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Abstract
Monitoring human activities impact on soil biodiversity
over time is a costly and resource-intensive challenge. Mo-
dern technologies like deep learning offer a promising so-
lution because they can analyze large datasets much fas-
ter than humans. However, deep learning relies on exten-
sively annotated datasets, and annotating these samples is
both time-consuming and expensive, complicating its ap-
plication. This paper introduces a novel active learning
approach called Active Learning Extension (ALE), which
aims at improving model performance in object detection
tasks while minimizing the need for extensive data anno-
tation. Traditional active learning methods typically rely
solely on prediction uncertainty to select images for an-
notation, which can be suboptimal when introducing new
classes. ALE addresses this limitation by considering both
the uncertainty and the number of predictions. This dual
consideration leads to significant improvements, particu-
larly in scenarios like Collembola detection, where crea-
ting and updating datasets is highly time-intensive. Our
evaluation demonstrates that ALE significantly enhances
model performance compared to state-of-the-art methods.
The results underscore the importance of selecting chal-
lenging examples and accounting for the number of pre-
dictions to optimize active learning in object detection.
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1 Introduction
With the rise of environmental concerns, the need for tools
to monitor the impact of human activities on soil over time
has become urgent. Various metrics have been developed
to assess soil quality [1, 2], one of which is biodiversity
[3]. Collembola, commonly known as springtails, are a
class of arthropods that, like other soil organisms, are sen-
sitive to changes in soil properties such as pH, tempera-
ture, soil moisture, and nutrient availability. Consequently,
they are currently used as a biodiversity indicator, parti-

cularly in agricultural and forest practices [4, 5]. Collem-
bola play a crucial role in nutrient cycling and soil aggre-
gation within their ecosystems, and soils can contain thou-
sands of these individuals per square meter [6]. However,
using Collembola as an indicator generates a substantial
amount of data [7], which can take months to process due
to the specialized expertise and the identification having to
be done using a microscope [8]. This makes the process
very time-consuming. Over the last few years, deep lear-
ning models have emerged as promising tools in ecology.
The identification of Collembola using deep learning has
already been demonstrated [9, 10]. However, to enhance
the performance of these tools and enable them to identify
a larger pool of species, there is a need to add more data,
which conflicts with the time-consuming nature of manual
Collembola identification. Given that expert identification
is so time-consuming, optimizing the annotation process
using active learning is a solution [11, 12, 13, 14, 15]. The
challenge is that state-of-the-art active learning for object
detection has been designed to improve models on already
existing classes, not on new ones. In this paper, we intro-
duce a new active learning technique to add new species
to the Collembola datasets. The premise of this technique
is that when adding new species to the datasets, it is more
efficient to add more annotations with less uncertainty than
fewer annotations with more uncertainty. Since the new
species, have at first no annotations in the datasets, adding
even a small amount of annotations can have a significant
impact on the model results.

2 Related
2.1 Active learning
The use of deep learning requires extensive training data,
but annotating new samples can often be time-consuming.
Active learning aims to maximize model performance
while minimizing the number of samples that need to be
annotated. This is especially relevant for Collembola de-
tection, where creating and updating datasets is very time-
consuming. State-of-the-art active learning for object de-



tection typically follows this process : first, a model is trai-
ned on a base dataset. Then, the model makes predictions
on a pool of unannotated images. Each prediction is eva-
luated based on its uncertainty, as it is more beneficial to
provide the model with challenging examples that bring
new information rather than easy predictions that do not si-
gnificantly enhance model performance. After each predic-
tion is evaluated, the images receive a score by aggregating
the evaluated prediction scores. The top-scoring images are
then annotated by an expert.

2.2 Metrics
Least confidence. The least confidence is one of the two
main metrics used to evaluate the uncertainty in a model’s
predictions. It is based on the premise that the smaller the
difference between the highest probability and the second
highest probability, the greater the uncertainty. The formula
is as follows :

LC = 1− (p1 − p2) (1)

Here, p1 is the highest probability and p2 is the second hi-
ghest probability. The higher the least confidence value, the
greater the uncertainty.

