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Mosquitoes are well-known vectors for a range of pathogens, including Plasmodium
parasites, which cause malaria in reptiles, birds, and mammals [1,2], as well as arboviruses
such as West Nile Virus (WNV) that affect both avian and human populations [3]. Avian
malaria has emerged as a significant global concern due to its profound detrimental ef-
fects on bird biodiversity and the ecological balance [4,5]. Plasmodium relictum, the most
widespread avian malaria parasite, infects over 300 bird species and is ranked among the
top 100 invasive species globally [6,7]. Its impact is particularly devastating in ecologically
sensitive regions such as islands [8]. For example, the introduction of Plasmodium relictum
and its primary vector, Culex quinquefasciatus, to the Hawaiian archipelago caused a se-
vere decline in native bird populations, including the extinction of the Liwi honeycreeper
(Drepanis coccinea) in certain areas [9]. Understanding the factors that influence disease
transmission is crucial, and recent research points to the mosquito microbiota as a pivotal
yet underexplored element [10].

The mosquito microbiota [10], a community of bacteria, fungi, and viruses, interacts
with the mosquito’s immune system and influences feeding behavior and physiology,
impacting pathogen transmission either positively or negatively [11]. This editorial ex-
amines the critical role of the mosquito microbiota in the transmission of vector-borne
diseases, drawing on insights from Garrigós et al. [12] who focus on WNV. By explor-
ing the complex relationships between mosquito microbiota and pathogens like Plas-
modium and WNV, we can gain a valuable understanding of how these microbial com-
munities shape vector competence—the ability of mosquitoes to acquire, maintain, and
transmit pathogens—potentially unlocking innovative approaches to combating diseases
that threaten both biodiversity and public health.

The role of the mosquito microbiota in shaping vector competence has become a focus
of growing interest. Studies have revealed the intricate relationships between gut microbial
communities and pathogen transmission, shedding light on their influence on disease
dynamics [12–15]. Recently, Garrigós et al. [12] provided a comprehensive review on the
role of mosquito microbiota in pathogen transmission, highlighting how bacterial genera
such as Serratia and Enterobacter can enhance the development of WNV in Culex pipiens,
potentially increasing transmission likelihood. While their review focuses on WNV, it offers
valuable insights into potential microbial mechanisms that could similarly affect Plasmodium
development within mosquitoes. Parallel findings in avian malaria research reveal that
the gut microbiota composition correlates with susceptibility and infection intensity in
mosquito vectors [7]. In the context of avian malaria, findings indicate that gut microbiota
composition correlates with mosquito susceptibility and infection intensity. Martinez-de
la Puente [16] showed that microbiota alteration via antibiotics heightened Plasmodium
prevalence in mosquito saliva, emphasizing the microbiota’s role in pathogen development.

Pathogens 2024, 13, 1101. https://doi.org/10.3390/pathogens13121101 https://www.mdpi.com/journal/pathogens

https://doi.org/10.3390/pathogens13121101
https://doi.org/10.3390/pathogens13121101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0002-4714-0305
https://orcid.org/0000-0001-5739-1100
https://orcid.org/0000-0002-8660-730X
https://doi.org/10.3390/pathogens13121101
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens13121101?type=check_update&version=1


Pathogens 2024, 13, 1101 2 of 4

Similarly, Aželytė et al. [17] identified specific microbial taxa in Cx. quinquefasciatus that
directly influence Plasmodium transmission success. These studies illustrate the dual nature
of the microbiota. While some microbial communities support immune defenses, others
facilitate pathogen proliferation, underscoring the complexity of microbiota-mediated
vector competence.

Both biotic and abiotic factors shape the composition and function of the mosquito
microbiota, which ultimately influence vector competence and the dynamics of disease
transmission [18]. Key factors influencing the gut microbiota include breeding site char-
acteristics [19], blood meal types [20], developmental stages [21], and the presence of
pathogens [22]. The microbiota is primarily acquired during the larval stage from the
surrounding aquatic environment, making larval habitats essential for shaping microbiota
diversity. Research by Dickson et al. [20] demonstrated that microbial exposure during
larval development can enhance immune priming and alter feeding behavior in adult
mosquitoes, thereby impacting their ability to transmit pathogens. Additionally, different
mosquito species exhibit considerable microbiota variation. For example, Culex, Aedes, and
Anopheles mosquitoes have distinct microbial communities [23,24].

Despite these variations, certain microbes are consistently found across species and
geographic regions, as noted by Osei-Poku et al. [25], suggesting the presence of a shared
microbial core within mosquito populations. Geographical and environmental factors,
including local climate, urbanization, and habitat structure, further influence microbiota
composition. For instance, Bascuñán et al. [26] found that environmental changes, such as
pollution and land-use transformation, indirectly alter vector competence by shaping the
microbial communities that mosquitoes encounter. Collectively, these findings highlight the
intricate interplay of biological and ecological factors in determining microbiota diversity
and stability, underscoring their critical role in modulating mosquito–pathogen interactions.

Given the pivotal role of the mosquito microbiota in vector competence, manipulating
the microbiota has emerged as a promising strategy to reduce pathogen transmission.
Laboratory studies have demonstrated the feasibility of microbiota interventions within
mosquito hosts. For instance, Aželytė et al. [17] showed that microbiota modification
through a bird-administered anti-microbiota vaccine could affect Plasmodium development
within mosquitoes, suggesting the potential for microbiota-based strategies to indirectly
disrupt disease transmission. Peixoto et al. [27] emphasized the broader significance of
leveraging microbial solutions, advocating for their integration into public health and
ecological management strategies. Despite these promising findings, microbiota-targeted
approaches remain largely experimental, with several challenges limiting their field applica-
tion. Effectiveness varies across mosquito species and environmental contexts, necessitating
tailored interventions for different ecosystems. Moreover, translating laboratory results to
natural populations is complicated by the variability in environmental microbial diversity
and mosquito behavior under field conditions. Another critical concern is the ecological
impact of microbiota manipulation; while reducing vector competence is desirable, dis-
ruptions to natural microbial communities could inadvertently affect mosquito fitness,
behavior, or interactions with other species. Future research must address these challenges,
focusing on developing safe, species-specific microbiota-based interventions that can be
applied effectively in diverse ecological settings.

The mosquito microbiota plays a pivotal role in shaping vector competence and
influencing the transmission of diseases such as avian malaria. Factors such as mosquito
species, larval habitats, and environmental conditions profoundly affect the composition of
these microbial communities, which, in turn, determine pathogen transmission dynamics.
In their comprehensive review focusing on WNV, Garrigós et al. [12] highlight the intricate
interplay between mosquito microbiota and pathogen development, offering valuable
insights into potential control strategies. While their work centers on WNV, the mechanisms
they discuss are highly relevant to other mosquito-borne diseases such as avian malaria.
This suggests that microbiota-targeted approaches could show great promise for reducing
disease transmission across multiple pathogens, though their application demands careful
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consideration of species-specific variations, ecosystem differences, and potential ecological
impacts. Future research should focus on unraveling the complex microbial interactions
that influence vector competence under diverse environmental conditions to inform the
development of innovative, sustainable interventions. Advancing our understanding of
the mosquito microbiota holds the key to mitigating the impacts of avian malaria and
safeguarding global biodiversity.

Conflicts of Interest: The authors declare no conflicts of interest.
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