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Abstract—Environment analysis is a critical part of au-
tonomous vehicle for transport applications and for passenger
safety. The solutions demonstrating the greatest robustness have
been integrating multiple sensors used for redundancy and
refinement purposes. Vision applications have proven to offer
a high degree of flexibility and performance. One particular
instance of this is higlighted in vehicle localisation, which
predominantly relies on GNSS-based systems for positioning
calculation using propagation time measurements. However, this
signal may be degraded through the environment around the
vehicle, worst case being urban canyons leading to Non Line
Of Sight(NLOS) scenarios or multipaths issues due to reflecting
obstacles. Previous work have shown vision-based algorithms can
be used to mitigate these effects. One widely studied approach
relies on the segmentation of an acquired wide-angle image
installed on the roof of the vehicle and oriented toward the sky.

Because the sky processing module is binary, the pipeline
lack any way to express its uncertainty when applying weighting
policies to the detected satellite state, which can be detrimental
to the resulting positioning. In this paper, we propose a novel
way of analysing wide-angle camera images, also known as
fisheye images, dividing the image into patches to output the
corresponding situation of each region of interest. Additionally
we propose a new class to the previous sky versus non-sky
segmentation, designated as mixed class and designed to serve
as a fuzzy answer by the deep learning model to improve
confidence to other scenarios as well as allow for new analysis
policies of satellites signals. The data-driven algorithm is designed
and tested on a publicly available dataset, composed of a large
number of finely labelled images provided by ISAE-SUPAERO
reaching a 94% accuracy.

Index Terms—vision, deep-learning, robust, GNSS

I. INTRODUCTION

The advent of autonomous intelligent transportation has

introduced a number of significant challenges, one of which

is the accurate and safe environment characterisation of the

vehicle. The recent advancements in artificial intelligence and

computer vision have led to the emergence of highly effective

solutions that are paving the way for the practical implemen-

tation of autonomous vehicles. Computer vision specifically
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offer a wide range of applications in order to reach this goal,

as well as possibilities for sensor fusion leading to better, more

robust analysis. For example vehicle localisation, an essential

function for autonomous vehicle, has shown improvement

when hybridised with vision [13]. This localisation heavily

relies on Global Navigation Satellite Systems (GNSS), a

widely used technology in the road sector and in mass market

applications. Originally developed for use in open outdoor

environments where the visibility of satellites can be assumed

to be direct.

Unfortunately, GNSS still suffers from a lack of precision

and reliability in more complex environments of reception,

particularly evident in urban canyons, where GNSS signals

may be significantly attenuated or even completely obstructed.

Given that all land transport environments are susceptible

to masking effects resulting from the presence of vegetation,

bridges, trenches, and other obstructions, it is imperative to

develop tailored solutions that employ supplementary sensors

or barriers to mitigate the local dispersing effects. Figure 1

Fig. 1. LOS/NLOS satellites scenarios from EUSPA (left); an example of a
fisheye image and corresponding sky/non-sky classification map (right).

illustrates the concept of LOS/NLOS scenarios:

• In the event that the signal follows the shortest path from

satellite to receiver, that is to say the direct path, we refer

to this as LOS (Line Of Sight) as illustrated in green;

• If the direct line is obstructed from the vehicle, the

received signal may be reflected from a surface in the



vicinity resulting in delays in the reception. This scenario

is referred to as NLOS (Non Line Of Sight), as illustrated

in red;

• The reception of both direct signals and reflected ones is

known as a multipath scenario, which can result in de-

structive and constructive interference. This last scenario

is not illustrated. in Figure 1.

II. LITERATURE SURVEY

Previous research has proposed the development of a sys-

tem combining GNSS and wide-angle lens cameras oriented

towards the sky. This system would enable the detection of

both LOS and NLOS satellite states through the application of

image processing techniques. Subsequently, the output of the

image processing module is employed to weight measurements

according to their reception state.

