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Visual attention matters during word recognition: A Bayesian modeling
approach

Thierry Phénix, Émilie Ginestet, Sylviane Valdois, and Julien Diard
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France

It is striking that visual attention, the process by which attentional resources are allocated in
the visual field so as to locally enhance visual perception, is a pervasive component of models
of eye movements in reading, but is seldom considered in models of isolated word recognition.
We describe BRAID, a new Bayesian word Recognition model with Attention, Interference
and Dynamics. As most of its predecessors, BRAID incorporates three sensory, perceptual and
orthographic knowledge layers together with a lexical membership submodel. Its originality
resides in also including three mechanisms that modulate letter identification within strings:
an acuity gradient, lateral interference and visual attention. We calibrated the model such that
its temporal scale was consistent with behavioral data, and then explored the model’s capacity
to generalize to other, independent effects. We evaluated the model’s capacity to account for
the word length effect in lexical decision, for the optimal viewing position effect and for the
interaction of crowding and frequency effects in word recognition. We further examined how
these effects were modulated by variations in the visual attention distribution. We show that
visual attention modulates all three effects and that a narrow distribution of visual attention
results in performance patterns that mimic those reported in impaired readers. Overall, the
BRAID model could be conceived as a core building block, towards the development of inte-
grated models of reading aloud and eye movement control, or of visual recognition of impaired
readers, or any context in which visual attention does matter.

Keywords: Bayesian modeling, word recognition, lexical decision, visual attention, optimal
viewing position

Reading is a complex phenomenon that draws on a con-
stellation of perceptual and cognitive processes. The com-
plexity of the whole system led to focus on specific aspects
of the reading process, so that computational models of eye
movement control, word recognition, and reading aloud were
mostly independently developed. As the core process that
uniquely characterizes reading (Norris, 2013), word recog-
nition is a core component of all specific models whatever
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the domain of reading on which they focus (eye movement
control or reading aloud). However, because they have been
developed to primarily account for specific phenomena in
specific tasks, current models differ in the assumptions they
feature about word recognition.

Many models have already been designed to specifically
account for visual word recognition (for reviews, see Norris
(2013), Phénix et al. (2016), and Reichle (2021)). Among
the most notable are the Interactive Activation model (IA;
McClelland & Rumelhart, 1981; Rumelhart & McClelland,
1982), the Activation Verification model (AVM; Paap et al.,
1982), the Dual and Multiple Read-Out models (DROM
and MROM; Grainger & Jacobs, 1994, 1996; Jacobs et al.,
1998), the Multiple Object Recognition and attention SELec-
tion model (MORSEL; Mozer & Behrmann, 1990), the Spa-
tial Coding model (SOLAR and SCM; Davis, 2010), the Se-
quential Encoding Regulated by Inputs to Oscillations within
Letter units model (SERIOL; C. Whitney, 2001; C. Whit-
ney & Lavidor, 2005), the Open-Bigrams model (OB and
Overlap OB; Grainger & van Heuven, 2003; Grainger et al.,
2006), the Bayesian Reader model (BR; Norris, 2006; Norris
& Kinoshita, 2012; Norris et al., 2010), the Overlap model
(Gomez et al., 2008), and the Letter in Time and Retinotopic
Space model (LTRS; Adelman, 2011). Collectively, these
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models of isolated word recognition have successfully simu-
lated a wide range of empirical findings from a wide range of
experimental tasks. However, they were developed without
consideration on how they might contact with models of eye-
movement control or reading aloud and they only focused
on expert reading, while mostly ignoring constraints from
pathological reading or reading development.

Besides, models of reading aloud (Coltheart et al., 2001;
Perry et al., 2007, 2010; Plaut et al., 1996; Seidenberg & Mc-
Clelland, 1989), reading acquisition (Pritchard et al., 2018;
Ziegler et al., 2014), and eye movement control (Engbert
et al., 2002, 2005; Reichle et al., 1999, 2009) do incorpo-
rate a visual word recognition submodel but this submodel
is usually less deeply specified than in dedicated models of
word recognition. It is further puzzling that, while the role
of visual attention in reading is central in models of eye-
movement control, no visual attention component is postu-
lated by models of word recognition and reading aloud (with
notable exceptions in MORSEL (Mozer & Behrmann, 1990)
and the Multi-Trace Model (MTM; Ans et al., 1998), re-
spectively). Recent evidence that the role of visual atten-
tion in skilled word processing may have been underesti-
mated (Besner et al., 2016; Lachter et al., 2004; Waechter
et al., 2011), alongside evidence that visual attention affects
not only visual word processing when impaired (Bosse et al.,
2007; Habekost, 2015; Perry & Long, 2022) but also read-
ing acquisition (Franceschini et al., 2012; Gavril et al., 2021;
Pasqualotto et al., 2022; Valdois, Roulin, & Bosse, 2019),
strongly supports its role in visual word recognition. There-
fore, our main goal in the current paper was to develop a new
visual word recognition model that capitalizes on previous
word recognition models and incorporates visual attention as
a key component of single word processing. To fulfill this ob-
jective, we introduce the BRAID model (for “Bayesian word
Recognition with Attention, Interference and Dynamics”), an
original probabilistic and hierarchical model of word recog-
nition.

The rest of this paper is structured as follows. We first
conduct an overview of previous word recognition models
to define the general, conceptual architecture of the BRAID
model. As a synthesis of previous models, BRAID for the
first time incorporates all three mechanisms of visual acuity,
lateral interference and visual attention. Second, we translate
this architecture into a probabilistic model, and show how,
from the model, Bayesian inference automatically yields for-
mal expressions for letter identification, word recognition,
and lexical decision. Third, we evaluate the model’s capac-
ity to account for key findings in isolated word recognition.
We show that the model successfully accounts for context
effects on letter perception (including the word and pseudo-
word superiority effect) and for the frequency, neighborhood
frequency, and transposed-letter priming effects in lexical de-
cision. We then focus on three behavioral effects that more

specifically involve visual and visual attentional mechanisms
and show how well the model simulates the length effect in
lexical decision, the optimal viewing position, and crowding
effects in word recognition. Last, BRAID provides the op-
portunity to examine how variations in the distribution of vi-
sual attention affect word recognition. While previous word
recognition models concentrated on fluent reading in expert
readers, we show that BRAID performance in a condition
of reduced visual-attention distribution parallels the atypical
behavior observed in some forms of acquired and develop-
mental dyslexia.

Theoretical background of the conceptual BRAID model

Since the IA model (McClelland & Rumelhart, 1981;
Rumelhart & McClelland, 1982), it is assumed that word
recognition involves a set of three interacting levels coding
for visual features, letters, and words. This “minimal” archi-
tecture has been adopted in most models of reading aloud,
such as the Dual Route Cascaded model (DRC; Coltheart et
al., 2001), the Connectionist Dual Process family of mod-
els (CDP, CDP+, CDP++; Perry et al., 2007, 2010, 2014),
and the Triangle model (Plaut et al., 1996; Seidenberg &
McClelland, 1989). As most of its predecessors, BRAID
includes three dynamically evolving and interacting layers,
that are the “letter sensory” layer, concerned with extraction
of sensory features of letters, the “letter perceptual” layer,
concerned with encoding and maintaining letter identity and
position, and the “lexical knowledge” layer, concerned with
encoding known orthographic words and their relative fre-
quencies. In BRAID, like in IA and most previous models,
the flow of information between the letter perceptual layer
and the lexical knowledge layer is bi-directional.

Other aspects of word recognition models are less consen-
sual, namely the way letter position is encoded, the nature of
the visual mechanisms involved and whether word recogni-
tion is modulated by visual attention. These issues are dis-
cussed below to justify the theoretical assumptions chosen as
ingredients of the BRAID model.

Letter position encoding

The way letter position is encoded within words is a mat-
ter of debate in current word recognition models. The IA
assumption of position-specific strict letter encoding was
adopted by some subsequent models of word recognition
(Norris, 2006) and by most models of reading aloud (Ans
et al., 1998; Coltheart et al., 2001; Perry et al., 2007, 2010;
Seidenberg & McClelland, 1989). But these models could
hardly account for the capacity of human readers to process
wrdos in wchih the oedrr of ltteres has been changed. A crit-
ical issue in subsequent work was to determine how letter
position is coded within words. Some models have adopted
a relative coding scheme, including SERIOL (C. Whitney,
2001), the open-bigram model (Grainger & van Heuven,
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2003; Grainger et al., 2006), and the Local Combination
Detector model (LCD; Dehaene et al., 2005). The open-
bigram approach successfully accounted for a wide range of
empirical findings (Grainger and van Heuven, 2003; Peres-
sotti and Grainger, 1999; Schoonbaert and Grainger, 2004;
Snell et al., 2018; C. Whitney et al., 2012; see, however
Kinoshita and Norris, 2013) and was used to develop new
dual route accounts of orthographic processing (Grainger &
Ziegler, 2011).

However, other classes of word-recognition models (see
Norris (2013) and Frost (2012) for reviews) assume that the
representation of a letter is distributed across adjacent posi-
tions in the word letter string (Davis, 2010; Gomez et al.,
2008; Kinoshita & Norris, 2009, 2012; Norris & Kinoshita,
2008; Norris et al., 2010). Distributed position-coding mod-
els have shown that they could account for a wide range
of priming data on letter transposition without postulating
any specialized orthographic representation, such as open-
bigrams (Kinoshita & Norris, 2013).

The ability of these models to account for most empirical
findings lead us to question the open-bigram approach. Four
issues have been raised. First, it was argued that the open-
bigram models are less parsimonious than the distributed
position coding models as they require postulating two lev-
els of orthographic processing: a level of position-specific
letter encoding to extract bigrams and a level of position-
relative letter encoding corresponding to the open-bigrams
themselves (Gomez et al., 2008; Kinoshita & Norris, 2013).
Second, while models that assume serial processing, such
as SERIOL (C. Whitney, 2001), can account for the gen-
eration of open-bigrams, the mechanisms involved in their
generation are not made explicit in parallel processing mod-
els of word recognition (C. Whitney & Cornelissen, 2008).
It was further pointed out that open-bigram coding was well
suited to orthographic processing in European languages but
could hardly generalize to other orthographic systems, such
as Semitic languages in which letter-position coding is less
flexible (Frost, 2012). Last, the open-bigram approach is
reading-specific while distributed position-coding appears as
a more basic property of the visual system that is involved
in object recognition more generally (Pelli et al., 2006).
BRAID therefore adopts noisy, distributed position coding as
a generic property of the visual system that applies to word
recognition.

The visual mechanisms involved in word recognition

Current models further differ in the visual mechanisms in-
volved in letter identity processing. Whereas a visual acuity
gradient is a necessary component of models of eye move-
ment control, such as the E-Z Reader (Reichle et al., 2003),
the SWIFT model (Engbert et al., 2002, 2005), or the OB1-
Reader model (Snell et al., 2018), visual acuity was consid-
ered outside the scope of most models of word recognition

and reading aloud except SERIOL (C. Whitney, 2001), SCM
(Davis, 2010), and AVM (Paap et al., 1982). Does it mean
that the acuity drop-off with eccentricity is not relevant in
these latter models? Certainly not. The absence of acuity
gradient limits the number of effects they can simulate. In-
deed, the acuity drop-off with eccentricity cannot be ignored
when focusing on either the length or visual field effect in
reading (Veldre et al., 2023; C. Whitney, 2001; C. Whitney
& Lavidor, 2005). It is also one of the determinants of the op-
timal viewing position (OVP) effect, i.e., variations in word
recognition depending on where in the word the eyes are fix-
ating (Nazir et al., 1992; Rayner, 1986, 2009). To extend
the scope of applicability of the BRAID model compared to
extant models, it will feature an acuity gradient.

There is also ample evidence that letter identification
within words is affected by crowding (Bouma, 1970; Huck-
auf and Nazir, 2007; Martelli et al., 2009; Pelli and Tillman,
2007; Pelli et al., 2007; see, for a review, D. Whitney and
Levi, 2011). Crowding reduces information on the identity
of a target letter when surrounded by other letters. This is
thought to arise from a competition between the features of
adjacent letters and those of the target (Huckauf et al., 1999;
Pelli & Tillman, 2008; Pelli et al., 2004). As a direct con-
sequence, the first and last letters of the word that have only
one flanking letter are more easily identified than the inner
letters that suffer lateral interference from two flanking let-
ters (e.g., Averbach & Coriell, 1961; Bouma, 1970; Forster,
1976; Humphreys et al., 1990; Mason, 1975; Pitchford et al.,
2008; Schoonbaert & Grainger, 2004; Tydgat & Grainger,
2009). More generally, crowding affects the visual identifi-
cation of objects in clutter (Pelli & Tillman, 2007; D. Whit-
ney & Levi, 2011). So, crowding is not specific to letters
(Chicherov et al., 2014) but in particular applies to letters
within words.

Given its sensitivity to the physical properties of letter
strings, such as eccentricity or inter-letter spacing (Martelli
et al., 2009; Pelli et al., 2004), crowding is thought to arise in
early visual processing before letter identification (Huckauf
& Nazir, 2007; Huckauf et al., 1999). Crowding is further
sensitive to higher-level processes. Crowding effects dimin-
ishes when string familiarity increases, suggesting interac-
tions with high-level orthographic knowledge (Huckauf &
Nazir, 2007). Accordingly, crowding affects reading fluency
in skilled readers (Martelli et al., 2009; Pelli et al., 2007) and
was reported as stronger in beginning readers and dyslexic
individuals (Bouma & Legein, 1977; Callens et al., 2013;
Crutch & Warrington, 2009; Kwon et al., 2007; Pernet et al.,
2006; Spinelli et al., 2002).

As crowding refers to identity modulation depending on
letter position in the string, the ability of word recognition
models to account for crowding effects directly follows from
their encoding assumptions about letter identity and letter po-
sition. In some accounts of the reading system, crowding is



4 PHÉNIX, GINESTET, VALDOIS AND DIARD, PSYCHONOMIC BULLETIN & REVIEW, 2025

viewed as an independent mechanism that only affects letter
identity, as acuity does (Grainger et al., 2016). Such inde-
pendent coding is assumed in the OB1-Reader (Snell et al.,
2018) and SCM (Davis, 2010) models. In these models, letter
position encoding within words has no impact on letter iden-
tity, so that specific mechanisms that cause weaker activation
of the inner than the outer letters are implemented to mimic
crowding effects. In contrast, other theoretical frameworks
postulate that letter identity uncertainty is just a by-product
of letter position coding (Gomez et al., 2008; Norris & Ki-
noshita, 2012; Norris et al., 2010). In these latter models,
position information uncertainty is coded through redistri-
bution of letter identity information over positions, in such
a way that letter-identity information leaks to adjacent posi-
tions, thus causing letter identity uncertainty at each position.

Beyond the fact that the second class of models offers a
more parsimonious account of the crowding phenomenon,
they further provide a quite natural explanation of letter iden-
tity and letter position uncertainty in assuming that both re-
sult from word processing through a noisy channel (Norris &
Kinoshita, 2012). In line with these models, BRAID adopts
a distributed position coding scheme that causes uncertainty
about letter identity and would thus account for crowding ef-
fects in word recognition.

The role of visual attention

Visual attention allows portions of the visual stimulus to
be more thoroughly processed than others (M. A. Cohen et
al., 2012). Its role is all the more critical when several visual
objects are simultaneously available for processing (see, for a
review, Carrasco, 2011). Visual attention then acts as a filter
that enhances sensory information within the attended region
to overcome the limited processing capacity of the visual sys-
tem. Sentence reading is a particular case involving the pro-
cessing of multiple visual objects. Models of eye movement
control in text reading thus assume that attention allocation
plays a critical role (Engbert et al., 2002, 2005; Reichle et al.,
1998, 1999, 2003; Snell et al., 2018). In line with behavioral
data (Cheal & Gregory, 1997; Deubel & Schneider, 1996;
Rayner, 2009; Stolz & McCann, 2000), they posit that covert
attentional shifts guide saccades and that allocation of atten-
tion to target words is required for their accurate recognition.

Despite evidence that visual attention is allocated to the
word(s) to be processed in text reading, models of single
word recognition have typically been developed without ref-
erence to attention. This may be partly due to the fact
that word recognition models are models of expert reading
and that word reading in expert readers was viewed as be-
ing automatic, therefore attention-free (Brown et al., 2002).
However, such a view has been challenged. There is now
strong evidence that even skilled readers are unable to iden-
tify words at unattended locations, suggesting that attention
is a necessary preliminary to visual word recognition (Besner

et al., 2016; Lachter et al., 2004; Lien et al., 2010; McCann
et al., 1992; Waechter et al., 2011).

