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Cytotoxic CD8+ T-cells are key players of the immune responses against viruses. During

the priming of a CD8+ T-cell response, the activation of a naïve T-cell by a professional

antigen presenting cell (APC) involves the induction of various intracellular and metabolic

pathways. The modulation of these pathways at the level of APCs or T-cells offers great

potential to enhance the induction of robust effector cells and the generation of long-lived

memory cells. On the one hand, signaling through pathogen recognition receptors (PRRs)

expressed by APCs can greatly influence T-cell priming, and the potential of several

PRR ligands as adjuvants are being studied. On the other hand, the engagement of

several metabolic processes, at play in APCs and T-cells upon stimulation, implies that

modulating cellular metabolism can impact on priming efficacy. Here, we review recent

efforts to understand the interplay between PRR mediated signaling and metabolic

pathway modulation in this context, through three examples: interplay between TLR4

and fatty acid metabolism, between TLR9 and IDO, and between STING and autophagy.

These initial works highlight the potential for harnessing the induction of antiviral CD8+

T-cell responses using synergistic modulation of metabolic and PRR pathways.

Keywords: immunometabolism, pathogen-recognition-receptor, TLR4, TLR9, STING, adjuvants, CD8+ T-cell

priming

INTRODUCTION

CD8+ T-cells are major actors of the fight against viruses. Owing to their capacity, through T-cell
receptor (TCR)—peptide Major Histocompatibility Complex (pMHC) interactions, to recognize a
diversity of antigens presented on virus infected cells, CD8+ T-cells can directly kill target cells.
However, rather than their quantity or frequency, their quality, or aptitude to engage multiple
effector functions, represents an important basis of their efficacy in viral infection settings (1, 2).
Induction of CD8+ T-cells with superior qualitative properties is therefore a primary goal of
vaccines and immunotherapies in this context. The acquisition of functional attributes by CD8+

T-cells is crucially dependent on the priming step of the response, when antigen specific naïve
precursors get activated and expand in response to the presentation of their cognate antigen
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by dendritic cells (DCs) (3, 4). In recent years, we have gained
increasing knowledge about the determinants of the quality of
CD8+ T-cells, and how to influence them upon priming. For
instance, dendritic cells (DCs) govern the nature of primed
CD8+ T-cells via the provision of processed antigens in the
form of pMHC class I molecules (signal I) and other important
signals, including costimulatory interactions (signal II) and
inflammatory cytokines (signal III) (5). Much effort has been
focused on the modulation of DC function through pathogen-
recognition-receptor (PRR) triggering (6, 7), as PRR ligands can
modulate these different signals and thereby enhance the priming
process to elicit more robust T-cell responses (7–9). Molecules,
such as Toll-like receptor (TLR) ligands, can improve the
immunogenicity of antigens by mimicking pathogen-associated
“danger” signals in order to improve T-cell immunity (10, 11).

Moreover, new insights into cellular metabolism have
underlined the tight connection existing between metabolic
and functional properties of immune cells (12). For instance,
recent studies have demonstrated that aerobic or catabolic
metabolic processes and mitochondrial biogenesis control
CD8+ T-cell effector and memory cell formation (13, 14).
In response to activation, CD8+ T-cells undergo a metabolic
transition or reprogramming. Quiescent naive T-cells have
a low metabolic demand and rely primarily on oxidative
phosphorylation (OXPHOS) (15, 16). Upon activation though,
they switch to a AKT/mTOR-orchestrated reliance on multiple
metabolic pathways including aerobic glycolysis, glutaminolysis
and OXPHOS, which are important for the acquisition of effector
functions and sustained proliferation (15–18). Eventually,
memory CD8+ T-cells regain a more catabolic metabolism
and preferentially rely on fatty acid (FA) synthesis to fuel
FA oxidation and enhance mitochondria respiratory capacity,
and thus provide survival advantages (19). Cellular metabolic
intermediates are therefore major regulators of CD8+ T-cell
activation and can dictate functional performance of effector
cells upon priming (20). This opens new avenues to modulate
cellular metabolic activity in order to promote the induction
of high quality immune responses and enhance antiviral as
well as antitumor CD8+ T-cell immunity. In this review, we
discuss initial considerations regarding the metabolic parallels
between PRR- or TCR-mediated stimulation, and recent works
highlighting how the quality of primed CD8+ T-cells may be
altered throughmetabolic regulation of T-cells or DCs using PRR
agonists.

