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Abstract

Quality assessment is a key element for the evaluation of hardware and software involved in
image and video acquisition, processing, and visualization. In the medical field, user-based
quality assessment is still considered more reliable than objective methods, which allow the
implementation of automated and more efficient solutions. Regardless of increasing research
on this topic in the last decade, defining quality standards for medical content remains a non-
trivial task, as the focus should be on the diagnostic value assessed by expert viewers rather
than the perceived quality from naive viewers, and objective quality metrics should aim at
estimating the first rather than the latter. In this paper, we present a survey of methodologies
used for the objective quality assessment of medical images and videos, dividing them into
visual quality-based and task-based approaches. Visual quality-based methods compute a
quality index directly from visual attributes, while task-based methods, being increasingly
explored, measure the impact of quality impairments on the performance of a specific task. A
discussion on the limitations of state-of-the-art research on this topic is also provided, along
with future challenges to be addressed.
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1 Introduction

Medical images and videos provide clinical information from the human body with reduced
invasiveness, but also structural and functional outcomes that could not be obtained by other
means. Nowadays, medical imaging plays an inexorable part in diagnosis, treatment planning,
and patient monitoring. Over the last decades, medical imaging techniques have been con-
stantly developed, updated, and extensively used in numerous medical specialties. The World
Health Organization (WHO) estimated around 3.6 billion diagnostic procedures performed
worldwide, per year, between 1997 and 2007 [1]. Radiology is the leader in the production of
medical imaging content [2], with a vast number of imaging modalities. Data from the Orga-
nization for Economic Cooperation and Development (OECD), which considers Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), and Positron Emission Tomogra-
phy (PET) scans performed each year, further reveals a clear upward trend in the last decade,
with over 253 million exams reported by OECD countries [3]. Moreover, and besides other
relevant imaging modalities, medical images and videos are now also transmitted in real time
for telemedicine applications. Therefore, large amounts of content from different acquisition
methods are continuously created in the medical practice.

Several impairments can affect the quality of the end visual signal, impacting the quality
perceived by the viewers (e.g., clinicians, radiologists, etc.), as well as their performance on
clinical tasks. This spectrum of impairments highly depends on a wide variety of acquisition
and reconstruction-related factors, which are often specific to each imaging modality. Fur-
thermore, external and patient-related factors may induce artifacts in the acquired content, as
well. Images and videos may also be subject to different processing, encoding/compression,
transmission, and visualization methodologies. For example, in telemedicine applications,
video content and real-time interactions are key features, which lead to a high demand of
hardware resources and network bandwidth for data storage and transmission [4, 5]. Thus,
measuring image and video quality in health applications is both a necessity, towards improv-
ing methodologies throughout the clinical workflow, and a wide open challenge, given the
diversity of content, applications, and impairments. This paper aims at providing researchers
with a broad sense of current boundaries and future opportunities in this field. The authors
of this review have been involved in the field of QA, with relevant publications on medical
image and video QA. Prior knowledge of research in this domain served as the basis for the
considered selected papers.

While a recent review of subjective QA of medical images and videos was published
by Lévéque et al. [6], this paper focuses on objective QA methods for medical images and
videos. Objective QA relies on the use of image processing and analysis algorithms towards
automated quality estimation methods [7]. Although objective methods may be less reliable
than subjective assessment, they are more cost-effective, less time-consuming, and reduce
observer variability and bias [8]. In another review paper published in 2016, Chow et al.
discussed both subjective and objective methods [9], with a primary focus on MRI, CT,
and ultrasound imaging. More recently, Raj et al. [10] presented a survey of objective QA
methods for fundus images. In this paper, we focus mainly on more recent research, and
consider several other imaging modalities than those previous reviews.

Another contribution of this paper is the proposal of a new categorization for medical
image and video QA methods, based on their design principle, into visual quality-based
and task-based methods. Visual quality-based methods mainly use a traditional approach to
quality assessment, which focuses on visual and/or structural attributes of the image. On the
other hand, task-based quality assessment targets a specific application of the visual content
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in the medical domain [11]. It should be emphasized that medical images may have lower
perceptual quality due to acquisition factors but keep all the needed information from a
clinical point of view. Some research efforts that fit into this category had already referred to
this approach as task-based, e.g., [12—15]. This is a core contribution of this paper and, to the
best of our knowledge, it is the first review to formalize this discrimination in two distinct
QA categories. Regarding this topic, an overview of model observers used in task-based QA
of medical images was published in 2014 by Zhang et al. [16]. Similarly to the reviews
mentioned in the last paragraph, this paper focuses on more recent research not included
there.

The remainder of the paper is organized as follows: Section 2 presents a brief overview
of image and video quality assessment and discusses the main differences between medical
imaging and other types of visual content; Sections 3 and 4 provide a review of visual
quality-based and task-based methods, respectively; Section 5 provides a discussion on some
merits and drawbacks of the reported methods, as well as future research directions; Finally,
Section 6 concludes the paper and summarizes the main insights of this contribution.

2 Overview of image and video quality assessment

The quality perceived by the users of image and video content is one of several factors
influencing their Quality of Experience (QoE), defined by EU Cost Action 1003 Qualinet [17]
as “the degree of delight or annoyance of the user of an application or service. It results
from the fulfillment of his or her expectations concerning the utility and enjoyment of the
application or service in the light of the user’s personality and current state”.

Typically, image and video quality is evaluated from a perceptual perspective, either
subjectively or objectively, with each approach bearing its own motivations, advantages,
and drawbacks. Subjective QA relies on human observers to analyze images or videos and
rate their quality following specific methodologies (e.g., [18, 19]). The output of subjective
tests is then statistically analyzed, usually by computing the Mean Opinion Score (MOS)
or Differential MOS (DMOS) [7]. Depending on the type of content and application, user
expertise may be a requirement for an accurate and meaningful evaluation. In most healthcare
applications, the quality perception of end-users is likely to be strongly influenced by the
clinical utility of the content, rather than strictly aesthetic criteria. Therefore, subjective QA
methods may have some limitations in this context, concerning the availability of expert
observers, in addition to the inherent intra- and inter-subject scoring variability [8].

The most common design principle in objective image and video QA applications is the
computation of a quality index from certain visual and/or structural attributes of the content.
On the contrary, task-based QA methods assess the quality in terms of a specific goal of the
content by measuring its influence on the performance of certain tasks (e.g., diagnosis or
localization of an anatomical structure [13]). This kind of approach has been increasingly
explored in the development of quality metrics that are specific for medical images and
video. Consequently, we propose to divide the discussed QA methodologies into two major
categories, i.e., visual quality-based, and task-based methods, as described in Fig. 1.

The performance of objective methods is usually evaluated through a statistical comparison
with subjective results [18, 20]. More precisely, the Pearson Linear Correlation Coefficient
(PLCC) and the Spearman Rank-order Correlation Coefficient (SROCC) are used to mea-
sure the linear and rank correlations, respectively. A less commonly used rank correlation
coefficient is the Kendall Rank Correlation Coefficient (KRCC). These coefficients can take
absolute values from 0 to 1, with 1 indicating a perfect correlation. Negative coefficients
indicate an inverse correlation between the variables.
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MEDICAL IMAGE &
VIDEO QA

Visual quality-based Task-based
methods methods

Reduced
Reference (RR)

Detection and
Classification

No Reference

Full Reference
(NR)

(FR)

Localization [ Segmentation ]

Fig. 1 Categorization of quality assessment methods for medical image and video. As proposed, these are
divided into visual quality-based and task-based methods

Metric performance can also be evaluated from a classification standpoint, e.g., if a metric
aims at classifying an image as being acceptable or non-acceptable. Accuracy is commonly
defined as the ratio of correctly classified instances according to a subjectively defined ground
truth over the total number of instances and is typically presented in percentage. Another
common performance indicator is the area under the Receiver Operating Characteristic (ROC)
curve. For a given classification model, the ROC curve plots the true positive rate (TPR) as a
function of the false positive rate (FPR) for a number of candidate decision thresholds. Both
the TPR and FPR may vary from O to 1, as does the resulting area under the ROC curve
(AUC). An AUC of 0.5 is equivalent to random guessing, whereas a value of 1 indicates a
perfect performance in classification.

3 Visual quality-based methods

Visual quality-based methods are commonly categorized as Full Reference (FR), No Ref-
erence (NR), or Reduced Reference (RR), depending on the availability of an undistorted
reference (preferably the original image or video). FR metrics predict the quality by directly
comparing the reference and its distorted versions, contrary to NR metrics, which assess the
quality only using the distorted image. Finally, RR metrics compare features representative
of the distorted and reference images.

The following subsections present an overview of visual quality-based objective QA meth-
ods for medical images and video, according to the aforementioned categorization.

3.1 Full-reference approaches
Full-reference QA of medical images and videos had focused almost exclusively on adapting

metrics designed for non-medical content to obtain quality predictions for compressed and/or
artificially distorted medical content. Table 1 summarizes the works presented in this section.

3.1.1 Magnetic resonance imaging

FR quality assessment studies using MRI includes the works of Chow et al. [21] and Mason
et al. [8]. Both works tested a large set of metrics, e.g. [33-38] on datasets with different

@ Springer



Multimedia Tools and Applications

(otw pasodoid) IOND “UNSA HIA
‘WON ‘NOA ‘ION ‘INISS “INSd

ANSA HIA
‘WON ‘NOA ‘ION ‘INISS “INSd

ANSM ‘AON
DI 'dAIA 1A “UNSA ‘NISS “UNSd

dIA
“ANSA ‘WISS “ANS ‘S [B0] ‘HSIN

[€c] woy
amseaw uonIoSIp ‘NISS  “UNSd

JIA ‘NON
dAAMAH ‘IS ‘dSIND ‘INISS-MI
‘INISS-SIN ‘INISS “UNSd “ASINY

INISS-MI “UNSd-MI
‘TON ‘dAIA HIA “UNSM ‘AON dOI
‘INISA ‘INISSINL ‘INISS “UNSd “UNS

(SODSQ@) sHadxa [eorpaut  :SOINA

(SODSQ) s10A135q0
dATeU 9 pue s31adXd [edIpew § (SO

suradxo [edtpowt 7 :SON

(dDQ snnuns

-o[qno)  sIsISoforper 9 SO
$)SISO[OIpeI PUB ‘SIO}

-00p oI ‘suosiad uowwo) :SON

s1s130[01pe1 § (SO

(HDSAS) $19AI5QO [EIIPAW SO

(S[A9L

uoneznuenb §) uorssardwod HAFGH
(S[A9]

uoneznuenb g) uorssardwod HAGH
SOJBI SSO[

-joyoed pue sioyowered uoneznuenb
Jjuaropp m  uorssardwo) $97°H
(sonex

§) uorssardwod 00OZOHAl Pue DIl
soner uorssa1dwod JuerejIp Sursn
19[eARA\ PUB [D YPIm uorssardwo)
uoIssa1durod jo[eAem

pue Surdwesiopun ‘uonouwr ‘Injq
ueIssner) ‘osIoU UBIOTY Pue YA\
(soner ¢) uorssaxdwos ()00zOAJSl

pue D[ 1Od (S[2Ad] §) Inq uels
-Snen) pue ‘ds[ou uevissnen) pue ueory

SOOPIA punosenyn

SOOPIA punosenyn

SO9PIA punosen|n

1D

1D

TN

TN

[L2]