Entropy. Entropy is the second main metric used to eva-
luate the uncertainty. It considers that the flatter the distri-
bution of probabilities is, the more unsure the model is, to
do that the entropy is calculated using the following for-
mula :

entropy = −
N∑
i=0

pilog(pi) (2)

where N represents the length of the probability
distribution, and pi the probability p at the index i.

Aggregation of Detection Metric

The scoring for each image is determined by aggregating
the scores S of their predictions. The state-of-the-art ag-
gregation methods include the sum, mean, and maximum
of the scores. Images without predictions receive a score of
0.

Asum =

N∑
i=1

Si (3)

The sum aggregation method tends to prefer images with
more annotations but does not consider the number of an-
notations.

Amax = max
i∈1,2,...,N

Si (4)

The maximum aggregation method focuses on identifying
images with the most challenging predictions and ignores
the number of predictions.

Amean =
1

N

N∑
i=1

Si (5)

The mean aggregation method, similar to the maximum
method, does not consider the number of predictions and
favors images with only difficult predictions.

2.3 Model
We used Yolov5x6, yolov5 biggest version. Yolov5 is an
advanced object detection model developed by Ultralytics
as an extension of Yolov3 [16]. It is a one-step detector,
meaning it simultaneously detects and classifies objects. It
comprises a backbone (CSPDarknet), a neck, and a pre-
diction head (Figure 1). The backbone extracts features
from the image, which are then mixed and combined by
the neck for prediction. The detection head uses these fea-
tures to propose bounding boxes and classes. To generate
these proposals, the image is divided into multiple grids of
various scales, with each cell proposing N objects. Yolov5
achieves precise detection by using anchors to predict box
coordinates and different scale aspect ratios. Anchors fa-
cilitate coordinate prediction by using different ratios and
sizes tailored to fit the data, in this case, Collembola. Ins-
tead of directly predicting Collembola coordinates, Yolov5
identifies which cell contains the center of the Collembola
and predicts the height and width ratio of the anchor used
for the prediction. This approach simplifies the task, greatly
improving the accuracy of the model’s coordinate predic-
tions.

FIGURE 1 – Yolov5 architecture [17].

3 Proposed Method
3.1 Datasets
The data used in this paper was initially developed to
benchmark object detection for Collembola on micro-
scope images using deep-learning techniques [9]. It in-
cludes seven taxa of interest : Ceratophysella denticu-
lata and Ceratophysella gibbosa (CER), Hemisotoma ther-



mophila (HEM-THE), Hypogastrura manubrialis (HYP-
MAN), Lepidocyrtus cyaneus and Lepidocyrtus lanugino-
sus (LEP), Metaphorura affinis (MET-AFF), Isotomiella
minor (ISO-MIN), and Parisotoma notabilis (PAR-NOT),
along with a category "Other" for Collembola from unan-
notated species. All Collembola specimens were sourced
from 12 different projects, more details on the projects are
available in the original paper [9]. Eleven of these pro-
jects were used for training, while BISES, the 12th and
largest project, was reserved for evaluation to ensure the
model did not train on previously seen projects. It is impor-
tant to note that no instances of Hypogastrura manubrialis
HYP-MAN were available in the BISES project so they
won’t be part of the experiments. Within the "Other" cate-
gory, two species were extracted and annotated to create the
new classes, Pseudosinella alba (PSE-ALB) and Sphaeri-
dia pumilis (SPH-PUM), with 37 and 54 annotations on
BISES , respectively. The Collembola of these species were
hidden with a white square (Figure 2) in the training set to
prevent the model from training on these new taxa while
preserving other annotations due to limited data. (Table 1)
refers to the number of annotations per species (including
the new one) in the base dataset.