DIFFERENCES AND SIMILARITIES
BETWEEN PRR- AND TCR-INDUCED
METABOLIC REPROGRAMMING

The activation of both APCs via PRRs and T-cells via TCR is
energetically reliant on the adoption of anabolic processes, and
in particular on the consumption of glucose and production of
lactate by a metabolic pathway called Warburg metabolism or
aerobic glycolysis (15, 21–27). The rapid engagement of glycolysis
has been shown in response to a broad array of PRR agonists,
including ligands for TLR2, 4, 7, 9, and C-type lectin receptors,

and is essential to support their stimulatory effects (22–25).
Similarly, glycolysis is required for differentiation into effector
cells and cytokine secretion in T lymphocytes upon TCR-mediate
activation (26, 27).

The anabolic processes that regulate the activation of both
DCs and T-cells are under the control of mTOR (15, 21), which
is essential for differentiation of T-cells (28, 29) as well as for
the maturation, differentiation, survival and T-cell stimulatory
activity of DCs (21, 30–34). The glycolytic burst occurring in
APC and T-cell upon activation is also supported by mTOR,
via the transcription factors Hypoxia-inducible factor-1α (HIF-
1α), that prompts the expression of key glycolytic enzymes
(35–37). However, it has been reported that TCR-induced
proliferation may occur also in the presence of mTOR inhibition
(28, 29), which instead improves pro-inflammatory effects of
TLR stimulation, resulting in enhanced IL-12 production and
reduced IL-10 release by DCs (33, 38, 39), depending on the
DC type (33). Therefore, the exact involvement of mTOR in
integrating TCR and PRR signaling is not completely understood,
and clues indicate a different role for this kinase in DC and T-cell
activation.

Of note, TLR-inducedmetabolic reprogramming involves also
the activation of de novo fatty acid synthesis (FAS) (23), required
for the production of membranes to expand organelles (23).
Interestingly, FAS is induced also after T-cell activation, and
necessary for their expansion (12, 40). The induction of FAS upon
PRR and TCR stimulation leads to the storage of fatty acids in
lipid droplets (23, 41), whose function still remains controversial.
Indeed, DCs with high content of lipids have been shown to
better activate T-cells in the liver (42) but displayed diminished
priming capacity within tumors (43). In addition, while storage
of FA into triacylglycerol may be a mechanism exerted to avoid
lipotoxicity (44), excess on neutral lipids has also been shown to
induce apoptosis in T-cells (45).

INTERPLAY BETWEEN TLR4 AND FATTY
ACID METABOLISM

The canonical Toll-like receptor 4 (TLR4) signaling
cascade is initiated when lipid A (the membrane anchor
of lipopolysaccharide [LPS]) is bound by the extracellular
region of CD14, which complexes with MD2 and binds to
membrane-bound TLR4 (46). Dimerization of these molecules
with another lipid A-MD2-TLR4 complex creates a functional
TLR4 signaling complex (47). Binding of a TLR4 agonist like
lipid A initiates an innate immune response that can drive
the development of antigen-specific acquired immunity (48).
Mimicking the innate sensing of molecular patterns derived
from microbes—pathogenic and non-pathogenic—to activate of
immune cells, TLR4 agonist molecules show great promise for
use as immunotherapeutic adjuvants to potentiate host responses
in component vaccines [Reviewed in Reed et al. (48)].

With respect to metabolism, TLR4 stimulation has been
linked with FA-induced inflammation in a number of pathologic
conditions, including insulin resistance, retinal impairment,
atherosclerosis and myocardial injury observed during diabetes
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and obesity (49–54). Long chain, saturated FAs (SFAs) require
TLR4 to exert pro-inflammatory effects (55), and have been
suggested to bind it (53, 56). Lipid A itself is acylated with
SFAs (57), whose number, length and saturation determine the
TLR4 agonistic properties of LPS (49, 57). Conversely, poly-
unsaturated FAs (PUFAs) inhibit TLR4 activation (49, 58).
Notably, a similar pattern has been shown for another bacterial
cell wall sensor, TLR2 (59). More recently, it has been proposed
that SFAs may act as agonists of TLR4 without binding it (55,
60). SFAs may indeed be able to induce TLR4 dimerization in
lipid rafts, in a ligand-independent manner (61), a step that is
inhibited by PUFA. Irrespective of the mechanisms, evidence is
concordant in suggesting that saturated and polyunsaturated FAs
exert opposite effects on TLR4-mediated inflammatory response
andAPC activation. Indeed, SFAsmay up-regulate the expression
of costimulatory molecules and cytokines, resulting in increased
T-cell activation capacity, while these effects are inhibited by
PUFA (62). Several lines of evidence suggest that PUFA may
reduce the induction of T-cell responses (63–65), acting on both
APCs and T-cells. In addition to preventing TLR4 dimerization in
lipid rafts and inhibiting downstream kinases (61, 66), PUFA can
affect lipid rafts composition in T-cells, altering TCR signaling
(67, 68) and resulting in hampered T-cell functionality (68–
70). Overall, SFAs may favor co-stimulation delivered by APCs
to T-cells and favor both TLR4 and TCR signaling (71), thus
potentially boosting priming capacity (Figure 1A).

