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the Radial Neutron Camera (RNC), Vertical Neutron Cam-
era (VNC), MicroFission Chambers (MFC), Neutron Flux 
Monitor (NFM), Divertor Neutron Flux Monitors (DNFM), 
Neutron Activation System (NAS) and High-Resolution 
Neutron Spectrometer (HRNS) [1]. In this paper, our main 
interest lies in HRNS since this diagnostic is well-suited for 
the measurement of the core plasma fuel ratio.

The HRNS system of ITER is designed to operate in a 
range of plasma scenarios, from pure D-discharge to full-
power DT-discharge [2]. The TPR spectrometer is the part 
of the HRNS system designed specifically for ITER high-
power DT plasma discharges. The operating principle of 
the TPR spectrometer involves a collimated neutron beam 
interacting with a thin foil of hydrogen-rich polyethylene 
(PE) and two annular silicon (Si) detectors in a dE-E con-
figuration [3]. The collimated neutron beam undergoes elas-
tic scattering on the hydrogen nuclei in the foil, producing 
recoil protons with energy Ep  determined by the energy of 
the incoming neutron En  and the scattering angle of the pro-
ton θ , such that: Ep = Encos

2θ.

Introduction

Diagnostic systems play a crucial role in machine protec-
tion, plasma control, performance, and physical studies. 
One essential parameter is the fuel ratio, denoted as the rela-
tive quantity of tritium and deuterium nt/nd  in the plasma, 
which is measured using neutron spectroscopy. Various 
neutron diagnostics will be available on ITER, including 
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Abstract
The system proposed to measure the tritium to deuterium ratio on the International Thermonuclear Experimental Reactor 
(ITER) is a high-resolution neutron spectrometer, partly composed of a system of three Thin-foil Proton Recoil (TPR) 
spectrometers. This system works on the principle of converting neutrons into protons using a thin foil of polyethylene, 
which is then detected in silicon detectors to obtain the scattering angles and energy spectrum of the protons. The objective 
of this article is to show the benefit of artificial intelligence for improving a simple TPR system model written in Python 
to an accuracy approaching MCNP simulations, while significantly decreasing the computational cost. The first step was 
to model a polyethylene converter to obtain the energy-angle distribution of outgoing protons for a given incident neutron 
beam. When compared with MCNP, this simplified model was found to fail to account for proton energy and angular 
scattering. Therefore, in a second step, two neural networks were successfully trained to include these effects based on 
the output data of the TRIM code, assuming Gaussian distributions. The Python model was able to produce results very 
close (differences up to a few percent) to those obtained with MCNP by integrating these neural networks. To extend the 
study, the energy spectra of the protons could be obtained and subsequently used to obtain information on the ratio of 
deuterium and tritium in the plasma.
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Subsequently, some of the recoil protons deposit their 
energy in annular Si detectors placed after the foil. Simu-
lations tools like GEANT4 [4], MCNP [5], and PROTON 
[6], have been employed to assess the spectrometer per-
formance, such as energy resolution, detection efficiency 
or count rate capabilities [2]. However, these simulation 
tools are computationally expensive, and difficult to use for 
design. In this article, a simple TPR model written in Python 
will be studied. The purpose is to develop a fast but efficient 
model that allows to quickly estimate proton absorption and 
scattering in material for different energies and thickness, 
supporting the optimization of the diagnostic design and the 
evaluation of detector performance. The rest of the paper 
is as follows. In section two, the model and method used 
to calculate the neutron-proton (n-p) conversion efficiency 
and the proton energy-angle distribution in the PE foil are 
described. In the third section, the implementation of proton 
angular and energy scattering with Gaussian fits of TRIM 
[7] simulation outputs is explained. In the fourth section, 
two neural networks are designed and trained to reproduce 
proton scattering for any incident energy and material thick-
ness. In section five, a comparison with MCNP results is 
made. Finally, conclusions and perspectives are presented 
in the last section.

Thin-Foil Polyethylene (PE) Neutron-Proton 
Converter

The distribution of ejected protons was obtained by consid-
ering a monoenergetic and unidirectional beam of incident 
neutrons reaching the PE foil, as depicted in Fig. 1.

Firstly, the n-p elastic collisions are parametrized with 
the assumption of hard spheres of similar radius R, for which 
the scattering angle θ is given by sinθ = b/2R , where 𝑏 is 
the impact parameter. Secondly, the average energy loss of 
protons for any initial energy and thicknesses of PE crossed 
was estimated by reconstructing their Bragg curve, thanks to 
the values of stopping power [MeV·cm2/g] of protons in PE 
obtained from the NIST database [8]. For the specific needs 

of this work, focused on 14 MeV D-T neutrons, the proton 
absorption matrix in PE is calculated for PE crossed thick-
nesses in the range 1 μm to 3 mm and initial proton energies 
between 10 keV and 20 MeV. Moreover, the n-p conver-
sion rate p is calculated using the formula p = σ •N • dPE

, where the n-p elastic collision cross-section is taken from 
the JENDL/HE-2007 dataset of the JANIS database [9], and 
N  is the density of protons in PE (N ≈ 7.98 • 1028 m−3 
for a density of 0.93 g/cm3), and dPE  is the PE thickness. 
Finally, by defining probability distributions of the n-p 
collision parameters in the PE, i.e. the collision position 
0 < x < dPE  and the impact parameter 0 < b/R < 2, it is 
therefore possible to calculate numerically, with a Monte-
Carlo approach, the 2D matrix of the proton energy-angle 
distribution at the outlet of a PE foil with a given thickness, 
as presented in Fig. 2 for dPE = 0.1mm  and 1.0mm .