Neuropsychological evidence that some forms of acquired
and developmental dyslexia follow from a visual attention
deficit further argue for visual attention as a key component
of the reading system (Bosse et al., 2007; Duncan et al.,
1999; Habekost & Bundesen, 2003; Starrfelt et al., 2010;
Valdois, 2022). The two MORSEL (Mozer & Behrmann,
1990) and MTM (Ans et al., 1998) computational models
that have attempted to account for these forms of dyslexia
both include an attentional mechanism that operates at the
early stage of visual processing. Disruptions of the at-
tentional device in the two models successfully simulated
the atypical word recognition patterns observed in brain-
damaged patients. The MTM model further predicted that
some forms of developmental dyslexia should result from
limited visual attention resources, which was indeed reported
(Bosse et al., 2007; Dubois et al., 2010; Lassus-Sangosse et
al., 2008; Lobier et al., 2012; Valdois et al., 2003, 2014) and
found associated with dysfunction of the dorsal attentional
network (Liu et al., 2022; Lobier et al., 2014; Peyrin et al.,
2011, 2012; Reilhac et al., 2013; Valdois, Lassus-Sangosse,
et al., 2019).

The role of attention was also emphasized in early models
of reading acquisition (LaBerge & Brown, 1989; LaBerge &
Samuels, 1974), but totally ignored later on (Pritchard et al.,
2018; Ziegler et al., 2014), against evidence that visual atten-
tion was a concurrent and longitudinal predictor of learning
to read (Bosse & Valdois, 2009; Franceschini et al., 2012;
Pasqualotto et al., 2022; Valdois, Roulin, & Bosse, 2019;
van den Boer et al., 2013; Zoubrinetzky et al., 2019)

To widen the scope of the model, BRAID incorporates
a visual attention mechanism as a key component of visual
processing in general and reading in particular. Against pre-
vious models that confined the role of attention to serial pro-
cessing (Perry et al., 2007; Vidyasagar, 2005) but in line with
MORSEL (Mozer & Behrmann, 1990) and MTM (Ans et al.,
1998), we postulate that attention modulates parallel process-
ing of letters during word recognition. In line with behavioral
evidence that visual attention interacts with basic visual pro-
cesses (see for reviews, Carrasco, 2011 or D. Whitney and
Levi, 2011), visual attention in BRAID is implemented as an
independent mechanism that interacts with visual acuity and
lateral interference to modulate letter identification and word
recognition.

To summarize, the BRAID model, illustrated in Figure 1,
adopts the three representation layers that were implemented
in most previous word recognition models, namely the sen-
sory layer (“letter features” level), the perceptual layer (“let-
ter” level), and the lexical orthographic knowledge layer
(“word” level). The model assumes parallel letter string pro-
cessing. Letter identity processing is affected by visual acu-
ity and lateral interference between adjacent letters, which
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2 Vanilla BRAID, box-model version
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2

Figure 1

Graphical representation of the structure of the BRAID model, in conceptual form, for the case of a 5-letter input. The three
representation layers are the letter sensory layer (green box), the letter perceptual layer (blue box), and the lexical knowledge
layer (red box). At the letter sensory layer, visual acuity is represented by decreasing rectangle heights as eccentricity in-
creases (assuming the eye is on the third, central letter), while lateral interference is represented by overlap between adjacent
rectangles. The visual attention layer (orange box) inserts an attentional filter between the letter sensory layer and the letter
perceptual layer. The arrows width depict the amount of information that is transferred, depending on the position of the letter
in the input string (assuming that attention is also focused on the third, central letter). Self-looping arrows (in the blue and
red boxes) represent temporal models implementing perceptual accumulation of evidence on letter and word identity. The flow
of information between the perceptual and the lexical knowledge layers is bidirectional (black arrows).

further yields positional uncertainty, as in distributed-coding
schemes. Finally, an original component of the BRAID ar-
chitecture is the addition of a visual attentional submodel,
allowing to control and spatially modulate the flow of infor-
mation from the letter sensory submodel to the letter percep-
tual submodel. Overall, BRAID is the first model of isolated
word recognition that incorporates all three mechanism of
visual acuity, lateral interference, and visual attention in a
single framework.

Bayesian implementation of the BRAID model

The BRAID model was developed in the probabilistic
framework. Probabilistic modeling is a useful tool to the
domain of visual word recognition modeling (McClelland,
2013). It is a unified mathematical framework that allows the

definition of hierarchical models and their extension towards
complex architectures (Patri et al., 2015), while maintaining
the interpretability of the involved representations. In other
words, we consider the application of probabilistic modeling
at Marr’s algorithmic level (Marr, 1982), to define models
of cognitive representations and of their hierarchical interac-
tions; we call this “Bayesian algorithmic modeling” (Diard,
2015).

Given the conceptual structure of the BRAID model (Fig-
ure 1), we turn to its translation in the probabilistic frame-
work (Bessière et al., 2013; Diard, 2015; Lebeltel et al.,
2004). In this framework, the model takes the form of a joint
probability distribution over a set of variables, decomposed
as a product of terms. Using conditional independence hy-
potheses between variables, this product mathematically rep-
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resents the architecture we have chosen (see Appendix A). In
this section, we highlight some elements of the mathemati-
cal definition of the BRAID model and of the probabilistic
computations, provided by Bayesian inference, to simulate
the cognitive tasks of letter recognition, word recognition,
and lexical decision. A graphical representation of the math-
ematical model is presented on Figure 2 to outline how the
different submodels are connected mathematically, and the
overall information propagation structure that is entailed. A
Python implementation of the BRAID model is available at
https://gricad-gitlab.univ-grenoble-alpes.fr/diardj/braid.

BRAID is an interactive model with information flows
propagating at each iteration from the sensory level to the
word level, and from the word level to the perceptual level.
Information flow in the model is controlled by coherence
variables (Bessière et al., 2013) represented in Figure 2 by
white nodes with λ probabilistic variables. Coherence vari-
ables (Bessière et al., 2013), in a nutshell, can be seen as
connecting glue controlling information transfer between the
probabilistic variables that they connect. Thus, they can be
interpreted as “Bayesian switches” (Gilet et al., 2011), and
can be set to one of the three following states: They can be
“closed” which allows information transfer, or “open” which
blocks information transfer, or, finally, “controlled” (through
so-called “control variables”) to allow partial transfer of in-
formation, in a gradual manner (Phénix, 2018). When using
the BRAID model to simulate the tasks of interest, sensory
information “enters” the model as values of the input vari-
ables and propagates throughout the model architecture de-
pending on the states of coherence variables. The controlled
coherence variables between the sensory and perceptual sub-
models are particularly relevant here: they are leveraged to
mathematically define the model of visual-attention as a fil-
ter, to spatially modulate information transfer between the
sensory and perceptual submodels.

In the following, we present in general terms the pur-
pose and representational contents of each submodel, pro-
viding definitions of probabilistic variables and probability
distributions. We introduce the model parameters and their
physical interpretation, to directly illustrate the knowledge
represented in the submodels. We first focus on bottom-up
processing to describe (1) how single letter information is
extracted at the sensory level and modulated by the visual
similarity between letters, the acuity gradient and interfer-
ence from adjacent letters, (2) how bottom-up information
from the sensory level is accumulated in a representation of
the input letter at the perceptual level, and (3) how sensory
evidence accumulation is modulated by attention. We then
focus on the lexical knowledge submodel which includes a
word knowledge component and a lexical membership com-
ponent. The model assumes bi-directional interactions be-
tween the letter perceptual submodel and the word knowl-
edge component. We thus describe (4) the dynamics of let-

ter perception and word recognition over time, and (5) how
the evolution of word probability affects letter identification
within strings at the perceptual level. Last, we focus on the
lexical membership component to describe (6) the dynamics
of lexical decision. The complete definition of the model and
mathematical derivations that yield the equations we use for
task simulations are found elsewhere (Phénix, 2018).

Letter sensory submodel

The letter sensory submodel describes how information is
extracted from letter images that are the visual input string, to
create sensory representations of letters. Its implementation
in BRAID is analogous to the feature level of IA and IA-
inspired models (McClelland, 2013; McClelland & Rumel-
hart, 1981), the “retina” layer of the MORSEL model (Mozer
& Behrmann, 1990) or, even more closely relates to the en-
coding level of the VA model (Paap et al., 1982). Like these,
letter identification is modulated by visual similarity between
letters. Experimental confusion matrices provide an estima-
tion of inter-letter visual similarity for the Latin alphabet (for
reviews, see Mueller and Weidemann, 2012; van der Heijden
et al., 1984). A slightly modified version of the Townsend’s
confusion matrix (Townsend, 1971) was used in BRAID on
the set of letters of the alphabet, enriched by the character
“$”, which corresponds to the unknown, illegible, or miss-
ing character. We note DL = {a, b, . . . , z, $} this domain of
possible characters, of cardinal |DL| = 27.

The original confusion matrix (Townsend, 1971) resulted
from the observation of a perceptual process, with a duration
that was calibrated so that each subject was, overall, correct
on 50% of trials. The duration of this perceptual process was
on the order of at least several tens of milliseconds. Overall,
our aim was to obtain a temporal granularity, in the model,
so that one iteration (from time step t to t + 1) corresponded
to one millisecond. Therefore, the sensory confusion matrix
was “scaled down” temporally, and this featured an internal
parameter (ScaleI).

BRAID implements an acuity gradient and lateral inter-
ference between neighboring letters as two additional mech-
anisms that modulate letter identification at the sensory level.
The effects of gaze position and visual acuity on letter iden-
tification are expressed by the probability distribution P(It

n |
S t

1:N ∆It
n Gt), which represents the probability to identify let-

ter It
n (in position n at time t) given that letters S t

1:N are pre-
sented as stimuli (1 : N in the subscript is a shorthand to rep-
resent the set of variables from position 1 to N) and knowing
gaze position (Gt) over the input letter string at time t. (the
∆It

n variable is used technically to track relative positions be-
tween the I and S variables).

The acuity gradient decreases the quality of sensory pro-
cessing symmetrically and linearly as the distance from gaze
position increases. In probabilistic terms, this is imple-
mented by a decrease of the information content of proba-

https://gricad-gitlab.univ-grenoble-alpes.fr/diardj/braid
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1 Vanilla BRAID, re-make of the figure from the
draft paper
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Figure 2

Graphical representation of the structure of the BRAID model. Nodes represent variables of the model, and arrows relate
variables that appear together in a probabilistic term of the joint probability distribution decomposition (nodes with self-
looping arrows represent dynamical models where that variable at time t depends from the same at time t − 1). Subscript
indexes refer to spatial positions, i.e., X1, X2, . . . , XN are positions 1 to N in the input letter string. Superscript indexes refer
to temporal notation, i.e., Xt refers to variable X at time t.

bility distribution P(It
n | S t

1:N ∆It
n Gt), as a function of eccen-

tricity (the distance between considered position n and gaze
position Gt). The strength of this decrease in information
content is controlled by parameter θG: the higher the value
of θG, the less visual acuity modifies the distribution.

When a target letter is processed inside an input letter
string, its identification is further affected by interference
from neighboring letters. We consider that only adjacent let-
ters influence a given letter, and their relative influence is
described by a probability distribution (involving variables
∆It

1:N and a free parameter θI). The effect of interference
on letter processing is illustrated on Figure 3, which com-
pares the probability distributions at the sensory level for an
isolated letter and for the central letter of a triplet. As can

be seen, in the triplet case, competing probability peaks re-
sult from the presence of adjacent letters. In the probabilistic
framework, because of the normalization rule (probabilities
add up to 1), these additional peaks “eat up” a portion of
available probability. In other words, any increase in iden-
tification probability for a given letter results in a probabil-
ity decrease for the other letters. This directly follows from
probabilistic modeling, mimicking competition between let-
ters at the sensory level.

To summarize, the letter sensory submodel describes how
the identity of letters in the word is modulated by (1) the
visual similarity of each letter to other letters in the alpha-
bet (through the parameters of the confusion matrix), (2) the
distance of the letter from gaze position (through the acuity
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Figure 3

Illustration of the probability distribution of the identifica-
tion of the letter input “I” presented in isolation, without
lateral interference (P(It

n | [S t
1:3 = “_I_”]), blue curve;

and surrounded by two adjacent letters in the string XIS
(P(It

n | [S t
1:3 = “XIS”]), orange curve).

gradient parameter), and (3) the presence of adjacent letters
(through the lateral interference parameter).

Letter perceptual submodel: Single letter perception

In the letter perceptual submodel, sensory evidence about
letter identity accumulates over time to build internal per-
ceptual representations, as in the letter level of the IA model
(McClelland & Rumelhart, 1981). This accumulation is per-
formed simultaneously on all positions of the input string.

The perceptual variables P1:T
1:N represent internal letter rep-

resentations, defined on domainDL. Perceptual variables are
dynamic, gradually acquiring, and losing information over
time. Before stimulation, the prior distributions over per-
cepts, P(P0

n), define the resting state of knowledge about let-
ters. These priors are defined by uniform distributions over
letters. The transition model P(Pt

n | Pt−1
n ) describes the tem-

poral evolution of letter knowledge, so that perception at time
t is influenced by perception at time t−1. We assume a grad-
ual loss of perceptual information, so that, in the prolonged
absence of sensory information from the input letter string,
perceptual information accumulated in Pt

n would decay back
to its resting state (i.e., a uniform distribution); this features
a free parameter, noted LeakP, which controls the speed of
information decay.

We first describe how letter perception proceeds by accu-
mulation of sensory evidence from bottom-up sensory pro-
cessing, considering the very simple case of an isolated letter
presented on gaze fixation as input, i.e., without lexical in-
fluence (e.g., s1:T

1:N =“_X_”; in our notation, a capital letter
symbol refers to a variable, and a lowercase symbol, here
s1:T

1:N , refers to a variable value). Letter recognition amounts
to computing the resulting probability distribution over PT

n ,
given the stimulus s1:T

1:N and gaze position g1:T . This is repre-
sented mathematically by computing, in the model, the prob-
ability distribution P(PT

n | s1:T
1:N g1:T [λP

1:T
n = 1]), with λP

1:T
n

coherence variables to define how information flows in the
model (Gilet et al., 2011). We note QP

T
n this probability dis-

tribution.
In that simplified case, applying Bayesian inference to the

letter sensory submodel and the letter perceptual submodel
yields:

QP
T
n = P(PT

n | s1:T
1:N g1:T [λP

1:T
n = 1])

∝


∑
PT−1

n

[
P(PT

n | PT−1
n ) × QP

T−1
n

]
×

∑
∆IT

n

[
P(∆IT

n ) × P([IT
n = pT

n ] | sT
1:N ∆IT

n gT )
]

 .
(1)

This inference features two elements that are classically
found in Hidden Markov Model inference (HMM; Rabiner &
Juang, 1993), Bayesian Filtering, or Dynamic Bayesian Net-
work inference (DBN; Murphy, 2002). The first factor (first
summation of Equation (1)) corresponds to the prediction
term of the inference: it is the product of the recurrence term
QP

T−1
n , that is to say, the result of the same computation at

previous time-step T −1, by the transition term P(PT
n | PT−1

n ),
marginalized over variable PT−1

n . This first factor is an inter-
mediary result, “halfway between iterations T −1 and T” that
yields information decay.

The second factor (second summation of Equation (1))
involves the observation or update term which is computed
from the letter sensory model. Indeed, it is a weighted sum of
sensory letter processing (P([IT

n = pT
n ] | S T

1:N ∆IT
n GT ) from

the letter sensory submodel) over three adjacent positions,
with weights being interference strength (P(∆IT

n )). This de-
scribes how sensory information from the input string is fed
into the perceptual submodel, to be accumulated into the per-
ceptual representation of the target letter. Typically, percep-
tual evidence brings information, reinforcing the perceived
letter probability on the correct letter identity hypothesis.

Figure 4 illustrates a simulation of letter identification us-
ing Equation (1), in which a single input letter “I” is pre-
sented for 400 iterations and then removed. During the first
400 iterations, accumulation of sensory evidence into the
perceptual letter representation overcomes information de-
cay, so that the probability distribution over letter QP

T
n peaks

on the correct hypothesis: P([P400
n = “I”] | S 1:T

1:N [λP
1:T
n =

1] G1:T ) converges, in a sigmoid manner, towards a high
value. When the input is removed, only information decay
remains, so that probability decreases towards the resting
state of the probability distribution, which is uniform. In
the above inference, a noteworthy but implicit component is
the application of the normalization rule, to output, at each
iteration, a proper probability distribution. Probabilistic nor-
malization mimics competition between letters at the per-
ceptual level: it is dictated by the mathematical formalism
in the probabilistic framework, and is analogous to explicit
lateral inhibition processes in connectionist models. During
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Figure 4

Illustration of the time course of the letter identification
task, as computed by Equation (1). The plot shows the
probability that the letter in the input is an “I”, P([Pt

n =

“I”] | S 1:T
1:N [λP

1:T
n = 1] G1:T ) (y-axis), as a function of simu-

lated time t from 0 to T = 800 iterations (x-axis; with initial
probability value at 1/|DL| =1/27). The input letter “_I_” is
presented during the first 400 iterations then removed.

the first 400 iterations, perceptual evidence accumulates in
favor of the input letter, which in turn decreases probability
for all other competitors. After iteration 400, in the absence
of physical input, the probability of the target letter is not
increased any more by sensory processing: it suffers from
gradual decay and increased competition, until the uniform
probability distribution is reached.