FIGURE 2 – Example of obscured collembola using a white
square.

3.2 Active learning
This paper presents a novel active learning approach cal-
led "ALE" (Active Learning Extension), which enhances
the current object detection active learning paradigm that
typically focuses solely on prediction uncertainty. ALE in-
troduces the consideration of the number of predictions,
leading to substantial improvements, especially when new
classes are introduced through active learning. Increasing
the number of annotations, even with just a few additional
ones, on new classes with very few annotations, can signi-
ficantly improve the model’s performance.

ALE. ALE core idea is that when incorporating a new
class during active learning, solely relying on prediction
uncertainty for image selection is not optimal. It is more ef-

fective to consider both uncertainty and the number of pre-
dictions. In state-of-the-art object detection active learning,
prediction confidence is typically measured using metrics
like entropy or least confidence. Each image is then assi-
gned a score using aggregation techniques such as sum,
maximum, or mean, and images with the highest score are
selected. However, when adding new classes, prioritizing
annotations with lower uncertainty might be more efficient
than fewer annotations with higher uncertainty. To incor-
porate the number of predictions into image selection, an
extension to the aggregation of uncertainty metrics is em-
ployed, as shown in Equation 6.

ALE = A(S)×
√
N (6)

Where A(S) represents the aggregation function of
uncertainty scores, and N is the total number of

predictions on the image.

This paper introduces the square root as an extension. It
was chosen empirically because it rapidly prioritizes more
annotations. We tested various combinations of evaluation
metrics, and aggregation techniques to determine the most
suitable approach for active learning.

4 Experimental protocol and evalua-
tion

4.1 Experiment
The experiment aimed to test our models as follows : First,
we trained a base model using the eleven projects of Col-
lembola as training data and the twelfth (BISES) as valida-
tion data. Then, we built multiple datasets using ALE with
different aggregation and metric combinations, as well as
state-of-the-art active learning techniques for comparison.
Additionally, we created 3 random selections and used the
one with the best overall performance to compare our tech-
nique against random sampling. All of these methods se-
lected images from the validation set, which were added to
the training set. The models were fine-tuned on the upda-
ted training datasets and evaluated on the new validation
sets. The experiment was conducted three times, each with
a different selection of images to be added to the training
set : 20, 50, and 100 images.

4.2 Evaluation
Since the models were evaluated on different validation da-
tasets, comparing them using their own validation results
was not feasible. To accurately compare all models, we
would need to use only the common images across all vali-
dation datasets, ensuring no model is evaluated on images
it was trained on. However, this approach is impractical due
to the number of models and the limited number of images.
To address this, we evaluated the models in pairs by crea-
ting new datasets that include only the common evaluation
images for each pair. This method allowed us to directly
compare each model against another, determining which



TABLE 1 – Distribution of Annotations in Training and Validation on the Base Dataset.

OTHER CER CRY THE HYP MAN ISO MIN LEP MET AFF PAR NOT PSE ALB SPH PUM
train 410 228 126 109 87 144 106 111 0 0
valid 163 92 96 0 62 121 23 151 37 54

one performs better on their shared evaluation dataset. The
evaluation metric used for these comparisons was the mean
average precision (mAP).

4.3 Training protocols
Every model was trained until convergence with these pa-
rameters : an initial learning rate of 0.01 with a weight
decay of 0.005, and the Adam optimizer with a beta1 of
0.937. Data augmentation techniques were applied during
training to artificially increase the dataset size, enhancing
the model’s ability to generalize and improve accuracy on
the test dataset. Various transformations were employed,
including random crop, mosaic, and color distortions such
as brightness, contrast, saturation, hue, Gaussian blur, ran-
dom scaling, random rotation, and random horizontal flip-
ping. These transformations introduce variations that en-
hance the model’s performance and adaptability to dif-
ferent input scenarios.