[oz]

[¢zl

[l

kd

(8]

[12]

sommow 9A12(q0

uonepIEA

Surssaooid / syuaunaredwn Aeng)

Ayepowr Sursew|

QOURIRJIY

(soInow Y{) 09pIA pue seFewl [eIpal Jo Juawssasse Ajpenb oy 0) soyoeordde paseq-Ajifenb [ensia Jo ma1AIoAQ | 3|qel

pringer

Qs



Multimedia Tools and Applications

UMM PYIRW I8 YOIYM ‘PA)SA) OS[E IOM SOLIOUL YN ‘SHIOM SWOS U]

(yuouodwod [eIm
-ONIS pue paseq-juarpeIs vreosnnur)
syuouodwod TS S JO SUOIRUIqUIOD 9 |

uon
-eeA NISS pesodoxd ‘INISS “UNSd

INISS “ANSd

ANSM
‘WON ‘10N ‘dAIA HIA “DdI “INSA
‘NISS-SIN ‘INISS  “INSd ‘SN

LHNOSTAd pue LHOIN ddIA
IIA  ‘IN-SAH-UNSd ‘SAH-INSd
‘ISS-SIN ‘ASIN ‘DI ‘ddA-4dH
“ANSA UNSM NS ‘ION ‘NISS

ANSd ‘T-ddA-¥AH ‘WOA

(40q snnwns
sisiSoforper ¢ SO

-o[qno()
SIOAIISQO [BIIPAUW G (SO

SIOATISQO [BOIPAW 9 :SOIN

(SODSA) STPAIISQO dATRU
6] PUB SIOAIDSQO [BIIPAW 9 :SOIN

(SOOSQA) $194195G0 [eIIPIUW ] :SOIN

(AODSS) SIDAIISQO dALRU
91 pue suoa3ins dgrdoosorede] ¢ :SOIN

(sonjer ) uorssaid

-wod 00OZOHdl PuB DHA[ (S[oAd]
G) IN[q UBISSNED) PUE JSIOU UBISSNED)

uorssardwos JHIJS Sursn
(0T 0 200 woxy) saeniq Julkrep

uorssardwos JHI4S Sursn
(0'z 01 1°0 woly) sAeniq Sulkiep

(S[PAQ[
uoneznuenb ) uoissardwod HAH

(sonjer 171) uotssardwod +97'H

(saye111q §) uorssaxdwod $97°H

IEINRNZD'e [cel

punosenn ‘TN ‘LD [1el

N LD [o€]

soap1a ordoosopug l62]

soapIA A1a8ins ordoosopuyg [S]
s09p1A A1931ns ordoosorede [82]

sommew 9A1NY2(q0

uonepIeA

Sursseso1d / syuowredur Kyrrend)

Kypepowr SurSewy AOUAIRJY

panunuod | 3jqel

pringer

as



Multimedia Tools and Applications

compression settings (Discrete Cosine Transform (DCT) [39], JPEG [40], JPEG2000 [41],
wavelets) and simulated artifacts (e.g. Rician noise, Gaussian blur or motion artifacts). The
best average correlations with the subjective scores were achieved with Noise Quality Mea-
sure (NQM), with PLCC and SROCC around 0.94 [21], and Visual Information Fidelity
(VIF) [8].

3.1.2 Computed tomography

In an early work from 2003, Zhou et al. [22] estimated the quality of CT images with
both DCT and Wavelet compression, using a back-propagation neural network with Peak
Signal-to-noise Ratio (PSNR) and Structural Similarity index (SSIM), and the Block-wise
Distortion Measure [23] as inputs. The reported agreement rates with the obtained subjective
scores ranged between 85.71% and 96.88%. Kowalik et al. [24] also used CT images with
compression - JPEG and JPEG2000, and studied the ROC curves of SSIM, Signal-to-noise
Ratio (SNR), VIF, Mean Squared Error (MSE), and Visual Signal-to-noise Ratio (VSNR) [42]
in classifying images as having non-noticeable or non-acceptable distortions, after subjective
annotation by experts. The largest AUC was obtained with SSIM (0.99 for brain images and
0.96 for body images), closely followed by VIF.

3.1.3 Ultrasonography

In [25], the authors evaluated the performance of a H.264 encoding framework for
atherosclerotic plaque ultrasound videos, which resulted in enhanced performance in noisy
environments. WSNR obtained the best correlation with the subjective scores (PLCC = 0.69
and SROCC = 0.72). The authors also proposed minimum settings for several parameters,
including the frame rate, bit rate, and PSNR in the Regions of Interest (ROI).

The authors of [26] and [27] assessed the quality of ultrasound video excerpts compressed
with High Efficiency Video Coding (HEVC) [43], using a set of 7 common FR metrics, as
well as the proposed content-specific Cardiac Ultrasound Video Quality Index (CUQI), in
[27]. CUQI estimates the diagnostic quality of cardiac ultrasound video using motion and
edge information. In terms of correlation with DMOS, all metrics yielded good PLCC and
SROCC coefficients in both studies. In [27], CUQI outperformed the other tested metrics,
with PLCC and SROCC after DMOS nonlinear regression of 0.94 and 0.93, respectively.
Nonetheless, all the tested metrics achieved correlations above 0.9, and SSIM achieved the
best result in terms of PLCC without nonlinear regression of DMOS.

3.1.4 Endoscopic / laparoscopic videos

In [28] and [5], the authors performed objective QA of laparoscopic and surgical videos,
respectively, compressed with H.264. SSIM, High Dynamic Range Visible Difference Pre-
dictor v2 (HDR-VDP-2), and Video Quality Metric (VQM) were used in both studies, but
a larger set of metrics was used in [5], including, for example, PSNR-HVS and PSNR-
HVS-M [44], MSE, Multi-scale SSIM (MS-SSIM) [45], and two NR metrics - Natural
Image Quality Evaluator (NIQE) [46] and Blind/Referenceless Image Spatial Quality Ele-
vator (BRISQUE) [47]. In the latter study, MSE, SSIM, MS-SSIM, and BRISQUE achieved
good correlations with MOS (PLCC > 0.9).

Usman et al. [29] were the first to investigate the quality of wireless capsule endoscopy
videos. Videos were compressed with HEVC, and 10 metrics were computed to estimate video
quality. VIF, Pixel Visual Information Fidelity (VIFP), and Information Fidelity Criterion
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(IFC) showed good correlation with the obtained MOS (between 0.88 and 0.92), with VIFP
outperforming the other two, both in statistical significance and in computation time.

3.1.5 Multiple imaging modalities

Other interesting works were published in [30] and [31], where the authors studied the
performance of PSNR and SSIM on CT, MRI, and ultrasound images with Set Partitioning
in Hierarchical Trees (SPIHT) compression [48]. Both PSNR and SSIM quality estimations
correlated well with subjective scores. In [31], Kumar et al. proposed an improved version
of SSIM, which outperformed PSNR with correlation coefficients of 0.99 (MRI), 0.98 (CT),
and 0.98 (ultrasound).

Several variations of SSIM were also tested by Renieblas et al. [32], to estimate the quality
of planar X-ray and MRI, with simulated Gaussian blur and noise, and JPEG and JPEG2000
compression. The best overall correlation with subjective scores was obtained with 4-MS-G-
SSIM (PLCC > 0.75 overall, and > 0.86 for MR images), which considers four-component
region-based weighting (4-), multiscale (MS-), and gradient-based (G-) computation. The
authors concluded that MS- approaches generally improve the performance of single-scale
counterparts, and that r* (structural component only) showed a slight advantage over the
complete SSIM index.

3.2 Reduced-reference approaches

A few works, described in Table 2, addressed the use of RR metrics to measure the quality
of medical images and video. One of the most popular is the RR version of VQM, which,
as aforementioned, was used in [28], showing a reasonable performance (PLCC=0.97 and
SROCC=0.94) in comparison to other FR metrics. Other approaches are based on the compar-
ison of certain attributes of the images or videos through the computation of a similarity score.
For example, Lee and Wang used the similarity between the intensity histograms of reference
and distorted fundus images to provide an estimation of their quality [49]. For the same image
modality, the authors in [50] proposed a similarity metric based on the comparison of the
distribution of edge magnitudes and the local intensity distribution for distorted and reference
images. In both cases, the performance of their approaches was not reported with objective
measures but through a comparison with SNR and through qualitative results, respectively.
The results show that the proposed approaches are useful to discriminate between good and
bad images. In addition, the proposed approaches can be extended to other types of images.
Finally, another set of RR metrics is based on the use of watermarking, i.e., adding a pay-
load to the content, and then using similarity metrics to compare the reference and the distorted
image or video. An example of this approach was proposed by Planitz and Maeder [51], using
SSIM to measure the degradations and watermarking capacity. This study demonstrated that
more robust watermarking techniques can be used in less visually sensitive areas while lighter
techniques should be applied in more sensitive areas. Nasr and Martini [7] used PSNR and
Mean SSIM (MSSIM) to measure the quality of medical ultrasound videos with simulated
Gaussian noise, and JPEG2000 and HEVC compression. A predefined reduced-size logo that
shares the same features of the original frame of interest (i.e., same organ and layout) was
embedded in an unused part of the original image for the purpose of quality assessment. Con-
sidering that the logo does not depend on the specific content of the sequence, this method
can be considered, to some extent, as NR. The authors concluded that the proposed technique
does not require the original frame whilst achieving a high PLCC with the subjective results,
with reported average correlations above 0.97 with both full reference PSNR and MSSIM.
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3.3 No-reference approaches

Tables 3 and 4 summarize the articles further presented in this section.

3.3.1 Magnetic resonance imaging

Liebgott et al. [52] proposed a new method to assess the quality of 2D MRI using active
learning. A descriptor including features based on contrast, resolution, texture, and intensity
information was reduced using Principal Component Analysis (PCA) [63] and classified
using a Support Vector Machine (SVM) model [64]. Subjective scores on a 5-level scale
were used to train and validate the model. Results showed that active learning reduces the
need for training data by around 50%, compared to a previous method by the same authors.

Chow and Rajagopal proposed a modified version of BRISQUE [53], trained with mean-
subtracted contrast-normalized MRI and the corresponding DMOS. This proposed metric was
evaluated on two separate datasets with both T1-weighted (T1w) and T2w brain MRI, one
with unknown artifacts and another with the same range of distortions of [21]. The proposed
modified BRISQUE, the original counterpart, and a JPEG-based model were tested on the
first dataset, and the correlation with MOS was obtained with the proposed metric (PLCC of
0.96 and SROCC of 0.93). The proposed BRISQUE also outperformed its original version
in terms of correlation with two FR metrics - NQM and Feature Similarity Index (FSIM) -,
for the majority of the simulated distortions in the second dataset.

