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Abstract
Quality assessment is a key element for the evaluation of hardware and software involved in
image and video acquisition, processing, and visualization. In the medical field, user-based
quality assessment is still considered more reliable than objective methods, which allow the
implementation of automated and more efficient solutions. Regardless of increasing research
on this topic in the last decade, defining quality standards for medical content remains a non-
trivial task, as the focus should be on the diagnostic value assessed by expert viewers rather
than the perceived quality from naïve viewers, and objective quality metrics should aim at
estimating the first rather than the latter. In this paper, we present a survey of methodologies
used for the objective quality assessment of medical images and videos, dividing them into
visual quality-based and task-based approaches. Visual quality-based methods compute a
quality index directly from visual attributes, while task-based methods, being increasingly
explored, measure the impact of quality impairments on the performance of a specific task. A
discussion on the limitations of state-of-the-art research on this topic is also provided, along
with future challenges to be addressed.
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1 Introduction

Medical images and videos provide clinical information from the human body with reduced
invasiveness, but also structural and functional outcomes that could not be obtained by other
means.Nowadays,medical imaging plays an inexorable part in diagnosis, treatment planning,
and patient monitoring. Over the last decades, medical imaging techniques have been con-
stantly developed, updated, and extensively used in numerous medical specialties. TheWorld
Health Organization (WHO) estimated around 3.6 billion diagnostic procedures performed
worldwide, per year, between 1997 and 2007 [1]. Radiology is the leader in the production of
medical imaging content [2], with a vast number of imaging modalities. Data from the Orga-
nization for Economic Cooperation and Development (OECD), which considers Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), and Positron Emission Tomogra-
phy (PET) scans performed each year, further reveals a clear upward trend in the last decade,
with over 253 million exams reported by OECD countries [3]. Moreover, and besides other
relevant imaging modalities, medical images and videos are now also transmitted in real time
for telemedicine applications. Therefore, large amounts of content from different acquisition
methods are continuously created in the medical practice.

Several impairments can affect the quality of the end visual signal, impacting the quality
perceived by the viewers (e.g., clinicians, radiologists, etc.), as well as their performance on
clinical tasks. This spectrum of impairments highly depends on a wide variety of acquisition
and reconstruction-related factors, which are often specific to each imaging modality. Fur-
thermore, external and patient-related factors may induce artifacts in the acquired content, as
well. Images and videos may also be subject to different processing, encoding/compression,
transmission, and visualization methodologies. For example, in telemedicine applications,
video content and real-time interactions are key features, which lead to a high demand of
hardware resources and network bandwidth for data storage and transmission [4, 5]. Thus,
measuring image and video quality in health applications is both a necessity, towards improv-
ing methodologies throughout the clinical workflow, and a wide open challenge, given the
diversity of content, applications, and impairments. This paper aims at providing researchers
with a broad sense of current boundaries and future opportunities in this field. The authors
of this review have been involved in the field of QA, with relevant publications on medical
image and video QA. Prior knowledge of research in this domain served as the basis for the
considered selected papers.

While a recent review of subjective QA of medical images and videos was published
by Lévêque et al. [6], this paper focuses on objective QA methods for medical images and
videos. Objective QA relies on the use of image processing and analysis algorithms towards
automated quality estimation methods [7]. Although objective methods may be less reliable
than subjective assessment, they are more cost-effective, less time-consuming, and reduce
observer variability and bias [8]. In another review paper published in 2016, Chow et al.
discussed both subjective and objective methods [9], with a primary focus on MRI, CT,
and ultrasound imaging. More recently, Raj et al. [10] presented a survey of objective QA
methods for fundus images. In this paper, we focus mainly on more recent research, and
consider several other imaging modalities than those previous reviews.

Another contribution of this paper is the proposal of a new categorization for medical
image and video QA methods, based on their design principle, into visual quality-based
and task-based methods. Visual quality-based methods mainly use a traditional approach to
quality assessment, which focuses on visual and/or structural attributes of the image. On the
other hand, task-based quality assessment targets a specific application of the visual content
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in the medical domain [11]. It should be emphasized that medical images may have lower
perceptual quality due to acquisition factors but keep all the needed information from a
clinical point of view. Some research efforts that fit into this category had already referred to
this approach as task-based, e.g., [12–15]. This is a core contribution of this paper and, to the
best of our knowledge, it is the first review to formalize this discrimination in two distinct
QA categories. Regarding this topic, an overview of model observers used in task-based QA
of medical images was published in 2014 by Zhang et al. [16]. Similarly to the reviews
mentioned in the last paragraph, this paper focuses on more recent research not included
there.

The remainder of the paper is organized as follows: Section 2 presents a brief overview
of image and video quality assessment and discusses the main differences between medical
imaging and other types of visual content; Sections 3 and 4 provide a review of visual
quality-based and task-based methods, respectively; Section 5 provides a discussion on some
merits and drawbacks of the reported methods, as well as future research directions; Finally,
Section 6 concludes the paper and summarizes the main insights of this contribution.

2 Overview of image and video quality assessment

The quality perceived by the users of image and video content is one of several factors
influencing their Quality of Experience (QoE), defined by EUCost Action 1003Qualinet [17]
as “the degree of delight or annoyance of the user of an application or service. It results
from the fulfillment of his or her expectations concerning the utility and enjoyment of the
application or service in the light of the user’s personality and current state”.

Typically, image and video quality is evaluated from a perceptual perspective, either
subjectively or objectively, with each approach bearing its own motivations, advantages,
and drawbacks. Subjective QA relies on human observers to analyze images or videos and
rate their quality following specific methodologies (e.g., [18, 19]). The output of subjective
tests is then statistically analyzed, usually by computing the Mean Opinion Score (MOS)
or Differential MOS (DMOS) [7]. Depending on the type of content and application, user
expertise may be a requirement for an accurate andmeaningful evaluation. Inmost healthcare
applications, the quality perception of end-users is likely to be strongly influenced by the
clinical utility of the content, rather than strictly aesthetic criteria. Therefore, subjective QA
methods may have some limitations in this context, concerning the availability of expert
observers, in addition to the inherent intra- and inter-subject scoring variability [8].

The most common design principle in objective image and video QA applications is the
computation of a quality index from certain visual and/or structural attributes of the content.
On the contrary, task-based QA methods assess the quality in terms of a specific goal of the
content by measuring its influence on the performance of certain tasks (e.g., diagnosis or
localization of an anatomical structure [13]). This kind of approach has been increasingly
explored in the development of quality metrics that are specific for medical images and
video. Consequently, we propose to divide the discussed QA methodologies into two major
categories, i.e., visual quality-based, and task-based methods, as described in Fig. 1.