We have so far focused on single letter identification to
describe how information propagates from the sensory to the
letter perceptual submodel, without considering top-down in-
fluence from lexical knowledge. However, letter identifica-
tion within words is a more complex matter that involves
both attention and lexical feedback. We start by describing
how visual attention is implemented in BRAID and how it
modulates letter identification within words.

Visual attention submodel: Letter perception with atten-
tion

The visual attention submodel inserts an attentional fil-
tering mechanism between the sensory and perceptual let-
ter submodels, that is to say, a positional modulation of the
amount of information transferred from the sensory to the
perceptual letter submodel. Its main mathematical feature
describes, using a probability distribution, how visual atten-
tion is spatially distributed over the input string letters.

Visual attention at time step t is represented by variable At.
Its domain represents discrete positions of letters of the input
string. The probability distribution P(At | µt

A σ
t
A) is defined

as a Normal distribution of mean µt
A, which denotes the po-

sition of the focus of visual attention, and standard-deviation
σt

A, which characterizes the spatial dispersion of visual atten-
tion (see Figure 5). The total amount of attentional quantity
is represented by parameter QA which was kept constant and

equal to 1 in the current paper (for more information, see
Steinhilber et al., 2023).

The probability values at each position, given by the
probability distribution of attention, control the amount of
bottom-up information transfer, from the output of the letter
sensory model to the perceptual sensory model for informa-
tion accumulation (i.e., how much of the probability distri-
bution over It

n is fed to the probability distribution over Pt
n).

The position µt
A of attention peak directly follows from

the physical constraints of the experimental situation that is
to be simulated. For instance, a centrally positioned fixa-
tion cross suggests µt

A = 3 for an input letter string of length
N = 5. In the model, attention position µt

A and gaze position
gt can be dissociated and set at different positions on the let-
ter string (for an example, see Valdois et al. (2021); however,
in the simulations presented below, we only consider cases
in which gaze and attention coincide, so that µt

A = gt.
The attention distribution for different values of σt

A is il-
lustrated in Figure 5. Small values (e.g., σt

A = 0.5) concen-
trate attention so that almost only a single letter is efficiently
processed. Large values of σt

A (e.g., σt
A = 100) spread atten-

tion so that all letters are processed equally, but inefficiently
(with only 1/N probability at each position). An intermediate
attention dispersion of σt

A = 1.75, calibrated from indepen-
dent data (Ginestet et al., 2019) was used in the experiments
as the default σt

A value.
We return to our previous inference of isolated letter

recognition, to show the mathematical effect of the visual
attention distribution. In that case, Equation (1) becomes:

QP
T
n = P(PT

n | s1:T
1:N g1:T µ1:T

A σ1:T
A [λP

1:T
n = 1])

∝



∑
PT−1

n

[
P(PT

n | PT−1
n ) × QP

T−1
n

]

×


αn

∑
∆IT

n

[
P(∆IT

n ) × P([IT
n = pT

n ] | sT
1:N ∆IT

n gT )
]

+(1 − αn)
1
|DL|




,

(2)

where αn = P([AT = n] | µT
A σ

T
A) is the amount of visual

attention allocated to position n by the visual attention dis-
tribution. Compared to Equation (1), the perceptual accu-
mulation of evidence is now the weighted sum of two terms,
the first one being the uniform probability distribution (rep-
resenting lack of information) and the second one being the
direct output of the letter sensory submodel. These terms are
weighted by attention allocated to the considered position: if
all attention is focused to position n, then αn = 1, and all
sensory information propagates to percept PT

n as previously
described (Equation (1)). On the contrary, if no attention is
allocated to position n, αn = 0, then no sensory information
propagates to the percept, so that any information previously
accumulated in percept PT

n would gradually decay over time,
as if the input were absent. Any αn value between 0 and 1
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Figure 5

Examples of attention distributions (blue bars) over the input 5-letter string “BRAID”, for a narrow dispersion of attention
(σt

A = 0.5, left), for a wide dispersion of attention (σt
A = 100, right) and for the default situation (σt

A = 1.75, center). The
red dashed line represents the uniform distribution for a word of this length, as a reference (bars above this reference indicate
increased processing for this letter).

thus modulates the amount of sensory information that prop-
agates from the sensory to the perceptual level.

To summarize, letter identity information from the sen-
sory level is modulated by the spatial distribution of visual
attention over the input letter sequence. Depending on the lo-
cation of gaze and attentional focus, and depending on visual
attention dispersion, the amount of letter identity information
transferred to the letter perceptual submodel differs from one
letter to the other. We describe below how letter perception
affects the distribution of probabilities for word recognition.

Lexical knowledge submodel: Modulation of word recog-
nition by attention

In the lexical knowledge submodel, words are described
as probability distributions over sequences of letters, using
a classical naïve Bayes fusion model (Russell & Norvig,
1995), as in the Bayesian Reader model (Norris, 2006; Nor-
ris & Kinoshita, 2012). This submodel also describes the dy-
namic accumulation of perceptual evidence about the iden-
tity of the word from a given input letter string, with word
frequency as resting state.

Variables L0:T
1:N represent letters that spell known words:

for a given word wi, for a given position n, P(Lt
n | [W t = wi])

is a probability distribution over letters that is almost 1 on the
correct letter for this word, and a residual, ϵ value (ϵ = 10−4)
for all other letters.

The lexical submodel further represents the temporal evo-
lution of knowledge about word identity in an input letter
string. A dynamical model P(W t | W t−1) describes the tem-
poral evolution of knowledge about words. Decay speed is
controlled by a free parameter LeakW . In the absence of in-
put, probability decays towards word frequencies P(W0).

In the complete BRAID model, the visual word recogni-
tion task is simulated by computing the probability distri-
bution over words (that we note QW

T ) given sensory stim-
ulation and visual attention parameters; applying Bayesian

inference to the model yields:

QW
T = P(WT | s1:T

1:N g1:T µ1:T
A σ1:T

A [λL
1:T
1:N = 1] [λP

1:T
1:N = 1])

∝


∑
WT−1

[
P(WT | WT−1) × QW

T−1
]

×
N∏

n=1

〈
P(LT

n | WT ),QP
T
n

〉
 , (3)

where ⟨·, ·⟩ denotes the dot product, and where QP
T
n is the

simulation of letter identification as described by Equa-
tion (2).

Equation (3) features a dynamical evolution of knowl-
edge about word identity, with the recursive term QW

T−1

combined, under the sum, with the dynamical term
P(WT | WT−1). This portion of Equation (3) describes grad-
ual decay of information. The rest describes perceptual accu-
mulation of evidence about word identity, with a product over
all positions of dot products between the letters “predicted”
for a word P(LT

n |WT ) and the letters perceived from the input
QP

T
n . The dot product, here, can be interpreted as measuring

the similarity between probability distributions P(LT
n | WT )

and QP
T
n : its value is high when predicted and perceived

letters match, and low when they do not (Steinhilber et al.,
2022). In the model, this similarity measure implemented
by the product of dot products drives word recognition, as
it defines the manner in which lexical hypotheses are sup-
ported, or not supported, by letter perceptual evidence. This
similarity measure is a mathematical consequence of the as-
sumptions on the model architecture (see Figure 2), in the
probabilistic setting.

Figure 6 illustrates how visual attention modulates the dy-
namics of letter and word recognition, considering the input
word “MOUSE” as an example. When the focus of attention
is on the first letter (Figure 6, top row), identity information
accumulates faster for leftmost letters at the perceptual level.
As a result, recognition probability increases more rapidly
for words sharing their initial letters with the input and/or
being of higher frequency. However, over time, more per-
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Illustration of the evolution of letter and word recognition depending on the location of

the attention focus (top row: attention on the first letter; middle row: attention on the

central letter; bottom row: attention on the last letter) when processing the input letter

sequence “MOUSE”. Left plots illustrate the attention distribution assuming default

dispersion. Plots in the middle and right columns show the evolution of probabilities

(y-axis) for the most likely hypotheses at the letter perceptual level (middle column) and

at the lexical level (right column) as a function of iterations from 0 to T = 1, 500
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by the line color of each curve (e.g., the long-dash green curve shows the probability that

the letter in position 1 is an “O”). At the perceptual level (middle column), only the

most likely hypothesis is shown for each position (i.e., not all probability distributions

are shown, only the letter hypothesis with the highest probability). At the word

knowledge level (right column), only the 10 most likely hypotheses are shown.

Figure 6

Illustration of the evolution of letter and word recognition depending on the location of the attention focus (top row: attention
on the first letter; middle row: attention on the central letter; bottom row: attention on the last letter) when processing
the input letter sequence “MOUSE”. Left plots illustrate the attention distribution assuming default dispersion. Plots in the
middle and right columns show the evolution of probabilities (y-axis) for the most likely hypotheses at the letter perceptual
level (middle column) and at the lexical level (right column) as a function of iterations from 0 to T = 1, 500 (x-axis). Letter
position is indicated by the dash type for the curves and letter identity by the line color of each curve (e.g., the long-dash green
curve shows the probability that the letter in position 1 is an “O”). At the perceptual level (middle column), only the most
likely hypothesis is shown for each position (i.e., not all probability distributions are shown, only the letter hypothesis with the
highest probability). At the word knowledge level (right column), only the 10 most likely hypotheses are shown.

ceptual information about letters accumulates, leading prob-
ability for the target word to surpass those of competitors.
Note that despite sharing most of its letters with the input and
being of higher frequency, the lexical hypothesis “HOUSE”
is never “a plausible contender in the probabilistic race”: in-
deed, in that case, attention is on the first letter, which dis-
criminates between “HOUSE” and “MOUSE”.

The model’s behavior is quite different when attention is
centered (Figure 6, middle row). In that case, letter identity
information accumulates faster for the inner letters, so that
“HOUSE” is the most probable competitor at the beginning
of processing. Nevertheless, “MOUSE” wins the race, due

to gradual increase of identity evidence for the initial letter.
Finally, consider the situation where the focus of attention is
on the last letter of the input word (Figure 6, bottom row).
Then, few sensory information is available on the identity of
the first letter, so that the competitor that matches letter per-
ceptual evidence and is of higher frequency (i.e., “HOUSE”)
is erroneously recognized instead of the target word.

This illustrates how bottom-up information from the per-
ceptual level affects word recognition. We now describe how
letter perceptual evidence is modulated by top-down flow of
information from the word knowledge submodel.



12 PHÉNIX, GINESTET, VALDOIS AND DIARD, PSYCHONOMIC BULLETIN & REVIEW, 2025

With influence from lexical knowledge
Without influence from lexical knowledge

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

Iteration

R
ec
og
ni
tio
n
pr
ob
ab
ili
ty

Figure 7

Time course of the identification of the letter “I”: evolution
of the probability that the middle letter is an “I” (y-axis),
with the input string “THINK”, with (blue curve) or without
(orange curve) influence from lexical knowledge, as a func-
tion of simulated time t from 0 to T = 500 (x-axis).

Letter perceptual submodel: Letter in string perception

We have described how letter identification information
propagates in the bottom portion of the model, i.e., without
lexical influence (see Equation (2)); we now consider letter
identification with lexical influence, which we note Q′P

T
n .

In that case, applying Bayesian inference to the model to
compute Q′P

T
n yields:

Q′P=p
T
n
≈

∑
WT

[
QW

T × P([LT
n = p] | WT )

]
× QP=p

T
n . (4)

The model here has the structure of a Hierarchical Hidden
Markov Model (HHMM; Murphy, 2002), with two Markov
chains evolving in parallel, one over the identity of letters
Pt

1:N , the other over word identity W t, which inform each
other. At each iteration, Equations (2), (3) and (4) are com-
puted in sequence. Since Equation (3 for word recognition
involves QP

T
n from Equation (2), this can be interpreted as

a “bottom-up” flow of information, from the letter percep-
tual submodel to the lexical submodel (upward black arrow
in Figure 1). Then, since Equation (4) for letter recognition
involves QW

T from Equation (3), this can be interpreted as
“top-down” flow of information, from the lexical submodel
to the letter perceptual submodel (downward black arrow in
Figure 1). This is repeated for every iteration, until the deci-
sion threshold relevant to the task is reached (see Table 1).

Figure 7 illustrates the evolution of recognition probabil-
ity for target letter “I” in the input string “THINK”, compar-
ing the cases with (i.e., computing Q′P

T
n with Equation (4))

and without (i.e., computing QP
T
n with Equation (1)) influ-

ence of lexical knowledge. It can be observed that lexical
knowledge accelerates recognition of target letter “I”, thus
mimicking the well-known word superiority effect.

Lexical knowledge submodel: Lexical membership

The lexical membership component of the word knowl-
edge submodel determines whether the input letter string is
inside or outside the set of known words. This component
is useful for performing the lexical decision task, but, im-
portantly, it is not specific to lexical decision. Indeed, we
showed that this mechanism could also be used for novelty
detection, and was thus critical to trigger novel word ortho-
graphic learning during reading acquisition (Ginestet et al.,
2022; Steinhilber et al., 2023). Lexical membership is repre-
sented by Boolean variables, D0:T , with value True when the
input letter string is a known word of the lexicon. A dynamic
model over these variables is composed of a prior distribution
P(D0), which we set to a uniform, 50/50 probability distribu-
tion (when used to mimic lexical decision experimental sit-
uations in which nonwords and words are equally present in
stimuli) along with a dynamical model P(Dt | Dt−1), which
features a free parameter LeakD, that controls decay speed
towards the uniform, initial state. The three dynamic models
over letters, over words, and over lexical membership, evolve
in parallel.

Using Bayesian inference, the lexical membership com-
ponent allows to dynamically assess whether an input string
is a known word or not, by computing a probability distri-
bution noted QT

D. Consider first QT
D=True, i.e., the probability

that the input is a word. Bayesian inference yields:

QT
D=True = P([DT = True] | s1:T

1:N g1:T µ1:T
A σ1:T

A [λD
1:T
1:N = 1] [λP

1:T
1:N = 1])

∝



∑
DT−1

[
P([DT = True] | DT−1) × QD

T−1
]

×
∑
WT


P(WT | k1:T−1 [λL

1:T−1
1:N = 1] [λP

1:T
1:N = 1])

×
N∏

n=1

〈
P(LT

n | WT ),QP
T
n

〉 


(5)

Consider now the case QT
D=False, i.e., the probability that

the input is not a word. Bayesian inference yields:

QT
D=False = P([DT = False] | s1:T

1:N g1:T µ1:T
A σ1:T

A [λD
1:T
1:N = 1] [λP

1:T
1:N = 1])

∝



∑
DT−1

[
P([DT = False] | DT−1) × QD

T−1
]

× 1
N

N∑
i=1



∑
WT



P

WT

∣∣∣∣∣∣∣∣∣∣∣
k1:T−1

[λL
1:T−1
i = 0]

[λL
1:T−1
n,i = 1]

[λP
1:T−1
1:N = 1]


×

N∏
n=1
n,i

〈
P(LT

n | WT ),QP
T
n

〉
×

〈
P(LT

i | WT ), (1 − QP
T
i )/|DL|

〉






(6)

These equations, again, have the same structure as in
HMM models, with the first factor featuring the dynamic
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Figure 8

Comparison of time course in lexical decision (top panel),
word recognition (middle panel), and letter identification
(bottom panel) for the input letter string “THING”. Each
plot shows the evolution of probabilities (y-axis; top: QT

D=True
in blue and QT

D=False in orange; middle: most likely hypothe-
sis (word W = THING) in QT

W ; bottom: most likely hypoth-
esis in distribution QP

T
n for each position n) as a function of

simulated time t from 0 to T = 750 (x-axis). Vertical, dashed
lines illustrate what would happen assuming a lexical deci-
sion threshold set at .85: lexical decision would proceed even
though the probability for the correct word and letters have
not yet converged to high probability values.

model and recurrence term, and the second factor featuring
the observation model for evidence accumulation. They take
a form similar to the answer of visual word recognition of
Equation (3), except that, instead of building the probability
distribution over words, we marginalize over this distribu-
tion, so that all possible words are considered. For instance,

in Equation (5), the probability that the lexical membership
variable DT is true increases when there is a known word
that is probably recognized, or if many words are likely to
be recognized (that is, the input, maybe is not a word, but
has many orthographic neighbors that are words). In Equa-
tion (6), probability that the lexical membership variable DT

is false increases when there is at least one position i in which
the prediction from the lexicon does not match the input se-
quence (the

〈
P(LT

i | WT ), (1 − QP
T
i )/|DL|

〉
term).

Figure 8 illustrates a simulation of lexical decision, word
recognition, and letter recognition on the input letter string
“THING”. Comparing the dynamics of lexical decision with
the other simulated processes shows that lexical decision
reaches very high probability values before word recogni-
tion and letter recognition do. In other words, the input can
be recognized as being a word even though certainty about
word identity is not yet reached.