In this paper, we adopt an image based LOS/NLOS detec-

tion approach satellite detection task. We provide a concise

overview of these approaches and examine whether the meth-

ods utilise:

• Image segmentation or unsupervised clustering [4, 2, 1,

8, 20, 16, 11, 18];

• Machine learning, big-data or deep-learning [1, 16, 19,

10, 9, 3];

• Specific sensors such as infrared cameras [14, 15];

• Implementation on FPGA architecture [17, 21];

The concept of an image-based NLOS detection originally

introduced by MARAIS ET AL. in [12], is specifically con-

cerned with the characterisation of a sky region segmen-

tation algorithm derived from a fisheye image acquired by

an upward-pointing omnidirectional camera. The objective of

the algorithm is to ascertain whether a satellite is within

direct visibility of the receiver (LOS) or not (NLOS). This

information is used to either exclude or assign a specific

weight to the satellite in the position calculation.

The state of the satellite is determined by the projection

of the satellite position in the image, and combined with the

segmentation map to deduce its class. The segmentation of

the image therefore constitutes a crucial factor influencing the

performance of the localisation process.

Significant research has been conducted on the use of visual

data for the purpose of localisation. ATTIA ET AL. [1] imple-

mented and evaluated a range of supervised and unsupervised

clustering algorithms for the task of sky/non-sky segmentation,

varying the algorithmic hyperparameters to identify optimal

performance. BOKER ET AL. [3] presented a camera-based

NLOS detection system that employed convolutional neural

networks (CNNs) in conjunction with data augmentation and

Conditional Random Field (CRF) for post processing to obtain

an image segmentation mask for LOS satellites identification.

For the purpose of establishing a baseline, a selection of state-

of-the-art algorithms with varying parameters for sky segmen-

tation was implemented: mean shift, K-means clustering, and

HSL colour filtering; Sobel filter and hybrid probability model;

and Sobel filter and flood-fill algorithm.

III. METHODOLOGY

The strategy proposed is in line with previous works pre-

sented in [1, 12], where a fisheye camera oriented toward the

sky is used to acquire images of the hemispheric environment.

The capacity to link each pixel to an elevation and azimuth

angle makes this approach particularly well suited to the task

of satellite state detection.

Figure 4 provides a schematic illustration of the applied

concept, which enhances position accuracy through the com-

bination of GNSS and vision sensors. The process is divided

into four distinct phases. The initial phase involves the input

data for GNSS signal processing and patch extraction from

corresponding frames. This is followed by a second phase

in which the image position of satellites is computed from

the satellites position relative to the vehicle and the fisheye

projection model. The proposed methodology entails the pro-

cessing of the image frame with the objective of generating

a segmentation map using patch-based characterisation. The

combination of both outputs facilitates the identification of

satellites states, which in turn allows for the mitigation of

degrading scenarios. In this paper we focus on the environment

characterization part of the process.

Fig. 2. Satellite projection onto a corresponding sky-view fisheye image.

Figure 2 illustrates an acquired fisheye image in which the

satellites have been repositioned.

The proposed segmentation approach is employed as a smart

trick to facilitate robust identifications of satellite scenarios and

express model uncertainty. There are a few ways a pixel-wise

image segmentation may eventually degrade the performance

of the localisation algorithm. One detrimental aspect arises

from the clearly defined border around the sky region, which

can render the localisation overly sensible to small positioning

errors. In practice, the satellite position used for projection

onto the image is a relative position to the vehicle, and is

characterized by an azimuth and an elevation. This may lead

to a situation where a minor discrepancy in pixel distance can

lead to a significant difference in the confidence given to the

detected satellites. Moreover, a segmentation algorithm will

accumulate most of its errors along the segmented region’s

boundaries, as shown in Figure 3.

It can be concluded from this analysis that a less restrictive

model for environment characterization could improve the

results. Some of the errors introduced by forcing the model



to choose between sky and non-sky regions can be avoided.