Theperformanceof objectivemethods is usually evaluated through a statistical comparison
with subjective results [18, 20]. More precisely, the Pearson Linear Correlation Coefficient
(PLCC) and the Spearman Rank-order Correlation Coefficient (SROCC) are used to mea-
sure the linear and rank correlations, respectively. A less commonly used rank correlation
coefficient is the Kendall Rank Correlation Coefficient (KRCC). These coefficients can take
absolute values from 0 to 1, with 1 indicating a perfect correlation. Negative coefficients
indicate an inverse correlation between the variables.
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Fig. 1 Categorization of quality assessment methods for medical image and video. As proposed, these are
divided into visual quality-based and task-based methods

Metric performance can also be evaluated from a classification standpoint, e.g., if a metric
aims at classifying an image as being acceptable or non-acceptable. Accuracy is commonly
defined as the ratio of correctly classified instances according to a subjectively defined ground
truth over the total number of instances and is typically presented in percentage. Another
commonperformance indicator is the area under theReceiverOperatingCharacteristic (ROC)
curve. For a given classification model, the ROC curve plots the true positive rate (TPR) as a
function of the false positive rate (FPR) for a number of candidate decision thresholds. Both
the TPR and FPR may vary from 0 to 1, as does the resulting area under the ROC curve
(AUC). An AUC of 0.5 is equivalent to random guessing, whereas a value of 1 indicates a
perfect performance in classification.

3 Visual quality-basedmethods

Visual quality-based methods are commonly categorized as Full Reference (FR), No Ref-
erence (NR), or Reduced Reference (RR), depending on the availability of an undistorted
reference (preferably the original image or video). FR metrics predict the quality by directly
comparing the reference and its distorted versions, contrary to NR metrics, which assess the
quality only using the distorted image. Finally, RR metrics compare features representative
of the distorted and reference images.

The following subsections present an overview of visual quality-based objectiveQAmeth-
ods for medical images and video, according to the aforementioned categorization.

3.1 Full-reference approaches

Full-reference QA of medical images and videos had focused almost exclusively on adapting
metrics designed for non-medical content to obtain quality predictions for compressed and/or
artificially distorted medical content. Table 1 summarizes the works presented in this section.

3.1.1 Magnetic resonance imaging

FR quality assessment studies using MRI includes the works of Chow et al. [21] and Mason
et al. [8]. Both works tested a large set of metrics, e.g. [33–38] on datasets with different
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compression settings (Discrete Cosine Transform (DCT) [39], JPEG [40], JPEG2000 [41],
wavelets) and simulated artifacts (e.g. Rician noise, Gaussian blur or motion artifacts). The
best average correlations with the subjective scores were achieved with Noise Quality Mea-
sure (NQM), with PLCC and SROCC around 0.94 [21], and Visual Information Fidelity
(VIF) [8].

3.1.2 Computed tomography

In an early work from 2003, Zhou et al. [22] estimated the quality of CT images with
both DCT and Wavelet compression, using a back-propagation neural network with Peak
Signal-to-noise Ratio (PSNR) and Structural Similarity index (SSIM), and the Block-wise
Distortion Measure [23] as inputs. The reported agreement rates with the obtained subjective
scores ranged between 85.71% and 96.88%. Kowalik et al. [24] also used CT images with
compression - JPEG and JPEG2000, and studied the ROC curves of SSIM, Signal-to-noise
Ratio (SNR),VIF,MeanSquaredError (MSE), andVisual Signal-to-noiseRatio (VSNR) [42]
in classifying images as having non-noticeable or non-acceptable distortions, after subjective
annotation by experts. The largest AUC was obtained with SSIM (0.99 for brain images and
0.96 for body images), closely followed by VIF.

3.1.3 Ultrasonography

In [25], the authors evaluated the performance of a H.264 encoding framework for
atherosclerotic plaque ultrasound videos, which resulted in enhanced performance in noisy
environments. WSNR obtained the best correlation with the subjective scores (PLCC = 0.69
and SROCC = 0.72). The authors also proposed minimum settings for several parameters,
including the frame rate, bit rate, and PSNR in the Regions of Interest (ROI).

The authors of [26] and [27] assessed the quality of ultrasound video excerpts compressed
with High Efficiency Video Coding (HEVC) [43], using a set of 7 common FR metrics, as
well as the proposed content-specific Cardiac Ultrasound Video Quality Index (CUQI), in
[27]. CUQI estimates the diagnostic quality of cardiac ultrasound video using motion and
edge information. In terms of correlation with DMOS, all metrics yielded good PLCC and
SROCC coefficients in both studies. In [27], CUQI outperformed the other tested metrics,
with PLCC and SROCC after DMOS nonlinear regression of 0.94 and 0.93, respectively.
Nonetheless, all the tested metrics achieved correlations above 0.9, and SSIM achieved the
best result in terms of PLCC without nonlinear regression of DMOS.

3.1.4 Endoscopic / laparoscopic videos

In [28] and [5], the authors performed objective QA of laparoscopic and surgical videos,
respectively, compressed with H.264. SSIM, High Dynamic Range Visible Difference Pre-
dictor v2 (HDR-VDP-2), and Video Quality Metric (VQM) were used in both studies, but
a larger set of metrics was used in [5], including, for example, PSNR-HVS and PSNR-
HVS-M [44], MSE, Multi-scale SSIM (MS-SSIM) [45], and two NR metrics - Natural
Image Quality Evaluator (NIQE) [46] and Blind/Referenceless Image Spatial Quality Ele-
vator (BRISQUE) [47]. In the latter study, MSE, SSIM, MS-SSIM, and BRISQUE achieved
good correlations with MOS (PLCC > 0.9).

Usman et al. [29] were the first to investigate the quality of wireless capsule endoscopy
videos.Videoswere compressedwithHEVC, and10metricswere computed to estimate video
quality. VIF, Pixel Visual Information Fidelity (VIFP), and Information Fidelity Criterion
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(IFC) showed good correlation with the obtained MOS (between 0.88 and 0.92), with VIFP
outperforming the other two, both in statistical significance and in computation time.

3.1.5 Multiple imagingmodalities

Other interesting works were published in [30] and [31], where the authors studied the
performance of PSNR and SSIM on CT, MRI, and ultrasound images with Set Partitioning
in Hierarchical Trees (SPIHT) compression [48]. Both PSNR and SSIM quality estimations
correlated well with subjective scores. In [31], Kumar et al. proposed an improved version
of SSIM, which outperformed PSNR with correlation coefficients of 0.99 (MRI), 0.98 (CT),
and 0.98 (ultrasound).

Several variations of SSIMwere also tested by Renieblas et al. [32], to estimate the quality
of planar X-ray and MRI, with simulated Gaussian blur and noise, and JPEG and JPEG2000
compression. The best overall correlation with subjective scores was obtained with 4-MS-G-
SSIM (PLCC ≥ 0.75 overall, and ≥ 0.86 for MR images), which considers four-component
region-based weighting (4-), multiscale (MS-), and gradient-based (G-) computation. The
authors concluded that MS- approaches generally improve the performance of single-scale
counterparts, and that r∗ (structural component only) showed a slight advantage over the
complete SSIM index.