4.4 Results
The results of the experiment, presented in Tables 2, 3, and
4, illustrate the following comparisons : The left column
lists the baseline model trained on the original dataset, the
best-performing model from random sampling, and various
state-of-the-art models combining multiple metrics and ag-
gregation techniques. the top row represent every ALE ver-
sions. Each model is labeled with an evaluation metric fol-
lowed by an aggregation technique. For example, a model
may be labeled as "Entr Sum" or "ALE LC Max," indica-
ting, respectively, the use of the entropy metric with the
"Sum" aggregation and the ALE approach with LC (Least
Confidence) as the metric, using a maximum-based aggre-
gation and square root extension.
The columns display the average results and variances ob-
tained after ensemble training for each version of the ac-
tive learning model, ensuring a more robust evaluation. The
percentages presented indicate the average improvement in
mean accuracy (mAP) compared to other techniques and
are accompanied by the standard deviation of the results.
This methodology helps capture the stability and robust-
ness of each approach.

TABLE 2 – Comparison of methods with 20 images active
learning.

ALE Entr Max ALE Entr Sum ALE LC Max ALE LC Sum
Baseline Model 12.80% 14.80% 16.10% 11.50%
Rand 4.42%±0.48 4.44%±2.05 6.78%±1.27 2.96%±0.38
Entr Max 0.43%±0.26 0.73%±2.06 5.00%±1.68 -0.73%±0.53
Entr Sum -1.77%±0.30 -1.97%±2.17 0.57%±1.40 -3.53%±0.50
LC Max 0.17%±0.31 0.10%±2.30 2.87%±1.56 -1.03%±0.81
LC Sum -0.43%±0.30 -0.60%±2.12 2.00%±1.42 -2.27%±0.50

TABLE 3 – Comparison of methods with 50 images active
learning.

ALE Entr Max ALE Entr Sum ALE LC Max ALE LC Sum
Baseline Model 22.10% 24.20% 25.10% 25.20%
Rand 5.16%±5.97 11.23%±4.66 7.44%±6.06 10.35%±5.05
Entr Max -0.65%±2.34 4.72%±1.42 2.08%±1.07 4.02%±1.07
Entr Sum -3.45%±2.21 1.75%±1.58 -1.20%±1.07 1.10%±1.19
LC Max -3.57%±2.22 2.10%±1.47 -0.72%±1.03 1.45%±1.11
LC Sum -2.85%±2.22 2.73%±1.51 -0.40%±1.08 1.90%±1.21

TABLE 4 – Comparison of methods with 100 images active
learning.

ALE Entr Max ALE Entr Sum ALE LC Max ALE LC Sum
Baseline Model 32.60% 35.90% 33.20% 31.30%
Rand 5.22%±1.14 8.80%±0.54 6.32%±0.66 6.24%±1.42
Entr Max 2.33%±0.66 4.83%±0.12 3.77%±1.07 2.90%±2.19
Entr Sum -2.60%±0.75 0.43%±0.13 -1.43%±1.18 -2.20%±1.70
LC Max -1.87%±0.84 1.90%±0.15 0.20%±1.30 0.93%±1.20
LC Sum -1.60%±0.93 1.77%±0.17 0.00%±1.42 0.50%±0.70

