
jqqjPN is a sequence of

negative numbers converging towards δpλ˚q. Thus, δpλ˚q “ 0 which means
that the point x˚ satisfies the tilted inequality Ipλ˚q to equality.

The result of Theorem 5 relies on two properties of the point sx: sx P Q
and sx is affinely independent from tx1, ..., xiu, which is implied by the fact
that this point does not satisfy the inequality αx ě γpαq to equality. To
perform the computation of λ˚ one can solve a non-linear program or make
a sequence of calls to an oracle optimizing a linear function over Q. These
methods also provide the point x˚ as a by-product. We refer to the works
of Espinoza et al. [2010] and Chvátal et al. [2013] for a presentation on how
to compute λ˚ for general polyhedra. A tailored method for the set covering
case is discussed in Section 3.4.

Step 3a. Case: Ipλ˚q is an implicit equation of Q: this can be
identified by maximizing pλ˚α ` p1 ´ λ˚qβqx over Q. If the result of this
maximization equals λ˚γpαq ` p1 ´ λ˚qµ, then the tilted inequality is an
implicit equation of Q. Otherwise, it induces a proper face. Note that,
when Ipλ˚q is an implicit equation, we have λ˚ “ 0 as otherwise sx can be
shown to satisfy αsx “ γpαq (which is by hypothesis false) using the following
identities:

αsx “
λ˚αsx

λ˚

“
pλ˚α ` p1 ´ λ˚qβqsx ´ p1 ´ λ˚qβsx

λ˚

“
λ˚γpαq ` p1 ´ λ˚qµ ´ p1 ´ λ˚qµ

λ˚

“γpαq.

Thus, in this case the tilted inequality Ipλ˚q is in fact βx ě µ. Equations
(A.3a) ensure that β is linearly independent from the set tq1, ..., qKu. It can
thus be added to it as a new independent implicit equation. The known
dimensions of the space of implicit equations has been increased and one
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can retry tilting the inequality αx ě γpαq with a new solution of system
(A.3a)-(A.3c) once it has been updated with the new implicit equation. The
point sx can remain unchanged.

Step 3b. Ipλ˚q is a proper face of Q: Since Ipλ˚q is a rotation of the
original inequality, its induced face contains tx1, ..., xiu. Moreover, Theorem
5 shows it also contains a new affinely independent point x˚. Thus, the point
x˚ can be added to tx1, ..., xiu, effectively increasing the known dimensions
of the induced face. One can continue the tilting procedure by tilting the
inequality Ipλ˚q. The only missing piece to continue the procedure is a point
sx to define the system (A.3a)-(A.3c). If λ˚ ‰ 0, it can remain unchanged;
otherwise sx can be taken as the maximizer of pλ˚α ` p1 ´ λ˚qβqx over Q
which has already been computed to verify if Ipλ˚q is an implicit equation
or a proper face of Q.

Appendix B. Proofs of the unproven theorems propositions and
lemmas

We now repeat Proposition 2 from Section 3.2 and present its proof.
Proposition 2. Let αx ě γpαq be a valid inequality for QpGq, let Dα be

the dimension of its induced face, and let Dβ be the dimension of the space
of its tilting vectors. Then, Dα ` Dβ “ |E | ´ 1.

Proof. By definition, the dimension of the induced face is N ´ 1 where N is
the number of affinely independent points of QpGq that satisfy αx “ γpαq.
Let Mα be the matrix whose rows are the covers in C“pαq, with ImpMαq

being its image, i.e., tx | Dy, x “ Mαyu, and KerpMαq being its kernel,
i.e., tx | Mαx “ 0u. We will show that N “ dimpImpMαqq and, since
by definition the space of tilting vectors is KerpMαq, we obtain from the
rank theorem of matrices that dimpImpMαqq ` Dβ “ |E |, which implies
Dα ` Dβ “ |E | ´ 1.

Thus, let us prove that N “ dimpImpMαqq. First, the number of affinely
independent points of QpGq that satisfy αx “ γpαq is also the number of
affinely independent covers in C“pαq. Second, since the null vector does
not satisfy α0 “ γpαq, any affinely independent points of the hyperplane
αx “ γpαq are equivalently linearly independent. Thus, N is the number
of linearly independent covers of C“pαq. This is exactly the dimension of
ImpMT

α q which is equal to dimpImpMαqq.
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We now repeat the three theorems of Section 3.3 and present their proofs.
Proposition 4. Let αx ě γpαq be a valid inequality for QpGq such that,

for each element e P E, there is at least one cover in C“pαq that contains e,
and one that does not. Let β be a tilting vector for that inequality. Then,
there exist positive numbers ϵ`, ϵ´ such that the tilted inequalities

pα ` ϵ`βqx ě γpαq (B.1)
pα ´ ϵ´βqx ě γpαq (B.2)

are both valid inequalities inducing faces of strictly higher dimension.

Proof. Sketch of the proof: we will show that, for ϵ P rϵmin, ϵmaxs, the in-
equality pα ` ϵβqx ě γpαq is valid for QpGq. Then we will show that with
ϵ´ “ ´ϵmin and ϵ` “ ϵmax, we obtain faces of higher dimension.

