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Florian Gaurier1, Cyrille Pierre 1, Johann Laconte 1 and Roland Lenain 1

Abstract—The significant impact of conventional agriculture on
climate change is likely to be reduced through more sustainable
practices, such as agroecology. These emerging practices require
to adapt the machines used to perform agricultural tasks. Robotics
then arises as a promising solution to alleviate these constraints
by carrying autonomous work. These machines require precise
guidance in the highly variable agricultural environments. It is
achieved by path tracking algorithms using the Global Navigation
Satellite System (GNSS), currently the standard in the industry.
However, GNSS-based autonomous navigation is subject to signal-
loss and does not provide plant-referenced control for the vehicles.
Researchers have developed new vision-based navigation strategies
to ensure precise and adaptive tracking of crop rows. The
sensitivity to environmental conditions (illumination, rain, dust) of
cameras has motivated the development of lidar-based navigation
systems. This paper presents an adaptation of a path detection
algorithm, from 2D lidar tilted with the ground to 3D sensors.
The impact on navigation of the previous and new algorithms
are compared with a GNSS path tracking algorithm over the
recorded RTK-GNSS path associated with a longitudinal strip
cropping configuration of beans and bare soil. The performances
are compared in regards of the mentioned algorithms interfaced
with different sensors on the same robot with the same generic
control law.

Index Terms—Agricultural robotics, Autonomous navigation,
3D pattern-matching, structure detection, path detection algorithm.

I. INTRODUCTION

The reduction of environmental impact has become a
critical issue for modern society as pollution and the use
of chemicals in human activities are widely recognized as
major contributors to climate change. Conventional agricultural
practices significantly contribute to this issue, necessitating
substantial transformations in food production systems. While
certain shifts, such as Organic Agriculture and Precision
Farming, have already been implemented, more comprehensive
changes in agricultural practices are currently being explored
under agroecological principles. These principles emphasize
the integration of diverse crop types and species to combat
diseases and promote the growth of targeted crops. Such an
approach requires enhanced precision in agricultural operations,
along with frequent, differentiated interventions on crops,
thereby increasing the demand for human resources, already
insufficient. The large-scale implementation of agroecological
principles requires the development of innovative tools capable
of autonomous operation.

Agricultural robotics presents itself as a promising solution
for facilitating these emerging agricultural practices [1]. To

1All authors are with Université Clermont Auvergne, INRAE, UR TSCF,
63000 Clermont–Ferrand, France. firstname.lastname@inrae.fr

Fig. 1: POM4x4 of Sabi Agri manufacturer, here configured
with a 2D lidar at the front

be effective, such robots must demonstrate a high level
of precision in their interactions with crops under varying
conditions. Given the increasing complexity of fields due to
agroecology practices, heterogeneity of field configurations
(e.g., market gardening, vineyards, arable fields), crop types,
weather conditions, and the different developments stages of
plants, it becomes crucial for robots to accurately navigate
with respect to crop rows. Currently, GNSS based navigation
systems are the standard, but they rely on continuous, reliable
GNSS signal with RTK support. This can be problematic due
to limited satellite coverage in the most remote regions of the
planet or obstructions like trees or buildings [2].

These limitations have lead the research to provide alternative
navigation solutions based on visual servoing [3], providing
localization with respect to the crops but requiring reliability
and precision in navigation. Many efforts have been conducted
in the beginning of the century in cameras-based navigation
for agricultural robots as these sensors provide rich color
information used to discriminate ground from crop row [4].
Benefiting from the advances in artificial intelligence, recent
developments have enabled the discrimination between crops
and weeds [5]. Nevertheless, cameras are highly sensitive
to the illumination conditions, to the point that some robots
are equipped with dark chambers controlling environmental
illumination to detect the crops efficiently. This principal
limitation along with the accumulation of dust on the optics
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Fig. 2: Global navigation strategy. Localization and control will remain the same for the evaluated path detection algorithms
(blue)

or perturbations under the rain has motivated recent works on
lidars for autonomous navigation in fields [6]. With only lidar
measurements, the robot is localized with respect to the crop
rows, ensuring enough precision to navigate in various fields
such as vineyards [7], market gardening [8] or arable crops
[9].