3.2 Reduced-reference approaches

A few works, described in Table 2, addressed the use of RR metrics to measure the quality
of medical images and video. One of the most popular is the RR version of VQM, which,
as aforementioned, was used in [28], showing a reasonable performance (PLCC=0.97 and
SROCC=0.94) in comparison to other FRmetrics. Other approaches are based on the compar-
ison of certain attributes of the images or videos through the computation of a similarity score.
For example, Lee andWang used the similarity between the intensity histograms of reference
and distorted fundus images to provide an estimation of their quality [49]. For the same image
modality, the authors in [50] proposed a similarity metric based on the comparison of the
distribution of edgemagnitudes and the local intensity distribution for distorted and reference
images. In both cases, the performance of their approaches was not reported with objective
measures but through a comparison with SNR and through qualitative results, respectively.
The results show that the proposed approaches are useful to discriminate between good and
bad images. In addition, the proposed approaches can be extended to other types of images.

Finally, another set of RR metrics is based on the use of watermarking, i.e., adding a pay-
load to the content, and then using similaritymetrics to compare the reference and the distorted
image or video. An example of this approachwas proposed by Planitz andMaeder [51], using
SSIM to measure the degradations and watermarking capacity. This study demonstrated that
more robust watermarking techniques can be used in less visually sensitive areas while lighter
techniques should be applied in more sensitive areas. Nasr and Martini [7] used PSNR and
Mean SSIM (MSSIM) to measure the quality of medical ultrasound videos with simulated
Gaussian noise, and JPEG2000 and HEVC compression. A predefined reduced-size logo that
shares the same features of the original frame of interest (i.e., same organ and layout) was
embedded in an unused part of the original image for the purpose of quality assessment. Con-
sidering that the logo does not depend on the specific content of the sequence, this method
can be considered, to some extent, as NR. The authors concluded that the proposed technique
does not require the original frame whilst achieving a high PLCC with the subjective results,
with reported average correlations above 0.97 with both full reference PSNR and MSSIM.
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3.3 No-reference approaches

Tables 3 and 4 summarize the articles further presented in this section.

3.3.1 Magnetic resonance imaging

Liebgott et al. [52] proposed a new method to assess the quality of 2D MRI using active
learning. A descriptor including features based on contrast, resolution, texture, and intensity
information was reduced using Principal Component Analysis (PCA) [63] and classified
using a Support Vector Machine (SVM) model [64]. Subjective scores on a 5-level scale
were used to train and validate the model. Results showed that active learning reduces the
need for training data by around 50%, compared to a previous method by the same authors.

Chow and Rajagopal proposed a modified version of BRISQUE [53], trained with mean-
subtracted contrast-normalizedMRI and the correspondingDMOS.This proposedmetricwas
evaluated on two separate datasets with both T1-weighted (T1w) and T2w brain MRI, one
with unknown artifacts and another with the same range of distortions of [21]. The proposed
modified BRISQUE, the original counterpart, and a JPEG-based model were tested on the
first dataset, and the correlation with MOS was obtained with the proposed metric (PLCC of
0.96 and SROCC of 0.93). The proposed BRISQUE also outperformed its original version
in terms of correlation with two FR metrics - NQM and Feature Similarity Index (FSIM) -,
for the majority of the simulated distortions in the second dataset.

The authors in [54] applied the Bayes theorem to calculate the posterior probability of
entropy, given three quality attributes, i.e., contrast, sharpness, and standard deviation. A
global quality index for 2D MRI was obtained by averaging those probability values, which
were first separately computed for low- and high-entropy feature images. The evaluation
dataset included ten T1w MRI of the brain acquired with bias fields and twenty-one images
acquired without perceived distortions (T1w, T2w, Proton Density, and Fluid Attenuated
Inversion Recovery (FLAIR)). Twenty different levels of Rician noise and motion blur were
induced in the second subset. Five radiologists performed subjective QA, which showed that
the predicted quality decreased consistently across the twenty distortion levels of noise and
blurring. Correlation with MOS was assessed separately for each modality and distortion
level using SROCC. The reported coefficients were globally above 0.6, with a tendency to
be higher for lower distortion levels.

In [55], the authors presented ENMIQA, an entropy-based metric for the objective QA of
MRI, which expresses local intensity differences after non-maximum suppression at various
threshold levels. A dataset of T2w MRI was used, but no information was provided in the
paper on the type of artifacts or noise present in the images. The performance of the proposed
metric in quality prediction was compared against a large set of NR, and ENMIQA outper-
formed them all in terms of correlation with MOS. However, overall correlation coefficients
were quite low, especially for rank correlations (PLCC = 0.65, SROCC = 0.35). PLCC was
also reported for each anatomical structure separately, with wrist and knee images yielding
coefficients near 1 and 0.9, respectively.

In a recent work, Chabert et al. [56] proposed using a set of features reduced using PCA,
which included SNR, Contrast-to-noise Ratio (CNR), Foreground Background Energy Ratio
(FBER), sharpness in fat, uniformity, the Wang index [65] and Shannon entropy [66], among
others, to predict the quality perception of neuroradiologists for lumbar T1w and T2w MRI,
with simulatedGaussian noise and blurring, and contrastmanipulation. A few classifierswere
tested, with SVM showing a superior overall performance (accuracy above 73%). Despite
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relying on user interaction for ROI-based feature extraction, the results seem promising for
online monitoring of the image quality at the moment of acquisition.

The appearance of deep learning models has been establishing a new paradigm in NR
medical image quality assesment. Esses et al. [57] trained a Convolutional Neural Networks
(CNN) model based on the AlexNet architecture [67] to screen the diagnostic quality of
T2w liver MRI. The obtained results indicate a 79% and 73% concordance between CNN
predictions and experts 1 and 2, respectively. Moreover, the CNN showed good negative
predictive values in the identification of non-diagnostic image quality (94% and 86% for
each of the experts).

Sujit et al. implemented a branched custom CNN model to assess the image quality of
3D T1w brain MRI [58]. Each branch received a different imaging plane (i.e., coronal,
sagittal, and axial) as input. The global quality score was obtained by averaging the scores
of each plane. Training and validation data were collected from the Autism Brain Imaging
Data Exchange (ABIDE) multicentric dataset [68], which is publicly available with binary
subjective quality scores (i.e., "acceptable" or "unacceptable"). The proposed ensemblemodel
obtained an AUC of 0.90 on a 20% test split. The model was also tested on a separate test
set from the CombiRx dataset [69], yielding a lower AUC of 0.71. The authors argued that
the lower results may be due to differences in cohorts, as CombiRx data was not included in
training.

Ma et al. [59] investigated the use of CNN to estimate the diagnostic quality of abdominal
MRI. A custom 4-layer CNN and a ResNet-10 model were trained to classify images on
both binary (non-diagnostic vs. diagnostic) and 3-level (non-diagnostic (0), diagnostic (1),
or excellent (2)) quality scales. The proposed 4-layer CNN outperformed ResNet-10, with
an accuracy of 84% in binary classification (AUC = 0.72) and 65% in 3-label classification
(AUC0 = 0.77, AUC1 = 0.69, AUC2 = 0.83). However, the authors argued that the high
disagreement between human observers, as well as the probability of label unreliability,
could influence the results. Moreover, the activation maps suggest that low-level features
have higher discriminative power, whereas deeper features do not have a great impact on
these classification tasks, i.e., deeper models may not necessarily improve the results in
similar applications.