The authors in [54] applied the Bayes theorem to calculate the posterior probability of
entropy, given three quality attributes, i.e., contrast, sharpness, and standard deviation. A
global quality index for 2D MRI was obtained by averaging those probability values, which
were first separately computed for low- and high-entropy feature images. The evaluation
dataset included ten T1w MRI of the brain acquired with bias fields and twenty-one images
acquired without perceived distortions (T1w, T2w, Proton Density, and Fluid Attenuated
Inversion Recovery (FLAIR)). Twenty different levels of Rician noise and motion blur were
induced in the second subset. Five radiologists performed subjective QA, which showed that
the predicted quality decreased consistently across the twenty distortion levels of noise and
blurring. Correlation with MOS was assessed separately for each modality and distortion
level using SROCC. The reported coefficients were globally above 0.6, with a tendency to
be higher for lower distortion levels.

In [55], the authors presented ENMIQA, an entropy-based metric for the objective QA of
MRI, which expresses local intensity differences after non-maximum suppression at various
threshold levels. A dataset of T2w MRI was used, but no information was provided in the
paper on the type of artifacts or noise present in the images. The performance of the proposed
metric in quality prediction was compared against a large set of NR, and ENMIQA outper-
formed them all in terms of correlation with MOS. However, overall correlation coefficients
were quite low, especially for rank correlations (PLCC = 0.65, SROCC = 0.35). PLCC was
also reported for each anatomical structure separately, with wrist and knee images yielding
coefficients near 1 and 0.9, respectively.

In a recent work, Chabert et al. [56] proposed using a set of features reduced using PCA,
which included SNR, Contrast-to-noise Ratio (CNR), Foreground Background Energy Ratio
(FBER), sharpness in fat, uniformity, the Wang index [65] and Shannon entropy [66], among
others, to predict the quality perception of neuroradiologists for lumbar T1w and T2w MRI,
with simulated Gaussian noise and blurring, and contrast manipulation. A few classifiers were
tested, with SVM showing a superior overall performance (accuracy above 73%). Despite
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relying on user interaction for ROI-based feature extraction, the results seem promising for
online monitoring of the image quality at the moment of acquisition.

The appearance of deep learning models has been establishing a new paradigm in NR
medical image quality assesment. Esses et al. [57] trained a Convolutional Neural Networks
(CNN) model based on the AlexNet architecture [67] to screen the diagnostic quality of
T2w liver MRI. The obtained results indicate a 79% and 73% concordance between CNN
predictions and experts 1 and 2, respectively. Moreover, the CNN showed good negative
predictive values in the identification of non-diagnostic image quality (94% and 86% for
each of the experts).

Sujit et al. implemented a branched custom CNN model to assess the image quality of
3D Tlw brain MRI [58]. Each branch received a different imaging plane (i.e., coronal,
sagittal, and axial) as input. The global quality score was obtained by averaging the scores
of each plane. Training and validation data were collected from the Autism Brain Imaging
Data Exchange (ABIDE) multicentric dataset [68], which is publicly available with binary
subjective quality scores (i.e., "acceptable" or "unacceptable"). The proposed ensemble model
obtained an AUC of 0.90 on a 20% test split. The model was also tested on a separate test
set from the CombiRx dataset [69], yielding a lower AUC of 0.71. The authors argued that
the lower results may be due to differences in cohorts, as CombiRx data was not included in
training.

Ma et al. [59] investigated the use of CNN to estimate the diagnostic quality of abdominal
MRI. A custom 4-layer CNN and a ResNet-10 model were trained to classify images on
both binary (non-diagnostic vs. diagnostic) and 3-level (non-diagnostic (0), diagnostic (1),
or excellent (2)) quality scales. The proposed 4-layer CNN outperformed ResNet-10, with
an accuracy of 84% in binary classification (AUC = 0.72) and 65% in 3-label classification
(AUCy = 0.77, AUC; = 0.69, AUC, = 0.83). However, the authors argued that the high
disagreement between human observers, as well as the probability of label unreliability,
could influence the results. Moreover, the activation maps suggest that low-level features
have higher discriminative power, whereas deeper features do not have a great impact on
these classification tasks, i.e., deeper models may not necessarily improve the results in
similar applications.

3.3.2 Retinal fundus images / ophthalmology images

Kohler et al. [60] extended the work of [70], where a global quality index Q was obtained
from patch-wise quality indices g (P). These were based on the singular value decompo-
sitions of G, a patch-wise gradient matrix. In [60], the authors implemented a spatially
weighted version (Q,), assigning larger weights to patches around blood vessels according
to a vesselness measure. The proposed metric was tested as a PSNR and SSIM, on images
from the DRIVE database with simulated Gaussian blur and noise. Q, outperformed Q, with
an overall SROCC of 0.89 (PSNR) and 0.91 (SSIM). In a second experiment, the authors
performed binary quality prediction (acceptable vs. non-acceptable), considering annota-
tions from experts. Q, outperformed other NR metrics - Q, Cumulative Probability of Blur
Detection (CPBD), and an anisotropy measure - with an AUC of 0.89.

The authors in [61] proposed an Human Visual System (HVS)-based feature extraction
algorithm, which relies on multi-channel sensation, Just Noticeable Blur (JNB), and the
Contrast Sensitivity Function, to detect illumination and color distortions, blur, and low
contrast in retinal fundus images. Extracted features were classified with an SVM and a
decision tree to predict image quality, either based on each of the three aforementioned
properties or globally. A joint dataset contained the 3 partial binary annotations, given by
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ophthalmologists. Average AUC of 0.97,0.96, and 0.68 for illumination/color, INB, and color,
respectively, was obtained with the decision tree, and 0.93, 0.93, and 0.88 with the SVM. In
terms of overall quality, the SVM showed the best performance with sensitivity/specificity
of 0.92/0.87.

In [62], the authors used texture features from RGB and CIELab channels, includ-
ing Wavelet and Gabor filters, and features from the Gray-level Co-occurrence Matrix
(GLCM) [71] to compute the quality of retinal fundus images. Several feature selection
methods and classifiers were tested for the binary classification of the image quality (good or
poor quality). However, no information on the quality impairments nor the subjective evalu-
ation setup is provided in the paper. The best performance in quality prediction was obtained
with GLCM features from CIELab channels, filtered using correlation-based feature selec-
tion, and classified with an SVM classifier (accuracy = 99.09%).

More recently, Coyner et al. [72] studied the use of CNN models to measure the quality of
retinal fundus images, considering their usefulness for a confident detection of retinopathy
of prematurity. The model was based on the InceptionV3 architecture and was trained to
classify an independent set of thirty images as having acceptable or non-acceptable quality.
The testing set was previously ranked by six experts, and the CNN probability output showed
good correlation with the consensus ranking from the experts (SROCC = 0.90). SROCC
ranged from 0.86 to 0.93 when considering individual rankings.

Focusing on eye fundus images for the diagnosis of diabetic retinopathy, Raj et al. [73]
presented a new multivariate regression-based CNN model to predict the image diagnostic
quality. The proposed model incorporates four different backbones - InceptionV3, DenseNet-
121, ResNet-101, and Xception - trained against subjective scores for six quality parameters,
i.e., visibility of the optic disc, macula, and blood vessels, color, contrast, and blur. The top of
the model provides a global diagnostic quality score based on the computed features. Results
showed a strong correlation with the subjective scores for overall diagnostic quality, with
values of 0.94, 0.95, 0.85, and 0.40 obtained for SROCC, PLCC, KRCC, and Root Mean
Square Error (RMSE) respectively. The classification accuracy was 95.66% over the FIQuA
dataset, presented in the same paper, and 98.96% and 88.43%, respectively, over the two
publicly available datasets, DRIMDB [74] and EyeQ [75].

In [76], the authors proposed a CNN-based model with three modules for the quality
assessment of retinal images. The model extracts global and local features (optic disc and
fovea) using a VGG-16 backbone, which provides an overall quality score and three partial
scores for different factors - artifacts, clarity, and field definition. Visual feedback from class
activation mapping is also provided to ophthalmologists. ROI detection is performed by
a separate module, using a ResNet-50 backbone for center detection and a VGG-16 local
encoder for iterative ROl refinement. A third module implements an unsupervised Adversarial
Discriminative Domain Adaptation (ADDA) method [77], using a Generative Adversarial
Network architecture [78] to address domain shifts between training and test data. Several
variations of the proposed model were tested to classify images as adequate or inadequate for
the diagnosis of diabetic retinopathy, and the best result was obtained with the full described
model, with an AUC of 0.95.

Abramovich et al. developed FundusQ-Net [79], a deep learning model using an Inception-
V3 backbone, for automated quality grading of retinal fundus images. The model was trained
on an extensive dataset of 89,947 images, of which 1245 were labeled by the two ophthalmol-
ogists, while the remaining 88,702 were used for pre-training and semi-supervised learning.
Subjective quality scores were provided on a scale from 1 to 10, with 0.5 resolution. Final val-
idation was performed on two test datasets with a reported mean absolute error of 0.61 against
the subjective scores on an internal dataset and 99% accuracy on the DRIMDB database.
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Niwas et al. [80] developed a metric to assess the quality of Anterior Seg-ment Optical
Coherence Tomography (AS-OCT) images using Local Binary Patterns (LBP) in the complex
Wavelet domain. The image is first decomposed into 32 wavelet decomposition levels using
the Double Density Dual Tree-complex Wavelet transform, and the LBP histogram is obtained
for each sub-band. The Minimum Redundancy Maximum Relevance (nNRMR) method is then
applied to select the most relevant features to classify the image in terms of quality, with three
levels considered. Several classifiers were tested, including SVM, random forest, decision
tree, and an AdaBoost classifier, but the best results were achieved using a Naive Bayes
classifier with mRMR feature selection. These were compared to the ground truth given by
experts, yielding an overall weighted accuracy of 82.9%.

3.3.3 Endoscopic / laparoscopic videos

Based on a new publicly available database of 2D laparoscopic videos (LVQ) [88], a residual
network-based method was proposed in [81] to predict the quality score and detect the type
of distortion. Particularly, to tackle the problem of limited data, a ranking-based pre-training
approach has been proposed. The proposed model with a ResNet-18 backbone obtained a
better performance in terms of SROCC with the established quality ranking (0.69) when com-
pared to another deep learning-based method, i.e., RankIQA [89] (0.57). It should be noted
that the quality ranking was inferred directly from the severity levels of simulated distortions
(i.e., defocus and motion blur, Gaussian noise, uneven illumination, and smoke). Simultane-
ously, the authors attempted image classification into 20 different labels, considering every
distortion-level pair. Different ResNet depths were tested, with ResNet-50 achieving the best
accuracy (87.3%).

In a very recent paper, Ali et al. [82] proposed an integrated deep learning approach for
both QA and frame restoration in video endoscopy. In the context of this paper, the QA method
relied on detecting six different types of impairments, i.e., bubbles, blur, contrast, specularity,
saturation, and miscellaneous artifacts, in near real-time, using a YOLOV3 architecture. The
dataset included a set of frames from both normal bright field and narrow-band imaging videos
of different patients. After a bounding box detection stage, the framework also performed
finer segmentation of the artifacts, with the best results being obtained with DeepLabv3+
spatial pyramid pooling.

3.3.4 Ultrasonography

Abdi et al. [83] trained a total of 430 CNN models to attempt the automated QA of
transthoracic echocardiograms, using Particle Swarm Optimization (PSO) for hyperparam-
eter optimization. Subjective scoring was based on the visibility of several anatomical
structures (Manual Echo Score (MES)). The network resulting from PSO featured three
convolutional layers, fed to two fully connected layers, and was trained independently three
times. The final model performance was measured by the mean absolute error between the
predicted score and the MES, with average reported values of 0.71 &+ 0.58. The authors fur-
ther analyzed the obtained CNN feature maps, which suggested the visibility of the septum
and lateral walls to be important factors for a higher predicted image quality.

