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A B S T R A C T

Accurate tool tracking is essential for the success of computer-assisted intervention. Previous efforts often
modeled tool trajectories rigidly, overlooking the dynamic nature of surgical procedures, especially tracking
scenarios like out-of-body and out-of-camera views. Addressing this limitation, the new CholecTrack20 dataset
provides detailed labels that account for multiple tool trajectories in three perspectives: (1) intraoperative, (2)
intracorporeal, and (3) visibility, representing the different types of temporal duration of tool tracks. These
fine-grained labels enhance tracking flexibility but also increase the task complexity. Re-identifying tools after
occlusion or re-insertion into the body remains challenging due to high visual similarity, especially among
tools of the same category. This work recognizes the critical role of the tool operators in distinguishing
tool track instances, especially those belonging to the same tool category. The operators’ information are
however not explicitly captured in surgical videos. We therefore propose SurgiTrack, a novel deep learning
method that leverages YOLOv7 for precise tool detection and employs an attention mechanism to model the
originating direction of the tools, as a proxy to their operators, for tool re-identification. To handle diverse tool
trajectory perspectives, SurgiTrack employs a harmonizing bipartite matching graph, minimizing conflicts and
ensuring accurate tool identity association. Experimental results on CholecTrack20 demonstrate SurgiTrack’s
effectiveness, outperforming baselines and state-of-the-art methods with real-time inference capability. This
work sets a new standard in surgical tool tracking, providing dynamic trajectories for more adaptable and
precise assistance in minimally invasive surgeries.
1. Introduction

Surgical tool tracking plays a pivotal role in computer-assisted
surgical systems, offering valuable insights for a range of applica-
tions, including skill assessment (Pedrett et al., 2023), visual servo-
ing (Xu et al., 2023), navigation (Xu et al., 2022), laparoscope posi-
tioning (Dutkiewicz et al., 2005), safety and risk zone estimation (Richa
et al., 2011), and augmented reality (Martin-Gomez et al., 2023). While
tool detection identifies target tools in an image or frame, tool tracking
goes a step further to also include the estimation and prediction of the
tools’ locations as they appear in subsequent video frames. Historically,
tool tracking relied on traditional machine learning features, encom-
passing color, texture, SIFT, and geometry (Pezzementi et al., 2009;
Sznitman et al., 2012; Alsheakhali et al., 2015; Dockter et al., 2014;
Du et al., 2016). Recent advances in deep learning (Bouget et al., 2017;
Lee et al., 2019; Nwoye et al., 2019; Zhao et al., 2019b,a; Robu et al.,
2021; Nwoye, 2021; Fathollahi et al., 2022; Wang et al., 2022; Rueckert
et al., 2023) ushered in a new era by enabling the extraction of more
robust features for tool re-identification (re-ID). Despite the remarkable
progress, challenges remains. Existing efforts have primarily focused on
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single tool tracking (Zhao et al., 2019b), single-class multi-tool track-
ing (Fathollahi et al., 2022), or multi-class single-tool tracking (Nwoye
et al., 2019). Whereas in real-world surgical scenarios, multiple tools of
varying classes are often utilized simultaneously, necessitating multi-
class multi-tool tracking, a domain that remains largely unexplored
mainly due to lack of the requisite dataset.

Recently, a new dataset known as CholecTrack20 (Nwoye et al.,
2023) was introduced providing the multi-class multi-tool tracking
requirements. This dataset also formalized three different perspectives
of trajectories capturing (1) the life-long intraoperative use of tools,
(2) intracorporeal cycle of the tools within the body, and (3) the
visibility lifespan of the tools within the camera field of view (FoV)
as shown in Fig. 1. Simultaneously tracking tools across these three
perspectives is termed multi-perspective tracking. The CholecTrack20
dataset provides rich multi-perspective tracking annotations adaptable
to diverse surgical needs, however, to date, no deep learning model has
been explored on this dataset for automatic tool tracking.

To develop a method for multi-perspective multi-class multi-tool
tracking in surgical videos, we first benchmark 10 state-of-the-art
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Fig. 1. Surgical tool tracking demonstrating (top) qualitative fine-grained tracking
result across multiple tools, classes, and perspectives and (bottom) superior quantitative
results compared to the state-of-the-art.