A better adapted method would consider the local context of

the pixels and enhance categorisation accuracy. To this end,

our contribution entails dividing the image into patches of a

given size, that are then classified with a deep learning model

to compute the corresponding state. The proposed strategy, we

name patch analysis, presents a number of advantages:

1) The use of patches in place of pixels reduces the

sensitivity of image segmentation;

2) Image cropping (dividing into patches) allows for the

definition of a mixed class comprising pixels from both

sky and non-sky regions, with the latter located on

the borders. In practice, this class is employed by the

model as a fuzzy response and a means of expressing

its uncertainty;

3) Focusing on local information within the image can

tackle some of the distortion issues introduced by the

fisheye camera model;

4) Dividing the information to be treated seprately allows

for fast processing of the image, as it would only be nec-

essary to analyse the local information where satellites

are projected an get closer to real-time performance;

The main goal of the proposed image patch analysis is to

get rid of errors inbetween the regions and express the model’s

uncertainty through labelling them as a mixed prediction.

The system is then no longer constrained to selecting sky

or non-sky categories. This enables the implementation of

alternative weighting strategies in the computation of the

corrected position.

In our classification framework as shown in 4, three classes

are considered (sky, non-sky, mixed). The result is illustrated

using an overlay on the acquired image : red square corre-

sponds to sky, green square corresponds to non-sky and blue

one corresponds to the mixed class.

Our mixed class is defined as any patch that would contain

multiple pixel classes, with none being a majority case above

a given proportion threshold expressed as t ∈ [0.5, 1.0].
Once the meaningful data analysed, we can then consider the

prediction as the state of the satellite to be weighted in the

relocation process of the vehicle.

As for the classification model used, we choose a resnet34

backbone. Lighter architecture could be used to significantly

Fig. 3. Example of segmentation error compared to the ground truth labelled
by an expert : (left) original image; (middle) predicted segmentation; (right)
segmentation error.

Fig. 4. Our proposed patch analysis framework, the image is divided into
patches that are then fed to a CNN for scenario extraction, which can be used
to reconstruct the predicted image

decrease processing time. However, resnet34 is a well-known

architecture easily comparable with previous results and shows

good performance and generalisation. The dimensions of the

patch were selected on the basis of the resolution of the input

image, with the objective of maintaining consistency across

different datasets. For GVTD, a patch of dimensions 30 by

30 pixels was deemed appropriate. This parameter must be

sufficiently large to accommodate the requisite information

while remaining sufficiently small to facilitate more detailed

environmental characterisation.

IV. EXPERIMENTAL RESULTS

Table I presents an overview of the current performance of

some existing algorithms for sky image segmentation tested

on a subset of 200 images of the GNSS/Vision Toulouse

dataset MFI dataset (GVTD) [6], originally used in [7]. The

dataset comprises 4000 key images with a resolution of

1464 × 1464 pixels. The images were captured in a trip in

the city of Toulouse. As illustrated in the first column of

Figure 5 this dataset has been selected to reflect the diverse

challenges encountered in a complex urban environment,

including vegetation, building colour, overexposure, cloud



cover, and the presence of tunnels. A reference classification

has been carried out by experts for quantitative evaluation of

the different algorithms.

Method IoUsky Accuracy

K-means and & HSL filtering 0.57 0.73

Mean-shift [16] 0.86 0.93

Fisher [1] 0.89 0.94

KMlocal [1] 0.80 0.89

ResNet50 [9] 0.93 0.96

TABLE I
SKY CLASSIFICATION RESULTS OBTAINED WITH STATE-OF-THE-ART

ALGORITHMS ON URBAN GVTD DATASET

As shown in Table I, existing methods present good results

for the sky segmentation task, wherein Resnet model obtains

the best performance with a 96% accuracy. For a better

visualization, Figure 5 illustrates the sky classification results

with two different methods: Mean-shift segmentation and

ResNet34 based Deep-Learning approach. Both approaches

introduce some limitations that can be detrimental as discussed

in section III, and constitute the main motivation behind our

approach.