3.3.5 Computed tomography

Baldeon-Calisto et al. proposed DistillQA, which combines a Transformer architecture
with multi-headed self-attention and a knowledge distillation framework for the QA of CT
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images [84]. The authors tested the method in predicting quality scores for two distinct
datasets. The first included low-dose chest CT images simulated by adding Poisson noise to
data from 11 non-contrast scans. DistillQA obtained a high correlation with the SSIM scores
computed between full-dose and the simulated low-dose images (PLCC = 0.99 / SROCC
= 0.98), outperforming several other deep learning methods. In a second experiment, the
authors validated the proposed model by predicting the quality of abdominal CT images of
the LDCTIQAC?2023 challenge [90], which were annotated by five radiologists according to
a 5-level qualitative scale based on the visibility of anatomical structures and suitability for
diagnosis. On the challenge test set, DistilIQA obtained a PLCC of 0.95 and SROCC of 0.84
with the subjective scores.

3.3.6 Fused images

Tang et al. published two papers on the quality assessment of Multimodal Medical Image
Fusion (MMIF). In both papers, the authors tested eight image fusion algorithms, namely,
Nuclear Norm Minimization (NNM), Laplacian Pyramid and Sparse Representation (LP-SR),
Cross-scale Coefficient Selection (CSCS), Guided Filtering (GFF) Pulse-coupled Neural
Network with Modified Spatial Frequency based on Non-subsampled Contourlet Trans-
form (NSCT-PCNN-SF), Improved Sum-Modified-Laplacian (ISML), Convolutional Sparse
Representation (CSR), and Discrete Tchebichef Moments and Pulse-coupled Neural Net-
work (DTM-PCNN), with different pairs of imaging modalities, namely, CT and MRI, T1w
and T2w MRI, B-mode Ultrasound and Single-photon Emission Computed Tomography
(SPECT), MRI and PET, and MRI and SPECT. In [85], the quality index was obtained by
pooling the phase congruency, which measures the correlation between salient features of the
source and fused images, and the standard deviation, which provides a measure of sharpness
and clarity. In [86], the authors further proposed using a PCNN with NSCT sub-images (both
high- and low-frequency components). An overall quality index was then given by pooling
the obtained components. The performance of the proposed metrics was compared to sev-
eral state-of-the-art metrics, including gradient, structure, edge, and entropy-based metrics,
considering their correlation to the MOS of twenty radiologists. In [85], the proposed metric
achieved average SROCC near 0.8 and KRCC near 0.7, whilst in the more recent paper, the
proposed metric yielded the following performance measures: PLCC=0.79, SROCC=0.73,
KRCC=0.61, and RMSE=0.27. Although both metrics largely outperformed the baseline
metrics, suggesting their relevance in MMIF QA, the obtained correlations could be further
improved.

3.3.7 Multiple imaging modalities

In [87], the authors proposed to modify NIQE [46], a NR metric originally developed for nat-
ural images, and used for the QA of medical images in some studies. The authors improved
its perceptual evaluation using a frequency-domain analysis inspired by the Blind Image
Quality Evaluator based on Scales (BIQES) metric [91]. The ratio kurtosis/standard devia-
tion of the log amplitude of the Fourier spectra was taken as a weighting factor. In a first
experiment, ultrasound images were corrupted with simulated noises, i.e., Sattar’s noise and
speckle noise, and then filtered using a median filter. NIQE-K and BIQES achieved com-
parable performances in terms of quality ranking. Nonetheless, NIQE-K ranked a noisy
image (Sattar’s noise) better than the original ultrasound image, despite their close qual-
ity indices. In the second experiment, three radiologists were asked to detect and localize
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multiple sclerosis lesions in MRI. Their performance was quantified by the Jackknife Alter-
native Free-response Receiver Operating Characteristic (JAFROC). Result analysis showed
the consistency of NIQE-K for ultrasound image quality and that, for 40% of the images, the
behavior of NIQE-K is the same as that of the radiologists.

4 Task-based methods

Task-based objective QA methods, also often referred to as numerical observers (NO) or
model observers (MO), are designed to approach the performance of human observers (i.e.,
medical experts) in a given task, as opposed to visual quality-based approaches, which typi-
cally aim at predicting the MOS of human observers [11].

The underlying paradigm is to quantify the quality of medical images and videos by their
effectiveness with respect to their intended purpose [92]. In this section, we review task-based
methods proposed for different tasks, as well as the corresponding Figures of Merit (FOM)
for performance evaluation. Table 5 is a summary of these works (note that we focus on
works published after 2013, since an overview was already published then [16]).

4.1 Detection and classification tasks

The most common task is the detection task, in which a decision is made in favor of one of
two hypotheses, i.e., signal present (H1) or absent (H2). Low-dose reconstruction methods
using iterative algorithms in tomography introduced new challenges related to the extrac-
tion of image information. In any diagnosis, a good compromise must be found between
the dose level and the resulting quality of the medical image in order to reduce the expo-
sure dose while allowing the detection of low contrast textures. In [93], the authors used a
Channelized Hotelling Observer (CHO) [16, 94] and developed an internal noise model to
compare detectability indices (d”) in low-dose CT images. The d’ index, chosen as FOM, was
calculated from the distribution of signal and noise decision variables (i.e., sum of channel
outputs). The experiment was performed with five observers, using CT phantom images,
and showed that Iterative Model Reconstruction (IMR, Philips) enables at least a 67% dose
reduction comparatively to Filtered Back-projection (FBP).

Racine et al. [95] conducted research to objectively evaluate the low contrast detectability
in CT with different radiation doses (CTDI,,; of 5, 10, 15, and 20 mGy). Images of a QRM
401 phantom containing 5- and 8-mm diameter spheres, with a contrast level of 10 and 20
HU, were acquired and reconstructed using three algorithms, i.e., FBP, Adaptive Statistical
Iterative Reconstruction (ASIR), and Model-based Iterative Reconstruction (MBIR). A CHO
model with Dense Difference-of-Gaussian (D-DOG) channels was used to evaluate the image
quality for every combination of the aforementioned parameters. The performance of the
CHO model was compared with that of six medical students, who provided detectability
levels for the test images in four-alternative forced choice tests. A high correlation was found
between the results of the human observers and the CHO model, independently of the dose
levels or the signals considered, suggesting it might be used to predict expected detectability
levels and ensure the diagnostic quality of low-dose CT acquisitions. PLCC was 0.98 for
MBIR and 0.93 for FBP. MBIR gave the highest overall detectability index, particularly for
low CTDI,,;.

Greffier et al. [14] used the imQuest software to assess the quality of low-dose CT scans,
comparing the performance of four manufacturers (i.e., GE, Philips, Siemens, and Canon),
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with different reconstruction algorithms (i.e., FBP, MBIR and Hybrid/Statistical Iterative
reconstruction (H/SIR)), and five dose levels (i.e., 0.5, 1.5, 3.0, 7.0, and 12.0 mGy). A Non-
Prewhitening Matched Filter (NPWMF) model observer with an eye filter [96] was used to
calculate the detectability index, considering two detection tasks: a large mass in the liver and
a small calcification. The d’ index was obtained from the Noise Power Spectrum (NPS)s and
the Task Transfer Function (TTF), which were measured on a ACR QA phantom with acrylic
inserts. The reported results showed that the use of an optimization algorithm (either H/SIR
or MBIR) improves d’ for low-dose acquisition, when compared to FBP. When directly
comparing H/SIR and MBIR, the second led to an increase in d’ (measured at 3 mGy), as
well as potential dose reductions for Siemens, GE, and Philips systems, with features sizes.
Potential dose reduction using Philips (IMR) reached 62% and 78% for the small and large
features, respectively.

Supervised learning-based approaches for implementing model observers have become
possible substitutes for numerical observers, particularly through the use of CNN. Li et al.
[97] evaluated different CNN-based denoising methods on simulated planar scintigraphy
images. The images were simulated for Signal Known Exactly / Background Known Statis-
tically (SKE/BKS) lesion detection with a Gaussian signal and a lumpy object as random
background. Mixed Poisson and Gaussian noise was added to the simulated images, both sig-
nal absent and signal present, to produce the final dataset. Three denoising encoder-decoder
networks were tested, i.e., a linear CNN (without ReLU activation layers), a non-linear CNN
with MSE loss, and a ResNet-based model with a perceptual loss function. Their perfor-
mance was then assessed using several observers for the detection of the lesion signals, i.e., a
Bayesian Ideal Observer 10 [98, 99], a CNN-based observer, a Hotelling Observer (HO) [16,
98], a CHO, a Regularized HO (RHO), and a NPWMF. The authors performed ROC analysis
and further computed a detection efficiency measure, given by e = AU Cyenoised/ AU Choisy,
observing that, while an increase in network depth improved SSIM and RMSE measures, the
performance of the detection task generally dropped, thus suggesting that denoising methods
might cause a loss of statistical information in the image. For the CNN-based observer, HO
and RHO, the performance decreased with the increase in network depth. It is also argued
that using non-task-based loss functions to optimize CNN-based denoising models might
play an important part in that loss of information.

The authors in [100] tested two antropomorphic model observers to detect liver lesions,
one based on softmax regression (SR-MO) and a CNN-MO. A phantom with contrast targets
of different diameters was scanned on a CT scanner at different X-ray exposures, and the
images were reconstructed using both FBP, which was used for the test dataset, and iterative
reconstruction, used in training and validation. One radiologist provided confidence levels
considering the detection task for a total of 7488 images. Model performance evaluation
relied on computing the JAFROC for the reader study, a CHO with Gabor channels, and
the two proposed models, which were trained using two strategies, i.e., separated models for
each lesion size or acommon model for all diameters. The PLCC, the x2 goodness-of-fit, and
the mean absolute percentage difference (MAPD) were then used to compare the models’
AUC values. The authors concluded that the CNN-MO can accurately approximate human
performance. This model outperformed the CHO (PLCC = 0.95, MAPD = 2.2%) using the
first training strategy (PLCC = 0.98, MAPD = 1.2%), and the SR-MO with both strategies.
With the second strategy, the CNN-MO achieved a PLCC of 0.92 and MAPD of 3.0%.

Alnowami et al. [102] aimed at studying the minimum detectable contrast in mammogra-
phy screenings using a deep learning-based MO. They first trained a data-driven CNN model
to classify image patches from clinical routine screenings as normal tissue or containing a
lesion. In this SKS detection task, the model achieved a sensitivity of 0.90 and a specificity of
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0.92 on the test set. In a second experiment, its performance was compared with two groups
of human observers (experts and non-experts), using a four-alternative forced choice setup
with simulated images to assess the minimum detectable contrast. Contrast threshold values
obtained with the proposed MO approximated the human performance on spherical targets,
and even outperformed it for 4mm targets. For lesion targets, human performance was better,
but the CNN-MO still achieved a comparable performance (12% difference).