3.3.2 Retinal fundus images / ophthalmology images

Köhler et al. [60] extended the work of [70], where a global quality index Q was obtained
from patch-wise quality indices q(P). These were based on the singular value decompo-
sitions of G, a patch-wise gradient matrix. In [60], the authors implemented a spatially
weighted version (Qv), assigning larger weights to patches around blood vessels according
to a vesselness measure. The proposed metric was tested as a PSNR and SSIM, on images
from the DRIVE database with simulated Gaussian blur and noise. Qv outperformed Q, with
an overall SROCC of 0.89 (PSNR) and 0.91 (SSIM). In a second experiment, the authors
performed binary quality prediction (acceptable vs. non-acceptable), considering annota-
tions from experts. Qv outperformed other NR metrics - Q, Cumulative Probability of Blur
Detection (CPBD), and an anisotropy measure - with an AUC of 0.89.

The authors in [61] proposed an Human Visual System (HVS)-based feature extraction
algorithm, which relies on multi-channel sensation, Just Noticeable Blur (JNB), and the
Contrast Sensitivity Function, to detect illumination and color distortions, blur, and low
contrast in retinal fundus images. Extracted features were classified with an SVM and a
decision tree to predict image quality, either based on each of the three aforementioned
properties or globally. A joint dataset contained the 3 partial binary annotations, given by
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ophthalmologists.AverageAUCof0.97, 0.96, and0.68 for illumination/color, JNB, and color,
respectively, was obtained with the decision tree, and 0.93, 0.93, and 0.88 with the SVM. In
terms of overall quality, the SVM showed the best performance with sensitivity/specificity
of 0.92/0.87.

In [62], the authors used texture features from RGB and CIELab channels, includ-
ing Wavelet and Gabor filters, and features from the Gray-level Co-occurrence Matrix
(GLCM) [71] to compute the quality of retinal fundus images. Several feature selection
methods and classifiers were tested for the binary classification of the image quality (good or
poor quality). However, no information on the quality impairments nor the subjective evalu-
ation setup is provided in the paper. The best performance in quality prediction was obtained
with GLCM features from CIELab channels, filtered using correlation-based feature selec-
tion, and classified with an SVM classifier (accuracy = 99.09%).

More recently, Coyner et al. [72] studied the use of CNNmodels to measure the quality of
retinal fundus images, considering their usefulness for a confident detection of retinopathy
of prematurity. The model was based on the InceptionV3 architecture and was trained to
classify an independent set of thirty images as having acceptable or non-acceptable quality.
The testing set was previously ranked by six experts, and the CNN probability output showed
good correlation with the consensus ranking from the experts (SROCC = 0.90). SROCC
ranged from 0.86 to 0.93 when considering individual rankings.

Focusing on eye fundus images for the diagnosis of diabetic retinopathy, Raj et al. [73]
presented a new multivariate regression-based CNN model to predict the image diagnostic
quality. The proposedmodel incorporates four different backbones - InceptionV3, DenseNet-
121, ResNet-101, and Xception - trained against subjective scores for six quality parameters,
i.e., visibility of the optic disc, macula, and blood vessels, color, contrast, and blur. The top of
the model provides a global diagnostic quality score based on the computed features. Results
showed a strong correlation with the subjective scores for overall diagnostic quality, with
values of 0.94, 0.95, 0.85, and 0.40 obtained for SROCC, PLCC, KRCC, and Root Mean
Square Error (RMSE) respectively. The classification accuracy was 95.66% over the FIQuA
dataset, presented in the same paper, and 98.96% and 88.43%, respectively, over the two
publicly available datasets, DRIMDB [74] and EyeQ [75].

In [76], the authors proposed a CNN-based model with three modules for the quality
assessment of retinal images. The model extracts global and local features (optic disc and
fovea) using a VGG-16 backbone, which provides an overall quality score and three partial
scores for different factors - artifacts, clarity, and field definition. Visual feedback from class
activation mapping is also provided to ophthalmologists. ROI detection is performed by
a separate module, using a ResNet-50 backbone for center detection and a VGG-16 local
encoder for iterativeROI refinement.A thirdmodule implements an unsupervisedAdversarial
Discriminative Domain Adaptation (ADDA) method [77], using a Generative Adversarial
Network architecture [78] to address domain shifts between training and test data. Several
variations of the proposed model were tested to classify images as adequate or inadequate for
the diagnosis of diabetic retinopathy, and the best result was obtained with the full described
model, with an AUC of 0.95.

Abramovich et al. developed FundusQ-Net [79], a deep learningmodel using an Inception-
V3 backbone, for automated quality grading of retinal fundus images. The model was trained
on an extensive dataset of 89,947 images, of which 1245were labeled by the two ophthalmol-
ogists, while the remaining 88,702 were used for pre-training and semi-supervised learning.
Subjective quality scores were provided on a scale from 1 to 10, with 0.5 resolution. Final val-
idationwas performed on two test datasets with a reportedmean absolute error of 0.61 against
the subjective scores on an internal dataset and 99% accuracy on the DRIMDB database.
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Niwas et al. [80] developed a metric to assess the quality of Anterior Seg-ment Optical
Coherence Tomography (AS-OCT) images usingLocal Binary Patterns (LBP) in the complex
Wavelet domain. The image is first decomposed into 32 wavelet decomposition levels using
theDoubleDensityDualTree-complexWavelet transform, and theLBPhistogram is obtained
for each sub-band. TheMinimumRedundancyMaximumRelevance (mRMR)method is then
applied to select the most relevant features to classify the image in terms of quality, with three
levels considered. Several classifiers were tested, including SVM, random forest, decision
tree, and an AdaBoost classifier, but the best results were achieved using a Naïve Bayes
classifier with mRMR feature selection. These were compared to the ground truth given by
experts, yielding an overall weighted accuracy of 82.9%.

3.3.3 Endoscopic / laparoscopic videos

Based on a new publicly available database of 2D laparoscopic videos (LVQ) [88], a residual
network-based method was proposed in [81] to predict the quality score and detect the type
of distortion. Particularly, to tackle the problem of limited data, a ranking-based pre-training
approach has been proposed. The proposed model with a ResNet-18 backbone obtained a
better performance in terms of SROCCwith the established quality ranking (0.69) when com-
pared to another deep learning-based method, i.e., RankIQA [89] (0.57). It should be noted
that the quality ranking was inferred directly from the severity levels of simulated distortions
(i.e., defocus and motion blur, Gaussian noise, uneven illumination, and smoke). Simultane-
ously, the authors attempted image classification into 20 different labels, considering every
distortion-level pair. Different ResNet depths were tested, with ResNet-50 achieving the best
accuracy (87.3%).