Fig. 5. Four images on GVTD dataset (top) and their sky classification results
obtained with Mean-shift segmentation algorithm (middle); and ResNet50
based Deep-Learning approach (bottom).

Our main experiment looks into validating our contribution

to image segmentation applied to GNSS and vision hybridized

processing for mobile accurate positioning. First, we test our

image patch analysis on the GVTD dataset acquired in urban

environment. The results are given in Figures 6 and 7, as

well as the corresponding normalised confusion matrix to

highlight the overlap and grouping of errors in the fuzzy mixed

class. The matrix displays predicted proportions (lines) versus

ground truth proportions (columns), with correct predictions

laying on the diagonal. This highlights that while sky and

Fig. 6. Normalized confusion matrix for patch analysis applied to GVTD.

non-sky predictions are very accurate, most errors are linked

to the mixed class status, which itself remains a minority

overall predictions. For the sky class, we achieve an IoU of

0.96 compared to 0.93 obtained with ResNet50 Segmentation

(cf. Figure 6 and Tables I and II). Getting rid of the predicted

fuzzy (mixed) class in the model outputs a sky IoU of 0.98.

If we consider the accuracy metric, patch analysis still show

satisfactory results given that we increase the number of

classes.

IoU Recall Precision Accuracy

Mixed 0.68 0.92 0.72

0.94Non-Sky 0.92 0.93 0.99

Sky 0.96 0.98 0.98

TABLE II
CLASSIFICATION RESULTS OBTAINED WITH OUR PATCH ANALYSIS ON

URBAN GVTD DATASET.

However, it is challenging to make a direct comparison

with previous studies due to the lack of an equivalent to

the mixed label in existing state-of-the-art algorithms. Thus,

we make the assumption that the most important part of the

patch classification task is about correctly identifying sky

or non-sky regions, while the mixed class will group the

errors of the algorithm. Results in the normalised confusion

matrix (cf. Figure 6) demonstrate that there is minimal overlap

between the sky and non-sky regions, increasing the model

confidence in the predicted satellite state identification and

could ultimately improve the vehicle positioning. The analysis

of the results indicates that the majority of errors are mostly

concentrated in the mixed class predictions, and highlights the

reduced overlap between sky and non-sky regions predictions.

The model is then able to provide high confidence when

computing the vehicle position with respect to LOS or NLOS

detected scenarios, and apply a specific strategy to satellites

located in mixed areas.

For better visualization, Figure 7 presents sky segmentation

results using overlay (cf. Fig 7 (d)) with our proposed patch

characterization strategy applied to the on-road GVTD dataset

(cf. Figure 7 (c)), and compared to a reference manually cre-

ated by an expert (cf. Figure 7 (b)) considering a wide diversity

of environments (canyons, cloudy, vegetation, overexposed ...),

while maintaining good performances in complex conditions.



(a) (b) (c) (d) (e)

Fig. 7. Sky/non-sky/mixed segmentation results on the urban GVTD dataset (acquired image (a); segmentation reference (b); patch prediction (c); blended
prediction (d); projected satellites (e))

V. GNSS POSITIONING IMPROVEMENTS

To complete the full process, we compute the positioning

of a moving vehicle using the GNSS data provided in GVTD

[6]. The experiment was set up using two methods: the

ordinary least squares GNSS positioning method and our

LOS/NLOS state detection pipeline. The resulting positioning

errors are presented in Figure 8 comparing ordinaery Least-

Squares (OLS), and Weighted Least-Squares (WLS) taking

into account satellite state to descided on their exclusion.

The resulting metrics are presented in Figure III, as well as

the visuals in Figures 9 and 8. These demonstrate that utilising

our novel approach for the detection of NLOS satellites and

their subsequent exclusion from the positioning computation

leads to enhanced positioning outcomes when compared with

those obtained through classical positioning computation. The

table III presents the positioning errors associated with the

NLOS exclusion approach in comparison with the OLS as

well as another NLOS exclusion comparainson using a Fisher

segmentation algorithm, identified from Table I as the best

unsupervised segmentation algorithm. The first row depicts

the performance of MIX detection when it is considered as a

LOS scenario, while the second row depicts the performance

it is considered as NLOS. The results demonstrate that it can

be beneficial to be more conservative with satellite signal

processing and exclude uncertain ones, as they may corrupt

the resulting signal.