(SOTA) detection methods on the CholecTrack20 dataset and conduct
an extensive ablation study on suitable re-ID methods for tracking in
the surgical domain. The re-ID module plays a pivotal role of managing
the tools identities across time in surgical videos. But, challenges arise
from the intricate motion patterns of the tools, frequent occlusions,
and the limited field of view within the surgical scene. A particularly
daunting task is the re-identification of tools after they have been
occluded, moved out of the camera’s view, or re-inserted into the
surgical field. This complexity is amplified when multiple instances
of the same tool class share identical appearance features. Contrary to
existing approaches, our preliminary experiments revealed that relying
solely on tool appearance cues for track discrimination is sub-optimal
especially when distinguishing between instances of the same class.
To address this issue, we turn to domain knowledge, specifically the
tool’s usage pattern and the tool operator’s information. The latter
criterion, tool operator, refers to the surgeon’s hand manipulating the
tool and is found to be more accurate than appearance features in
distinguishing between instances of the same tool class. However, the
tool operators are not directly observable in endoscopic images, making
their automatic prediction a challenging endeavor.

Inspired by our findings, we propose SurgiTrack, a novel deep
learning approach for surgical tool tracking. SurgiTrack casts the tool
operators as the approximation of the tools’ originating directions.
It then employs an Attention Mechanism to encode tool motion di-
rection, effectively emulating the unseen surgeon operator’s hands or
trocar placements for tool re-identification. Our model design allows
for an alternative self-supervision of the direction estimator with a
comparable performance to its supervised counterpart. This technique
ensures that our method can be explored on surgical datasets where the
tool operator labels are unavailable. Finally, to account for the multi-
perspective nature of tool trajectories, our network associate tracks
using a harmonizing bipartite matching graph algorithm, which, aside
from the usual linear assignment, resolves identity conflicts across
2 
the track perspectives and improves the accuracy of the track ID
re-assignment in general.

To summarize, our contributions with this work include the formal-
ization of multi-perspective tool tracking modeling and benchmarking
of state of the art methods on the CholecTrack20 dataset. It also
includes the development of the SurgiTrack model which relies on
self-supervised attention-based motion direction estimation and harmo-
nizing bipartite graph matching for tool tracking. Finally, we provided
an extensive evaluation of tool tracking on the different trajectory
perspectives, at varying video frame rates, and under various visual
challenges such as bleeding, smokes, occlusion, etc. These contributions
collectively advance the state of the art in surgical tool tracking,
opening doors to enhanced computer-assisted surgical systems and AI
interventions in the field.

2. Related work

Despite the many potentials of tool tracking, challenges persist,
prompting our research into more robust and efficient tracking tech-
niques. In the domain of surgical tool tracking, an array of tracking
modalities (Fried et al., 1997; Chmarra et al., 2007; Song et al., 2023;
Speidel et al., 2008; Behrens et al., 2011; Reiter et al., 2012; Sznitman
et al., 2012), ranging from electromagnetic to optical and image-
based tracking, has been explored to enhance precision and efficiency.
While robotic kinematics gains popularity for its accuracy in instrument
localization, image-based tracking stands out for its non-invasiveness,
applicability, generalizability, and seamless alignment with the sur-
geon’s visuals. Despite its merits, image-based tracking faces challenges
such as occlusion, deformation, and lighting issues. Our work aligns
with the trajectory of existing deep learning research (Bouget et al.,
2017; Lee et al., 2019; Nwoye et al., 2019; Zhao et al., 2019b,a; Robu
et al., 2021; Nwoye, 2021; Fathollahi et al., 2022; Wang et al., 2022;
Rueckert et al., 2023), contributing to the ongoing refinement of image-
based tracking, positioning it as a pivotal frontier in revolutionizing
surgical assistance.