However, the role of specific FA species on T-cell functionality
is not yet completely understood (44). Although it appears
clear that FA are required during T-cell expansion (72), their
excess may result in reduced T-cell proliferation and increases
apoptosis (44, 73), and their use as energy source (fatty acid
oxidation—FAO) was initially considered not to contribute to
T-cell expansion following priming (74), although important
for the transition of primed T-cells toward memory (74).
Conversely, it has been recently discovered that FAOmay sustain
metabolic shift occurring upon TLR4 and TCR stimulation,
in low glucose concentration conditions (75, 76) and during
graft-vs.-host disease (77), suggesting a potential role for FAO
in T-cell priming. SFA-mediated pro-inflammatory signaling
requires their ligation with coenzyme A, a necessary step for
SFA oxidation (55), indicating that FAO may be important to
facilitate pro-inflammatory effects. This indicates therefore that
the enhancement of FA catabolism may synergize with TLR4
activation to boost T-cell priming. Although further studies are
necessary to better understand the underlying mechanisms, three
hypotheses about the role of FAO in boosting T-cell priming may
be proposed: (i) the induction of pro-inflammatory signals; (ii)
the provision of additional energy sources to the activated APCs
and T-cells, and (iii) the removal of high (and potentially toxic)
concentration of SFAs or of FA with inhibitory activity (such as
PUFA).

INTERPLAY BETWEEN TLR9 AND IDO

TLR9 is an endosomal receptor recognizing specific
unmethylated CpG motifs present at high frequency in

bacterial genome but absent in the mammalian one. TLR9
signals via the adaptor protein MyD88, leading to the production
of pro-inflammatory cytokines (after activation of the NF-κB
pathway) and type I interferon (after activation of the IRF7
pathway) (78–80). Interestingly, TLR9 has also been identified
as a specific sensor of RNA:DNA hybrids, a key intermediate
component essential to the replication during infection. The
use of TLR9 agonists as vaccine adjuvant presents a great
potential [Reviewed in Scheiermann and Klinman (81)], and
DNA vaccines containing unmethylated CpG motifs show an
enhanced immunogenicity (7, 82).

Nonetheless, increasing evidence indicates that TLR9
stimulation may also have immunosuppressive/tolerogenic
effects. Despite the lack of consensus on this issue, the major
mechanism explaining this phenomenon is the TLR9-mediated
modulation of Indoleamine 2,3-dioxygenase (IDO), that
catalyzes the first step of tryptophan catabolism (Figure 1B).
In vivo systemic treatment with different TLR9-ligands could
decrease the onset/severity of autoimmune diseases but increase
susceptibility to infections in a IDO-dependent manner (83–87).
Indeed, high CpG oligodeoxynucleotide doses may induce
IDO in pDCs and splenocytes (86, 88), reducing the secretion
of pro-inflammatory cytokines and favoring the expression
of PD-L1, fostering the acquisition of suppressive activity by
Tregs (89) and reducing antigen-specific T-cell expansion
(86, 88, 90). Nonetheless, TLR9-mediated IDO induction of
immunosuppressive properties depends on the type of TLR9
ligand used, as well as on the dose and route of administration
(85–87, 90). The induction of IDO expression is a well-known
immunosuppressive mechanism, which is also observed in
several viral infections (91, 92). In addition to TLRs, IDO
expression may also be induced upon stimulation of several
receptors, including those for type I and II interferons, CD40L
and TGFβ (93). Tryptophan degradation in the kynurenine
pathway (KP), whose first step is mediated by IDO, may lower
the concentrations of this amino acid, essential for cell survival
and proliferation, and result in the synthesis of KP metabolites
with immunosuppressive activity (93). Tryptophan depletion
inhibits mTORC1 activity in T-cells as well as their proliferation
(93, 94), while moDCs and pDCs expressing IDOs might prompt
Treg expansion and suppressive activity (95, 96). As a result,
T-cell priming efficacy and the generation of robust antiviral and
memory responses was shown to be ameliorated by the use of
IDO inhibitors in vivo (97–99). The use of IDO inhibitors may
therefore reduce immunosuppressive effects of TLR9 ligands
and boost its adjuvant activity, favoring the induction of strong
antiviral and antitumor T-cell responses (Figure 1B).