This outcome serves to validate the performance of our

analysis pipeline. The Frequencies for detected satellites states

are as follows:

• NLOS satellites : 0.55

• LOS satellties : 0.34

• MIX satellties : 0.09

Fig. 8. 3D Positioning error with Patch based LOS/NLOS detection (blue),
Fisher based LOS/NLOS detection (magenta) and classical positioning (red)

Fig. 9. Altitude estimation of the GVTD trajectory using classic posi-
tioning (red), using patch based LOS/NLOS detection (blue), Fisher based
LOS/NLOS detection (magenta) and the reference trajectory (green)

Mean Max STD RMS

(LOS+MIX)/NLOS WLS 4.56 28.23 2.42 5.17

LOS/(NLOS+MIX) WLS 4.52 28.00 2.42 5.13

Fisher WLS 8.32 28.51 2.34 8.65

OLS 21.90 70.63 4.68 22.39

TABLE III
3D POSITIONING ERRORS COMPARED BETWEEN ORDINARY LEAST

SQUARE AND NLOS EXCLUSION, SHOWING THE DIFFERENCE FOR

CLASSIFYING MIX AS LOS OR NLOS

VI. CONCLUSIONS

Our concept intends to enhance GNSS-based localisation

performance through the use of vision in presence of masking



effects (building, trees, ...) degrading GNSS signal reception.

In particular, NLOS signal detection is a critical part of the

correction algorithm in order to compute an accurate position.

Previous solutions make use of camera and vision fusion

strategy to carry out this detection. Nevertheless we identified

some of their weakness inherent to a strict sky versus non-sky

semantic segmentation.

This paper proposes a novel approach to detecting LOS

versus NLOS satellites using lightweight environmental anal-

ysis. This method enhances the detection model’s confidence

in its predictions. This is achieved through the introduction

of a fuzzy class, as part of our fuzzy patch analysis, which

permits the implementation of specific weighting strategy for

the satellites signals based on their respective states.

However, our approach relies on a relatively straightforward

model which might suffer from ignoring global data due to

the restricted field of view. Interesting improvement would

be to provide a way for the model to access more semantic

information in its inference. One approach to this would

be to use an approach similar to visual Tranformers [5],

integrating the knowledge of mixed class in the architecture.

The arbitrary choice of patch size may as well result in

instability inbetween trainings and performances on different

datasets. Implementing a more adaptive approach to solve this

issue using algorithms such as quadtree is also a promising

solution to be explored.

As mentioned in [12] NLOS detection can then be used in

positioning calculation by ignoring and removing the degraded

or corrupt data. However, it could also be beneficial to use

more advanced weighting policies and make use of other

obstruction types. The proposed state identification is easily

extensible to multiple class where the signal might not need

to be completely removed, for example in the presence of

vegetation, and mitigate it instead. Future work will explore

localisation strategies making use of the novel fuzzy class,

where specific weighting can be applied to the corresponding

signals.

ACKNOWLEDGMENTS

The authors give thanks to ISAE-SUPAERO for providing

their urban GVTD dataset [6] on which part of our experiments

have been carried out.

REFERENCES

[1] D. Attia et al. “Counting of satellites with direct GNSS
signals using Fisheye camera: A comparison of clustering
algorithms”. 2011 14th International IEEE Conference on
Intelligent Transportation Systems (ITSC). Pp. 7–12. 2011.

[2] D. Attia et al. “Image analysis based real time detection of
satellites reception state”. 13th International IEEE Conference
on Intelligent Transportation Systems. Pp. 1651–1656. 2010.