In a previous work, two navigation strategies based on a 2D
lidar were proposed [10]. In one of the proposed configurations,
an inclined lidar was used to perform structure-from-motion 3D
mapping, navigation and spraying operation. The navigation
stack consists of a generic path tracking control law using
the lateral and angular deviations of the robot with respect to
the path identified by the detection algorithm. This former is
composed of a pattern matching algorithm to find the structure-
to-follow in each lidar scan, succeeded by a structure-from-
motion algorithm to form the path. This navigation strategy
involves a blind distance during initialization to let the structure-
from-motion algorithm construct the trajectory. Moreover, the
lidar inclination is at the cost of a reduced anticipation range,
limiting the capabilities of the robot to adapt to curvature,
absence of crops or unexpected events.

These two key limitations have prompted the upgrade of
this navigation strategy to 3D sensors, presented in this paper.
It allows solving both issues by using the vertical field of
view to initialize and anticipate the paths to detect. The
impact of the detection path algorithm and sensor modalities
on navigation in agricultural robotics, especially when using
3D information, has not yet been evaluated. To address
this, we propose an experimental framework to compare the
efficiency of the navigation strategies in terms of precision by
comparing the state-of-the-art GNSS navigation, the previously
developed pattern matching strategy with 2D lidar and the
pattern matching strategy using multiple 3D sensors.

II. GLOBAL AUTONOMOUS NAVIGATION STRATEGY

In this paper, the pattern-matching path detection algorithm
is adapted to 3D sensors to overcome the limited anticipation
range of 2D sensors. As the performances of both path detection
algorithms have not yet been compared to the usual GNSS path

tracking, the impact of the path detection algorithm over control
is to be assessed. Therefore, both control and localization have
to remain the same across each evaluated detection mode. The
overall pipeline used for the navigation system is presented in
fig. 2.

The generic control law is based on an extended kinematic
model of the robot motion that is proposed in [5]. The
exact linearization properties of such representation enables
to compute a mathematical expression for the front steering
angle to allow the convergence of the tracking error to zero,
whatever the robot speed. In this paper the parameters has been
set to ensure the same settling distance of 8m in all the tested
cases. This generic control law uses the lateral and angular
deviations as inputs, provided by every proposed path detection
algorithms regardless of the sensor used (GNSS, 2D lidar, 3D
cameras). A Kalman filter is used to fuse IMU, GNSS and
odometry measurements, providing the filtered odometry and
position of the robot used for control and path detection. It
should be noted that while GNSS is not essential, it is used in
this paper to eliminate bias introduced by different localization
algorithms.

III. REMINDER ON PATTERN MATCHING PATH DETECTION
ALGORITHM

Initially authored in [8], the path detection algorithm uses
a lidar positioned at the front of the robot and inclined with
the ground (cf. fig. 1) to detect the previous field operation
wheelprints, small plants or vines. The algorithm is adapted
for this paper and performs four main steps:

Preprocessing (a) converts the measurements of the 2D
lidar from the sensor to the robot frame with (x, y, z) being
respectively the front, left and up axes. The horizontal field
of view can be limited to reduce the computation load of the
next step.

Detection (b) computes the convolution values r(k) at offset
k to find, inside the preprocessed lidar Z-axis measurements
grouped in a vector Z of size n and median z̄, the best matching
positions of a pattern vector M of size n initialized to zero,
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Fig. 3: Lidar Z-axis signal acquired in proposed experimental
setup (top) and associated convolution score (bottom) showing
the highest points in detected interval and associated convolu-
tion points (red points)

corresponding to the crop’s shape and modeled by a squared-
shaped signal with p values set to height (in meters). The
convolution expression used is:

r(k) =
1

∥M∥2
n∑

j=1

mj (zj+k − z̄) (1)

For each local convolution maxima rimax above a user-defined
threshold, an interval I is constructed. It corresponds to a bump
of height b, such that I = {j ∈ [0, 2n+ 1] | rmax − r(j) ≤ b}.
Figure 3 (top) shows a lidar scan disturbed by plant foliage, as
laser beams pass through openings between leaves and capture
points from the ground, in the row extending from index 65
to 100, at index 80. The bottom figure shows the associated
convolution values to the detected points. The detected point Di

associated to the convolution maxima rimax is then the highest
point inside this interval I to ensure a ground point is not
selected, such as index 80.