Model Calibration

The formal definition of the BRAID model includes a
number of free parameters listed in Table 1. The lexical pa-
rameters are easily defined from available lexical databases;
in each of the following experiments, the chosen language
and lexicon will be made precise. The time-scaling parame-
ters have been calibrated elsewhere on independent sets of
data (Phénix, 2018), with the goal to establish correspon-
dence between simulated time and physical time such that
one iteration roughly corresponds to one millisecond. To do
so, we have first identified reference times from behavioral
studies in the literature. Then, we simulated these behavioral
studies while varying the free parameters in a given range
of values. We finally selected parameter values for which
simulated and observed times correspond.

For instance, consider parameters LeakP and ScaleI ,
respectively controlling the information decay speed in
the probability distribution over perceived letters, and the
amount of sensory information fed into these. These two
parameters jointly affect the dynamics of the accumulation
of perceptual evidence about letters. They have been cali-
brated such that the probability of the correct letter should
reach .95, in 150 iterations on average, which is consistent
with neuroimaging studies (Madec et al., 2012; Pylkkänen
& Marantz, 2003; Tarkiainen et al., 1999). In all calibration
experiments, we observe that parameter fit is robust, that is to
say, small variations of parameter values generate small and
smooth variations of model fit.

Evaluation of the BRAID model

So far, we have described the BRAID model and empha-
sized both the features it shares with previous word recog-
nition models and those that make it unique. We now eval-
uate how well the model accounts for behavioral data. The
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Table 1

Default parameter values of the BRAID model.

1

Table 1
Default parameter values of the BRAID model

Name Default value Interpretation Determination
Lexical parameters
|DW | number of words Domain size for variables W0:T : lexicon size calibrated from lexicon
pwi one value per word P(W0) parameters: word frequency calibrated from lexicon
θLW one value per word Peak letter in P(Lt

n | W t) distributions: word spelling calibrated from lexicon
ε 10−4 Residual probability value of letters in incorrectly spelled words calibrated empirically
N Input letter-string length ∈ [[2; 15]] simulation dependent

Time-scaling parameters
pi,s one value per

letter pair < itn,s
t
n >

P(It
n | S t

1:N ∆It
n Gt) parameters, summarizing sensory letter decoding calibrated (Townsend, 1971)

LeakW 1,250 Parameter for information decay in dynamic model P(W t | W t−1) calibrated (Phénix, 2018)
LeakD 0.15 Parameter for information decay in dynamic model P(Dt | Dt−1) calibrated (Phénix, 2018)
LeakP 10−4 Parameter for information decay in dynamic model P(Pt

n | Pt−1
n ) calibrated (Phénix, 2018)

ScaleI 5.8 Parameter for scaling down information content of distribution
P(It

n | S t
1:N ∆It

n Gt)
calibrated (Phénix, 2018)

Decision thresholds
τp 0.9 Decision threshold for letter recognition calibrated (Phénix, 2018)
τw 0.9 Decision threshold for word recognition calibrated (Phénix, 2018)
τd 0.9 Decision threshold for lexical decision calibrated (Ginestet, Phénix,

Diard, & Valdois, 2019)
Visual and visuo-attentional parameters
θG 1.0 Parameter for spatially scaling down information of distribution

P(It
n | S t

1:N ∆It
n Gt): decrease of visual acuity as a function of eccentricity

calibrated (Phénix, 2018)

θI 0.675 Parameter controlling lateral interference between letters in distribution
P(It

n | S t
1:N ∆It

n Gt): θI for letter at position n, (1-θI)/2 interference
from adjacent letters (renormalized for outside letters)

calibrated (Phénix, 2018)

QA 1.0 Total amount of attentional quantity simulation dependent
gt (N + 1)/2 Gaze position: by default, set at the input letter-string center simulation dependent
µt

A (N + 1)/2 Mean of attention distribution P(At | µt
A σ

t
A) : by default,

set at the input letter-string center
simulation dependent

σt
A 1.75 Standard-deviation of attention distribution P(At | µt

A σ
t
A) calibrated (Ginestet, Phénix,

Diard, & Valdois, 2019)

.

References
first critical test for a new model of word recognition is to
successfully account for key empirical findings, well cap-
tured by previous models. BRAID was evaluated on its ca-
pacity to explain the frequency effect (more specifically ex-
plored through the Bayesian Reader model (Norris, 2006)),
the neighborhood frequency effect (simulated within the IA
(Jacobs & Grainger, 1992), Multiple-Read-Out (Grainger
& Jacobs, 1996), or Bayesian reader (Norris, 2006) frame-
works), the word and pseudo-word superiority effect and
more general context familiarity effects on letter perception
(well captured by the IA model (Rumelhart & McClelland,
1982), the AV model (Paap et al., 1982), or DROM (Grainger
& Jacobs, 1994)), and the transposed-letter priming effects
(simulated using the Open-bigram model (Schoonbaert &
Grainger, 2004), SCM (Davis, 2010), Overlap (Gomez et al.,
2008), SERIOL (C. Whitney & Cornelissen, 2008), or the
noisy-position version of the Bayesian Reader (Norris et al.,

2010)). The challenge for BRAID was to simulate this large
variety of behavioral effects while systematically using the
same default parameters. For each of these effects, we se-
lected leading studies in the field and tested how well BRAID
predicted behavioral findings when using exactly the same
items as in the experimental studies.

Evidence that BRAID fares well in accounting for the fre-
quency and neighborhood frequency effects has already been
reported. With respect to frequency, BRAID successfully
simulates the log-frequency effect reported in the Chronolex
Megastudy (Ferrand et al., 2011) for lexical decision (Saghi-
ran et al., 2020). The model was further challenged on
its capacity to simulate frequency effects in lexical decision
and word recognition, using the original method introduced
by Norris (2006). Results are reported in Phénix (2018),
showing that the performance of BRAID and the Bayesian
Reader is similar. These findings and the corresponding code
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are available at https://gricad-gitlab.univ-grenoble-alpes.fr/
diardj/braid. As for the neighborhood effect, Phénix et al.
(2018) demonstrated that the model faithfully reproduces
neighborhood density and frequency effects in lexical deci-
sion, and provides new insights on the apparently contradic-
tory, facilitatory and inhibitory, effects reported in behavioral
studies.

To examine more in depth whether the model performs as
well as its predecessors, we further checked whether BRAID
could account for the (pseudo)word superiority and gen-
eral context familiarity effects on letter perception, and for
transposed-letter priming effects in lexical decision. The re-
sults of the simulations are reported in Appendix B and the
overall effects predicted by the model are summarized in Ta-
ble 2.

In a first series of three simulations, we show that BRAID
successfully reproduces the behavioral findings reported by
Johnston (1978) for the word superiority effect, by Chase
and Tallal (1990) for the pseudo-word superiority effect, and
by Rumelhart and McClelland (1982) for generalization to
context familiarity. Two further simulations were performed
to simulate conditions in which the word superiority effect
was abolished. In the first, following Johnston and McClel-
land (1974), letter identification was tested within words and
non-words, in two conditions in which attention was either
focused on the target position (i.e., cued condition) or de-
ployed over the whole input string. As behaviorally ob-
served, BRAID replicates both the expected word superiority
effect in condition of whole-word processing and abolition
of the effect in the cued-condition. In the second, follow-
ing Carr et al. (1976) and Massaro (1973), BRAID predicts
the expected word superiority effect (higher letter identifi-
cation within words than non-words or in isolation) in stan-
dard conditions of presentation but the effect was abolished
when inter-letter spacing was increased and when attention
was focused on the target letter position. Overall, following
IA (McClelland & Rumelhart, 1981), BRAID is capable of
accounting for the basic word and pseudo-word superiority
effects and successfully reproduces the higher perceptibility
of target letters when embedded in word-like rather than ran-
dom consonant strings. Moreover, unlike its predecessors,
the model can further predict abolition of the word superi-
ority effect under specific conditions of the visual attention
distribution.

Last, we evaluated BRAID’s ability to generate priming
effects in lexical decision, as a way to study the model’s let-
ter position coding assumptions. The model was first chal-
lenged on its capacity to predict the behavioral performance
reported by Norris et al. (2010) for five letter words in vari-
ous lexical decision priming conditions with identity, trans-
posed, substituted, repeated, and unrelated primes. BRAID
reproduces priming effects of remarkably similar direction
and amplitude as in the experiment. Second, we assessed

whether the model could replicate priming effects when us-
ing more extreme forms of transposed letter primes that are
particularly challenging for word recognition models. For
this purpose, we referred to the study carried out by Guerrera
and Forster (2008) in which significant priming effects were
reported for 8-letter words, even when as few as two target
letter positions were preserved in the prime. Results of the
simulations showed a good fit to the data. BRAID simulated
reliable priming effects when all internal letter-pairs were re-
versed, or when only the two first or the two last letters were
preserved. Overall, these findings suggest that BRAID can
account for both basic and extreme letter-transposition prim-
ing effects on word recognition.

Thus, BRAID was first tested against the basic benchmark
effects that motivated the development of earlier word recog-
nition models. As can be seen from Table 2, BRAID is able
to simulate a broad range of experimental findings in letter
perception, word recognition, and lexical decision. Further-
more, the model successfully accounts for behavioral data,
such as abolition of the word superiority effect in a cued
condition or priming effects in condition of extreme letter
transposition, that are challenging for any word-recognition
model. However, our main purpose in the present paper was
to evaluate BRAID’s capacity to simulate behavioral effects
in which visual acuity, lateral interference, and visual atten-
tion are more specifically involved. For this purpose, we
now focus on the length effect in lexical decision, the optimal
viewing position (OVP) effect, and crowding effects in word
recognition. To better understand the role of visual attention,
we examine whether and how variations in visual attentional
distribution over the input string modulate these effects and
whether atypical visual attention distributions result in sim-
ulated effects that mimic those reported in some forms of
dyslexia.

In the following, for each behavioral effect, we propose
a brief description of the behavioral data and how the effect
was interpreted in the literature and/or simulated in previous
computational models. We then report the results of the sim-
ulations conducted with BRAID. The model was systemati-
cally evaluated on its capacity to simulate the expected find-
ings while using the model default parameters, thus without
any parameter adaptation or ad-hoc modification. The distri-
bution of visual attention was then systematically varied to
study how these variations affected the effect under concern.

The word length effect in lexical decision

First, we challenged BRAID to account for the word
length effect in lexical decision (LD). In LD tasks, words
and pseudo-words are visually displayed and the participant
must decide as accurately and as fast as possible whether the
displayed item is a word or not. There is consistent evidence
that LD times relate to the number of letters within words (for
a review see Barton et al. (2014)). Behavioral mega-studies

https://gricad-gitlab.univ-grenoble-alpes.fr/diardj/braid
https://gricad-gitlab.univ-grenoble-alpes.fr/diardj/braid
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Table 2

Summary table of the benchmark effects simulated by BRAID (for details, see Appendix B). LD: Lexical Decision; WR: Word
Recognition; RT: Reaction Time.

Description of the effects Behavioral data Simulation reference
Frequency effects
Shorter RTs for higher than lower frequency words for LD using the Chronolex
database.

Ferrand et al. (2011) (Saghiran et al., 2020)

Shorter RTs for higher than lower frequency words in LD and WR. Norris (2006) Phénix (2018)
Opposite neighborhood frequency effects in LD
Inhibitory neighborhood frequency effect: Shorter RTs for words with higher frequency
neighbors.

Perea and Pollatsek (1998) Phénix et al. (2018)

Facilitatory neighborhood frequency effect: Shorter RTs for words with than without
higher frequency neighbors.

Siakaluk et al. (2002) Phénix et al. (2018)

Context effects on letter identification
Word superiority effect: Better letter identification when presented within words than in
isolation.

Johnston (1978) Appendix B, Simulation 1

Pseudo-word superiority effect: Better letter identification within pseudo-words than
nonwords.

Chase and Tallal (1990) Appendix B, Simulation 2

Context familiarity effect: Better identification of target letters when embedded in
word-like than in random consonant strings.

Rumelhart and McClelland (1982) Appendix B, Simulation 3

Attention modulation of the word superiority effect
Abolition of the word superiority effect when target position is predictable. Johnston and McClelland (1974) Appendix B, Simulation 4
Abolition of the word superiority effect when letter spacing is increased and attention
focused on target location.

Carr et al. (1976); Massaro (1973) Appendix B, Simulation 5

Transposed-letter priming effects in LD
Adjacent transposed-letter priming (5-letter words): Shorter RTs when the target word
is primed by a transposed-letter.

Norris et al. (2010) Appendix B, Simulation 6

Extreme transposed-letter priming (8-letter words): Reliable priming effects when only
a very few letters occur in target position within the prime.

Guerrera and Forster (2008) Appendix B, Simulation 7

in healthy participants (Ferrand et al., 2011; New et al., 2006)
reported slower LD times for longer words (although the re-
lationship was not always linear). An increase of some mil-
liseconds per additional letter (from 9 to 30 ms/letter (Barton
et al., 2014)) was reported for expert readers. Higher word-
length effects characterize poor and atypical readers (Barton
et al., 2014; Reinhart et al., 2013; Valdois et al., 2003, 2011).
Extreme length effects on LD times were even reported in
letter-by-letter readers, translating into hundreds of millisec-
onds (or even, several seconds) per additional letter (Barton
et al., 2014).

The length effect is typically interpreted as a failure of
whole word parallel processing and over reliance on serial
processing (Coltheart et al., 2001; Perry & Ziegler, 2002;
C. Whitney, 2018). The simulation of this effect was found
challenging for the computational models, like BRAID, that
posit letter parallel processing within words (Ans et al., 1998;
Coltheart et al., 2001; Perry et al., 2007; Seidenberg & Mc-
Clelland, 1989). These models typically predicted no length
effect for words. Behavioral findings suggest that the effect
might originate from visual factors. This is supported by ev-
idence from typical readers showing that the word length ef-
fect was larger in tasks that more specifically tapped visual
processing (Ferrand et al., 2011) or in conditions where ei-
ther letter visibility or word format was degraded (Arguin &
Bub, 2005; L. Cohen et al., 2008; Fiset et al., 2006). Atypi-
cal word length effects were also reported in association with
a visual attention deficit in developmental dyslexia (Juphard
et al., 2004; Valdois et al., 2003, 2011).

Method

The English Lexicon Project (ELP; Balota et al., 2004,
2007; New et al., 2006) is a database of LD reaction times
(RTs) obtained from expert readers on a large set of 38,483
English words. For the present study, first, we configured the
BRAID model with the ELP lexicon, and then we selected as
stimuli a subset of 1,050 words ranging from 5 to 11 letters
in length (150 words per length). All words were mono- or
bi-morphemic and of medium-to-high frequency (mean fre-
quency = 373). The analysis of behavioral RTs on this word-
set showed a significant length effect (t = 5.35; p < .001),
corresponding to RTs increasing by 13.64 ms per additional
letter on average. In this sample, the length effect was not
modulated by word frequency (t = 0.49; p = .62).

We first examined whether the model could account for
the behaviorally observed word length effect. For this pur-
pose, in a first simulation, we used a unique central gaze and
attentional focus (Gt and µt

A positioned to the center of the
input letter string, whatever its length). The model’s default
values were used for all the other parameters (see Table 1).
This simulation featured word processing within a single fix-
ation (hereafter referred to as the No-Shift condition).

The same default parameters were used in a second simu-
lation but the model was allowed to make an additional atten-
tional fixation on longer words (from 7 to 11 letters), based
on behavioral evidence that longer words are typically fix-
ated more than once (Rayner, 2009). For short words (4 to 6
letters), the single attentional fixation was the same as in the
No-Shift condition. For long words (7 letters or more) the
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first attentional fixation lasted 200 iterations and was posi-
tioned to the middle of the first half of the word. The second
attentional fixation lasted until the lexical decision threshold
was reached and was positioned to the middle of the second
half of the word. We refer to this condition as the Shift con-
dition.

In a third simulation, the visuo-attentional dispersion σA

was set to 0.5 to study whether and how an abnormally lim-
ited attention distribution would affect the word length effect
on LD times. Attention was positioned, in turn, over each
letter, for 100 iterations each, and cycles back over letters
if necessary. Such a narrow distribution allowed processing
around a single letter at once, thus mimicking a condition of
strictly serial processing.

Results

Word length effects on lexical decision RTs are shown
in Figure 9 (a) for the behavioral and the simulated data.
BRAID predicts a significant word length effect in all
three conditions of no-shift (t = 30.28; p < .001), shift
(t = 10.05; p < .001), and strictly serial processing (t =
85.31; p < .001). It further predicts large variations in the
amplitude of the word length effect depending on the condi-
tion.

In the No-Shift condition, the simulated word length ef-
fect was far larger than observed for expert readers (139 it-
erations/ms per additional letter vs. 13.64 ms for the hu-
man data). In the shift condition, simulated RTs were dras-
tically decreased for longer words and a length effect of 14
iterations/ms per additional letter was obtained that is con-
sistent with the length effect reported in the behavioral data
(13.64 ms). In the strictly serial reading condition using
narrow visual attention distribution, the word length effect
was of larger magnitude (48 iterations/ms per additional let-
ter) than for expert readers, but of smaller amplitude than in
the No-Shift condition. There was no significant Length-by-
Frequency interaction in any of the simulation conditions (all
ps > .05).