[3] Clarissa Boker et al. “A System for Image-Based Non-Line-
Of-Sight Detection Using Convolutional Neural Networks”.
2019 IEEE Intelligent Transportation Systems Conference
(ITSC). Pp. 535–540. 2019.

[4] Andrea Cohen et al. “Quantification of GNSS signals ac-
curacy: An image segmentation method for estimating the
percentage of sky”. 2009 IEEE International Conference on
Vehicular Electronics and Safety (ICVES). Pp. 35–40. 2009.

[5] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale. 2021.

[6] Florent FERIOL. GNSS/Vision Toulouse dataset MFI 2022.
2022. URL: https://doi.org/10.34849/LP3YVF.

[7] Florent Feriol, Yoko Watanabe, and Damien Vivet. “GNSS-
based environmental context detection for navigation”. 2022
IEEE Intelligent Vehicles Symposium (IV). Pp. 888–894. 2022.

[8] Paul Verlaine Gakne and Mark Petovello. “Assessing image
segmentation algorithms for sky identification in GNSS”.
2015 International Conference on Indoor Positioning and
Indoor Navigation (IPIN). Pp. 1–7. 2015.

[9] Kaiming He et al. Deep Residual Learning for Image Recog-
nition. 2015.

[10] Cecilia La Place, Aisha Urooj Khan, and Ali Borji. Segment-
ing Sky Pixels in Images. 2018.

[11] N. Laungrungthip et al. “Edge-based detection of sky regions
in images for solar exposure prediction”. 2008 23rd Interna-
tional Conference Image and Vision Computing New Zealand.
Pp. 1–6. 2008.

[12] J. Marais, M. Berbineau, and M. Heddebaut. “Land Mobile
GNSS Availability and Multipath Evaluation Tool”. IEEE
Transactions on Vehicular Technology. 54.5. Pp. 1697–1704.
2005.

[13] Juliette Marais et al. “Toward accurate localization in guided
transport: Combining GNSS data and imaging information”.
Transportation Research Part C: Emerging Technologies. 43.
Pp. 188–197. 2014.

[14] J.-i. Meguro et al. “GPS accuracy improvement by satel-
lite selection using omnidirectional infrared camera”. 2008
IEEE/RSJ International Conference on Intelligent Robots and
Systems. Pp. 1804–1810. 2008.

[15] Jun-ichi Meguro et al. “GPS Multipath Mitigation for Urban
Area Using Omnidirectional Infrared Camera”. IEEE Transac-
tions on Intelligent Transportation Systems. 10.1. Pp. 22–30.
2009.

[16] Kerry Nice et al. “Sky pixel detection in outdoor imagery
using an adaptive algorithm and machine learning”. Urban
Climate. 31. P. 100572. 2019.

[17] J.G. Pandey et al. “A Novel Architecture for FPGA Imple-
mentation of Otsu’s Global Automatic Image Thresholding
Algorithm”. 2014 27th International Conference on VLSI
Design and 2014 13th International Conference on Embedded
Systems. Pp. 300–305. 2014.

[18] Aleksandra Pavlovic, Ana Gavrovska, and Natasa Milosavlje-
vic. “The Skyline Image Segmentation using Color and Detail
Clustering”. 2018 14th Symposium on Neural Networks and
Applications (NEUREL). Pp. 1–5. 2018.

[19] Yingchao Song et al. “Sky Detection in Hazy Image”. Sensors.
18.4. P. 1060. 2018.

[20] Taro Suzuki and Nobuaki Kubo. “N-LOS GNSS signal de-
tection using fish-eye camera for vehicle navigation in urban
environments”. 27th International Technical Meeting of the
Satellite Division of the Institute of Navigation, ION GNSS
2014. 3. Pp. 1897–1906. 2014.

[21] Wang Jianlai et al. “Implementation of Otsu’s thresholding
process based on FPGA”. 2009 4th IEEE Conference on
Industrial Electronics and Applications. Pp. 479–483. 2009.