The selection stage (c) is required to identify inside the
detected points Di, the most representative of the crop-row.
This work uses the two-rows detection mode adapted from [9].
For clarity, we will only express the conditions to find the most
representative point of the left row, as the same conditions apply
to the right one. The most representative point is the closest
candidate point Di meeting the two conditions illustrated in
fig. 4.

D3

dmR

dL dMR

yRD1
yLD1

Left row
Right row

D2

D1

Point selected
Point not selected

Left row criteria
Right row criteria

Fig. 4: Selection step of the pattern-matching algorithm over
the detected points with user-defined criterias

The first ensures the signed lateral deviation to the left row
yLDi

, i.e. the lateral component of point Di expressed in the
Frenet frame of left row, to remain in a maximal range dL,
representing the maximal admitted thickness of the row. The
second ties the rows together by setting the signed lateral
deviation to the right row yRDi

of point Di to remain in the
range defined by a minimal distance dmR and maximal distance
dMR . The most representative point of left row must then respect:

|yLDi
| ≤ dL

dmR ≤ |yRDi
| ≤ dMR

(2)

In real case scenario, scaling factors of the inter-row distance
are used for the conditioning criteria dL, dmR and dMR . During
initialization, rows are not available yet to compute the lateral
deviations. Then, user-defined a priori lateral positions of the
rows are used. It supposes that the robot is globally aligned
with the rows. This ensures that the selection stage remains
accurate by searching points at a priori known positions. The
set of points composing the row is expanded whenever a
representative point is found.

The trajectory construction (d) is done by updating the
position of the selected points composing the rows with respect
to the robot’s motion, obtained by the localization algorithm.
The points previously selected and close to the robot are filtered
to approximate the row by a linear regression in the form:

yDi = akxDi + bk (3)

Such a regression can be computed if the number of points
are sufficient and covering a significant distance. It then results
in a blind distance at the initialization. The coefficients of the
regression are used to express the lateral yk and angular θ̃k
deviations between the robot’s pose (xr, yr, θr) and the row
k ∈ {L,R} as follows:

yk =
akxr − yr + bk√

(a2k + 1)

θ̃k = θr − arctan(ak)

(4)

These equations expressed in the robot frame become:
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Fig. 5: (left) RTK GNSS antenna position when recording
crops positions – (right) recorded RTK GNSS paths

yk =
bk − yr√
a2k + 1

θ̃k = − arctan(ak)

(5)

The regression is valid as long as θ̃ ̸= π
2 , which is not

frequently encountered as the robot is controlled to stay aligned
with the structure. Finally, the expressions of lateral and angular
deviations of the robot with respect to the left and right rows
are combined as inputs for the control law (e) as follows:

y =
yL + yR

2

θ̃ =
θ̃L + θ̃R

2

(6)

The detection path algorithm uses a convolution score to find
and construct the path associated with the crop rows. However,
errors during selection (c) can lead to regression inaccuracies
during trajectory construction (d), which worsens the row
estimation in a feedback loop, making the initialization phase
a critical step. Moreover, the use of 2D lidars reduces the
anticipation range of the robot and requires to set the optimal
inclination angle with respect to anticipation, safety and
navigation capabilities.

IV. ADAPTATION TO 3D SENSORS

The vertical field of view of 3D sensors in such detection path
algorithm enables to reduce the blind distance and improve the
precision of the control while enabling safety components. The
preprocessing (a), selection (c) and trajectory construction
(d) steps remain the same.