INTERPLAY BETWEEN STING AND
AUTOPHAGY

In the recent years, a strong enthusiasm for the study of the
stimulator of interferon genes (STING) pathway has led to a
better knowledge of the complexity of cytosolic DNA sensors
(100). First identified as an adaptor protein mediating innate
immune signaling induced by cytosolic DNA sensors, STING’s
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FIGURE 1 | Schematic representation of the interplay between (A) TLR4 and fatty acid metabolism, (B) TLR9 and IDO, and (C) STING and autophagy. (A) TLR4

activation on APCs improves CD8+ T-cell priming. In addition to LPS, SFA are also thought to trigger TLR4. However, it has also been proposed that SFA act on

TLR4-downstream pathways. In contrast, PUFA display anti-inflammatory effects, by dampening both TLR4- and TCR-induced signaling. (B) Dual role of TLR9

stimulation on T-cell activation. The TLR9 ligand CpG shows adjuvant effects, improving the co-stimulation delivered by APCs to T-cells. However, some reports

highlighted that the same pathway may also trigger negative regulators of immunity, such as IDO that down-modulates APC-provided co-stimulation and favors Treg

activity. Furthermore, IDO mediates tryptophan deprivation, with has negative consequences on T-cell functionality. (C) The autophagy-STING loop. The cytosolic DNA

sensors cGAS converts ATP and GTP into the dinucleotide cGAMP, which triggers STING. Both cGAS and STING may promote authophagy, that can be involved in

two distinct processes: inducing APC-delivered co-stimulation to T-cells, and STING degradation to avoid its permanent activation. The latter process seems under

the control of AMPK, a kinase also acting in downstream TCR signaling in T-cells. AMPK, AMP-activated protein kinase; APC, antigen presenting cell; ATP, Adenosine

Triphosphate; cGAMP, cyclic guanosine monophosphate–adenosine monophosphate; cGAS, cGAMP synthase; CpG, CpG oligodeoxynucleotides; GTP, Guanosine

Triphosphate; IDO, Indoleamine 2;3-dioxygenase; Trp, tryptophan; LPS, lipopolysaccharide; PUFA, poly-unsaturated fatty acids; SFA, saturated fatty acids; STING,

stimulator of interferon genes; TLR, toll like receptor.

function as cyclic di-nucleotide sensor has been described only
recently (101), generating great enthusiasm for its potential use
in cancer immunotherapy [Reviewed in Iurescia et al. (102)].
STING is a receptor for cyclic guanosine monophosphate–
adenosine monophosphate (cGAMP), which can be synthesized
by cGAS (cGAMP synthase), a member of the nucleotidyl
transferase family. The latter plays a role in the recognition of
HIV and other retroviruses leading to the synthesis of cGAMP
(103). The produced cGAMP acts as an endogenous second
messenger that binds to STING, leading to the activation of IRF3
and the induction of type I interferon synthesis (101). In addition
to its major role for RNA virus sensing, it has been shown
that cGAS expression also broadly inhibits several DNA viruses.
However, the effect of cGAS is not limited to viruses. It acts as
a DNA sensor responsible for the recognition of Mycobacterium
tuberculosis, leading to the activation of the STING pathway. The
recognition of this bacteria, as well as others, is made through
cyclic-di-AMP, a bacterial cyclic di-nucleotide (CDN) leading to
the production of IFN-β. CDN are also able to stimulate STING
directly, and to activate an innate immune response leading to
the induction of type I interferons. Interestingly, it has been
demonstrated that RNA:DNA hybrids are also sensed by the
immune system through the cGAS-STING pathway, inducing
a strong type I interferon response. cGAMP has proven to be

an effective adjuvant, able to boost the production of antigen-
specific antibodies and T-cell responses after an intramuscular
administration in mice. It has been recently evidenced that
cGAMP is a promising mucosal adjuvant. STING agonists
are also novel and highly promising immunomodulators for
cancer immunotherapy (104). Its activation by CDN has proved
to be efficient for anti-tumoral vaccination against metastatic
breast cancer. Surprisingly, the STING pathway can also be
triggered upon mitochondrial damage through the generation of
mitochondrial ROS and the release of endogenous DNA into the
cytosol.