Zhou et al. [101] used deep learning methods to approximate an IO and a HO for binary
signal detection tasks, i.e., a CNN and a Single Layer Neural Network (SLNN), respectively.
Computer-simulated images were generated using continuous-to-discrete mapping with a
Gaussian kernel and considering four binary signal detection tasks: a Signal Known Exactly
/ Background Known Exactly (SKE/BKE) task, where the IO and HO are analytically deter-
mined, two SKE/BKS tasks, with lumpy background and clustered lumpy background object
models, and a Signal Known Statistically / Background Known Statistically SKS/BKS task
with a lumpy background. Overall, the CNN-IO and SLNN-HO closely approximated the
results of the IO and HO, in terms of AUC. In the case of the SKE/BKE task, the obtained
AUC with 10 and CNN-IO was 0.89, whereas with HO and SLNN-HO it was 0.83. For the
SKE/BKS task with lumpy background, the IO was computed using Markovchain Monte
Carlo (MCMC) techniques [109], and achieved an AUC of 0.91. CNN-IO closely approx-
imated this performance, with AUC=0.91. The traditional HO and SLNN-HO yielded an
AUC of 0.81. A similar outcome was observed in the SKE/BKS task with clustered lumpy
background for HO and SLNN-HO (AUC=0.85). CNN-IO achieved an AUC of 0.89, but its
performance could not be compared to the IO, with the authors arguing that MCMC applica-
tion to clustered lumpy background object models had not been reported to date. Finally, for
the SKS/BKS task, the performance of both the traditional HO and SLNN-HO is close to a
random estimate (AUC ~ 0.5), as linear observers are generally unable to detect signals with
random locations. As for MCMC-IO and CNN-IO, the performance was again very close
(AUC=0.86).

Recently, Gao et al. [15] proposed a reconstruction model for Digital Breast Tomosyn-
thesis (DBT) images which incorporated two CNN-based QA observers: CNN-NE, which
estimates the root-mean-square (RMS) noise in image patches, and CNN-MC, which eval-
uates the detectability of clustered microcalcifications (MC) in human DBT images. In the
context of this paper, we focus on the latter. The reported results indicate that using the
proposed CNN-MC observer can effectively substitute human observers in ranking imaging
systems and may ultimately lead to lower dose acquisition with enhanced sensitivity and
specificity for MC detections.

4.2 Localization tasks

An interesting work was published in [103], where the authors proposed a localization-based
approach to assess the quality of acquisition of fetal ultrasound scans. First, the authors
implemented a localization CNN (L-CNN) using pre-learned AlexNet low-level cues, which
identifies a ROI containing the fetal abdomen. A sliding window strategy was used to feed
local inputs to the L-CNN and obtain a ROI probability map throughout the entire scan.
Image quality was then assessed by considering the quality of depiction of both the stomach
bubble (SB) and umbilical vein (UV) within the ROI. These two structures may be labeled as
satisfactory, not good, or absent. While the first label translates to Ssp or Syy=1, the other
two led to 0. From the combinations of these two binary scores, a 4-class output was obtained
by either human observers or a classification CNN (C-CNN), with knowledge transferred
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from the L-CNN to its encoding layers. The final quality score of the Fetal Ultrasound Image
Quality Assessment (FUIQA) scheme is given by the sum of Ssp, Syy and Sgo7, which is
also a binary score, determined by the ROI to field of view ratio. The authors provided an
extensive discussion on the proposed methods, for example, comparing the AUC for SB and
UV detection with different input layers based on local phase analysis. The reported quality
outputs of the described FUIQA model were highly coherent with those from 3 radiologists,
with agreement values of 0.91, 0.89, and 0.88.

Zhou et al. [104] extended their proposed supervised learning method [101] to approximate
an IO in joint detection and localization tasks. The LROC curves produced by the proposed
method were compared with those of traditional observers when computationally feasible.
The signal can be localized in nine different locations, and the considered signal detection-
localization tasks are BKE, BKS with a lumpy background model, and BKS with a clustered
lumpy background model. Overall, the CNN-IO was able to come close to the analytical IO for
the BKE task, the MCMC-IO for the BKS task with a lumpy background, and outperformed
the scanning HO for the BKS task with CLB since MCMCs have not been reported to date for
this type of background. Note that approximating an IO using supervised learning requires
a large amount of training data, which can be a challenge when only a limited amount of
experimental data is available.

Lorente et al. [105] proposed a MO based on U-Net [110] for defect localization on simu-
lated images with three levels of correlated noisy backgrounds. Two network configurations
(i.e., kernel sizes 3x3 and 5x5) and two loss functions (i.e., MSE and binary cross-entropy)
were tested, and their accuracy was compared with that of a human observer. Accuracy was
described as the ratio between correctly located defects, i.e., within a 5 pixel distance of the
actual defect, and the total number of images. The authors concluded that the models trained
with a binary cross-entropy loss function provided results closer to the human observer.
For example, for the third level of correlated noisy background, the accuracy of the human
observer was 0.8, and the 3x3 and 5x5 MO trained with MSE loss yielded an accuracy
of 0.92 and 0.91, respectively. The MO trained with binary cross-entropy loss got accuracy
values of 0.89 and 0.85, respectively.

4.3 Segmentation tasks

In [106], the authors studied a segmentation-based QA framework for retinal images. Unsu-
pervised vessel segmentation was performed on a dataset of 800 images from the UK
Biobank [111], using QUARTZ (Quantitative Analysis of Retinal Vessel Topology and
Size) [112]. The algorithm relies on a multi-scale line detector, based on the average gray-level
intensities around each target pixel, complemented with high-intensity pixel thresholding,
masking of the fovea, and suppression of small objects. Image quality was then measured by
extracting three features from the binary segmentation image, selected to mimic manual QA,
i.e., area, fragmentation, and complexity, which were finally classified using both a SVM
classifier with a radial basis function kernel and an ensemble decision tree classifier. The
dataset had been labeled by two observers as adequate or inadequate for epidemiological
studies. The SVM achieved the best performance in classification, with an AUC of 0.98.
Although method validation is not directly related to the human segmentation performance,
the method uses the segmentation task outcome to predict image quality.

The authors in [107] studied the correlation between texture-based muscle segmentation in
Dixon MRI and a set of NR quality metrics, i.e., Variance, Laplacian, Gradient, Autocorrela-
tion, Frequency Threshold metric (FTM), Marziliano Blurring metric (MarzBM), HP metric,
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Kurtosis-based metric, and Riemannian Tensor-based metric (RTBM), to assess the feasi-
bility of using texture segmentation methods as a content-specific quality measure for MRIL.
The authors implemented a pixel-wise binary segmentation method, using AdaBoost [113],
with a local texture descriptor consisting of the histogram of oriented gradients (HOG) [114],
3-level Haar Wavelet coefficients, and statistical measures from the original grayscale image
and the Laplacian of Gaussian (LoG) filter [115]. The Dice overlap coefficient with manual
segmentations was chosen as FOM. Overall, the segmentation output showed reasonable cor-
relation with the variance metric (PLCC = 0.72, SROCC = 0.74) and RTBM (PLCC =0.71,
SROCC = 0.73). Considering only cases with poor segmentation (Dice < 0.7), all metrics
performed better, even though it should be noted that this analysis relied on a smaller number
of points. RTBM (PLCC = 0.93, SROCC = 0.86) and FTM (PLCC = 0.84, SROCC = 0.96)
yielded the best correlations.

More recently, Alais et al. [108] proposed a CNN that segments the macular region, which
consists of 3x3 convolutional layers only, has very few parameters, and makes decisions
considering a threshold 7 to obtain a binary image. If the obtained area is greater than a value
A, then the algorithm considers that the macula is visible, and the image quality is considered
sufficient for the macula location. The authors extracted 6098 eye fundus images from the
e-ophtha database [116], with more than half of the images containing a visible macula. The
chosen parameters, ¢ and A, that offer a trade-off between sensitivity and specificity, gave an
accuracy of 96.4% on the test set. The proposed CNN wrongly predicted that the macula was
visible in four images among 304 images (i.e., 1.3% of false positives), whereas U-Net had
nine false positives. Regarding the fovea localization, the authors obtained an average error
of 0.95 pixels for their network versus 1.22 pixels for U-Net. The same tests, conducted on
the ARIA database [117], revealed a prediction of the fovea with 1.4 pixels of mean error
(0.1mm) and 6 pixels of maximum error. Finally, the network was tested on pathological
images, with one unsuccessful detection due to the presence of macular hemorrhages or
exudates.

5 Discussion and future work

Medical images and video refer to a wide variety of different acquisition methods, clinical
applications, and quality issues, as is clear from the papers reviewed in this contribution. Thus,
it is almost impossible to establish meaningful comparisons between the objective method-
ologies used, i.e., their merits and drawbacks. Nonetheless, some global considerations may
be drawn, particularly on future research directions.

Figure 2 summarizes the discussed QA metrics for medical image and video. Regarding
FR and RR visual quality-based metrics, all reviewed papers reported the use of metrics
that were originally designed for natural content, or variations of those metrics. PSNR and
SSIM were the most common across these studies, and both were used in a vast majority of
them [5,7,8,21,22,24-27,29-31]. Renieblas et al. [32] also reported the use of SSIM, along
with several variations of that metric. Other metrics, such as VIF and NQM were commonly
tested as well. The only FR metric specifically designed for medical imaging was proposed by
[27], who described a QA metric for cardiac ultrasound videos based on cardiac motion and
structural information. Considering the reviewed NR visual quality-based approaches, most
methods are tailored for specific imaging modalities and/or artifacts. From our analysis, it is
also clear that deep learning methods are becoming a staple in NR medical image and video
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Fig.2 Summary of the discussed QA metrics for medical image and video

QA, as most recent papers used CNN instead of handcrafted features, with some interesting
results [57-59, 72, 73, 76, 79, 81-84].

As stated in [6], there seems to be a lack of publicly available databases with subjective
quality annotations in the medical imaging domain. Some notable examples are described
in [68, 88, 118, 119]. In order to develop new reliable objective quality metrics for the
medical imaging field, more training data is needed. With a view to addressing this issue,
human-in-the-loop machine learning techniques could be considered [120, 121]. In this
sense, although automated and semi-automated techniques have been proposed for segmen-
tation purposes [106—108], there is still a lack of annotated databases and studies to support
the development of reliable methods, for example, incorporating models of how clinicians
perform diagnosis from images and videos [122]. Artificial intelligence promises a strong
breakthrough in medical imaging objective QA.
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Another common challenge in objective QA studies for medical images and videos has
to do with artifact simulation. While some of the reported visual quality-based studies used
databases containing images or video with real artifacts (e.g., [50, 52, 57-59, 61, 76, 82]),
others used simulated distortions and/or artifacts over real data assumed to be clean (e.g., [7,
8,21,32,54,56, 60,81, 87]). Collecting data with real artifacts may not always be possible or
end up being impractical. On the other hand, simulated artifacts are often generic and limited
in range, which might hinder the application of the developed QA methods to real clinical
data [123]. Some efforts towards the simulation of content-specific and realistic artifacts, to
be applied in healthcare QA research, have been reported (e.g., [123-126]), and future work
will likely approach this question more often, leveraging on the continuous development of
deep-learning methods, such as GAN [127].