In a very recent paper, Ali et al. [82] proposed an integrated deep learning approach for
bothQAand frame restoration in video endoscopy. In the context of this paper, theQAmethod
relied on detecting six different types of impairments, i.e., bubbles, blur, contrast, specularity,
saturation, and miscellaneous artifacts, in near real-time, using a YOLOv3 architecture. The
dataset included a set of frames fromboth normal bright field and narrow-band imaging videos
of different patients. After a bounding box detection stage, the framework also performed
finer segmentation of the artifacts, with the best results being obtained with DeepLabv3+
spatial pyramid pooling.

3.3.4 Ultrasonography

Abdi et al. [83] trained a total of 430 CNN models to attempt the automated QA of
transthoracic echocardiograms, using Particle Swarm Optimization (PSO) for hyperparam-
eter optimization. Subjective scoring was based on the visibility of several anatomical
structures (Manual Echo Score (MES)). The network resulting from PSO featured three
convolutional layers, fed to two fully connected layers, and was trained independently three
times. The final model performance was measured by the mean absolute error between the
predicted score and the MES, with average reported values of 0.71 ± 0.58. The authors fur-
ther analyzed the obtained CNN feature maps, which suggested the visibility of the septum
and lateral walls to be important factors for a higher predicted image quality.

3.3.5 Computed tomography

Baldeon-Calisto et al. proposed DistilIQA, which combines a Transformer architecture
with multi-headed self-attention and a knowledge distillation framework for the QA of CT
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images [84]. The authors tested the method in predicting quality scores for two distinct
datasets. The first included low-dose chest CT images simulated by adding Poisson noise to
data from 11 non-contrast scans. DistilIQA obtained a high correlation with the SSIM scores
computed between full-dose and the simulated low-dose images (PLCC = 0.99 / SROCC
= 0.98), outperforming several other deep learning methods. In a second experiment, the
authors validated the proposed model by predicting the quality of abdominal CT images of
the LDCTIQAC2023 challenge [90], which were annotated by five radiologists according to
a 5-level qualitative scale based on the visibility of anatomical structures and suitability for
diagnosis. On the challenge test set, DistilIQA obtained a PLCC of 0.95 and SROCC of 0.84
with the subjective scores.

3.3.6 Fused images

Tang et al. published two papers on the quality assessment of Multimodal Medical Image
Fusion (MMIF). In both papers, the authors tested eight image fusion algorithms, namely,
NuclearNormMinimization (NNM),LaplacianPyramid andSparseRepresentation (LP-SR),
Cross-scale Coefficient Selection (CSCS), Guided Filtering (GFF) Pulse-coupled Neural
Network with Modified Spatial Frequency based on Non-subsampled Contourlet Trans-
form (NSCT-PCNN-SF), Improved Sum-Modified-Laplacian (ISML), Convolutional Sparse
Representation (CSR), and Discrete Tchebichef Moments and Pulse-coupled Neural Net-
work (DTM-PCNN), with different pairs of imaging modalities, namely, CT and MRI, T1w
and T2w MRI, B-mode Ultrasound and Single-photon Emission Computed Tomography
(SPECT), MRI and PET, and MRI and SPECT. In [85], the quality index was obtained by
pooling the phase congruency, which measures the correlation between salient features of the
source and fused images, and the standard deviation, which provides a measure of sharpness
and clarity. In [86], the authors further proposed using a PCNNwith NSCT sub-images (both
high- and low-frequency components). An overall quality index was then given by pooling
the obtained components. The performance of the proposed metrics was compared to sev-
eral state-of-the-art metrics, including gradient, structure, edge, and entropy-based metrics,
considering their correlation to the MOS of twenty radiologists. In [85], the proposed metric
achieved average SROCC near 0.8 and KRCC near 0.7, whilst in the more recent paper, the
proposed metric yielded the following performance measures: PLCC=0.79, SROCC=0.73,
KRCC=0.61, and RMSE=0.27. Although both metrics largely outperformed the baseline
metrics, suggesting their relevance in MMIF QA, the obtained correlations could be further
improved.

3.3.7 Multiple imagingmodalities

In [87], the authors proposed to modify NIQE [46], a NRmetric originally developed for nat-
ural images, and used for the QA of medical images in some studies. The authors improved
its perceptual evaluation using a frequency-domain analysis inspired by the Blind Image
Quality Evaluator based on Scales (BIQES) metric [91]. The ratio kurtosis/standard devia-
tion of the log amplitude of the Fourier spectra was taken as a weighting factor. In a first
experiment, ultrasound images were corrupted with simulated noises, i.e., Sattar’s noise and
speckle noise, and then filtered using a median filter. NIQE-K and BIQES achieved com-
parable performances in terms of quality ranking. Nonetheless, NIQE-K ranked a noisy
image (Sattar’s noise) better than the original ultrasound image, despite their close qual-
ity indices. In the second experiment, three radiologists were asked to detect and localize
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multiple sclerosis lesions in MRI. Their performance was quantified by the Jackknife Alter-
native Free-response Receiver Operating Characteristic (JAFROC). Result analysis showed
the consistency of NIQE-K for ultrasound image quality and that, for 40% of the images, the
behavior of NIQE-K is the same as that of the radiologists.

4 Task-basedmethods

Task-based objective QA methods, also often referred to as numerical observers (NO) or
model observers (MO), are designed to approach the performance of human observers (i.e.,
medical experts) in a given task, as opposed to visual quality-based approaches, which typi-
cally aim at predicting the MOS of human observers [11].

The underlying paradigm is to quantify the quality of medical images and videos by their
effectiveness with respect to their intended purpose [92]. In this section, we review task-based
methods proposed for different tasks, as well as the corresponding Figures of Merit (FOM)
for performance evaluation. Table 5 is a summary of these works (note that we focus on
works published after 2013, since an overview was already published then [16]).

4.1 Detection and classification tasks

The most common task is the detection task, in which a decision is made in favor of one of
two hypotheses, i.e., signal present (H1) or absent (H2). Low-dose reconstruction methods
using iterative algorithms in tomography introduced new challenges related to the extrac-
tion of image information. In any diagnosis, a good compromise must be found between
the dose level and the resulting quality of the medical image in order to reduce the expo-
sure dose while allowing the detection of low contrast textures. In [93], the authors used a
Channelized Hotelling Observer (CHO) [16, 94] and developed an internal noise model to
compare detectability indices (d ′) in low-dose CT images. The d ′ index, chosen as FOM, was
calculated from the distribution of signal and noise decision variables (i.e., sum of channel
outputs). The experiment was performed with five observers, using CT phantom images,
and showed that Iterative Model Reconstruction (IMR, Philips) enables at least a 67% dose
reduction comparatively to Filtered Back-projection (FBP).