Linear regressions between observed and simulated data
are presented on Figure 9 (b), for all the conditions. All
three simulations well accounted for the empirical data (all
R2>.80), but parameters of the regression indicate that the
Shift condition provided the best fit to the human data. The
intercept of 512.3 iterations is consistent with the 400 to
500 ms expected for motor response time, and the slope of
the regression is close to 1 (1.015), suggesting that the tem-
poral calibration of the model was adequate.

Overall, BRAID can simulate word length effects in lex-
ical decision. The model successfully accounted for hu-
man data, when assuming two attentional fixations for longer
words, each fixation capturing roughly half of the stimulus.
This “partly serial, partly parallel” visual attention process-
ing yielded faster and more realistic RTs for longer words,

compared with fully parallel processing (i.e., the no-shift
condition) or strictly serial processing (narrowed VA distri-
bution) of the entire word letter string. The model predicts
that the word length effect in lexical decision can be mod-
ulated by two factors: the number of attentional shifts (No-
shift vs. Shift) and visual attention dispersion (spread or nar-
rowed).

The optimal viewing position effect

The optimal viewing position (OVP) effect corresponds
to the fact that word recognition is more efficient for some
specific positions of eye fixation within words. In languages
that are read left-to-right, fixating slightly left of the word
center allows the optimal recognition of words (Aghababian
& Nazir, 2000; Brysbaert & Nazir, 2005; Nazir, 1991; Nazir
et al., 1992, 1998; O’Regan & Jacobs, 1984; O’Regan et al.,
1984). Performance declines asymmetrically when deviating
from the OVP, with an advantage for fixations on the first half
of words. As a result, inverted-J-shaped curves characterize
word recognition performance as a function of eye position.
These asymmetrical viewing position curves have been re-
ported in typical readers (Aghababian & Nazir, 2000; Nazir
et al., 1992) but symmetrical inverted V-shaped curves were
described in atypical readers (Aghababian & Nazir, 2000;
Bellocchi & Ducrot, 2021; Dubois et al., 2007).

The OVP effect was interpreted as potentially resulting
from visual, linguistic and/or attentional factors. The acu-
ity drop-off with eccentricity was viewed as a critical factor
(Nazir et al., 1991; O’Regan & Jacobs, 1984). Fixating near
word center minimizes the loss of acuity as compared to fix-
ating the word outer letters. However, visual acuity cannot be
the only factor at play, since the acuity drop-offwould predict
optimal recognition when fixating at the middle of words, not
leftward from the middle. Additional factors related to lexi-
cal/orthographic constraints, as higher informativeness of the
initial part of words, may further contribute to the OVP effect
(Brysbaert & Nazir, 2005; Clark & O’Regan, 1999; Stevens
& Grainger, 2003). The effect may also reflect more efficient
allocation of attention to the right hemifield (Brysbaert et al.,
1996).

Method

A first series of simulations was carried out by reference
to the study of Montant et al. (1998). Since the experiment
was conducted with French participants, we configured the
model’s lexical knowledge with a reference French lexicon
(FLP; Ferrand et al., 2010). The model was presented the
same set of 250 5-to-9 letter words (50 per length) as in
the experiment. Each word was divided into five zones of
equal width and the center of each zone was designated as
a potential fixation point. As in the behavioral experiment,
simulations were performed by setting gaze position Gt and
attention position µt

A at the center of the five fixation zones
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Figure 9

Word length e�ects in lexical decision. Panel a: Mean behavioral RTs (grey bars) and

simulated RTs for the three conditions of No-Shift (i.e., single attentional fixation,

orange bars), Shift (i.e., two attentional fixations from 7-letter words, blue bars) and

strictly serial reading (green bars), as a function of word length. In the Figure,

simulated RTs were scaled and adjusted by aligning them on the behavioral RTs for

five-letter words. Other length conditions are predicted by the model. Panel b: linear

regressions between simulated and behavioral RTs for the three conditions. Parameters

of the regressions (y = intercept + slope ú x) and R2 are indicated in the caption box.

strictly serial processing (t = 85.31; p < .001). It further predicts large variations in the

amplitude of the word length e�ect depending on the condition.

In the No-Shift condition, the simulated word length e�ect was far larger than

Figure 9

Word length effects in lexical decision. Panel a: Mean behavioral RTs (grey bars) and simulated RTs for the three condi-
tions of No-Shift (i.e., single attentional fixation, orange bars), Shift (i.e., two attentional fixations from 7-letter words, blue
bars), and strictly serial reading (green bars), as a function of word length. In the Figure, simulated RTs were scaled and
adjusted by aligning them on the behavioral RTs for five-letter words. Other length conditions are predicted by the model.
Panel b: linear regressions between simulated and behavioral RTs for the three conditions. Parameters of the regressions
(y = intercept + slope ∗ x) and R2 are indicated in the caption box.

for each word length. A grid search method was applied to
examine the effect of a large range of variations of the at-
tention distribution parameter (σA) on word recognition. For
this purpose, word recognition was simulated for each word
length, each of the five fixation zones, each iteration and each
σA value (ranging from 0.5 to 3) and the mean square er-
ror (MSE) between simulated and observed performance was
computed.

Then simulated curves were computed for three contrasted
levels of visual attention distribution. A σA value corre-
sponding to the default value of 1.75 was adopted first to sim-
ulate typical OVP effects for each word length. Second, the
σA parameter was set to 100 to mimic a condition in which

visual attention was maximal and equally spread over letters.
Last, σA was set to .5 to simulate a narrow distribution of
visual attention in which most attention (80%) was allocated
to a single letter at a time.

Results

Results of the grid search method are provided in Fig-
ure 10 together with the simulated word recognition curves
for the three conditions of σA values and for each word
length, as a function of gaze position. Each panel shows the
viewing position curve simulated by the model and the curve
reported by Montant et al. (1998) for expert readers.

Inspection of the grid search method results (Figure 10,
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left column) revealed that the fit between simulated and em-
pirical data was good for a range of σA values (the darker
zone on the plots corresponds to better fits). The best fit was
obtained for aσA value of 1 for 5-letter words, 1.5 for 6-letter
words, and 2 for words of length 7 or more. The interest of
the grid search results is twofold. First, they suggest that the
model would capture human data in a robust fashion for a
variety of σA values. Second, they show that, for all lengths,
the region with the best fit to human data (darker regions)
always included the model’s default value for σA (i.e., σA =

1.75). For the following results, a single “consensus” value
(300) was chosen for the number of iterations, as it also pro-
vides good fit to the data for all lengths (although, not the
best fit for each length).

As shown in Figure 10(second column), using the default
σA value of 1.75 yielded simulated curves very similar to
those reported in expert readers. For all lengths, word recog-
nition was optimal when fixating the word center (or slightly
left of center) and the simulated OVP effect was of similar
amplitude as for the human data. As expected, word recog-
nition was higher when fixating leftward and the left-right
asymmetry of simulated curves increased with word length.

Results of the simulation using a σA parameter value of
100 are displayed on Figure 10 (third column). As shown
on the figure, the use of a uniform attention deployment over
the input word affected both the height and the shape of the
viewing position curve. For all word lengths, simulated word
recognition probability at the OVP was lower than for expert
readers. Furthermore, fixating the rightmost letters (thus,
the final part of the word) did not yield the expected strong
recognition probability decline, thus resulting in viewing po-
sition curves that were less asymmetrical than behaviorally
reported in typical readers.

Atypical viewing position curves were also obtained (Fig-
ure 10, last column) when the simulation was run using a nar-
rowed attention distribution (σA =0.5). Then, word recogni-
tion was far lower at the OVP for the model than for ex-
pert readers and the atypical viewing position curves were
characterized by either a reversed-V-shape or an M-shape,
depending on word length.

Overall, the BRAID model equipped with its default vi-
sual attention parameters was able to successfully account
for both the OVP effect and the inverted J-shaped curves typ-
ically reported in expert readers. The model further predicted
that conditions of uniform or narrowed visual attention dis-
tribution would affect not only word recognition efficiency
at the OVP but also the shape of viewing position curves for
all word lengths. Interestingly, changes in the distribution of
visual attention over the word letter-string was sufficient to
modulate the OVP and viewing position curve shapes. Vari-
ations were obtained while the acuity gradient and lateral
interference parameters remained unchanged (set to default
values).

The crowding effect

Crowding refers to impaired recognition of a target due
to the presence of nearby flankers. It is modulated by the
target-flanker spatial distance (Bouma, 1970; Pelli & Till-
man, 2007; D. Whitney & Levi, 2011). In reading, a number
of studies have explored how variations in inter-letter spac-
ing affected word recognition (Joo et al., 2018; Martelli et al.,
2009; Pelli & Tillman, 2007; Perea & Gomez, 2011; Spinelli
et al., 2002; Zorzi et al., 2012). They showed that slightly
larger than standard spacing resulted in more accurate word
recognition and faster processing. However, an increase be-
yond a critical spacing disrupted word processing (L. Cohen
et al., 2008; Spinelli et al., 2002). Not surprisingly, word
recognition was adversely affected in conditions of decreased
spacing (Montani et al., 2015). Crowding is a major bottle-
neck for reading. Its effect is stronger in less skilled readers
(Kwon et al., 2007) and excessive crowding was reported in
developmental dyslexia (Callens et al., 2013; Martelli et al.,
2009; Spinelli et al., 2002).

Some findings suggest that crowding interacts with word
frequency and word length (however, Perea and Gomez
(2011)). Longer words were more prone to suffer from a
higher degree of visual crowding, probably due to the com-
bined effects of lateral interference and eccentricity (Martelli
et al., 2009; McDonald, 2006). Larger word frequency ef-
fect was further reported when the space between letters was
greater than normal (Paterson & Jordan, 2010).

Crowding was beyond the scope of most word recogni-
tion and reading models. However, in their computational
model of word recognition and eye movement control, Snell
et al. (2018) assumed that letter identification within words
was modulated by visual acuity and visuo-spatial attention.
The model further included a “crowding” parameter which
differently affected letter identification depending on letter
position within words. In the present study, we used BRAID
as an experimental substitute to predict the complex interre-
lations between inter-letter spacing, frequency, and length in
word recognition. The model was challenged on its capacity
to simulate crowding effects without any dedicated mecha-
nism or additional parameter. The effect of visual attention
on crowding was studied through simulations performed first
in a model with the default Gaussian distribution of visual
attention then, in a model with a uniform distribution.

Method

For this experiment, the model’s lexical knowledge was
configured in English with the BLP lexicon (Keuleers et al.,
2012). The simulations were conducted using two sets of 50
5-letter words and 50 9-letter words. The words were arbi-
trarily assigned contrasted frequency values 5, 10, 50, 100,
500, 1,000 to generate series of 6 identical couples of 5- and
9-letter words that only differed in frequency.
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Figure 10

Results of the simulations on the Optimal Viewing Position (OVP) e�ect. Each row

concerns words of di�erent lengths, from 9-to-5 letter words (from “9L” to “5L”). The

Grid Search column shows contour plots of the mean square error between simulated and

human data as a function of simulation iterations and variance ‡A of the attention

distribution (in grayscale, with dark zones corresponding to better fits). For each word

length, the white dot indicates the best-fit parameter value for ‡A and the number of

iterations. The three last columns show plots of the simulated and human OVP e�ect

(word identification probability curves as a function of gaze position) for three

conditions of visual attention distribution: the default distribution (‡A = 1.75); a

uniform distribution (‡A = 100) and a narrow distribution (‡A = .5).
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Figure 10

Results of the simulations on the Optimal Viewing Position (OVP) effect. Each row concerns words of different lengths, from
9-to-5 letter words (from “9L” to “5L”). The “Grid search” column shows contour plots of the mean square error between
simulated and human data as a function of simulation iterations and variance σA of the attention distribution (in grayscale,
with dark zones corresponding to better fits). For each word length, the white dot indicates the best-fit parameter value for
σA and the number of iterations. The three last columns show plots of the simulated (orange curves) and human (blue curve)
OVP effect (word identification probability, y-axis, curves as a function of gaze position, x-axis) for three conditions of visual
attention distribution: the default distribution (σA = 1.75); a uniform distribution (σA = 100), and a narrow distribution
(σA = .5).

We simulated word recognition for each frequency value
while varying inter-letter spacing. For this purpose, both the
acuity gradient θG and lateral interference θI parameter val-
ues were manipulated, with a systematic grid search method.
The visual acuity gradient parameter θG was varied from 1
(its default value) to 5 (i.e., strong acuity decline), with steps
of 1. As compared to the default value of θI = 0.675 (thus,

1 − θI = 0.325), the interference strength 1 − θI was var-
ied from 0.5 (i.e., exaggerated lateral interference) to 0 (no
interference from adjacent letters), with steps of .05. The
effect of these variations on word recognition RTs was first
evaluated using the default visual attention distribution value
(σA = 1.75), then a uniform distribution (σA = 100).
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Results

The specific and combined effects of lateral interference
and acuity modulation on RTs are presented for short and
long words as a function of frequency and visual attention
distribution in Figure 11. Word recognition RTs were ana-
lyzed with a linear mixed effects model with items as crossed
random effects and lateral interference, crowding, frequency,
length, and attention distribution as fixed effects.

As shown on Panels (a) and (b) of Figure 11, whatever
word length and frequency, the model predicts that words are
recognized faster when they suffer either lesser lateral inter-
ference ([F(10, 64353) = 3159, p < .0001]) or lesser acuity
drop-off ([F(4, 64353) = 4992, p < .0001]).

Note that these two effects are not independent. In real
experimental conditions, lesser lateral interference due to
larger inter-letter spacing increases the physical length of the
word letter string. In turn, higher physical length increases
performance drop-off due to acuity. In the model, the two
combined effects do result in a trade-off ([F(40, 64353) =
3.051, p < .0001]), whereby letter spacing is both beneficial
to word recognition due to lateral interference decrease, and
detrimental to word recognition due to greater acuity decline.
As a result, see Figure 12 (red trajectory), a slight increase of
physical inter-letter spacing translates into lower lateral inter-
ference (1−θI goes to 0) while only minimally affecting acu-
ity (θG). In this condition, word recognition is accelerated.
However, beyond a certain 1 − θI value, larger spacing does
not compensate for excessive acuity decline (θG increases
when 1− θI decreases), which negatively affects word recog-
nition. Following such a trajectory in parameter space, the
model predicts first a decrease followed by a steady increase
in recognition times, consistent with behavioral observations
(L. Cohen et al., 2008; Spinelli et al., 2002).

As shown on Figure 11, in the condition of default at-
tention distribution, the model predicted both a word fre-
quency and a word length effect on recognition times. First,
the combined effects of lateral interference and acuity gradi-
ent were modulated by word frequency ([F(275, 64353) =
4752.07, p < .0001]). Stronger lateral interference and
lesser visual acuity were more detrimental for word recog-
nition when the word was of lower frequency. Reversely,
recognition times at the optimal spacing (the lower part of the
red curve) were only slightly affected by variations in word
frequency. (The model further predicted minimal effects of
frequency in the extreme conditions of simulations character-
ized by either no interference but maximal acuity, or strong
interference but poor acuity. Note that these two conditions
are purely theoretical but highly unrealistic physically.)

Simulations further revealed that the lateral interference
and acuity gradient effects were exacerbated by word length
([F(54, 64353) = 58.67, p < .0001]). Longer words were
more affected than shorter words by either an increase in lat-
eral interference or a decline in visual acuity, and the length

effect was of higher amplitude for words of lower frequency
([F(275, 64353) = 236.08, p < .0001]). As a result, the
combined opposite effects of lateral interference and acu-
ity gradient were more pronounced for words of lower fre-
quency and higher length. The model thus predicts that the
positive effect of lesser lateral interference on word recog-
nition would turn negative faster for longer words of lower
frequency, due to stronger decline in visual acuity and higher
competition with more frequent lexical neighbors. The same
main and combined effects of lateral interference, acuity gra-
dient, length, and frequency were replicated in the condition
of uniform attention distribution.

Comparison of panels (a) and (c) for 5-letter words and
panels (b) and (d) for 9-letter words allowed exploring the
impact of visual attention distribution on crowding effects.
Simulated data showed that the lateral interference by acuity
gradient interaction was modulated by attention distribution
([F(54, 64353) = 123.20, p < .0001]). Interestingly, oppo-
site effects of attention distribution were observed for the 5-
and 9-letter words ([F(55, 64353) = 261.52, p < .0001]).
For 5-letter words, the effects of lateral interference and acu-
ity gradient were far reduced in condition of uniform atten-
tion distribution (Figure 11, panel (c)) relative to the Gaus-
sian attention distribution condition (Figure 11, panel (a)).
In contrast, stronger effects of lateral interference and acu-
ity gradient were generated for 9-letter words in the uniform
attention condition.