The dynamic landscape of tool tracking extends beyond single-
object tracking (SOT) (Danelljan et al., 2017; Zhao et al., 2019b) to
encompass multi-object tracking (MOT) (Wojke et al., 2017; Wang
et al., 2020; Zhang et al., 2021; Robu et al., 2021) and multi-class
tracking (MCT) (Nwoye et al., 2019; Nwoye, 2021). For diverse surgical
tools, our research lies within the scope of multi-class multi-object
tracking (MCMOT) (Lee et al., 2016; Jo et al., 2017; Zhu et al.,
2021; Du et al., 2021), reflecting its potential for real-world surgical
applications (Pedrett et al., 2023; Xu et al., 2023, 2022; Dutkiewicz
et al., 2005; Richa et al., 2011; Martin-Gomez et al., 2023). In the
pursuit of robust tracking methodologies, the choice between tracking
paradigms, such as tracking by detection (Zhang et al., 2021; Wang
et al., 2020; Aharon et al., 2022; Zhang et al., 2022; Wang et al.,
2023b), regression (Bergmann et al., 2019), attention (Sun et al.,
2020; Zeng et al., 2022; Meinhardt et al., 2022; Chu et al., 2023),
segmentation (Lee et al., 2019) or fusion (Reiter et al., 2012), guides
the selection based on context and task suitability. Our research adopts
a tracking-by-detection paradigm for its simplicity in achieving surgical
tool tracking precision.

Amidst the evolution of tracking methods from rule-based and
marker-based approaches (Ma et al., 2021; Huang et al., 2020; Cartucho
et al., 2022) to markerless techniques (Reiter et al., 2012; Ye et al.,
2016) and machine learning methods (Rieke et al., 2015; Zhao et al.,
2019b; Alsheakhali et al., 2015; Pezzementi et al., 2009; Speidel et al.,
2008; Dockter et al., 2014), our work is positioned at the forefront,
leveraging deep learning advancements like Siamese networks and
attention-based networks (Sun et al., 2020; Meinhardt et al., 2022).
Notably, our focus on direction features, capturing the tool handling
direction by surgeon operators, sets our approach apart, offering a
more suitable discriminator for refined tool tracking accuracy in sce-
narios where appearance (Reiter et al., 2014) or similarity (Wang
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Fig. 2. Overview of CholecTrack20 dataset showing localization, tracking, and associated labels (Nwoye et al., 2023).
Table 1
Summary of the CholecTrack20 dataset statistics (Nwoye et al., 2023).

Details Average track length/number of tracks per perspective Surgical visual challenges

Params Counts Tools Intraoperative Intracorporeal Visibility Events Counts

Videos 20 Grasper 582.0/59 209.4/164 25.7/1334 Occlusion 22 958
Total duration 14h 3m 1s Bipolar 118.0/20 30.6/78 24.6/96 Bleeding 18 698
Tool categories 7 Hook 1063.7/20 181.8/118 87.5/244 Smoke 2388
Phase categories 7 Scissors 44.6/20 27.0/34 23.4/46 Crowded 6737
Operator categories 4 Clipper 71.7/20 36.8/40 31.9/46 Blurring 299
Labeled frames (1 FPS) 35K Irrigator 90.8/20 25.9/56 13.4/108 Light reflection 74
Total frames (25 FPS) 1.3M Spec.Bag 175.2/20 166.8/20 44.9/78 Fouled lens 2196
Bounding boxes 65.2K Total 2146.0/179 678.3/510 251.4/1952 Poor camera coverage 357
et al., 2023b) features may prove less robust. Contrary to the joint
detection and embedding (JDE) setting (Zhang et al., 2021; Wang
et al., 2020), adopting an online separate detection and tracking (SDE)
approach (Bewley et al., 2016; Maggiolino et al., 2023; Du et al.,
2023; Aharon et al., 2022; Du et al., 2021; Wang et al., 2023b), where
detection precedes tracking, aligns with the essence of an indepen-
dently trained tracker that assumes prior detection results. Anchored
in dataset like CholecTrack20 (Nwoye et al., 2023), which offers both
multi-perspective trajectories and MCMOT requirements in endoscopic
videos, our research aligns with the ongoing efforts (Nwoye, 2021;
Robu et al., 2021; Fathollahi et al., 2022; Rueckert et al., 2023) to
address the complexities of surgical tool tracking, contributing to the
broader landscape of advancements in this critical domain.