The depth data obtained from 3D sensors can be organized in
a matrix whose indexes are associated with the cartesian product
between the elevation and azimut angles of the sensor. A vector
of measurements associated to a fixed elevation angle, named
layer, can be formed from this depth matrix. The adaptation
of the pattern matching algorithm to 3D sensors is to apply
the detection (b) to each layer.

An adaptation of the convolution score is proposed to speed
up the computation process as many convolution coefficients
result in zero-values due to the n− p zeros in model vector
M . This adaptation reduces the pattern vector M of size n,

Fig. 6: Bean field with sparse bean crops, low weeding (up-left
and bottom) and bare soil area (top-right)

to a vector Mp of size p, the model width. By computing
the matrix P = ZcM

T
p with Zc = Z − Z̄ and Z̄ the median

of Z, the convolution coefficient r(k) is the sum over the
kth diagonal of matrix P at the offset k ∈ [−n−p

2 , n+p
2 ]. Let

j = max(1, p−k+1), q = min(p, p+n−k), eq. (1) becomes:

r(k) =
1

∥M∥2
q∑

i=j

mi (zi+k−p − z̄) (7)

With this new size p of model, the complexity to compute
the convolution changes from O(2n2) to less than O(p2+ pn).

V. EVALUATION STRATEGY AND EXPERIMENTAL SETUP

The presented path detection algorithms are compared using
multiple sensing modalities showed in table I and selected with
respect to price, quality and technology. They are integrated in
the navigation pipeline presented in Fig.1 to show the impact
of sensor and path detection algorithm on navigation. The
GNSS path following is settled as reference and uses a path
matching algorithm, replacing the path detection algorithm in
fig. 2. It computes the lateral and angular deviations, inputs
of the control law, by matching the position of the robot with
respect to the surveyed path using an RTK-GNSS antenna
placed at the base of crops (fig. 5).

Sensor name Sensor type Path detection algo
Septentrio AsteRx SB3 GNSS GNSS Path Matching1

Sick LMS151 2D lidar 2D Pattern Matching
Stereolabs Zed 2i 3D stereo-camera 3D Pattern Matching

Intel Realsense D455 3D stereo-camera 3D Pattern Matching
Sick Visionary T-mini 3D stereo-camera 3D Pattern Matching
1Reference.

TABLE I: Sensing modalities for the comparative study
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Fig. 7: Lateral deviation (left) and angular deviation (right) of
the robot with respect to the surveyed path along the curvilinear
abscissa. Deviations depicted are obtained by the path matching
algorithm over the surveyed crops. Only the GNSS deviations
are used as inputs of the control law.

Remind that each of these sensing modalities are interfaced
with the same control law on the same robot; therefore, the
bias due to control and mechanical defects remain the same
across the experiments. The real deviations with respect to
the surveyed path are recorded as performance metrics of the
navigation.

A laser tracker Leica AT930 and the sensor manufacturer’s
datasheet have been used to calibrate each sensor, mounted on
a structure placed at the front of the robot.
The experiments occurred at Montoldre, Allier, France to track
and follow rows in a longitudinal strip cropping configuration
of beans (20m) and bare soil, i.e. without crops (2m) (fig. 6).

VI. RESULTS

The deviations of the path matching algorithm are the first
performance metrics to be exploited in this section. Figure 7
presents lateral and angular deviations along curvilinear ab-
scissa. The areas with bare soil have been highlighted in red.
As expected, the GNSS path tracking performs best: the robot
remains globally aligned and shows lower deviation even in
the bare soil areas, underlining the absence of adaptation to
the crop rows, due to the use of a surveyed path, not always
available in a real case scenario. The 2D-pattern matching path
detection algorithm presents a maximal lateral deviation of
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Fig. 8: Lateral (left) and angular (right) perception defects. The
perception defects are computed by the difference between the
real deviation obtained via the path matching algorithm with
respect to the surveyed crops, and the perceived deviation sent
to the controller by the path detection algorithms.