Racine et al. [95] conducted research to objectively evaluate the low contrast detectability
in CT with different radiation doses (CTDIvol of 5, 10, 15, and 20 mGy). Images of a QRM
401 phantom containing 5- and 8-mm diameter spheres, with a contrast level of 10 and 20
HU, were acquired and reconstructed using three algorithms, i.e., FBP, Adaptive Statistical
Iterative Reconstruction (ASIR), andModel-based Iterative Reconstruction (MBIR). A CHO
model withDenseDifference-of-Gaussian (D-DOG) channels was used to evaluate the image
quality for every combination of the aforementioned parameters. The performance of the
CHO model was compared with that of six medical students, who provided detectability
levels for the test images in four-alternative forced choice tests. A high correlation was found
between the results of the human observers and the CHO model, independently of the dose
levels or the signals considered, suggesting it might be used to predict expected detectability
levels and ensure the diagnostic quality of low-dose CT acquisitions. PLCC was 0.98 for
MBIR and 0.93 for FBP. MBIR gave the highest overall detectability index, particularly for
low CTDIvol .

Greffier et al. [14] used the imQuest software to assess the quality of low-dose CT scans,
comparing the performance of four manufacturers (i.e., GE, Philips, Siemens, and Canon),
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with different reconstruction algorithms (i.e., FBP, MBIR and Hybrid/Statistical Iterative
reconstruction (H/SIR)), and five dose levels (i.e., 0.5, 1.5, 3.0, 7.0, and 12.0 mGy). A Non-
Prewhitening Matched Filter (NPWMF) model observer with an eye filter [96] was used to
calculate the detectability index, considering two detection tasks: a large mass in the liver and
a small calcification. The d ′ index was obtained from the Noise Power Spectrum (NPS)s and
the Task Transfer Function (TTF), which were measured on a ACRQA phantomwith acrylic
inserts. The reported results showed that the use of an optimization algorithm (either H/SIR
or MBIR) improves d ′ for low-dose acquisition, when compared to FBP. When directly
comparing H/SIR and MBIR, the second led to an increase in d ′ (measured at 3 mGy), as
well as potential dose reductions for Siemens, GE, and Philips systems, with features sizes.
Potential dose reduction using Philips (IMR) reached 62% and 78% for the small and large
features, respectively.

Supervised learning-based approaches for implementing model observers have become
possible substitutes for numerical observers, particularly through the use of CNN. Li et al.
[97] evaluated different CNN-based denoising methods on simulated planar scintigraphy
images. The images were simulated for Signal Known Exactly / Background Known Statis-
tically (SKE/BKS) lesion detection with a Gaussian signal and a lumpy object as random
background.Mixed Poisson and Gaussian noise was added to the simulated images, both sig-
nal absent and signal present, to produce the final dataset. Three denoising encoder-decoder
networks were tested, i.e., a linear CNN (without ReLU activation layers), a non-linear CNN
with MSE loss, and a ResNet-based model with a perceptual loss function. Their perfor-
mance was then assessed using several observers for the detection of the lesion signals, i.e., a
Bayesian Ideal Observer IO [98, 99], a CNN-based observer, a Hotelling Observer (HO) [16,
98], a CHO, a Regularized HO (RHO), and a NPWMF. The authors performed ROC analysis
and further computed a detection efficiency measure, given by e ≡ AUCdenoised/AUCnoisy ,
observing that, while an increase in network depth improved SSIM and RMSEmeasures, the
performance of the detection task generally dropped, thus suggesting that denoising methods
might cause a loss of statistical information in the image. For the CNN-based observer, HO
and RHO, the performance decreased with the increase in network depth. It is also argued
that using non-task-based loss functions to optimize CNN-based denoising models might
play an important part in that loss of information.

The authors in [100] tested two antropomorphic model observers to detect liver lesions,
one based on softmax regression (SR-MO) and a CNN-MO. A phantom with contrast targets
of different diameters was scanned on a CT scanner at different X-ray exposures, and the
images were reconstructed using both FBP, which was used for the test dataset, and iterative
reconstruction, used in training and validation. One radiologist provided confidence levels
considering the detection task for a total of 7488 images. Model performance evaluation
relied on computing the JAFROC for the reader study, a CHO with Gabor channels, and
the two proposed models, which were trained using two strategies, i.e., separated models for
each lesion size or a commonmodel for all diameters. The PLCC, the χ2 goodness-of-fit, and
the mean absolute percentage difference (MAPD) were then used to compare the models’
AUC values. The authors concluded that the CNN-MO can accurately approximate human
performance. This model outperformed the CHO (PLCC = 0.95, MAPD = 2.2%) using the
first training strategy (PLCC = 0.98, MAPD = 1.2%), and the SR-MO with both strategies.
With the second strategy, the CNN-MO achieved a PLCC of 0.92 and MAPD of 3.0%.

Alnowami et al. [102] aimed at studying the minimum detectable contrast in mammogra-
phy screenings using a deep learning-basedMO. They first trained a data-driven CNNmodel
to classify image patches from clinical routine screenings as normal tissue or containing a
lesion. In this SKS detection task, the model achieved a sensitivity of 0.90 and a specificity of
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0.92 on the test set. In a second experiment, its performance was compared with two groups
of human observers (experts and non-experts), using a four-alternative forced choice setup
with simulated images to assess the minimum detectable contrast. Contrast threshold values
obtained with the proposed MO approximated the human performance on spherical targets,
and even outperformed it for 4mm targets. For lesion targets, human performance was better,
but the CNN-MO still achieved a comparable performance (12% difference).

Zhou et al. [101] used deep learning methods to approximate an IO and a HO for binary
signal detection tasks, i.e., a CNN and a Single Layer Neural Network (SLNN), respectively.
Computer-simulated images were generated using continuous-to-discrete mapping with a
Gaussian kernel and considering four binary signal detection tasks: a Signal Known Exactly
/ Background Known Exactly (SKE/BKE) task, where the IO and HO are analytically deter-
mined, two SKE/BKS tasks, with lumpy background and clustered lumpy background object
models, and a Signal Known Statistically / Background Known Statistically SKS/BKS task
with a lumpy background. Overall, the CNN-IO and SLNN-HO closely approximated the
results of the IO and HO, in terms of AUC. In the case of the SKE/BKE task, the obtained
AUC with IO and CNN-IO was 0.89, whereas with HO and SLNN-HO it was 0.83. For the
SKE/BKS task with lumpy background, the IO was computed using Markovchain Monte
Carlo (MCMC) techniques [109], and achieved an AUC of 0.91. CNN-IO closely approx-
imated this performance, with AUC=0.91. The traditional HO and SLNN-HO yielded an
AUC of 0.81. A similar outcome was observed in the SKE/BKS task with clustered lumpy
background for HO and SLNN-HO (AUC=0.85). CNN-IO achieved an AUC of 0.89, but its
performance could not be compared to the IO, with the authors arguing that MCMC applica-
tion to clustered lumpy background object models had not been reported to date. Finally, for
the SKS/BKS task, the performance of both the traditional HO and SLNN-HO is close to a
random estimate (AUC≈ 0.5), as linear observers are generally unable to detect signals with
random locations. As for MCMC-IO and CNN-IO, the performance was again very close
(AUC=0.86).