We will make the proof only for ϵ` as the ϵ´ case is similar. Just note that
the value of ϵmin in the proof corresponding to ϵ´ would be the following:

ϵmin “ max
xcPQpGq,βxcą0

γpαq ´ αxc

βxc

The inequality pα ` ϵ`βqx ě γpαq is invalid for a cover c if and only if
βxc ă 0 and ϵ` ą

γpαq´αxc

βxc . Thus, let us define ϵmax as follows:

ϵmax “ min
xcPQpGq,βxcă0

γpαq ´ αxc

βxc

ϵmax positive: there are finitely many covers and for the covers for
which γpαq ´ αxc “ 0 we also have βxc “ 0. Thus, ϵmax is the minimum
over finitely many positive numbers which makes it positive.

ϵmax finite: we now show that under the assumption that for each
element e P E there is a cover in C“pαq that contains e and one that does
not, ϵmax is finite. Since β ‰ 0, it has at least one non-zero coefficient. The
corresponding element is contained in a cover of C“pαq for which βxc “ 0.
Thus, β has at least one other coefficient of the opposite sign and thus has at
least one negative coefficient. Thus, for high enough values of ϵ`, the vector
α ` ϵ`β has a negative coefficient for an element e1. There is at least one
cover c in C“pαq not containing e1, thus, c X te1u is a cover satisfying:

pα ` ϵ`βqxcXte1u “pα ` ϵ`βqxc ` pα ` ϵ`βqe1

“γpαq ` ϵ`0 ` pα ` ϵ`βqe1

ăγpαq.
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Thus, for values of ϵ` where α ` ϵ`β has a negative coefficient, the tilted
inequality (2) is not valid. Thus, ϵmax is finite as it is upper bounded by the
largest value of ϵ such that α ` ϵβ ě 0.

Higher dimension face: let us take ϵ` “ ϵmax and let c˚ be a cover
minimizing γpαq´αxc

βxc when βxc ă 0. We will show that the face of the tilted
contains C“pαq Y tc˚u. First, ϵmax is defined so that every minimizer such
as c˚ will satisfy the tilted inequality to equality. On the other hand, the
covers in C“pαq also satisfy the tilted inequality (2) to equality as they are
orthogonal to β (remember that the goal of tilting is to rotate the original
inequality around its contact points with QpGq in order to keep them in the
face). Moreover, βxc˚

‰ 0 thus the cover c˚ is affinely independent of the
covers in C“pαq. Thus, the tilted inequality induces a face of strictly higher
dimension.

Proposition 5. Let αx ě γpαq be a valid inequality and e an element of
E. Let η be such that η ` γpαq is the minimum of αxc over the set of covers
c not containing e. The following propositions are equivalent:

(i) e is contained in all covers in C“pαq;

(ii) α ´ γpαqxteu is a tilting vector;

(iii) η is positive and αx ě γpαq is the sum of ´ηxe ě ´η and αx ` ηxe ě

γpαq ` η with both inequalities being valid and the last one inducing a
face of higher dimension.

Proof. piq ñ piiq If e is contained in all the covers in C“pαq then for each
cover in C“pαq, pα ´ γpαqxteuqx “ 0. Thus, the vector α ´ γpαqxteu is a
tilting vector.

piq ñ piiiq Suppose that e is contained in all the covers in C“pαq. Then,
all the covers c not containing e must satisfy αxc ą γpαq. Thus, η is positive.
Let us now show that the tilted inequality αx ` ηxe ě γpαq ` η is valid for
QpGq. For all x P QpGq we have αx ě γpαq. Thus, the incidence vector of
each cover containing e satisfies αx`ηxe ě γpαq`η. Moreover, by definition
of η, the incidence vector of each cover not containing e satisfies αx ě γpαq`η
and therefore also αx ` ηxe ě γpαq ` η. Thus, αx ` ηxe ě γpαq ` η is valid
for QpGq. Finally, let c˚ be a cover that minimizes αxc over the set of covers
c not containing e. It must satisfy αx ` ηxe ě γpαq ` η to equality. Note
that all the covers c in C“pαq also satisfy αx`ηxe ě γpαq `η to equality as
they contain e. Thus, the face associated with αx` ηxe ě γpαq ` η contains
C“pαq Y tc˚u. Since c˚ contains e while the covers in C“pαq do not, the

37



cover c˚ is affinely independent of the covers in C“pαq. Thus, the tilted
inequality induces a face of strictly higher dimension.

piiiq ñ piq Suppose that αx ě γpαq is the sum of ´ηxe ě ´η and another
valid inequality with η ą 0. Since both inequalities of the decomposition are
valid for QpGq, then the incidence vector of of QpGq satisfying αx “ γpαq

(i.e., corresponding to covers of C“pαq) must satisfy both inequalities to
equality. Thus, we have in particular ´ηxe “ ´η which implies xe “ 1 since
η ą 0. Thus, e is contained in all covers in C“pαq.

piiq ñ piq Suppose that α ´ γpαqxteu is a tilting vector. For each cover c
in C“pαq, we have αxc “ γpαq and pα´γpαqxteuqxc “ 0. Thus, γpαqxteuxc “

γpαq which means xce “ 1.