These opposite effects illustrate how the modulation of let-
ter identification by visual attention affects word processing
depending on letter spacing. In the uniform attention distri-
bution, the total amount of attention available for processing
was equally distributed over the letter string, so that more
attention was allocated to each letter in 5- than in 9-letter
words (1/5 vs. 1/9 respectively). This conferred an advantage
to shorter words in the uniform attention condition, com-
pared to the Gaussian distribution. In the uniform condition,
enough attention was allocated to each letter of the 5-letter
words for their accurate and fast identification. As a result,
word recognition was less affected by the negative impact of
stronger lateral interference and acuity decline in this condi-
tion than in the Gaussian distribution condition, in which the
letters that received a lesser amount of attention were more
slowly identified. However, the same uniform attention dis-
tribution had an opposite effect on 9-letter words. Indeed, the
small amount of attention allocated to each letter then slowed
down identity information accumulation in each position, so
that word recognition for 9-letter words was more strongly
affected by the detrimental effects of lateral interference and
acuity decline in the uniform than in the Gaussian distribu-
tion condition.

Therefore, overall, the model accurately predicts transi-
tory positive effects of inter-letter spacing as far as lateral
interference can be reduced enough without affecting signif-
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Figure 11

E�ects of variations in lateral interference and visual acuity on RTS for long and short

words according to their frequency and visual attention distribution. Top panels (a) and

(b) illustrate results using the default attention parameter value, and bottom panels (c)

and (d), using a uniform attention distribution. Left-column panels (a and c) are for

5-letter words, right-column panels (b and d) for 9-letter words. Each panel presents the

average simulated RTs (z-axes; note that panels a and c go up to 1,000 and panels b and

d go up to 1,500) as a function of lateral interference parameter 1 ≠ ◊I (x-axes, 0

represents no interference), acuity gradient parameter (y-axes, 0 represents no acuity

drop-o�, 5 represents a strong acuity drop-o�) and word frequency (colored curves).

recognition times, consistent with behavioral observations (L. Cohen et al., 2008;

Spinelli et al., 2002).

As shown on Figure 11, in condition of default attention distribution, the model

predicted both a word frequency and a word length e�ect on recognition times. First,

Figure 11

Effects of variations in lateral interference and visual acuity on RTS for long and short words according to their frequency and
visual attention distribution. Top panels (a) and (b) illustrate results using the default attention parameter value, and bottom
panels (c) and (d), using a uniform attention distribution. Left-column panels (a and c) are for 5-letter words, right-column
panels (b and d) for 9-letter words. Each panel presents the average simulated RTs (z-axes; note that panels a and c go up
to 1,000 and panels b and d go up to 1,500) as a function of lateral interference parameter 1 − θI (x-axes, 0 represents no
interference), acuity gradient parameter (y-axes, 0 represents no acuity drop-off, 5 represents a strong acuity drop-off), and
word frequency (colored curves).

icantly the drop of visual acuity. However, the initial fa-
cilitator effect of increased letter spacing on word recogni-
tion quickly turned inhibitory due to stronger acuity decline.
The detrimental effect of acuity decline on word recognition
was partly compensated by word frequency but exacerbated
when the word was longer. More importantly for the present
purpose, the model further predicts that the effects of lateral
interference and acuity gradient on letter identification and
word recognition would be modulated by visual attention.
The negative effect of acuity drop offwas partly compensated
when each one of the word letter received enough attention,
which boosted word recognition. In contrast, when only a
small amount of attention was allocated to each of the word
letters, then letter identification and word recognition were
both slowed-down, all the more than the word was longer
and the acuity decline stronger.

Discussion

We have described BRAID, a new model of single word
recognition whose originality resides in the implementation

of four mechanisms that modulate letter identification within
strings – namely, letter confusability, acuity decline, lateral
interference, and visual attention. Simulations of three em-
pirical phenomena – namely, the word length effect in lex-
ical decision, the OVP effect, and the crowding effect in
word recognition – were then performed to more specifi-
cally challenge the visual and visual attention mechanisms
that are implemented in BRAID and better understand how
these mechanisms interact between each other and with lex-
ical knowledge. The overall simulation results showed that
the model successfully accounted for all three empirical ef-
fects, and furthermore, that good fit to the empirical data was
not bound to dedicated parameter values specific of each ef-
fect but could follow from the use of a single set of inde-
pendently fixed default parameter values. The same default
parameters were also used to account for the classical effects
of context on letter perception and frequency, neighborhood
frequency and priming in lexical decision. This opens up
the prospect of a single stable model able to account for a
large variety of tasks and behavioral phenomena. To better
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Figure 26 . Illustration of a plausible trajectory in parameter space resulting from

physical manipulation of interletter spacing (red curved arrow, starting from default

values of parameters).

(i.e., smaller value of parameter ◊I and parameter ◊G) are recognized faster. These two

e�ects are not independent. In real experimental conditions, lesser lateral interference

results from larger interletter spacing which increases the physical length of the word

letter-string, thus increasing the probability for more letters to su�er stronger acuity

drop-o�. In the model, the two combined e�ects thus result in a trade-o�

([F (40,64353) = 3.051, p < .0001]), whereby letter spacing is both beneficial to word

recognition due to the decrease in lateral interference, and detrimental to word

recognition due to greater visual acuity decline. Furthermore, increasing physical

inter-letter spacing is likely to translate into first reducing lateral interference (1 ≠ ◊I

goes to 0) while only minimally a�ecting acuity (◊G) and then, increasing the acuity

parameter (◊G increases when 1 ≠ ◊I decreases; see Figure 26, red trajectory). Following

such a trajectory in parameter space, the model predicts first a decrease followed by a

steady increase in recognition times, consistent with behavioral observations (Spinelli et

al., 2002; L. Cohen et al., 2008).

As illustrated on Figure 25, the model further predicts that the combined e�ects

of lateral interference and acuity gradient would be modulated by word frequency

([F (275,64353) = 4752.07, p < .0001]). While frequency only minimally a�ects word

recognition in the extreme and unrealistic condition of simulations with no interference

and maximal acuity, stronger lateral interference and lesser visual acuity are all the

Figure 12

Illustration of a plausible trajectory in parameter space re-
sulting from physical manipulation of inter-letter spacing
(red curved arrow, starting from default values of parame-
ters).

understand how visual attention modulated performance, the
distribution of visual attention was systematically varied and
simulations rerun using either a uniform distribution or a nar-
rowed distribution of visual attention, instead of the default
Gaussian distribution. We show that the length, the OVP, and
the crowding effects were all strongly affected by changes in
visual attention distribution, suggesting that visual attention
does matter in word recognition.

The visual mechanisms of word recognition

In line with its predecessors (Coltheart et al., 2001; Davis,
2010; McClelland & Rumelhart, 1981; Perry et al., 2007,
2010; Reichle et al., 2003, 2009; C. Whitney, 2001), BRAID
incorporates a letter confusion matrix but, unlike most pre-
vious models, it postulates that three mechanisms of acu-
ity gradient, lateral interference, and visual attention are fur-
ther involved in letter identification within words. First, like
very few models of word recognition (C. Whitney, 2001)
but all models of eye movement control in reading (Engbert
et al., 2002, 2005; Reichle et al., 1999, 2003, 2009; Snell
et al., 2018), BRAID implements a visual acuity gradient.
In BRAID, this visual mechanism is expressed mathemati-
cally independently from both the confusion matrix – against
AVM (Paap et al., 1982) – and letter position encoding –
against SCM (Davis, 2010). Implementation of the acuity
gradient was critical to successfully simulate the effects of
word length, OVP, and increased inter-letter spacing.

Second, in line with several previous models of word

recognition (Davis, 2010; Gomez et al., 2008; Norris et al.,
2010), BRAID implements a mechanism of lateral interfer-
ence for distributed coding of letter position within words. In
BRAID as in these other models, letter position uncertainty
has for direct consequence to mix the features of letters, so
that their identification is more or less accurate (and fast) de-
pending on their position within the word string. However,
unlike these other models, BRAID postulates that ambiguity
in position and identity is restricted to adjacent letters. The
two mechanisms of acuity gradient and lateral interference
naturally allowed the model to simulate crowding effects on
word recognition.

Last, the main originality of BRAID is the assumption that
visual attention is a key component of word recognition. The
implementation of a visual attention mechanism is rather un-
usual in word recognition models but quite common in mod-
els of eye movement control in reading (Engbert et al., 2002,
2005; Reichle et al., 1999, 2003, 2009; Snell et al., 2018). In
contrast to previous modeling (whatever the class of reading
models), visual attention in BRAID was defined by three pa-
rameters, namely attention focus location, attention disper-
sion, and attention quantity. Although the two first param-
eters alone were manipulated in the present study, the addi-
tional impact of attention quantity on word recognition was
recently investigated (Steinhilber et al., 2023), suggesting
that attention dispersion would be modulated by the quantity
of visual attention available for processing.

However, the visual attention submodel implemented in
BRAID is incomplete. The model predicts that attention
shifting is required to account for the length effect in lexical
decision but the shifting mechanisms were under-specified,
with fixed positions and fixation duration as a first approx-
imation. A more realistic model of attention has been pro-
posed by Ginestet et al. (2022) and Steinhilber et al. (2023) to
account for orthographic learning. In these studies, an atten-
tional exploration mechanism optimizes the gain of informa-
tion about letter identity over time. This new model predicts
the locus of the next attentional fixation and its dispersion
in an online manner, thus allowing the flexible adaptation
of attention to the word properties. This augmented visual
attention submodel provides a reasonable account of eye-
movement patterns during single word processing (Ginestet
et al., 2022; Steinhilber et al., 2023). This suggests that im-
plementing both a dynamical model of visual attention and
the mechanisms of acuity gradient and lateral interference in
a single framework might contribute to fill the gap between
models of word recognition and eye movement control in
reading. Until now, the model was limited to single word
processing (for attempts to fill this gap at the sentence level,
see Snell et al. (2018) and Veldre et al. (2020)). We anticipate
that BRAID’s properties might be applied effectively to the
reading of connected words, provided the implementation of
additional mechanisms of word predictability. A complete
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visual attention model interacting online with word proper-
ties (e.g., frequency, neighborhood, length, semantic knowl-
edge) would translate into great exploration flexibility. We
would therefore expect visual attention to distribute some-
times over several words at a time, as postulated in SWIFT
(Engbert et al., 2005) or OB1-Reader (Snell et al., 2018),
sometimes over just one word at a time, as postulated in E-Z
Reader (Reichle et al., 1999, 2009) or even over only por-
tions of words. However, simulations of the length, OVP,
and crowding effects have shown that visual attention hardly
compensates for the sharp acuity decline with eccentricity in-
crease. We thus anticipate that decline in visual acuity would
impose major constraints on the number of words that can be
simultaneously processed.

The four mechanisms postulated by the model as being
involved in letter identification within words differ not only
in their function but further in their intrinsic properties. The
confusion matrix is specific to the language under concern,
while the three other mechanisms relate to general properties
of the visual system. Among these visual mechanisms, two
relate to the physical properties of the stimulus (i.e., the spa-
tial distance between gaze position and the letter, or between
letters within words). As a result, letter confusability, visual
acuity, and lateral interference are largely independent from
the reader’s cognitive abilities. Obviously, the status of vi-
sual attention is different. Visual attention is a highly flexible
mechanism that can adapt to the constraints of the task and
word properties. It further adapts to the reader’s purpose,
which makes it a cognitive mechanism of great significance
for word recognition. The implementation of visual attention
as a specific submodel in BRAID translates its cognitive sta-
tus while all the other three mechanisms are implemented at
the sensory level of processing. The implementation of all
four mechanisms in BRAID provides insights on their deli-
cate interplay, which is discussed in the next section for each
of the three effects of word length, OVP, and crowding.

Simulations of behavioral data and theoretical insights

The main contribution of a novel computational model is
to provide new insights on the mechanisms responsible for
the behavioral effects that the model can successfully simu-
late. With this respect, BRAID represents a significant ad-
vancement in allowing to better understand the interplay be-
tween visual acuity, lateral interference, and visual attention
and how these mechanisms interact with lexical constraints
to generate the behavioral effects of word length, OVP, and
crowding.

The length effect. With respect to the word length effect
in lexical decision, simulated findings suggest that the word
length effect cannot be viewed as a marker of serial process-
ing (Barton et al., 2014). Indeed, an exaggerated word length
effect was generated by BRAID in condition of fully parallel
processing (i.e., the no-shift condition using default visual

attention parameters). In this condition of single attentional
fixation on the word center, an increasing number of letters
received lesser attention and suffered from more severe vi-
sual acuity decline in longer than in shorter words. These two
mechanisms thus combined to more drastically slow down
letter identity information accumulation during longer word
processing. Slower letter identification yielded weaker lexi-
cal activation, thus far longer RTs in lexical decision.

Rather counter-intuitively and against general belief, the
word length effect was reduced rather than increased in the
serial condition of attentional shifting. Interestingly, the
same exact two mechanisms are responsible for the weaker,
and more realistic length effect generated in the serial con-
dition. Then, visual attention was spread over about half of
the word letters at each fixation, so that more attention was
allocated to each letter. In reducing the number of letters
that were processed in parallel, attentional shifting further
reduced eccentricity, so that the attended letters also suffered
from lesser acuity loss. Thus, the two mechanisms, that con-
currently impacted letter identification in fully parallel pro-
cessing, now contributed to enhance letter identification. In
this latter condition, BRAID successfully accounted for the
LD word length effect reported for humans in the English
Lexicon Project (see Ginestet et al. (2019) for similar find-
ings using a dataset from the French Lexicon Project).

Overall, the main theoretical contribution of BRAID on
the word length effect is twofold. First, the model warns
against straightforward conclusions about the serial or par-
allel nature of processing, based on the presence or absence
of a length effect. A similar warning was previously formu-
lated by C. Whitney (2018). She showed, within the SE-
RIOL model framework, that serial processing does not nec-
essarily translate into length effects in word processing. As a
corollary, we show within the BRAID framework that paral-
lel processing is not necessarily associated with the absence
of length effects. Another main contribution of BRAID is to
show that visual acuity and visual attention both contribute to
word length effect in LD. It was already assumed that length
effects resulted from less efficient letter information encod-
ing and lexical activation, due to reduced quality of visual in-
put with eccentricity (O’Regan & Jacobs, 1984). In contrast,
visual attention and the number of attentional fixations were
rarely considered as potential contributors. Current simula-
tion results are at least compatible with previously reported
data indicating that visual attention was involved in word lex-
ical decision (McCann et al., 1992) and that attention inter-
acts with word length in perceptual identification tasks (Au-
clair & Siéroff, 2002). They are also in line with evidence for
exaggerated word length effect in lexical decision in the con-
text of poor visual attention span in developmental dyslexia
(Juphard et al., 2004).

The OVP effect. Importantly, the same BRAID model
without any modification to its parameter values successfully
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simulated the OVP effect and viewing position curves de-
pending on word length. The model predicts that the OVP
effect on word recognition is mainly determined by the same
two visual factors, namely the acuity gradient and visual at-
tention distribution over the word letter string, while being
further modulated by lexical constraints. The role of acu-
ity limitations on the OVP effect is well-documented and
largely consensual (Nazir et al., 1992; O’Regan & Jacobs,
1984; O’Regan et al., 1984). What remains debated is the
origin of the observed asymmetry of the OVP curves. In-
deed, while the acuity gradient by itself can explain better
recognition when fixating around the word center, the sym-
metrical decline of acuity with eccentricity cannot account,
in isolation, for the observed left-right asymmetry. Beyond
acuity effects, the influence of lexical constraints – the num-
ber of words that can be accurately processed from a limited
amount of sensory information – was proposed to account
for the OVP asymmetry (O’Regan & Jacobs, 1984), assum-
ing that words are more easily recognized based on their ini-
tial than their final letters (Adelman et al., 2010; Scaltritti &
Balota, 2013). The combined effects of acuity drop-off and
lexical constraints are highlighted within the BRAID frame-
work when simulations were carried out in condition of uni-
form attention distribution. The model does predict a left-
right asymmetry of the OVP curves due to lexical constraints,
but the asymmetry is small and only minimally affected by
word length, against the observed empirical findings. In line
with previous evidence (Brysbaert et al., 1996; Holmes &
O’Regan, 1987; Stevens & Grainger, 2003), this suggests
that lexical constraints alone cannot account for the observed
asymmetry.