Recently, Gao et al. [15] proposed a reconstruction model for Digital Breast Tomosyn-
thesis (DBT) images which incorporated two CNN-based QA observers: CNN-NE, which
estimates the root-mean-square (RMS) noise in image patches, and CNN-MC, which eval-
uates the detectability of clustered microcalcifications (MC) in human DBT images. In the
context of this paper, we focus on the latter. The reported results indicate that using the
proposed CNN-MC observer can effectively substitute human observers in ranking imaging
systems and may ultimately lead to lower dose acquisition with enhanced sensitivity and
specificity for MC detections.

4.2 Localization tasks

An interesting work was published in [103], where the authors proposed a localization-based
approach to assess the quality of acquisition of fetal ultrasound scans. First, the authors
implemented a localization CNN (L-CNN) using pre-learned AlexNet low-level cues, which
identifies a ROI containing the fetal abdomen. A sliding window strategy was used to feed
local inputs to the L-CNN and obtain a ROI probability map throughout the entire scan.
Image quality was then assessed by considering the quality of depiction of both the stomach
bubble (SB) and umbilical vein (UV) within the ROI. These two structures may be labeled as
satisfactory, not good, or absent. While the first label translates to SSB or SUV=1, the other
two led to 0. From the combinations of these two binary scores, a 4-class output was obtained
by either human observers or a classification CNN (C-CNN), with knowledge transferred
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from the L-CNN to its encoding layers. The final quality score of the Fetal Ultrasound Image
Quality Assessment (FUIQA) scheme is given by the sum of SSB , SUV and SROI , which is
also a binary score, determined by the ROI to field of view ratio. The authors provided an
extensive discussion on the proposed methods, for example, comparing the AUC for SB and
UV detection with different input layers based on local phase analysis. The reported quality
outputs of the described FUIQA model were highly coherent with those from 3 radiologists,
with agreement values of 0.91, 0.89, and 0.88.

Zhou et al. [104] extended their proposed supervised learningmethod [101] to approximate
an IO in joint detection and localization tasks. The LROC curves produced by the proposed
method were compared with those of traditional observers when computationally feasible.
The signal can be localized in nine different locations, and the considered signal detection-
localization tasks are BKE, BKS with a lumpy background model, and BKS with a clustered
lumpybackgroundmodel.Overall, theCNN-IOwas able to come close to the analytical IO for
the BKE task, the MCMC-IO for the BKS task with a lumpy background, and outperformed
the scanning HO for the BKS task with CLB sinceMCMCs have not been reported to date for
this type of background. Note that approximating an IO using supervised learning requires
a large amount of training data, which can be a challenge when only a limited amount of
experimental data is available.

Lorente et al. [105] proposed a MO based on U-Net [110] for defect localization on simu-
lated images with three levels of correlated noisy backgrounds. Two network configurations
(i.e., kernel sizes 3×3 and 5×5) and two loss functions (i.e., MSE and binary cross-entropy)
were tested, and their accuracy was compared with that of a human observer. Accuracy was
described as the ratio between correctly located defects, i.e., within a 5 pixel distance of the
actual defect, and the total number of images. The authors concluded that the models trained
with a binary cross-entropy loss function provided results closer to the human observer.
For example, for the third level of correlated noisy background, the accuracy of the human
observer was 0.8, and the 3×3 and 5×5 MO trained with MSE loss yielded an accuracy
of 0.92 and 0.91, respectively. The MO trained with binary cross-entropy loss got accuracy
values of 0.89 and 0.85, respectively.

4.3 Segmentation tasks

In [106], the authors studied a segmentation-based QA framework for retinal images. Unsu-
pervised vessel segmentation was performed on a dataset of 800 images from the UK
Biobank [111], using QUARTZ (Quantitative Analysis of Retinal Vessel Topology and
Size) [112]. The algorithm relies on amulti-scale line detector, based on the average gray-level
intensities around each target pixel, complemented with high-intensity pixel thresholding,
masking of the fovea, and suppression of small objects. Image quality was then measured by
extracting three features from the binary segmentation image, selected to mimic manual QA,
i.e., area, fragmentation, and complexity, which were finally classified using both a SVM
classifier with a radial basis function kernel and an ensemble decision tree classifier. The
dataset had been labeled by two observers as adequate or inadequate for epidemiological
studies. The SVM achieved the best performance in classification, with an AUC of 0.98.
Although method validation is not directly related to the human segmentation performance,
the method uses the segmentation task outcome to predict image quality.

The authors in [107] studied the correlation between texture-basedmuscle segmentation in
DixonMRI and a set of NR quality metrics, i.e., Variance, Laplacian, Gradient, Autocorrela-
tion, Frequency Threshold metric (FTM), Marziliano Blurring metric (MarzBM), HPmetric,
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Kurtosis-based metric, and Riemannian Tensor-based metric (RTBM), to assess the feasi-
bility of using texture segmentation methods as a content-specific quality measure for MRI.
The authors implemented a pixel-wise binary segmentation method, using AdaBoost [113],
with a local texture descriptor consisting of the histogram of oriented gradients (HOG) [114],
3-level Haar Wavelet coefficients, and statistical measures from the original grayscale image
and the Laplacian of Gaussian (LoG) filter [115]. The Dice overlap coefficient with manual
segmentations was chosen as FOM. Overall, the segmentation output showed reasonable cor-
relation with the variance metric (PLCC = 0.72, SROCC = 0.74) and RTBM (PLCC = 0.71,
SROCC = 0.73). Considering only cases with poor segmentation (Dice < 0.7), all metrics
performed better, even though it should be noted that this analysis relied on a smaller number
of points. RTBM (PLCC = 0.93, SROCC = 0.86) and FTM (PLCC = 0.84, SROCC = 0.96)
yielded the best correlations.

More recently, Alais et al. [108] proposed a CNN that segments the macular region, which
consists of 3×3 convolutional layers only, has very few parameters, and makes decisions
considering a threshold t to obtain a binary image. If the obtained area is greater than a value
A, then the algorithm considers that the macula is visible, and the image quality is considered
sufficient for the macula location. The authors extracted 6098 eye fundus images from the
e-ophtha database [116], with more than half of the images containing a visible macula. The
chosen parameters, t and A, that offer a trade-off between sensitivity and specificity, gave an
accuracy of 96.4% on the test set. The proposed CNNwrongly predicted that the macula was
visible in four images among 304 images (i.e., 1.3% of false positives), whereas U-Net had
nine false positives. Regarding the fovea localization, the authors obtained an average error
of 0.95 pixels for their network versus 1.22 pixels for U-Net. The same tests, conducted on
the ARIA database [117], revealed a prediction of the fovea with 1.4 pixels of mean error
(0.1mm) and 6 pixels of maximum error. Finally, the network was tested on pathological
images, with one unsuccessful detection due to the presence of macular hemorrhages or
exudates.