Additionally, the total n-p conversion rate of the PE foil, 
including proton absorption, can be calculated using the for-
mula ptot =

Npout
Nn

, where Npout  is the total number of protons 
leaving the PE and Nn  is the number of incident neutrons. 
One objective here is to study the influence of PE thick-
ness on the total n-p conversion rate, which can be obtained 
by running simulations for various thicknesses, as shown 
in Fig. 3.

Figure 3 shows a remarkable agreement with MCNP 
results, demonstrating the robustness of this approach. 
Some discrepancy arises at thicknesses larger than 1 mm, 
as part of the incident neutron beam is scattered in the PE, 
a phenomenon which is neglected (thin-foil assumption) in 
the Python model. To determine the optimum PE thickness, 
a compromise must be found between maximizing the con-
version rate and minimizing proton energy absorption in the 
PE. From Figs. 2 and 3, it can be deduced that the range of 
interest lies between 0.1 and 1.0 mm. In the following sec-
tions, we concentrate on a 1.0 mm PE converter because 
scattering effects are more visible at higher thicknesses.

Gaussian Fitting of TRIM Output 
Distributions

In the previous step, only the average values of individual 
proton trajectories in terms of energy and angle were con-
sidered, without accounting for statistical fluctuations. To 
estimate this scattering effect, the freely available online 
SRIM/TRIM code was utilized [7]. The TRIM software 
allows specifying the energy of the incident particles and 
the number of particles (protons in this case), along with the 
composition and thickness of the layer traversed. An output 
file containing the energy and angle values of each proton 
can be obtained, and was used to generate histograms for the 
energy and angle distributions of the transmitted protons, as 

Fig. 1 Parametrization of neutron-proton conversion in PE, with 𝐸𝑛 
the incident neutron energy, (𝐸𝑝, 𝜃) the energy and scattering angle of 
outgoing protons, 𝑑𝑃𝐸 the converter thickness and DPE its diameter
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Fig. 3 Total n-p conversion rate 
as a function of PE thickness, as 
calculated by MCNP and with the 
Python model

 

Fig. 2 Proton energy-angle 
distribution exiting a PE foil with 
a thickness of 0.1 mm (a) and 
1.0 mm (b)
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calculated, while the standard deviation (σ) was directly 
used for angular scattering.

However, obtaining these values for all thicknesses and 
energies within our domain of interest could not be achieved 
using simple polynomial or exponential fitting functions and 
including TRIM directly in the python code would be too 
computationally expensive, indicating that artificial intelli-
gence tools might be adapted to this problem.

Integration of Neural Networks (NN)

Therefore, Neural Networks (NN), as presented in Fig. 8, 
were utilized in order to reproduce and interpolate proton 
scattering effects calculated by TRIM. It is worth noting 
that this solution has already been successfully applied to 
a similar problem presented in [11]. The function sklearn.

shown in Figs. 4 and 5. Due to the Gaussian-like shape of 
the histograms, the mean µ and variance σ2 of these data sets 
were extracted to fit the distributions with Gaussian func-
tions [10]. The histogram of the angle distribution shows 
that the energy scattering does not exactly correspond to a 
Gaussian function. However, to avoid applying corrections 
that would likely vary for each thickness and each energy 
value, the µ and σ values are used to simplify the calcula-
tions, which provided satisfying results.

To obtain the energy and the angular scattering distribu-
tion, 60 simulations were conducted with thickness ranging 
from 0.001 mm to 2 mm and energy ranging from 9 keV 
to 66.5 MeV, as depicted in Figs. 6 and 7. To quantify the 
impact of energy and angular scatterings on the proton dis-
tributions, the decision was made to use specific figures of 
merit. For energy scattering, the Full Width at Half Maxi-
mum (FWHM) normalized by the mean energy (Emean) was 

Fig. 5 Histogram of the proton 
angular distribution approximated 
by a Gaussian function

 

Fig. 4 Histogram of the proton 
energy distribution approximated 
by a Gaussian function
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’LBFGS’ is preferred due to faster convergence and better 
performance. The Rectified Linear Unit (ReLU) activation 
function, as explained in [14], was chosen as it provided 
the best results. To ensure convergence, a large number of 
iterations were utilized, without leading to an overfitting of 
the training database. Two similar NNs of 3 fully connected 
hidden layers composed of 1000 neurons each were used for 
energy scattering and angular scattering.