A similar question can be raised regarding task-based QA research. Traditional model
observers are based on the total or partial knowledge of statistical characteristics of the
images (i.e., signal and background). Hence, many studies (e.g., [14, 93, 95, 101, 104, 105,
128]) are based on simulated or phantom images since real medical images suffer from a
lack of statistical information. Currently, there is no evidence that QA studies conducted on
simulated images ensure sufficient confidence to draw relevant conclusions on real images.
Deep learning methods could allow to go through this weakness. Indeed, any task that could
be carried out with deep learning provides an assessment of the quality. In fact, the more
efficiently the task is done, the better the quality. There is still room for improvement in
the field, the whole purpose being to define the most relevant tasks, i.e., those that can be
reliably delegated to a model. In task-based QA, the key problem lies in modeling the task
performed by human observers. So far, to our knowledge, existing models are limited in
task range. For example, no model observer has been proposed for characterization tasks,
which focus on analyzing certain properties of abnormalities (e.g., contour or texture) for
differential diagnosis and generally involve a linguistic response (e.g., benign vs. malignant),
given its high complexity [16]. Other tasks could also be further explored in future work,
such as estimation tasks (or joint detection / classification / estimation tasks), which aim at
determining a scalar value or range of values from a given object to be used in diagnosis
(e.g., tumor diameter or radiotracer uptake [13]).

Although 3D visualization of medical images and videos is emerging, research on relevant
quality assessment aspects is still behind. Stereoscopic medical imaging and, more recently,
light field medical imaging, open new opportunities, for instance in surgery training, also at a
distance [129]. Compression [130] and transmission [129] of 3D stereoscopic medical images
and videos, as well as of light field medical data, require suitable metrics for the assessment
of their performance. Recently, studies on quality assessment for light field medical images
have started (e.g, [131]). However, objective metrics in this domain are still missing, or their
development is still ongoing. Future research might focus on assessing whether existing
metrics, developed for generic 3D images and videos (e.g., [132—135]), and light field data
(e.g., [136-139]), are suitable to assess the quality of medical data represented in these
formats. While efforts are ongoing in this direction, the availability of wider datasets of
medical data in stereoscopic 3D and light field 3D formats would definitely be useful towards
this effort.

Several of the reported studies considered coding distortions [5, 7, 8, 21, 22, 24-32, 51,
53, 87]. There are a number of applications, mostly based on telemedicine applications,
where lossy compression of medical images or videos might be acceptable. However, in
most cases, medical imaging applications cannot rely on images with lossy compression, as
no one can be sure of the influence that those losses can have in a diagnosis. Multiple times,
radiologists use almost imperceptible textures to define their diagnosis, and, in such cases,
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lossy compression can have a major impact. Hence, several studies on medical image quality
are quite questionable as they use medical modalities where no radiologist would accept any
kind of lossy coding.

6 Conclusion

This paper presented a review of the literature on objective quality assessment of medical
images and video, considering various imaging modalities and application purposes. It covers
a wide range of approaches to the quality assessment of medical visual content, including the
use of preexisting metrics for natural images and the development of content-specific metrics
either based on handcrafted features or using deep learning-based models. This contribution
aimed to be as exhaustive as possible, including research efforts considered to be the most
relevant in their application field. However, it should be noted that this does not reduce the
merit of any work not included.

Drawn conclusions include that deep-learning methods are gaining prominence in the
objective QA of medical visual content, with a rapid increase in use over the last few years.
In traditional visual quality-based QA, FR metrics such as PSNR, SSIM and VIF, which
are not specific for medical content, are among the most widely tested. As for NR metrics,
most works proposed content-specific methods. Regarding task-based QA, existing models
are still limited in their task range.

As a key contribution for future research, this paper formalizes a new categorization of
QA methods for medical images and video into visual quality-based and task-based methods.
Moreover, some challenges were identified, such as the lack of publicly available databases
with subjective annotations and the lack of research data with content-specific and realistic
artifacts. Emerging 3D visualization modalities will likely require suitable QA methods,
which are still lacking.

Acknowledgements R. Rodrigues and A. Pinheiro acknowledge FCT - Fundacgdo para a Ciéncia e Tec-
nologia, I.P. for funding this research under the doctoral grant SFRH/BD/130858/2017 and the project
UIDB/50008/2020 of Instituto de Telecomunica¢des, with DOI identifier https://doi.org/10.54499/UIDB/
50008/2020, respectively. They would also like to acknowledge the project CENTRO-01-0145-FEDER-
000019 - C4 Cloud Computing Competence Centre.

Funding Open access funding provided by FCTIFCCN (b-on).

Data Availability This manuscript has no associated data.

Declarations

Conflict of Interest The authors have no conflicts of interest to declare.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer


https://doi.org/10.54499/UIDB/50008/2020
https://doi.org/10.54499/UIDB/50008/2020
http://creativecommons.org/licenses/by/4.0/

Multimedia Tools and Applications

References

10.

12.

13.

19.

20.

21.

22.

23.

24.

25.

26.

. World Health Organisation (2016) Communicating radiation risks in paediatric imaging: information to

support health care discussions about benefit and risk. World Health Organisation

. Krupinski E (2010) Current perspectives in medical image perception. Atten Percept Psychophys

72(5):1205-1217

. OECD (2021) Health care utilisation. https://doi.org/10.1787/data-00542-en. https://www.oecd-

ilibrary.org/content/data/data-00542-en

. Lévéque L, Zhang W, Cavaro-Ménard C, Le Callet P, Liu H (2017) Study of video quality assessment

for telesurgery. IEEE Access 5:9990-9999

. Chaabouni A, Gaudeau Y, Lambert J, Moureaux J-M, Gallet P (2016) H.264 medical video compression

for telemedicine: a performance analysis. Innovation and Research in BioMedical engineering 37(1):40—
48

. Lévéque L, Outtas M, Liu H, Zhang L (2021) Comparative study of the methodologies used for subjective

medical image quality assessment. Phys Med Biol 66(15)

. Nasr KM, Martini MG (2017) A visual quality evaluation method for telemedicine applications. Signal

Process Image Commun 57:211-218

. Mason A, Rioux J, Clarke SE, Costa A, Schmidt M, Keough V, Huynh T, Beyea S (2019) Comparison

of objective image quality metrics to expert radiologists’ scoring of diagnostic quality of MR images.
IEEE Trans Med Imaging 39(4):1064—1072

. Chow LS, Paramesran R (2016) Review of medical image quality assessment. Biomed Signal Process

Control 27:145-154
Raj A, Tiwari AK, Martini MG (2019) Fundus image quality assessment: survey, challenges, and future
scope. IET Image Process 13(8):1211-1224

. Zhang L, Cavaro-Ménard C, Le Callet P, Tanguy J-Y (2012) A perceptually relevant channelized

joint observer (PCJO) for the detection-localization of parametric signals. IEEE Trans Med Imaging
31(10):1875-1888

He X, Song X, Frey EC (2008) Application of three-class ROC analysis to task-based image quality
assessment of simultaneous dual-isotope myocardial perfusion SPECT (MPS). IEEE Trans Med Imaging
27(11):1556-1567

Barrett HH, Myers KJ, Hoeschen C, Kupinski MA, Little MP (2015) Task-based measures of image
quality and their relation to radiation dose and patient risk. Phys Med Biol 60(2):1

. Greffier J, Frandon J, Larbi A, Beregi J, Pereira F (2020) CT iterative reconstruction algorithms: a

task-based image quality assessment. Eur Radiol 30(1):487-500

. GaoM, Fessler JA, Chan H-P (2023) Model-based deep CNN-regularized reconstruction for digital breast

tomosynthesis with a task-based CNN image assessment approach. Phys Med Biol 68(24):245024

. Zhang L, Cavaro-Ménard C, Le Callet P (2014) An overview of model observers. IRBM 35(4):214-224
. Le Callet P, Moller S, Perkis A (2013) Qualinet white paper on definitions of Quality of Experience

(QoE). In: Output from the fifth qualinet meeting p 8

. ITU-R (2019) Methodology for the subjective assessment of the quality of television pictures. Recom-

mendation BT.500-14

ITU-T (2016) Methods for the subjective assessment of video quality, audio quality and audiovisual
quality of Internet video and distribution quality television in any environment. Recommendation p 913
ITU-T (2012) Methods, metrics and procedures for statistical evaluation, qualification and comparison
of objective quality prediction models. Recommendation p 1401

Chow LS, Rajagopal H, Paramesran R (2016) Alzheimer’s Disease Neuroimaging Initiative et al Corre-
lation between subjective and objective assessment of magnetic resonance (MR) images. Magn Reson
Imaging 34(6):820-831

Zhou Y, Chen D, Li C-f, Li X-o, Feng H-q (2003) A practice of medical image quality evaluation. In:
International conference on neural networks and signal processing, vol 1, pp 204-207

Frénti P (1998) Blockwise distortion measure for statistical and structural errors in digital images. Signal
Process Image Commun 13(2):89-98

Kowalik-Urbaniak IA, Castelli J, Hemmati N, Koff D, Smolarski-Koff N, Vrscay ER, Wang J, Wang Z
(2015) Modelling of subjective radiological assessments with objective image quality measures of brain
and body CT images. In: International conference image analysis and recognition, Springer, pp 3—13
Panayides A, Pattichis MS, Pattichis CS, Loizou CP, Pantziaris M, Pitsillides A (2011) Atherosclerotic
plaque ultrasound video encoding, wireless transmission, and quality assessment using H.264. IEEE
Transactions on Information Technology in Biomedicine 15(3):387-397

Razaak M, Martini MG, Savino K (2014) A study on quality assessment for medical ultrasound video
compressed via HEVC. IEEE J Biomed Health Inform 18(5):1552-1559

@ Springer


https://doi.org/10.1787/data-00542-en
https://www.oecd-ilibrary.org/content/data/data-00542-en
https://www.oecd-ilibrary.org/content/data/data-00542-en

Multimedia Tools and Applications

27.

28.

29.
30.
31.
32.

33.

35.
36.
37.
38.
. Ahmed N, Natarajan T, Rao KR (1974) Discrete Cosine Transform. IEEE Trans Comput C-23(1):90-93
40.
41.
42.
43.

44.

45.

46.
47.
48.
49.
50.
51.

52.

53.

54.

Razaak M, Martini MG (2016) CUQI: cardiac ultrasound video quality index. J Med Imaging
3(1):011011

Kumcu AE, Bombeke K, Chen H, Jovanov L, Platisa L, Luong HQ, Van Looy J, Van Nieuwenhove Y,
Schelkens P, Philips W (2014) Visual quality assessment of H.264/AVC compressed laparoscopic video.
In: Medical imaging 2014: image perception, observer performance, and technology assessment, vol
9037, p 90370. International society for optics and photonics

Usman MA, Usman MR, Shin SY (2017) Quality assessment for wireless capsule endoscopy videos
compressed via HEVC: from diagnostic quality to visual perception. Comput Biol Med 91:112-134
Kumar B, Singh SP, Mohan A, Singh HV (2009) MOS prediction of SPIHT medical images using
objective quality parameters. In: International conference on signal processing systems, pp 219-223
Kumar B, Kumar SB, Kumar C (2013) Development of improved SSIM quality index for compressed
medical images. In: IEEE International conference on image information processing, pp 251-255
Renieblas GP, Nogués AT, Gonzdlez AM, Ledon NG, Del Castillo EG (2017) Structural similarity index
family for image quality assessment in radiological images. J Med Imaging 4(3):035501

Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility
to structural similarity. IEEE Trans Image Process 13(4):600-612

. ZhangL,Zhang L, Mou X, Zhang D (2011) FSIM: a feature similarity index for image quality assessment.