5 Discussion and future work

Medical images and video refer to a wide variety of different acquisition methods, clinical
applications, and quality issues, as is clear from the papers reviewed in this contribution. Thus,
it is almost impossible to establish meaningful comparisons between the objective method-
ologies used, i.e., their merits and drawbacks. Nonetheless, some global considerations may
be drawn, particularly on future research directions.

Figure 2 summarizes the discussed QA metrics for medical image and video. Regarding
FR and RR visual quality-based metrics, all reviewed papers reported the use of metrics
that were originally designed for natural content, or variations of those metrics. PSNR and
SSIM were the most common across these studies, and both were used in a vast majority of
them [5, 7, 8, 21, 22, 24–27, 29–31]. Renieblas et al. [32] also reported the use of SSIM, along
with several variations of that metric. Other metrics, such as VIF and NQM were commonly
tested aswell. The only FRmetric specifically designed formedical imagingwas proposed by
[27], who described a QA metric for cardiac ultrasound videos based on cardiac motion and
structural information. Considering the reviewed NR visual quality-based approaches, most
methods are tailored for specific imaging modalities and/or artifacts. From our analysis, it is
also clear that deep learning methods are becoming a staple in NR medical image and video

123



Multimedia Tools and Applications

Fig. 2 Summary of the discussed QA metrics for medical image and video

QA, as most recent papers used CNN instead of handcrafted features, with some interesting
results [57–59, 72, 73, 76, 79, 81–84].

As stated in [6], there seems to be a lack of publicly available databases with subjective
quality annotations in the medical imaging domain. Some notable examples are described
in [68, 88, 118, 119]. In order to develop new reliable objective quality metrics for the
medical imaging field, more training data is needed. With a view to addressing this issue,
human-in-the-loop machine learning techniques could be considered [120, 121]. In this
sense, although automated and semi-automated techniques have been proposed for segmen-
tation purposes [106–108], there is still a lack of annotated databases and studies to support
the development of reliable methods, for example, incorporating models of how clinicians
perform diagnosis from images and videos [122]. Artificial intelligence promises a strong
breakthrough in medical imaging objective QA.
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Another common challenge in objective QA studies for medical images and videos has
to do with artifact simulation. While some of the reported visual quality-based studies used
databases containing images or video with real artifacts (e.g., [50, 52, 57–59, 61, 76, 82]),
others used simulated distortions and/or artifacts over real data assumed to be clean (e.g., [7,
8, 21, 32, 54, 56, 60, 81, 87]). Collecting data with real artifacts may not always be possible or
end up being impractical. On the other hand, simulated artifacts are often generic and limited
in range, which might hinder the application of the developed QA methods to real clinical
data [123]. Some efforts towards the simulation of content-specific and realistic artifacts, to
be applied in healthcare QA research, have been reported (e.g., [123–126]), and future work
will likely approach this question more often, leveraging on the continuous development of
deep-learning methods, such as GAN [127].

A similar question can be raised regarding task-based QA research. Traditional model
observers are based on the total or partial knowledge of statistical characteristics of the
images (i.e., signal and background). Hence, many studies (e.g., [14, 93, 95, 101, 104, 105,
128]) are based on simulated or phantom images since real medical images suffer from a
lack of statistical information. Currently, there is no evidence that QA studies conducted on
simulated images ensure sufficient confidence to draw relevant conclusions on real images.
Deep learning methods could allow to go through this weakness. Indeed, any task that could
be carried out with deep learning provides an assessment of the quality. In fact, the more
efficiently the task is done, the better the quality. There is still room for improvement in
the field, the whole purpose being to define the most relevant tasks, i.e., those that can be
reliably delegated to a model. In task-based QA, the key problem lies in modeling the task
performed by human observers. So far, to our knowledge, existing models are limited in
task range. For example, no model observer has been proposed for characterization tasks,
which focus on analyzing certain properties of abnormalities (e.g., contour or texture) for
differential diagnosis and generally involve a linguistic response (e.g., benign vs. malignant),
given its high complexity [16]. Other tasks could also be further explored in future work,
such as estimation tasks (or joint detection / classification / estimation tasks), which aim at
determining a scalar value or range of values from a given object to be used in diagnosis
(e.g., tumor diameter or radiotracer uptake [13]).

Although 3D visualization of medical images and videos is emerging, research on relevant
quality assessment aspects is still behind. Stereoscopic medical imaging and, more recently,
light field medical imaging, open new opportunities, for instance in surgery training, also at a
distance [129]. Compression [130] and transmission [129] of 3D stereoscopicmedical images
and videos, as well as of light field medical data, require suitable metrics for the assessment
of their performance. Recently, studies on quality assessment for light field medical images
have started (e.g, [131]). However, objective metrics in this domain are still missing, or their
development is still ongoing. Future research might focus on assessing whether existing
metrics, developed for generic 3D images and videos (e.g., [132–135]), and light field data
(e.g., [136–139]), are suitable to assess the quality of medical data represented in these
formats. While efforts are ongoing in this direction, the availability of wider datasets of
medical data in stereoscopic 3D and light field 3D formats would definitely be useful towards
this effort.

Several of the reported studies considered coding distortions [5, 7, 8, 21, 22, 24–32, 51,
53, 87]. There are a number of applications, mostly based on telemedicine applications,
where lossy compression of medical images or videos might be acceptable. However, in
most cases, medical imaging applications cannot rely on images with lossy compression, as
no one can be sure of the influence that those losses can have in a diagnosis. Multiple times,
radiologists use almost imperceptible textures to define their diagnosis, and, in such cases,
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lossy compression can have a major impact. Hence, several studies on medical image quality
are quite questionable as they use medical modalities where no radiologist would accept any
kind of lossy coding.

6 Conclusion

This paper presented a review of the literature on objective quality assessment of medical
images and video, considering various imagingmodalities and application purposes. It covers
a wide range of approaches to the quality assessment of medical visual content, including the
use of preexisting metrics for natural images and the development of content-specific metrics
either based on handcrafted features or using deep learning-based models. This contribution
aimed to be as exhaustive as possible, including research efforts considered to be the most
relevant in their application field. However, it should be noted that this does not reduce the
merit of any work not included.

Drawn conclusions include that deep-learning methods are gaining prominence in the
objective QA of medical visual content, with a rapid increase in use over the last few years.
In traditional visual quality-based QA, FR metrics such as PSNR, SSIM and VIF, which
are not specific for medical content, are among the most widely tested. As for NR metrics,
most works proposed content-specific methods. Regarding task-based QA, existing models
are still limited in their task range.

As a key contribution for future research, this paper formalizes a new categorization of
QAmethods for medical images and video into visual quality-based and task-based methods.
Moreover, some challenges were identified, such as the lack of publicly available databases
with subjective annotations and the lack of research data with content-specific and realistic
artifacts. Emerging 3D visualization modalities will likely require suitable QA methods,
which are still lacking.
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