The NNs are trained with data obtained from TRIM as 
described in the previous section, and their performance 
could be verified using the score function, which returns the 
coefficient of determination R2  defined as 1− u

v , where u  
is the residual sum of squares 

∑(
(ytrue − ypred)

2
)

 and v  is 
the total sum of squares 

∑(
(ytrue − ytrue)

2
)

 where ytrue  is 
the true value obtained by TRIM and ypred  is the value pre-
dicted by the NN model [15]. A high score closes to 1 indi-
cates that the NN predictions are matching well the actual 

neural_network.MLPRegressor from the sci-kit-learn 
library [12] was employed for optimization, using the 
Limited-memory Broyden–Fletcher–Goldfarb–Shanno 
(LBFGS) solver, as described in [13]. For small datasets, 

Fig. 8 Model of the NN used. The inputs are the logarithms of the 
initial proton energy (E ) and of the PE thickness (dPE ), and outputs 
are the logarithms of the figures of merit for the energy or angular 
scattering

 

Fig. 7 Proton angular scattering 
(σ) for each considered TRIM 
data point

 

Fig. 6 Proton scattering in energy 
FWHM
Emean

 obtained with TRIM for 
several values of proton energies 
and PE thicknesses
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The distributions, although very similar, exhibit greater dif-
ferences at low angles in the range [20°-35°]. In addition, 
the impact of energy diffusion alone seems negligible, dem-
onstrating that the dominant source of discrepancy is proton 
angular scattering.

Summary and Future

In this work, a PE n-p converter model was developed and 
written in Python language using various databases to cal-
culate the angle-energy distribution of the recoil protons 
exiting the PE. Despite a general good agreement in terms 
of total conversion rate and global shape of the energy-angle 
distribution, a comparison with MCNP revealed that certain 
effects were not considered in this simplified model, lead-
ing to discrepancies locally exceeding 20%. Nevertheless, 
the code was enhanced using the TRIM software and two 
neural networks were trained with TRIM outputs to pre-
dict energy and angular scattering. As a result, the proton 
distribution was found to be weakly influenced by energy 
scattering and mostly influenced by angular scattering. In 
addition, thanks to the incorporation of these phenomena, 
the Python model could give results very close to MCNP, 
despite small remaining differences of up to 7%. In conclu-
sion, the study has shown that the Python code, thanks to 
various improvements, is able to offer results close to those 
of powerful calculation codes such as MCNP, at a much 
lower computational cost.

values. To ensure model coherence, a dataset of 36 simula-
tions for thicknesses of 0.003 mm, 0.02 mm and 0.1 mm 
and energies between 0.5 MeV and 20 MeV, not included in 
the training set is used for the validation step. For various 
thicknesses and the two NN models, as shown in Figs. 9 
and 10, the NN models have respective scores of 0.992 and 
0.942, indicating that both models are well-trained. As a 
result, they could be used to improve Python simulations 
with proton scattering effects.

Comparison with MCNP Calculations

The NN training performed previously allowed the proton 
energy and angular scattering to be implemented in the 
Python code, using Gaussian random variables. Further-
more, a comparison of the results with and without NN with 
MCNP is shown in Fig. 11. Generally, a good agreement is 
found between the Python model and MCNP, with errors 
not exceeding a few percent (up to 7%) for most of the dis-
tribution. Only the lower edge of the energy-angle distri-
bution exhibits local differences of up to 20% (in yellow 
and blue). Furthermore, the improvement when including 
scattering effects is evident in Fig. 11 (b), with significantly 
reduced differences compared to Fig. 11 (a), especially in 
the lower edge of the proton energy-angle distribution.

In order to better understand the impact of the differ-
ent scattering mechanisms, a 4 MeV slice of the 2D proton 
energy-angle distribution is presented in Fig. 12 for MCNP 
and the Python model with and without scattering effects. 

Fig. 9 Proton energy scattering FWHM
Emean

 for different PE thicknesses and initial proton energies, including TRIM data and NN predictions
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To extend the study, the energy spectra of the protons 
could be obtained and exploited further. Indeed, the proton 
energy spectrum can be used to deduce information about 
the incident neutrons and determine the ratio of deuterium 
and tritium in the plasma core of a tokamak. In addition, the 
TPR system could be improved by replacing the Si detec-
tors with Gas Electron Multiplier (GEM)-type gas detectors 
in order to increase the lifetime of the system before main-
tenance is required. As mentioned previously, the system 
studied will be subjected to strong neutron flux, which dete-
riorates the silicon properties over time. A GEM-type gas 
detector as presented by Scholz et al. in [16] could solve this 
problem because of the lower vulnerability of a flowing gas 
to damage caused by high neutron flux.

Fig. 10 Angular proton scattering σ for different PE thicknesses and initial proton energies, including TRIM data and NN predictions
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Fig. 12 4 MeV section of the 2D 
proton energy-angle distribution 
after 1 mm PE for MCNP and the 
Python code

 

Fig. 11 Comparison of the 
Python model with MCNP for 
the 2D proton energy-angle dis-
tribution, after 1 mm of PE, (a) 
without and (b) with TRIM + NN 
scattering effects
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