IEEE Trans Image Process 20(8):2378-2386

Sheikh HR, Bovik AC, De, (2005) Veciana G: An information fidelity criterion for image quality assess-
ment using natural scene statistics. IEEE Trans Image Process 14(12):2117-2128

Damera-Venkata N, Kite TD, Geisler WS, Evans BL Bovik AC (2000) Image quality assessment based
on a degradation model. IEEE Trans Image Process 9(4):636—650

Sheikh HR, Bovik AC (2006) Image information and visual quality. IEEE Trans Image Process
15(2):430-444

Wang Z, Bovik AC (2002) A universal image quality index. IEEE Signal Process Lett 9(3):81-84

Wallace GK (1992) The JPEG still picture compression standard. IEEE Trans Consum Electron 38(1):18—
34

Skodras A, Christopoulos C, Ebrahimi T (2001) The JPEG 2000 still image compression standard. IEEE
Signal Process Mag 18(5):36-58

Chandler DM, Hemami SS (2007) VSNR: A wavelet-based visual signal-to-noise ratio for natural
images. IEEE Trans Image Process 16(9):2284-2298

Sullivan GJ, Ohm J-R, Han W-J (2012) Wiegand T: Overview of the high efficiency video coding (HEVC)
standard. IEEE Trans Circuits Syst Video Technol 22(12):1649-1668

Egiazarian K, Astola J, Ponomarenko N, Lukin V, Battisti F, Carli M (2006) New full-reference quality
metrics based on HVS. In: Proceedings of the second international workshop on video processing and
quality metrics, vol 4

Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale structural similarity for image quality assessment.
In: The thrity-seventh asilomar conference on signals, systems & computers, 2003, IEEE, vol 2, pp
1398-1402

Mittal A, Soundararajan R, Bovik AC (2013) Making a “completely blind” image quality analyzer. [EEE
Signal Process Lett 20(3):209-212

Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain.
IEEE Trans Image Process 21(12):4695-4708

Said A, Pearlman WA (1996) A new, fast, and efficient image codec based on set partitioning in hierar-
chical trees. IEEE Trans Circ Syst Vid Technol 6(3):243-250

Lee SC, Wang Y (1999) Automatic retinal image quality assessment and enhancement. In: Medical
imaging 1999: Image Processing, vol 3661, pp 1581-1590. International Society for Optics and Photonics
Lalonde M, Gagnon L, Boucher M-C et al (2001) Automatic visual quality assessment in optical fundus
images. In: Proceedings of vision interface, Ottawa, vol 32, pp 259-264

Planitz BM, Maeder AJ (2005) A study of block-based medical image watermarking using a perceptual
similarity metric. In: Digital image computing: techniques and applications

Liebgott A, Kiistner T, Gatidis S, Schick F, Yang B (2016) Active learning for magnetic resonance image
quality assessment. In: 2016 IEEE International conference on acoustics, speech and signal processing
(ICASSP), pp 922-926

Chow LS, Rajagopal H (2017) Modified-BRISQUE as no reference image quality assessment for struc-
tural MR images. Magn Reson Imaging 43:74-87

Osadebey M, Pedersen M, Arnold D, Wendel-Mitoraj K et al (2017) Bayesian framework inspired
no-reference region-of-interest quality measure for brain MRI images. Journal of Medical Imaging
4(2):025504

@ Springer



Multimedia Tools and Applications

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

Obuchowicz R, Oszust M, Bielecka M, Bielecki A, Piérkowski A (2020) Magnetic resonance image
quality assessment by using non-maximum suppression and entropy analysis. Entropy 22(2):220
Chabert S, Castro JS, Muifioz L, Cox P, Riveros R, Vielma J, Huerta G, Querales M, Saavedra C, Veloz
A et al (2021) Image quality assessment to emulate experts’ perception in lumbar MRI using machine
learning. Appl Sci 11(14):6616

Esses SJ, Lu X, Zhao T, Shanbhogue K, Dane B, Bruno M, Chandarana H (2018) Automated image
quality evaluation of T2-weighted liver MRI utilizing deep learning architecture. ] Magn Reson Imaging
47(3):723-728

Sujit SJ, Coronado I, Kamali A, Narayana PA, Gabr RE (2019) Automated image quality evaluation of
structural brain mri using an ensemble of deep learning networks. J Magn Reson Imaging 50(4):1260—
1267

MaJJ, Nakarmi U, Kin CYS, Sandino CM, Cheng JY, Syed AB, Wei P, Pauly JM, Vasanawala SS (2020)
Diagnostic image quality assessment and classification in medical imaging: opportunities and challenges.
In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), IEEE, pp 337-340
Kohler T, Budai A, Kraus MF, Odstr¢ilik J, Michelson G, Hornegger J (2013) Automatic no-reference
quality assessment for retinal fundus images using vessel segmentation. In: Proceedings of the 26th
IEEE international symposium on computer-based medical systems, IEEE, pp 95-100

Wang S, Jin K, Lu H, Cheng C, Ye J, Qian D (2015) Human visual system-based fundus image quality
assessment of portable fundus camera photographs. IEEE Trans Med Imaging 35(4):1046-1055
Remeseiro B, Mendonga AM, Campilho A (2017) Objective quality assessment of retinal images based
on texture features. In: 2017 International Joint Conference on Neural Networks (IJCNN), IEEE, pp
45204527

Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdisciplinary Reviews: Computa-
tional Statistics 2(4):433-459

Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst
Technol 2(3):1-27

Wang Z, Sheikh HR, Bovik AC (2002) No-reference perceptual quality assessment of JPEG compressed
images. In: Proc of the international conference on image processing

Hadjidemetriou E, Grossberg MD, Nayar SK (2004) Multiresolution histograms and their use for recog-
nition. IEEE Trans Pattern Anal Mach Intell 26(7):831-847

Imagenet classification with deep convolutional neural networks (2012) Krizhevsky A, Sutskever I,
Hinton G.E. Adv Neural Inf Process Syst 25:1097-1105

Di Martino A, Yan C-G, Li Q, Denio E, Castellanos FX, Alaerts K, Anderson JS, Assaf M, Bookheimer
SY, Dapretto M et al (2014) The autism brain imaging data exchange: towards a large-scale evaluation
of the intrinsic brain architecture in autism. Mol Psychiatry 19(6):659-667

Lublin FD, Cofield SS, Cutter GR, Conwit R, Narayana PA, Nelson F, Salter AR, Gustafson T, Wolinsky
JS, Investigators C (2013) Randomized study combining interferon and glatiramer acetate in multiple
sclerosis. Ann Neurol 73(3):327-340

Zhu X, Milanfar P (2010) Automatic parameter selection for denoising algorithms using a no-reference
measure of image content. IEEE Trans Image Process 19(12):3116-3132

Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans
Syst Man Cybern 6:610-621

Coyner AS, Swan R, Campbell JP, Ostmo S, Brown JM, Kalpathy-Cramer J, Kim SJ, Jonas KE, Chan
RP, Chiang MF et al (2019) Automated fundus image quality assessment in retinopathy of prematurity
using deep convolutional neural networks. Ophthalmology Retina 3(5):444-450

Raj A, Shah NA, Tiwari AK, Martini MG (2020) Multivariate regression-based convolutional neural
network model for fundus image quality assessment. IEEE Access 8:57810-57821

Sevik U, Kose C, Berber T, Erdol H (2014) Identification of suitable fundus images using automated
quality assessment methods. J Biomed Opt 19(4):046006

Fu H, Wang B, Shen J, Cui S, Xu Y, Liu J, Shao L (2019) Evaluation of retinal image quality assess-
ment networks in different color-spaces. In: International conference on medical image computing and
computer-assisted intervention, Springer, pp 48-56

Shen Y, Sheng B, Fang R, Li H, Dai L, Stolte S, Qin J, Jia W, Shen D (2020) Domain-invariant inter-
pretable fundus image quality assessment. Med Image Anal 61:101654

Tzeng E, Hoffman J, Saenko K, Darrell T (2017) Adversarial Discriminative Domain Adaptation. In:
2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 2962-2971
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014)
Generative adversarial nets. Advances in Neural Information Processing Systems 27

@ Springer



Multimedia Tools and Applications

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

Abramovich O, Pizem H, Van Eijgen J, Oren I, Melamed J, Stalmans I, Blumenthal EZ, Behar JA
(2023) FundusQ-Net: a regression quality assessment deep learning algorithm for fundus images quality
grading. Comput Methods Programs Biomed 239:107522

Niwas SI, Jakhetiya V, Lin W, Kwoh CK, Sng CC, Aquino MC, Victor K, Chew PTK (2016) Complex
wavelet based quality assessment for AS-OCT images with application to Angle Closure Glaucoma
diagnosis. Comput Methods Programs Biomed 130:13-21

Khan ZA, Beghdadi A, Kaaniche M, Cheikh FA (2020) Residual networks based distortion classification
and ranking for laparoscopic image quality assessment. In: 2020 IEEE International conference on image
processing (ICIP), IEEE, pp 176-180

Ali S, Zhou F, Bailey A, Braden B, East JE, Lu X, Rittscher J (2021) A deep learning framework for
quality assessment and restoration in video endoscopy. Med Image Anal 68:101900

Abdi AH, Luong C, Tsang T, Allan G, Nouranian S, Jue J, Hawley D, Fleming S, Gin K, Swift J
et al (2017) Automatic quality assessment of echocardiograms using convolutional neural networks:
feasibility on the apical four-chamber view. IEEE Trans Med Imaging 36(6):1221-1230
Baldeon-Calisto M, Rivera-Velastegui F, Lai-Yuen SK, Riofrio D, Pérez-Pérez N, Benitez D, Flores-
Moyano R (2024) DistillQA: Distilling vision transformers for no-reference perceptual CT image quality
assessment. Comput Biol Med p 108670

Tang L, Tian C, Qian J, Li L (2018) No reference quality evaluation of medical image fusion. Int J
Imaging Syst Technol 28(4):267-273

Tang L, Tian C, Li L, Hu B, Yu W, Xu K (2020) Perceptual quality assessment for multimodal medical
image fusion. Signal Process Image Commun 85:115852

Outtas M, Zhang L, Deforges O, Hammidouche W, Serir A, Cavaro-Menard C (2016) A study on the
usability of opinion-unaware no-reference natural image quality metrics in the context of medical images.
In: 2016 International symposium on signal, image, video and communications (ISIVC), pp 308-313
Khan ZA, Beghdadi A, Cheikh FA, Kaaniche M, Pelanis E, Palomar R, Fretland AA, Edwin B, Elle OJ
(2020) Towards a video quality assessment based framework for enhancement of laparoscopic videos.
In: Medical imaging 2020: image perception, observer performance, and technology assessment, vol
11316, pp 113160. International society for optics and photonics