Moreover, the main contribution of BRAID is to predict
that the OVP curve shapes are highly sensitive to the distri-
bution of visual attention over the word letter string. Con-
trary to the uniform distribution condition, the default Gaus-
sian distribution of attention allowed simulating asymmetri-
cal curve shapes that closely matched the observed curves.
When fixating the word’s first letter, most attention was al-
located to the initial letters which boosted their identification
and facilitated word recognition. In contrast, focusing vi-
sual attention on the word’s final letters enhanced their iden-
tification but had no facilitating effect on word recognition.
The model thus predicts that the observed asymmetry of the
OVP curves would result from the impact of visual attention
distribution on letter identification and how letter identifica-
tion affects lexical processing. Note that a potential effect of
visual attention in the OVP asymmetry has been frequently
suspected and discussed (Aghababian & Nazir, 2000; Bel-
locchi & Ducrot, 2021; Brysbaert & Nazir, 2005; Ducrot &
Grainger, 2007; C. Whitney, 2001) but the potential role of
visual attention on the OVP effect was not previously mod-
eled and not investigated in-depth through behavioral studies.

The crowding effect. The same model without modifica-
tion of its parameters of visual acuity and visual attention was
also able to successfully simulate the crowding effects re-
ported in humans for words varying in length and frequency.
On the one hand, BRAID simulations replicated the empiri-
cal findings that word recognition is slowed when letters are
more closely spaced than normal, accelerated when interlet-
ter spacing is slightly larger than normal (Bouma, 1970; L.
Cohen et al., 2008; Martelli et al., 2009; Perea et al., 2011;
Spinelli et al., 2002), and slowed down again in condition
of extra-large spacing (L. Cohen et al., 2008; Spinelli et al.,
2002; Yu et al., 2007).

A first contribution of the model was to reveal how this
pattern follows from the interaction between lateral interfer-
ence and visual acuity. A general prediction of the model
is that word recognition is facilitated when lateral interfer-
ence between adjacent letters is reduced, thus in condition of
larger interletter spacing. As the parameter of lateral interfer-
ence relates to identity and position coding uncertainty, the
model quite straightforwardly predicts higher identity leak-
age and poorer letter position coding, in crowded conditions.
However, the positive effect of lateral interference reduction
in condition of larger interletter spacing is counter-balanced
by the increase of visual acuity drop-off with eccentricity.
Combined variations of lateral interference reduction and vi-
sual acuity decline provided a good qualitative account of
the opposite beneficial and deleterious effects of interletter
spacing on word recognition. Beneficial effects of larger in-
terletter spacing would be observed as far as eccentricity is
constrained enough to limit the detrimental effects of visual
acuity decline. Even though the adopted scaling of lateral
interference and visual acuity was arbitrarily defined in the
simulations, BRAID well accounts for the observed qualita-
tive pattern of performance.

In addition, the model suggests that searching for a
unique optimal acuity-interference combination that guaran-
tees more efficient reading may be misleading, due to ad-
ditional interactions with word frequency and word length,
and further influence of visual attention. Indeed, simulated
results in condition of larger spacing suggest that high fre-
quency words would be more resilient than low-frequency
words to the detrimental effects of visual acuity, and that
longer word recognition would suffer more from acuity de-
cline. These predictions are well in line with behavioral
findings that increasing interletter spacing differently affects
word recognition depending on word length (L. Cohen et al.,
2008; Risko et al., 2011) and that the recognition of higher
frequency words suffers less from increased spacing (Huck-
auf & Nazir, 2007; Paterson & Jordan, 2010; Perea et al.,
2011). Current findings clearly suggest that there is no single
interletter spacing larger than standard that is optimal to sig-
nificantly improve reading performance when systematically
applied to all the words in a sentence or a text. Although a
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fixed and slight interletter spacing may enhance letter identi-
fication and boost word recognition to some extent, more ef-
ficient word recognition would require adjusting the width of
interletter spacing depending on word length and frequency.

In the context of crowding effects, the main theoretical
contribution of BRAID is to provide new insights on how vi-
sual attention modulates the combined effects of lateral inter-
ference and visual acuity. In conditions of standard interletter
spacing and for five letter words, a Gaussian distribution of
attention allows allocating enough attention to each letter to
compensate for the detrimental effects of lateral interference
and visual acuity, which boosts word recognition. However,
when interletter spacing is increased, the number of letters
that receive enough attention for their accurate identification
is gradually reduced while the adverse effect of visual acuity
increases rapidly (O’Regan et al., 1984). As a direct con-
sequence, larger spacing becomes detrimental as soon as the
amount of attention allocated to each letter does not compen-
sate enough for the loss of acuity induced by spacing. It is
noteworthy that exactly the same mechanisms account for the
differential spacing effects depending on word length. More
generally, when the word is physically longer, either due to
larger interletter spacing or to a higher number of letters, then
attention is less likely to compensate for the drop of visual
acuity.

Overall, the model predicts that the distribution of at-
tention strongly constrains the effects of crowding on word
recognition. This prediction connects with experimental ev-
idence that visual attention modulates crowding effects in
reading (Y. He & Legge, 2017; Risko et al., 2011; Yeshu-
run & Rashal, 2010). In particular, simulated results suggest
that crowding effects would be exacerbated when each word
letter receives little attention, which was here simulated by
distributing a “normal” quantity of total attention resources
uniformly on physically longer words.

Visual attention as a key component of word recognition

The results of current simulations provide strong evi-
dence that visual attention modulates all three effects of word
length, OVP, and crowding. In all cases, word recogni-
tion depends on the amount of visual attention distributed
over the letter string and to what extent the positive effect
of visual attention on letter identification compensates for
the deleterious effects of visual acuity and lateral interfer-
ence. Thus, a default distribution of visual attention favored
shorter word processing in lexical decision, generating a far
stronger length effect than behaviorally observed, so that an
attentional shift alone allowed processing longer words as
humans do. The OVP location within words and viewing
position curve shapes fitted those reported for humans de-
pending on word length when using the same default visual
attention distribution. Word recognition was facilitated when
the peak of attention was aligned with the initial word letters

that are also the most informative for lexical discrimination
but word recognition was degraded when most attention was
allocated to the less informative final letters. In the same way,
the acuity-visual attention cost-benefit ratio on word recogni-
tion was in favor of visual attention when interletter spacing
was slightly increased but, up to a certain threshold (or, crit-
ical spacing), the ratio was reversed and attention could no
longer compensate for the acuity loss.

The model further predicts that a narrow visual attention
distribution should result in exaggerated word length effect
and atypical viewing position curves (i.e., simulations using
a σA value of 0.5). These predictions align with behavioral
evidence for higher word length effects in beginning read-
ers (Martens & de Jong, 2006; van den Boer et al., 2015;
Zoccolotti et al., 2005, 2008) who otherwise exhibit lower
visual attention spans than more advanced readers (Bosse
& Valdois, 2009). Higher length effects in word recogni-
tion and lexical decision have also been reported in dyslexic
readers who showed a visual attention span deficit (Juphard
et al., 2004; Valdois et al., 2003, 2011). However, the model
goes beyond current findings in postulating that the relation-
ship between visual attention and word length effect may
be causal, which should be deeply investigated in future re-
search.

With respect to the OVP effect, the very atypical viewing
position curves generated by the model in condition of lim-
ited attentional distribution have similar shapes to those re-
ported in the few studies that were conducted in dyslexic in-
dividuals (Aghababian & Nazir, 2000; Dubois et al., 2007).
Atypical curves have sometimes been reported to co-occur
with a visual attention deficit in dyslexia (Dubois et al., 2007;
Montant et al., 1998; Valdois et al., 2021) but a causal rela-
tionship remains to be established. In support of causality,
BRAID was able to successfully account for the very atypi-
cal curves reported in dyslexic children with a visual atten-
tion span deficit when the distribution of visual attention was
narrowed and the peak of attention decorrelated from gaze
position (Valdois et al., 2021). Interestingly, since a similar
narrowing of visual attention distribution translated in both
a higher length effect and atypical viewing position curves
in current simulations, the model predicts that exaggerated
length effects should co-occur with atypical performance in
the OVP task in dyslexic individuals. This co-occurrence
that was reported only once in a case of letter-by-letter read-
ing (Montant et al., 1998) should be more systematically in-
vestigated together with its relationship with visual attention
skills.

The predictions with respect to crowding are less straight-
forward. We showed through simulations that the crowding
effect was exacerbated when a limited amount of attention
was allocated to each letter within the word (i.e., in the con-
dition of uniform distribution on long words). This suggests
that enhanced visual crowding should be observed in typi-
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cal readers when attention is distributed over a large array
of visual elements in parallel. But spreading an abnormally
limited amount of visual attention over the whole letter string
(thus, in condition of brief presentation and parallel process-
ing) might also enhance visual crowding, even for shorter
words. In contrast, BRAID predicts that the use of a nar-
row distribution of visual attention concentrating attention
on each individual letter (or a few letters) successively might
be quite efficient to compensate for crowding effects on letter
identification but at the cost of a strong length effect. These
predictions may lead to reconsider interpretations of the ex-
acerbated crowding effects reported in dyslexic individuals
(Callens et al., 2013; Martelli et al., 2009; Spinelli et al.,
2002; Zorzi et al., 2012). In line with previous claims (Baci-
galupo & Luck, 2015; Dayan & Solomon, 2010; S. He et al.,
1996; Strasburger, 2005), the current findings suggest that
a comprehensive account of crowding effects in typical and
atypical readers would require considering interactions with
the task attentional load and the participant’s visual attention
skills.

Conclusion

We have described BRAID, a new model of word recog-
nition that for the first time implements mechanisms of vi-
sual acuity, lateral interference, and visual attention. BRAID
is also the first to account for all three behavioral effects of
word length in lexical decision, OVP, and crowding in word
recognition. The model places heavy emphasis on the role
of attention in word recognition. It offers a highly sophisti-
cated account of visual attention based on the three param-
eters of attentional focus, attention distribution, and atten-
tional capacity. The implementation of visual attention in a
word recognition model opens the perspective to provide a
more integrated account of the reading process. Assuming
that each attentional shifting would translate to gaze posi-
tion changes, the model has the potential to predict both cog-
nitive effects in word recognition and oculomotor patterns
in single word processing. We showed through simulations
that visual attentional shifting yielded serial word process-
ing. This suggests that serial versus parallel processing in
the model might directly follow from the distribution of vi-
sual attention over the word letter string. The model might
then naturally account for the transfer from more serial to
more parallel word processing during reading development.
Interestingly, contrary to dual route models, there is no di-
chotomy between serial and parallel processing within the
BRAID framework. The two processing modes are reinter-
preted along a continuum. Serial processing is not conceived
as strictly serial but rather reflects the sequential parallel pro-
cessing of word parts, thus resulting in a “partly serial, partly
parallel” processing mode. Within this framework, reading
develops from the serial processing of small word parts (at
the extreme, limited to each single letter) to the serial pro-

cessing of larger and larger word parts (at the extreme, ex-
tended to the whole word letter string). This predicts a very
gradual transition from more serial to more parallel process-
ing during reading acquisition without requiring additional
hypotheses on the automation of the serial processing mech-
anism. Another important contribution of the current model
is to demonstrate that changes in visual attention distribution
affect word recognition in a way that is similar to what is
described in atypical readers. This suggests that, contrary to
current computational models of word recognition that focus
on fluent reading in expert readers, BRAID provides a par-
simonious theoretical framework for further understanding
how reading develops and how that development might be
impaired.
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Appendix A
Joint probability distribution of the BRAID model

The core definition of the BRAID model is the joint proba-
bility distribution
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The top terms (first line of Equation (A1), outside of the main
product) concern the initial state of the model (at time t = 0),
whereas the innermost product contains the temporally local
portion of the model, i.e., the model that is iterated at each
time step t , 0. The innermost product is laid out over seven
lines, roughly following a top-down traversal of the depen-
dency structure shown Figure 2, from lexical knowledge to
stimulus. The full definition of all terms of Equation (A1)
are found elsewhere (Phénix, 2018), and the more relevant
terms are explained in the main text.

Appendix B
Simulation of benchmark effects

In this section, we present the results of a series of simula-
tions that were carried out to evaluate the capacity of BRAID
to account for benchmark effects, namely context effects on
letter identification, including the word and pseudoword su-
periority effect, and their modulation as a function of visual
attention, and for transposed-letter priming effects in lexical
decision.

Context effects on letter identification

Since the seminal studies of Reicher (1969) and
Wheeler (1970), the two-alternative forced-choice (2AFC)
paradigm is used to explore context effects on letter percep-
tion. In this paradigm, a stimulus is briefly presented, fol-
lowed by a mask then a letter-pair located above and below
one of the input string position. The participant has to decide
which of the two letters was present in the string at this po-
sition. For example, the word “LAST” is briefly presented,
followed by the O/A letter pair in second position, so that
each letter forms an existing word with the surrounding con-
text (“LAST”-“LOST”).

The use of this paradigm revealed two robust phe-
nomena: the word superiority effect – letters are more accu-
rately identified in briefly presented words than in the con-
text of unrelated letter strings (i.e., nonwords) or in isola-
tion (Cattell, 1886; Spoehr & Smith, 1975) –, and the pseu-
doword superiority effect – letters are identified more accu-
rately when embedded in pseudowords (orthographically le-
gal but meaningless letter strings) than in nonwords (Baron &
Thurston, 1973; Carr et al., 1978; Grainger & Jacobs, 1994).
The word and pseudoword superiority effects have been ex-
plored within the IA framework (McClelland & Rumelhart,
1981; Rumelhart & McClelland, 1982), the AV model (Paap
et al., 1982), and DROM (Grainger & Jacobs, 1994). It was
further shown that these effects are particular cases of a more
general context familiarity effect: a target letter is better rec-
ognized when embedded within a letter context that occurs
in existing words (Rumelhart & McClelland, 1982).

We perform three simulations, inspired from classi-
cal experiments, to show that BRAID accounts for the word
superiority effect (Johnston, 1978, Experiment 2) in Simula-
tion 1, for the pseudoword superiority effect (Chase & Tallal,
1990) in Simulation 2, and for more general context familiar-
ity effect (Rumelhart & McClelland, 1982, Experiment 10) in
Simulation 3.

Method. All three simulations reproduce the con-
ditions of the 2AFC paradigm. Simulations 1 and 2 use the
original sets of words. For Simulation 3, as words were
not listed in the experiment reported in the original article
by Rumelhart and McClelland (1982), the four sets of word
pairs from (Johnston, 1978, Experiment 2) were used and
pseudowords were generated as described in the original ar-
ticle.

Simulation 1 explores letter identification in the
context of words or nonwords, or in isolation (e.g., letter A
in “LAST”, “OASW”, or “_A__”). Simulation 2 explores
letter identification in the context of words (“DARK”), pseu-
dowords (“DARL”), or nonwords (“KADM”). In Simulation
3, letter identification is assessed in the context of pseu-
dowords, word-like nonwords, and QXJ nonwords. Word-
like consonant nonwords were generated from words by
changing the vowel for a consonant (e.g., “LCST” from
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“LAST”) so that the target letter in the nonword (“C” in
“LCST”) shared the same consonant context as the target let-
ter in the word (“A” in “LAST”). QXJ nonwords were gener-
ated for each target letter by using the letters “Q”, “X”, “J”
in various orders as context (e.g., “XCQJ”).

For each simulation, BRAID provides information
on the mean time course of letter identification for each con-
text condition, using the inference for letter identification
with lexical influence (Equation (4)). The time course from
one context condition is then used to identify the iteration
at which simulated and experimental data match. Note that
the alignment here matches predicted performance, and not
response times. Nevertheless, this condition then serves as
calibration; the results for the two other conditions at this it-
eration are therefore model predictions that can be compared
with experimental data.

Simulation results. Results from Simulation 1
show that BRAID successfully simulates the word superior-
ity effect (see Figure B1 (a)). A repeated measures ANOVA
carried out on the simulated data, with context as a within-
items variable, shows a significant main effect of context
[F(2, 542) = 913.7, p < .001, η2 = 0.771]. Target letters are
identified more efficiently in the context of words than when
presented in isolation [t(542) = 28.73, p < .001] and more
efficiently when presented in isolation than within nonwords
[t(542) = −12.71, p < .001]. Exploration of the temporal
dynamics of perceptual accumulation further shows that the
word superiority effect is quite robust over time. Indeed, the
ordering of performance between conditions holds, indepen-
dently of the chosen reference iteration.

Results from Simulation 2 show that BRAID also
simulates the pseudoword superiority effect (see Figure B1
(b)). There is a main effect of context [F(2, 158) =
83.65, p < .001, η2 = 0.514], in particular characterized
by the fact that letters are more accurately identified within
the context of pseudowords than within the context of non-
words [t(158) = 4.373, p < .001]. However, BRAID
predicts better letter identification within words than within
pseudowords, contrary to the human data, in which both are
equal. The pseudoword superiority effect is observed all
along processing time course in the simulation, and is thus
very robust over time.

As shown in Figure B1 (c), in Simulation 3, BRAID
well captures the experimental data showing a context famil-
iarity effect. Simulation results show a significant context
effect [F(2, 158) = 71.55, p < .001, η2 = 0.475]. The target
letter is better identified when embedded in word-like con-
sonant than in QXJ nonwords [t(158) = 10.06, p < .001].
As in the behavioral experiment, the probability to identify
the target letter accurately is almost identical in the con-
text of pseudowords as in the context of word-like conso-
nant nonwords [t(158) = −0.47, p = 1]. Exploration of
the time course of processing shows that the same pattern

is observed all along processing. The context effect is very
stable over time, thus quite robust and largely independent of
the selected threshold. Overall, BRAID successfully repro-
duces the word and pseudoword superiority effect as partic-
ular cases of context effects on letter perceptibility.