Increasing evidence indicates that pathogen-derived CDN
may trigger autophagy via STING (105–107), which forms
cytoplasmic structures with LC3 and Atg9a, two proteins
involved in the autophagy process (108). However, controversies
exist about the significance of STING-induced autophagy.
Indeed, STING and TBK1 migrates together via an autophagy-
like process (109), and autophagy inhibition in cells infected
with viruses known to activate STING dampens type I
interferon production (107, 109). This suggests that autophagy
seems essential to STING mediated pro-inflammatory effects
(Figure 1C). Consistently, downstream STING type I IFN
induction is dependent on Vps34 (110), a phosphatidylinositol
3-kinase (PI3K) required for autophagy initiation (111).
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However, other two important autophagy-related proteins,
Beclin-1 and the serine/threonine protein kinase ULK1, are
dispensable for STING pro-inflammatory effects (110) but,
rather, involved in STING degradation. ULK1 is activated, after
the formation of STING-dependent autophagosomes, by the
same cyclic dinucleotides that activate STING, but mediates its
phosphorylation and blocking (110), while Beclin-1 interacts
with cGAS to promote autophagy in a STING-independent
manner, dampening interferon responses (112). Thus, autophagy
would prompt STING degradation to avoid its chronic activity
(110, 113). The dual role of autophagy in STING stimulation,
delivering STING pro-inflammatory signaling at first and then
mediating its degradation, suggests a temporal biphasic function
of this metabolic process. Interestingly, a similar pattern has
been described in T-cell activation: autophagy has been shown to
first support NF-κB signaling in T-cells to then downregulate it
(114, 115). Autophagy is activated and needed at the beginning
of TCR stimulation to sense, and thus activate, mTOR (116,
117); then mTOR itself shuts down autophagy, which seems no
longer required for effector cell generation, although essential for
memory cell formation (117–119).

Further studies are needed to investigate which autophagy-
related proteins should be targeted to improve STING adjuvant
effects, enhancing downstream signaling and postponing its
degradation to ensure prolonged STING activity at least during
the initial phases of T-cell priming. Notably, cGAS-Beclin-1
mediated STING regulation is prompted by ligands, but not
products of cGAS (such as 2′3′cGAMP), suggesting that the use
of direct STING agonists may overcome this control mechanism
leaving unaffected STING-induced autophagy. In addition, as the
ULK1-dependent negative feedback is regulated by AMPK (110),
whose inhibition leads to ULK1 activation, STING degradation
and type I IFN response reduction (110, 120), AMPK activators
might be used to prolong STING activity. It should be noted that
AMPK has often been considered as anti-inflammatory, also for
its capacity to suppress mTOR activity (121), which is required
for T-cell activation. Nevertheless, AMPK activation occurs
during and is essential for primary T-cell responses (74, 121, 122),

may boost the generation of memory cells (74, 121), restore the
functionality of exhausted effector cells (123) and generate robust
effector cells starting from naïve cells (121, 123). Therefore, the
potential use of AMPK activators in combination with STING
ligands for priming of T-cell responses should be further explored
with the aim to prolong STING pro-inflammatory activity,
counteract exhaustion and prompt the generation of the memory
pool.

CONCLUDING REMARKS

The discovery of PRRs and their ligands certainly represents
one of the most fundamental advances of modern immunology
with many, some yet to discover, applications in the context of
vaccine development. In the recent years, our growing perception
of the importance of immunometabolism is also opening new
directions for immune interventions. Although it is still early
days, the examples discussed in the present review provide clear
evidence that combining our knowledge on metabolic immune
regulation and PRR pathway activation offer great potential to
influence the induction of potent immune responses. It will
be important to assess the prospective use of such therapeutic
approaches in animal or pre-clinical studies in order to better
characterize benefits and drawbacks of these strategies in in vivo
settings. Eventually, the combination of metabolic regulators and
PRR based adjuvants may prove particularly effective in context
of difficult to vaccinate populations, such as the elderly, whom
immune cells present both metabolic and functional alterations,
and overall suboptimal immune responsiveness.
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