When 20 images are selected (Table 2), "ALE LC Max"
shows the best performance with a score of 16.10%, ma-
king it more effective than other ALE methods compared to
the Baseline model. "ALE Entr Sum" (14.80%) and "ALE
Entr Max" (12.80%) also demonstrate strong results. "ALE
LC Sum," with 11.50%, is the least effective among the
ALE methods tested. "ALE LC Max" is the only model that
outperforms all state-of-the-art models and random sam-
pling. The results from the 20-image selection indicate that
even with a small image set, model performance increases
significantly.
For the selection of 50 images (Table 3), "ALE LC Sum"
achieves a score of 25.20%. "ALE LC Max" (25.10%) and
"ALE Entr Sum" (24.20%) closely follow, suggesting that
increasing the number of images significantly enhances
performance. Two models outperform both state-of-the-art
methods and random sampling : "ALE LC Sum" and "ALE
Entr Sum."
With the selection of 100 images (Table 4), "ALE Entr
Sum" achieves the best performance with a score of
35.90%, surpassing "ALE LC Max" (33.20%) and "ALE
LC Sum" (31.30%). Once again, it outperforms all other
state-of-the-art models and random sampling.
The results indicate that, in most cases, the ALE versions
outperform their state-of-the-art counterparts. However,
many of them still fall short of other state-of-the-art mo-
dels, particularly "Entr Sum." Notably, "ALE Entr Sum"
stands out, outperforming every other model in nearly
every comparison, except in the 20-image sample, where
it is surpassed by "Entr Sum" and "LC Sum."
We would expect the improvement of "ALE Entr Sum"



over "Entr Sum" to follow a linear trend as sample size
increases. However, while there is a noticeable improve-
ment from 20 to 50 samples, at 100 samples, even though
"ALE Entr Sum" continues to lead, the difference in results
between the two models becomes less pronounced. This
can be explained by the fact that, in the BISES project, the
number of images containing three or more annotations is
62 (Table 5). Consequently, "ALE Entr Sum" maximizes its
effectiveness with a selection of 50 images (Table 3), cap-
turing diversity without introducing redundancy. However,
when the selection increases to 100 images, this distinc-
tion fades, as a larger number of images become common
across "ALE Entr Sum" and "Entr Sum" (Table 6), redu-
cing the advantage of the ALE.

TABLE 5 – Number of annotations per image in the BISES
project.

Number of annotations per image 1 2 >=3
Number of image 414 69 62

TABLE 6 – Progression of result comparison between the
"ALE Entr Sum" and "Entr Sum" models, based on sample
count and non-common images in the new class dataset.

Number of samples Number of non-common images Performance comparison
20 3 -1,97%
50 6 1,75%

100 4 0,43%

In Figures 3 and 4, we can observe that while "ALE Entr
Sum" does not consistently outperform "Entr Sum" across
every class, it demonstrates a notably higher performance
on both of the new classes, Pseudosinella alba (PSE-ALB)
and Sphaeridia pumilis (SPH-PUM). This suggests that
"ALE Entr Sum" effectively adapts to novel data, showing
a significant advantage over "Entr Sum" in handling unfa-
miliar categories by adding more annotations, even if its
overall improvement is not uniform across all classes.

FIGURE 3 – The AP and mAP of the top-performing "Entr
Sum" version from the ensemble, evaluated on its shared
dataset with the best "ALE Entr Sum" version from the en-
semble (using the 50-image sample version).

FIGURE 4 – The AP and mAP of the top-performing "ALE
Entr Sum" version from the ensemble, evaluated on its sha-
red dataset with the best "Entr Sum" version from the en-
semble (using the 50-image sample version).

5 Conclusion
In conclusion, this study demonstrates the potential of ALE
(Active Learning Extension) to enhance and expand model
performance in ecological applications, particularly when
adding new classes to an already trained model. ALE’s ap-
proach, which combines uncertainty with prediction quan-
tity, is especially effective on datasets containing images
with varying numbers of predictions, enabling it to outper-
form traditional active learning methods. This capability
allows ALE not only to improve model accuracy but also
to extend its applicability by efficiently integrating new
classes without necessitating a complete retraining on the
entire dataset. In ecological monitoring, where precise spe-
cies identification is essential, ALE enables the seamless
addition of new taxa, allowing researchers to expand bio-



diversity assessments over time. This progressive approach
supports adaptive model growth and offers an efficient, sca-
lable solution to the costly, time-intensive process of an-
notating ecological data, making ALE a valuable tool for
advancing biodiversity research and environmental moni-
toring.
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