Attention modulation of the word superiority effect: cue
condition

Method. In Simulation 4, target letters are pre-
sented either in the context of real words (COIN-JOIN) or in
the context of non-words (CPRD-JPRD). In the first condi-
tion of the behavioral 2AFC task, stimuli were presented cen-
tered on the fixation point and participants were instructed
to process the whole input letter-string. In the second con-
dition, a cue indicating the position of the target letter was
displayed prior to stimulus presentation and the participants
were asked to focus attention on the cued position only. For
words, the target letter was more accurately identified in the
whole string condition than in the cued condition but the re-
verse was found for non-words. In other words, taken to-
gether, these experiments jointly show that the word superi-
ority effect was abolished in the cued condition.

The words and non-words used in Simulation 4 are
taken from Simulation 1. The “whole string” condition is
simulated using the default parameters of BRAID and the
method described in Simulation 1. The “cued condition”
is simulated using the same default parameters, except for
gaze position gt and the mean µt

A of the attention distribu-
tion, which are both aligned with the target letter position.
Results of the simulations for the word and non-word stimuli
are presented on Figure B2 (a, a’, b, and b’).

Simulation results. BRAID well captures the op-
posite direction of performance increase for words and non-
words: our simulations yield a whole-string condition facil-
itation for words [t(271) = 14.93, p < .001] and a cued-
condition facilitation for non-words [t(271) = −15.99, p <
.001]. In our simulations, as in the behavioral data, the word
superiority effect is abolished in the cued condition. Ex-
ploration of processing time course shows a very stable ad-
vantage of the cued condition over time for the non-words.
For words, however, we observe a reversal of the predicted
facilitation: at early stages of processing, the cued condi-
tion shows faster accumulation of perceptual information,
whereas, after iteration 54, the whole-word condition catches
up and overpasses the cued condition. The time processing
curves show how the word context gradually contributes to
letter identification, so much so that the whole word condi-
tion becomes facilitating.

Attention modulation of the word superiority effect: inter
letter spacing and target position predictability

Method. In a series of two experiments, Massaro
(1973) and Carr et al. (1976) explored letter identification in
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Simulation 1: Johnston (1978, Experiment 2)

a: Time course a’: Behavioral data vs BRAID
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Simulation 2: Chase and Tallal (1990)

b: Time course b’: Behavioral data vs BRAID
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Simulation 3: Rumelhart and McClelland (1982, Experiment 10)

c: Time course c’: Behavioral data vs BRAID
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Figure A1

Results of Simulations 5, 6 and 7 of the word (top panels) and pseudoword (middle

panels) superiority e�ect, and their generalization to the context familiarity e�ect

(bottom panels). Left panels: time course of probability values for correct letter

identification. Vertical dashed orange lines indicate the reference iteration obtained by

matching simulated and human data. Right panels: comparison of simulated RTs (blue

bars) and behavioral RTs (orange bars) for all experimental conditions; the condition

used for selecting the reference iteration is the leftmost, the other two conditions are

predictions of the model.

Simulation results. Results from Simulation 5 show that BRAID successfully

simulates the word superiority e�ect (see Figure A1 (a)). A repeated measures ANOVA

Figure B1

Results of Simulations 1, 2, and 3 of the word (top panels) and pseudoword (middle panels) superiority effect, and their
generalization to the context familiarity effect (bottom panels). Left panels: time course of probability values for correct letter
identification. Vertical dashed orange lines indicate the reference iteration obtained by matching simulated and human data.
Right panels: comparison of simulated RTs (blue bars) and behavioral RTs (orange bars) for all experimental conditions; the
condition used for selecting the reference iteration is the leftmost, the other two conditions are predictions of the model.

the context of words (AGE) and non-words (SGL), or when
presented in isolation (_G_). They used a 2AFC paradigm,
varying between-letter spacing and the position of the target
letter. In the first experiment (Carr et al., 1976), spacing was
standard and the target could randomly occur at each of the
three serial positions (P in POT, APE, TAP): this replicated
the classical word superiority effect. In the second experi-

ment however (Massaro, 1973), the stimuli were presented
with an enlarged letter spacing, while the target letter always
occurred in central position: the word superiority effect is
abolished in these conditions. Comparison of the two ex-
periments therefore suggests that the word superiority effect
may be sensitive to letter spacing and/or target location pre-
dictability.
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Simulation 4 (Johnston & McClelland, 1974, word condition)

a: Time course a’: Behavioral results vs. BRAID
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Simulation 4 (Johnston & McClelland, 1974, non-word condition)

b: Time course b’: Behavioral results vs. BRAID
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Simulation 5 (Carr et al., 1976; Massaro, 1973)

c: Time course, letter spacing alone c’: Time course, letter spacing

and target predictability
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Figure A3

Results of Simulations 4 and 5 on modulation of the word superiority e�ect by

experimental conditions. Panels a, b, c and c’ show the time course of probability values

for correct letter identification. Vertical dashed blue lines indicate the reference iteration

obtained by matching simulated and human data. Panels a’ and b’: comparison of

simulated and human data; the condition used for selecting the reference iteration is to

the left, the other conditions are predictions of the model.

Figure B2

Results of Simulations 4 and 5 on modulation of the word superiority effect by experimental conditions. Panels a, b, c, and
c’ show the time course of probability values for correct letter identification. Vertical dashed blue lines indicate the reference
iteration obtained by matching simulated and human data. Panels a’ and b’: comparison of simulated and human data; the
condition used for selecting the reference iteration is to the left, the other conditions are predictions of the model.

In Simulation 5, we assess whether the word supe-
riority effect is abolished by manipulating either letter spac-
ing alone or letter spacing and target predictability simultane-
ously. The set of words and non-words are taken from Sim-
ulation 1. Two parameters were modified to simulate larger
spacing between letters: first, the acuity slope parameter (θG)
was doubled to account for larger eccentricity; second, lat-
eral interference (θI) was reduced from 16.25% to 2.5% to
simulate reduction of crowding effects when letters are more
spaced. To account for target location predictability, the po-
sition of gaze (gt) and the mean of the attention distribution
(µt

A) were aligned on the target letter position, as previously

in Simulation 4.

Simulation results. Results of Simulation 5 are
presented on Figure B2 (c and c’). For the “large space”
condition, time course of processing shows a strong word
recognition superiority effect that is stable over time. Letters
are identified more accurately in the context of words than
in the context of non-words or when presented in isolation.
Therefore, the word superiority effect is not sensitive to ma-
nipulation of spacing alone. However, when letter spacing is
enlarged and when attention focuses on the target letter loca-
tion, the word superiority effect is abolished. Therefore, our
simulations show that the classical word superiority effect
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can be modulated by the distribution of visual attention.

Positional effects in primed lexical decision

A wealth of behavioral experiments has explored
transposed-letter priming effects in lexical decision, showing
shorter RTs when the target word is primed by a letter string
that contains the same letters in a different position (Adelman
et al., 2014; Perea & Lupker, 2004; Peressotti & Grainger,
1999; Schoonbaert & Grainger, 2004). Transposed-letter
primes produce a strong priming effect, close to that of iden-
tity primes (Forster et al., 1987; Perea & JLupker, 2003;
Schoonbaert & Grainger, 2004). Transposed letter prim-
ing is stronger than substituted letter priming. For example,
“JUDGE” (positions noted 12345) is recognized faster when
primed by “jugde (positions noted 12435, indicating transpo-
sition of positions 3 and 4; here and in the following, we note
primes in lower case and targets in upper case) than when
primed by “junpe” (12DD5, the “D” indicating substitution
by a different letter at that position).

Priming effects have been reported on words of dif-
ferent length, in tasks using primes that differ in the number
of transposed letters and in their relative position. Trans-
posed letter priming effects are critical to test the validity of
letter position coding assumptions in computational models
of word recognition. Slot-based coding models, like the IA
model (McClelland & Rumelhart, 1981) or the original ver-
sion of BR (Norris, 2006) cannot account for such effects,
whereas they are well captured by the open-bigram model
(Schoonbaert & Grainger, 2004), SERIOL (C. Whitney &
Cornelissen, 2008), SCM (Davis, 2010), OVERLAP (Gomez
et al., 2008), or the noisy-position version of the BR (Norris
et al., 2010).

Method. We assess BRAID’s ability to generate a
large range of priming effects in lexical decision. Simula-
tion 6 compares conditions of identity, transposed, and sub-
stituted letter priming from an experiment by Norris et al.
(2010, Experiment 1). Simulation 7 uses the different con-
ditions of extreme transposed-letter priming from an experi-
ment by Guerrera and Forster (2008, Experiments 1A, 2, and
3). We use the same stimuli as in the experiments.

In Simulation 6, the targets are 5-letter English
words. Priming effects are studied in conditions of identical
(12345, e.g., “under”-“UNDER”; “ID” condition) and adja-
cent transposed-letter primes (13245 or 12435, e.g., “udner”-
“UNDER”; “TL” condition), in conditions of substituted-
letter priming by either letter replacement (1DD45 or
12DD5, e.g., “ulger”-“UNDER”; “SL” condition) or let-
ter repetition (11445 or 12255, e.g., “uueer”-“UNDER”;
“repSL” condition), and a control condition of unrelated
primes (DDDDD, e.g., “gypny”-“UNDER”; “ALD” (for
“all-different”) condition).

In Simulation 7, the targets are 8-letter words
and conditions of extreme transpositions are used while

varying the relative position of the transposed letters.
In simulation 7a (Guerrera & Forster, 2008, Experi-
ment 1A), the transpositions are either internal (13254768,
e.g., “anbroaml”-“ABNORMAL”; “TL-internal” condition)
or external (21345687, e.g., “banormla”-“ABNORMAL”;
“TL-external” condition). In simulation 7b (Guerrera &
Forster, 2008, Experiment 2), letter pairs are reversed
while preserving the first two (12436587, e.g., “abonmrla”-
“ABNORMAL”; “TL-final” condition) or the last two let-
ters (21436578, “baonmral”-“ABNORMAL”; “TL-initial”
condition) in the final and initial transposed-letter priming
conditions. In simulation 7c (Guerrera & Forster, 2008,
Experiment 3), conditions of reverse halves (43218765,
e.g., “onbalamr”-“ABNORMAL”; “TL-Rev” condition) or
total by-pair transposition (21436587, e.g., “baonmrla”-
“ABNORMAL”; “TL-bypair” condition) are further as-
sessed. An ID condition with an identity prime is fur-
ther used in Simulation 7a, and a TL-internal condition in
which all six internal letters are transposed (e.g., “anbroaml”-
“ABNORMAL”) is used in Simulations 7b and 7c. Finally,
Simulations 7a, 7b, and 7c also feature an ALD, control con-
dition (DDDDDDDD, e.g.,“whiscoon”-“ABNORMAL”).

Presentation duration of the prime is similar in the
model as in the experiments (53 and 40 iterations for Simula-
tion 6 and 7 respectively). The threshold value was set to 0.72
for Simulation 6 and to 0.94 for all three sets of conditions
of Simulation 7.

Simulation results. All target words were accu-
rately recognized in simulation 6 and more than 90% in the
different conditions of Simulation 7 (94.8% in Simulation 7a
and 7c; 98.9% in Simulation 7b). Results of the priming ef-
fects on RTs in lexical decision are presented in Figure B3,
for the simulations and the experiments.

Results of Simulation 6 provide a good fit to the
data (R2 = .75). The main effect of prime type is signifi-
cant [F(4, 396) = 2165, p < .001, η2 = 0.956]. BRAID
reproduces priming effects of remarkably similar direction
and amplitude as in the experiment: larger priming effect
of the identity than the unrelated prime (−54 iterations vs.
−45 ms, [t(99) = 60.28, p < .001]), of the transposed-letter
prime than the unrelated prime (−32 iterations vs. −23 ms,
[t(99) = 54.76, p < .001]) and larger priming for the iden-
tity than the transposed-letter condition (−23 iterations vs.
−22 ms, [t(99) = 40.04, p < .001]). As in the experiment,
the substitution and letter-repetition priming conditions have
similar effects on word recognition. However, the model pre-
dicts significant priming effects in these two conditions of
substitution and letter repetition compared to the unrelated
prime (−26 iterations and −30 iterations, all ps < .001),
which are not observed in the experiment (−2 ms and −9 ms).

Results of Simulation 7 (Figure B3) show quite a
good fit of the data for both Experiment 1A (Simulation 7a:
R2 = .91) and Experiment 2 (Simulation 7b: R2 = .83), and a
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Simulation 6: Norris et al. (2010, Experiment 1)
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Simulation 7: Guerrera and Forster (2008)
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b: Experiment 2
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c: Experiment 3
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Figure A3

Results of Simulations 6 and 7 of the positional e�ects in primed lexical decision. Each

panel compares simulated RTs (blue bars) and behavioral RTs (orange bars). Simulated

RTs are aligned with behavioral RTs on the leftmost condition in each experiment. See

text for condition nomenclature.

≠16 ms), or when only the first and last letters are preserved (e.g.,

“anbroaml”-“ABNORMAL”; priming = ≠16 iterations vs. ≠16 ms), all ps < .001.

Simulation of the extreme transposition conditions of Experiment 3 shows only minimal

priming e�ects of a few milliseconds and iterations in conditions of letter reversed

halves (e.g., “onbalamr”-“ABNORMAL”, priming = ≠6 iterations vs. +1 ms) and total

by-pair letter transposition (e.g., “baonmrla”-“ABNORMAL”, priming = ≠7 iterations

vs. +1 ms). Contrary to the behavioral data, these e�ects are significant

([t(85) = 12.5, p < .001] and [t(85) = 17.53, p < .001] respectively). Finally, there is a

reliable priming e�ect in the condition in which all six internal letters are transposed

Figure B3

Results of Simulations 6 and 7 of the positional effects in primed lexical decision. Each panel compares simulated RTs (blue
bars) and behavioral RTs (orange bars). Simulated RTs are aligned with behavioral RTs on the leftmost condition in each
experiment. See text for condition nomenclature.

slightly lower fit for Experiment 3 (Simulation 7c: R2 = .75).
As in Experiment 1A, a reliable internal (e.g., “anbroaml”-
“ABNORMAL”; priming = −16 iterations vs. −30 ms,
[t(85) = 28.25, p < .001]) and external (e.g., “banormla”-
“ABNORMAL”; priming = −16 iterations vs. −23 ms,
[t(85) = 28.60, p < .001]) transposed-letter priming effect
is simulated. The identity prime produces the larger priming
effect in Simulation 7a as in the experiment (−41 iterations
vs. −45 ms, [t(85) = 50.41, p < .001]). The pattern of
simulated results in Experiment 2 is quite similar to that of
the behavioral data. The model produces reliable priming
effects in all three conditions of transposition, that is to say,
when only the two first (e.g., “abonmrla”-“ABNORMAL”;
priming = −20 iterations vs. −29 ms), or the two last let-
ters are preserved (e.g., “baonmral”-“ABNORMAL”; prim-
ing = −19 iterations vs. −16 ms), or when only the first and
last letters are preserved (e.g., “anbroaml”-“ABNORMAL”;
priming = −16 iterations vs. −16 ms), all ps < .001.
Simulation of the extreme transposition conditions of Ex-
periment 3 shows only minimal priming effects of a few
milliseconds and iterations in conditions of letter reversed
halves (e.g., “onbalamr”-“ABNORMAL”, priming = −6 it-
erations vs. +1 ms) and total by-pair letter transposition

(e.g., “baonmrla”-“ABNORMAL”, priming = −7 iterations
vs. +1 ms). Contrary to the behavioral data, these effects are
significant ([t(85) = 12.5, p < .001] and [t(85) = 17.53, p <
.001] respectively). Finally, there is a reliable priming effect
in the condition in which all six internal letters are transposed
(e.g., “anbroaml”-“ABNORMAL”; priming = −16 iterations
vs. −26 ms, [t(85) = 28.25, p < .001]).

Overall, the model accounts for a broad range of
transposed-letter priming effects, with few discrepancies be-
tween simulations and empirical data. However, we also note
some discrepancy between experimental observations them-
selves. For instance, BRAID predicts significant priming ef-
fects when using primes with 2-letter substitutions, against
the experimental findings reported by Norris et al. (2010, Ex-
periment 1), but the simulated results are in line with the sig-
nificant priming effects reported by Adelman et al. (2014) in
similar conditions but for 6-letter words. Furthermore, while
Guerrera and Forster (2008) report a nonsignificant negative
effect of priming (of +1 ms) in the condition of total by-pair
letter transposition, a priming effect of a size (−9 ms) similar
to the one simulated by BRAID was reported by Lupker and
Davis (2009) in a replication of the initial experiment.
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