11.7 cm after the bare soil area at a curvilinear abscissa of
110m. This may cause crop damages as the robot sees the next
set of crops too late. This overshoot results from a latency in
the control of the robot mainly due to the lack of anticipation
of the 2D lidar. The 3D-pattern matching strategy completely
avoids this overshooting behavior, proving the efficiency of the
developed method.

These lateral and angular deviations with respect to the
surveyed path show the capacities of the path detection
algorithm to accurately feed the control algorithm, giving an
insight on the precision of such navigation pipelines. However,
these deviations are subject to the latency of robots’ actuators
and the control performance. Therefore, the perception defects,
the difference between the deviations with respect to the
surveyed path and the deviations sent to the controller, are
computed in fig. 8.

The lack of anticipation of the 2D pattern matching path
detection algorithm shows a maximal defect of 14.5 cm.
Hopefully, the deviation has decreased before the robot have
reached the command. Perception defects occurs mainly in the
bare soil areas and is easily explained by absence of crops in
these regions. It is confirmed that 3D pattern matching path
detection algorithm performs better, whatever the sensor used.

The path following strategy is confirmed to be the most
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Fig. 9: Violin plots of lateral deviation of the closed loop (left) and perception stage (right) over each sensing modality

precise strategy in the statistical analysis showed in fig. 9. Mean
lateral deviation of GNSS path tracking, is at 0.83 cm with
a standard deviation of 1.38 cm. As expected, this reference
performs the best due to the error over path detection minimized
thanks to the surveying of crops. The 3D sensors also perform
differently from each other, with a surprise on the Sick
Visionary T-mini, marketed has an indoor sensor but offering
the best performances of all evaluated sensors. It has to be
underlined that even though the Zed2i and Realsense D455
are performing almost equally with the 2D lidar (Without the
overshoot), their cost put them as good candidates for low-cost
row-tracking sensors.

Figure 9 right once more shows the efficiency of the 3D
pattern matching, reducing the maximal perception defect by
51.26 %. The Realsense D455 presents lower perception defects
than the Sick T-mini with higher lateral deviation. This is
explained by the initialization phase, presenting a bigger settling
distance of the Realsense D455 compared to the Sick T-mini.
The precision of GNSS path tracking is obtained by the precise
surveying of crop-rows. In a real case scenario, this ground truth
is not available nor desired in a usual farming cycle. Moreover,
the survey should remain valid along all the cycle, which is
not guaranteed. These pragmatic considerations reinforce the
use of perception based navigation.

VII. CONCLUSION

Performing safe and precise autonomous ecological work
in agricultural fields requires adaptive navigation algorithms
by improving the robot perception capacities and enabling
localization with respect to the crop-rows. Relying on previous
works in the domain, this paper improved the perception
capacities of the robot by adapting the pattern-matching path
detection algorithm to 3D sensors. This adaptation uses the
vertical field of view of the 3D sensor to find at each elevation
angle, the position of the rows, that forms locally a line from
which the lateral and angular deviations can be computed and
sent to a controller. An experimental framework to evaluate
the navigation performances in an agricultural context have

been proposed. It relies on the exploitation of the lateral
and angular deviations of robot to the ground truth, i.e. the
surveyed positions of crop-rows using RTK-GNSS antenna. The
workload induced to ensure a precise GNSS based path tracking
along with the signal loss issues are not suitable when working
in agricultural fields. In this regard, perception-based navigation
strategies offer suitable tracking performances for agricultural
tasks. The proposed algorithm, in a two-row tracking setup,
is adapted to 3D sensors and overcomes the limitations of its
predecessor, a 2D pattern-matching detection path algorithm.
Mainstream stereo-vision cameras have been tested on the
adapted algorithm and perform as low-cost candidates while
Time of Flight cameras offer lower tracking errors. In future
works, 3D lidar performances will be assessed along with the
impact of misplacement at initialization and the presence of
curvature in the field. The impact of the reference path in
GNSS path tracking is also to be deepened.
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