Liu X, Van De Weijer J, Bagdanov AD (2017) RankIQA: Learning from rankings for no-reference
image quality assessment. In: Proceedings of the IEEE international conference on computer vision, pp
1040-1049

Lee W, Wagner F, Maier A, Wang A, Baek J, Hsieh SS, Choi J-H (2023). Low-dose Computed Tomog-
raphy Perceptual Image Quality Assessment Grand Challenge Dataset (MICCAI)

Saha A, Wu QMIJ (2015) Utilizing image scales towards totally training free blind image quality assess-
ment. IEEE Trans Image Process 24(6):1879-1892

Zhang L, Cavaro-Ménard C, Le Callet P (2012) Key issues and specificities for the objective medical
image quality assessment. In: Sixth International Workshop on Video Processing and Quality Metrics
for Consumer Electronics (VPQM), pp 1-6

Eck BL, Fahmi R, Brown KM, Zabic S, Raihani N, Miao J, Wilson DL (2015) Computational and human
observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction. Medical
Physics 42(10):6098-6111

Brankov JG (2013) Evaluation of the channelized hotelling observer with an internal-noise model in a
train-test paradigm for cardiac spect defect detection. Phys Med Biol 58(20):7159

Racine D, Ba AH, OttJG, Bochud FO, Verdun FR (2016) Objective assessment of low contrast detectabil-
ity in computed tomography with Channelized Hotelling Observer. Physica Medica 32(1):76-83
Richard S, Siewerdsen JH (2008) Comparison of model and human observer performance for detection
and discrimination tasks using dual-energy x-ray images. Med Phys 35(11):5043-5053

Li K, Zhou W, Li H, Anastasio MA (2021) Assessing the impact of deep neural network-based image
denoising on binary signal detection tasks. IEEE Trans Med Imaging 40(9):2295-2305

Barrett HH, Yao J, Rolland JP, Myers KJ (1993) Model observers for assessment of image quality. Proc
Natl Acad Sci 90(21):9758-9765

Cormack LK (2005) Computational models of early human vision. In: BOVIK A (ed) Handbook of Image
and Video Processing (2nd edn), Second edition edn. Communications, Networking and Multimedia,
Academic Press, Burlington, p 325

Kopp FK, Catalano M, Pfeiffer D, Fingerle AA, Rummeny EJ, Noél PB (2018) CNN as model observer in
a liver lesion detection task for X-ray computed tomography: a phantom study. Med Phys 45(10):4439—
4447

Zhou W, LiH, Anastasio MA (2019) Approximating the Ideal Observer and Hotelling Observer for binary
signal detection tasks by use of supervised learning methods. IEEE Trans Med Imaging 38(10):2456—
2468

@ Springer



Multimedia Tools and Applications

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

Alnowami M, Mills G, Awis M, Elangovanr P, Patel M, Halling-Brown M, Young K, Dance DR, Wells
K (2018) A deep learning model observer for use in alterative forced choice virtual clinical trials. In:
Medical imaging 2018: image perception, observer performance, and technology assessment, vol 10577,
p 105770. International society for optics and photonics

Wu L, Cheng J-Z, Li S, Lei B, Wang T, Ni D (2017) FUIQA: Fetal ultrasound image quality assessment
with deep convolutional networks. IEEE Trans Cybern 47(5):1336—1349

Zhou W, Li H, Anastasio MA (2020) Approximating the Ideal Observer for joint signal detection and
localization tasks by use of supervised learning methods. IEEE Trans Med Imaging 39(12):3992-4000
Lorente I, Abbey CK, Brankov JG (2020) Deep learning based model observer by U-Net. In: Medical
imaging 2020: image perception, observer performance, and technology assessment, vol 11316, pp
113160. International society for optics and photonics

Welikala R, Fraz M, Foster P, Whincup P, Rudnicka AR, Owen CG, Strachan D, Barman SA et al (2016)
Automated retinal image quality assessment on the UK Biobank dataset for epidemiological studies.
Comput Biol Med 71:67-76

Rodrigues R, Pinheiro AM (2019) A quality of recognition case study: texture-based segmentation and
MRI quality assessment. In: 2019 27th European signal processing conference

Alais R, Dokladal P, Erginay A, Figliuzzi B, Decenciére E (2020) Fast macula detection and application
to retinal image quality assessment. Biomed Signal Process Control 55:101567

Kupinski MA, Hoppin JW, Clarkson E, Barrett HH (2003) Ideal-observer computation in medical imag-
ing with use of Markov-chain Monte Carlo techniques. JOSA A 20(3):430-438

Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmen-
tation. In: International conference on medical image computing and computer-assisted intervention,
Springer, pp 234-241

Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M
et al (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex
diseases of middle and old age. PLoS Med 12(3):1001779

Fraz MM, Welikala R, Rudnicka AR, Owen CG, Strachan D, Barman SA (2015) QUARTZ: quantitative
Analysis of Retinal Vessel Topology and size—an automated system for quantification of retinal vessels
morphology. Expert Syst Appl 42(20):7221-7234

Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: International conference
on machine learning, vol 96, pp 148-156

Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Computer vision
and pattern recognition, 2005. CVPR 2005. IEEE Computer Society Conference On, IEEE, vol 1, pp
886-893

Agaian S, Almuntashri A (2009) Noise-resilient edge detection algorithm for brain MRI images. In:
Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of
the IEEE, IEEE, pp 3689-3692

Decenciere E, Cazuguel G, Zhang X, Thibault G, Klein J-C, Meyer F, Marcotegui B, Quellec G, Lamard
M, Danno R et al (2013) TeleOphta: machine learning and image processing methods for teleophthal-
mology. IRBM 34(2):196-203

Farnell DJ, Hatfield F, Knox P, Reakes M, Spencer S, Parry D, Harding SP (2008) Enhancement of
blood vessels in digital fundus photographs via the application of multiscale line operators. J Franklin
Inst 345(7):748-765

Suad J, Jbara W (2013) Subjective quality assessment of new medical image database. Int ] Comput Eng
Technol 4:155-164

Outtas M, Zhang L, Deforges O, Serir A, Hamidouche W (2018) Subjective and objective evaluations
of feature selected multi output filter for speckle reduction on ultrasound images. Phys Med Biol 63(18)
Willemink M, Koszek W, Hardell C, Wu J, Fleischmann D, Harvey H, Folio L, Summers R, Rubin D,
Lungren M (2020) Preparing medical imaging data for machine learning. Radiology 295(1)

Li Y, Ercisli S (2023) Explainable human-in-the-loop healthcare image information quality assessment
and selection. CAAI Trans Intell Technol

Alexander RG, Waite S, Macknik SL, Martinez-Conde S (2020) What do radiologists look for? Advances
and limitations of perceptual learning in radiologic search. J Vis 20(10):17

Oh G, Lee JE, Ye JC (2021) Unpaired MR motion artifact deep learning using outlier-rejecting bootstrap
aggregation. IEEE Trans Med Imaging 40(11):3125-3139

Yang J, Faraji M, Basu A (2019) Robust segmentation of arterial walls in intravascular ultrasound images
using Dual Path U-Net. Ultrasonics 96:24-33

Oktaviana A, Pawiro S, Siswatining T, Soejoko D (2019) Preliminary study of ring artifact detection in
SPECT imaging using Jaszczak phantom. In: Journal of physics: conference series, IOP Publishing, vol
1248, pp 012030

@ Springer



Multimedia Tools and Applications

126.

127.

128.

129.

130.

131.

132.

133.

134.

136.

137.

138.

139.

Hu R, Yang R, Liu Y, Li X (2021) Simulation and mitigation of the wrap-around artifact in the MRI
image. Front Comput Neurosci 15:89

Makhlouf A, Maayah M, Abughanam N, Catal C (2023) The use of generative adversarial networks in
medical image augmentation. Neural Comput Appl 35(34):24055-24068

Kalayah MM, Marin T, Brankov JG (2013) Generalization evaluation of machine learning numerical
observers for image quality assessment. IEEE Trans Nucl Sci 60(3):1609-1618

Martini MG, Hewage CT, Nasralla MM, Smith R, Jourdan I, Rockall T (2013) 3D robotic tele-surgery
and training over next generation wireless networks. In: 2013 35th Annual international conference of
the IEEE engineering in medicine and biology society (EMBC), IEEE, pp 6244-6247

Nagoor OH, Whittle J, Deng J, Mora B, Jones MW (2020) Lossless compression For volumetric medical
images using deep neural network with local sampling. In: 2020 IEEE international conference on image
processing (ICIP), IEEE, pp 2815-2819

Kara PA, Kovacs PT, Vagharshakyan S, Martini MG, Imre S, Barsi A, Lackner K, Balogh T (2017)
Perceptual quality of reconstructed medical images on projection-based light field displays. eHealth
360°. Springer, Cham, pp 476483

Han Y, Yuan Z, Muntean G-M (2016) An innovative no-reference metric for real-time 3D stereoscopic
video quality assessment. IEEE Trans Broadcast 62(3):654-663

Hewage CT, Martini MG (2013) Quality of experience for 3D video streaming. IEEE Commun Mag
51(5):L101-107

Hewage CT, Martini MG (2011) Reduced-reference quality assessment for 3D video compression and
transmission. IEEE Trans Consum Electron 57(3):1185-1193

. Battisti F, Bosc E, Carli M, Le Callet P, Perugia S (2015) Objective image quality assessment of 3D

synthesized views. Signal Process Image Commun 30:78-88

Ak A, Le Callet P (2019) Investigating epipolar plane image representations for objective quality eval-
uation of light field images. In: European workshop on visual information processing, pp 135-139
Tamboli RR, Kara PA, Cserkaszky A, Barsi A, Martini MG, Appina B, Channappayya SS, Jana S (2018)
3D objective quality assessment of light field video frames. In: 3DTV-conference: the true vision-capture,
transmission and display of 3D video

Tamboli RR, Cserkaszky A, Kara PA, Barsi A, Martini MG (2018) Objective quality evaluation of an
angularly-continuous light-field format. In: International conference on 3D immersion

Viola I, Refdbek M, Bruylants T, Schelkens P, Pereira F, Ebrahimi T (2016) Objective and subjective
evaluation of light field image compression algorithms. In: Picture coding symposium

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	Objective quality assessment of medical images  and videos: review and challenges
	Abstract
	1 Introduction
	2 Overview of image and video quality assessment
	3 Visual quality-based methods
	3.1 Full-reference approaches
	3.1.1 Magnetic resonance imaging
	3.1.2 Computed tomography
	3.1.3 Ultrasonography
	3.1.4 Endoscopic / laparoscopic videos
	3.1.5 Multiple imaging modalities

	3.2 Reduced-reference approaches
	3.3 No-reference approaches
	3.3.1 Magnetic resonance imaging
	3.3.2 Retinal fundus images / ophthalmology images
	3.3.3 Endoscopic / laparoscopic videos
	3.3.4 Ultrasonography
	3.3.5 Computed tomography
	3.3.6 Fused images
	3.3.7 Multiple imaging modalities


	4 Task-based methods
	4.1 Detection and classification tasks
	4.2 Localization tasks
	4.3 Segmentation tasks

	5 Discussion and future work
	6 Conclusion
	Acknowledgements
	References