Proposition 6. Let αx ě γpαq be a valid inequality and e an element of
E. Let η be such that η ` γpαq is the minimum of αxc over the set of covers
c containing e. The following propositions are equivalent:

(i) e is not contained in any cover of C“pαq;

(ii) xteu is a tilting vector;

(iii) η is positive and αx ě γpαq is the sum of ηxe ě 0 and αx´ηxe ě γpαq,
with both inequalities being valid and the last one inducing a face of
higher dimension.

Proof. piq ô piiq e is not contained in any cover of C“pαq if and only if for
each cover in C“pαq, xxteu “ xe “ 0 which is the definition of xteu being a
tilting vector.

piq ñ piiiq Suppose that e is not contained in any cover of C“pαq. Then,
all the covers c containing e must satisfy αxc ą γpαq, thus η is positive. Let
us now show that the tilted inequality αx ´ ηxe ě γpαq is valid for QpGq.
For all x P QpGq we have αx ě γpαq. Thus, the incidence vector of each
cover not containing e satisfies αx ´ ηxe ě γpαq. Moreover, by definition of
η, the incidence vector of each cover containing e satisfies αx ě γpαq`η and
thus also αx´ηxe ě γpαq. Thus, αx´ηxe ě γpαq is valid for QpGq. Finally,
let c˚ be a cover that minimizes αxc over the set of covers c containing e.
It must satisfy αx ´ ηxe ě γpαq to equality. Note that all the covers c in
C“pαq also satisfy αx ´ ηxe ě γpαq to equality as they do not contain e.
Thus, the face associated with αx´ηxe ě γpαq contains C“pαqYtc˚u. Since
c˚ does not contain e while the covers in C“pαq do, the cover c˚ is affinely
independent of the covers in C“pαq. Thus, the tilted inequality induces a
face of strictly higher dimension.
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piiiq ñ piq Suppose that αx ě γpαq is the sum of ηxe ě 0 and another
valid inequality with η ą 0. Since both inequalities of the decomposition are
valid for QpGq then the incidence vector of of QpGq satisfying αx “ γpαq

(i.e. corresponding to covers of C“pαq) must satisfy both inequalities to
equality. Thus, we have in particular ηxe “ 0 which implies xe “ 0 since
η ą 0. Thus, e is not contained in any cover of C“pαq.

We now prove the Lemma 3 given in Section 5.3.
Lemma 3. Let G “ pU,Eq be a graph. A basis of the linear span of the

edges in E is given by the edges of a basis subgraph of G.

Proof. Recall that the incidence vector of an edge pu, vq has a null coefficient
for each node of the graph except for u and v for which it has coefficient one.

We will separate the proof into two parts: 1) linear independence of the
edges of the basis subgraph, 2) every edge of the main graph can be written
as a linear combination of the edges of the basis subgraph.

1) We have linear independence of the edges of the different connected
components as the edges in these groups have disjoint supports. We will
thus analyze them separately.

Let us consider a connected graph. The edges of this graph are linearly
independent if and only if the following linear system has only the null vector
as solution. The system contains one variable for each edge and one equation
for each node. The equation at a node asks for the sum of the variables of
the incident edges to be equal to zero. Suppose one node u has exactly one
incident edge e (u is a leaf of the graph). Then, the equation corresponding
to u asks for the variable corresponding to e to be equal to zero. Setting
this variable to zero equates to deleting it from the system and then the
equation corresponding to u is trivially satisfied and can be removed too.
The remaining system correspond to a graph similar to the initial one except
u and e have been removed. Thus, when checking for the linear independence
of the edge of a graph, the leaves of the graph can be removed.

Let us now consider a bipartite connected component of the main graph.
The corresponding component in the basis subgraph is a spanning tree. Thus,
the leaves can be removed iteratively until the whole tree is deleted thus
showing that all the edges are linearly independent. In a similar fashion, for
non-bipartite connected components, the leaves of the corresponding com-
ponent in the basis subgraph can be removed until it is reduced to an odd
cycle. The edges of an odd cycle are linearly independent (can be proved by
induction on the size).
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2) Let us show now that every edge of the main graph can be written
as a linear combination of the edges of the basis subgraph. First, let us
consider an edge e a bipartite component. The corresponding component
in the basis subgraph is a spanning tree. Thus, either e is part of this
tree or its addition creates a cycle. The created cycle has an even number
of edges since the considered component of the main graph is bipartite.
Thus, by assigning alternating `1 and ´1 coefficients along the edges of the
cycle, one can show that the edge e is linearly dependent of the edges of the
spanning tree. Second, let us consider a non-bipartite connected components
with k nodes. All the edges of the component have their endpoints inside
the component, thus the linear span of these edges has dimension at most k.
Since, the corresponding component in the basis subgraph contains k linearly
independent edges, these edges generate all the edges of the component of
the main graph.
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