3. Dataset

Our research is conducted on CholecTrack20 (Nwoye et al., 2023)
dataset consisting of 20 videos of laparoscopic procedures that have
been fully annotated with detailed labels for multi-class multi-tool
tracking.1 The dataset, illustrated in Fig. 2, provides track identities
across 3 perspectives of track definition: (1) visibility trajectory of a
tool within the camera scope, (2) intracorporeal trajectory of a tool
while within a patient’s body, and (3) life long intraoperative trajectory
of a tool. Intraoperative tracking not only re-identifies tools out of
camera view (OOCV) as done in intracorporeal tracking but also main-
tains their trajectory when out of body (OOB). In the CholecTrack20
dataset, OOB is detected/annotated either by visually observing the
tool exit the trocar, inferring from another tool entering through the

1 Dataset will be released before this paper publication.
3 
same trocar, or noting that the initial tool releases its grasp while out
of camera focus. The dataset also provides detailed labels for each
tool such as spatial bounding box coordinates, class identity, operator
identity, phase identity, frame visual conditions such as occlusion,
bleeding, and presence of smoke statuses, among others. The annotated
tool categories are grasper, bipolar, hook, scissors, clipper, irrigator and
specimen bag. The annotated tool operators are main surgeon left hand
(MSLH), main surgeon right hand (MSRH), assistant surgeon right hand
(ASRH) and null operator (NULL). The annotations are provided at 1
frame per second (FPS) consisting of 35 K frames and 65 K instance tool
labels. Raw videos, recorded at 25 FPS, are provided for inference. The
dataset is available on Synapse (Nwoye et al., 2024). A summary of the
CholecTrack20 dataset statistics showing the size of key elements in the
dataset, number of challenging scenarios, average track duration and
number of tracks for each tool category per perspective is presented in
Table 1. More information on the dataset can be found in Nwoye et al.
(2023).

4. Methods

We present SurgiTrack, a deep learning method for surgical tool
tracking based on tool direction of motion features. SurgiTrack is de-
signed as a multi-class multi-object tracking (MCMOT) model capable
of tracking tools jointly across multiple trajectory perspectives, namely
visibility, intracorporeal, and intraoperative. The motivation to track
beyond camera’s field of view is to offer more flexible trajectories that
ensure continuous and reliable identification of surgical tools, tailored
to the complex dynamics of a surgical scene, preventing errors and
maintaining safety even when tools temporarily move out of view.

The architecture of our proposed tracking model is conceptually
divided into the main components of object tracking: spatial detection
and data association, with the later further split into re-identification
feature modeling and track identity matching, as illustrated in Fig. 3(a).



C.I. Nwoye and N. Padoy Medical Image Analysis 101 (2025) 103438 
Fig. 3. Overview of our proposed tool tracking model showing: (a) full architecture of SurgiTrack and its major component modules. One of the which is the YOLO-based detector.
The other is the Siamese-based surgical tool direction estimator — full architectural detail in (b) which also shows an optional head for surgeon operator classification. The last
component of the SurgiTrack is the harmonizing bipartite graph matching (HBGM) algorithm for tool track identity association under multiple perspectives of tool trajectories:
visibility, intracorporeal, and intraoperative — full pipeline in (c).
4.1. Multi-perspective tool track formalization

Given a video dataset 𝐷 = {𝑆1, 𝑆2,… , 𝑆𝑁}, where each sequence
𝑆𝑖 = {𝑓1, 𝑓2,… , 𝑓𝑇 } consists of frames 𝑓𝑡 containing tools represented
by bounding box locations 𝐵𝑡 = [𝐵𝑡

1, 𝐵𝑡
2,… , 𝐵𝑡

𝑀 ] and associated classes
𝐶𝑡 = [𝐶 𝑡

1, 𝐶 𝑡
2,… , 𝐶 𝑡

𝑀 ], the objective is to accurately track tool identi-
ties over time across multiple perspectives. For each perspective 𝑝 ∈
{1, 2, 3}, we define an association matrix 𝐴(𝑝)(𝑡), where 𝐴(𝑝)

𝑖,𝑗 (𝑡) = 1
indicates that the 𝑖th detected tool in frame 𝑓𝑡 is associated with
the 𝑗th detected tool in frame 𝑓𝑡+1, and 𝐴(𝑝)

𝑖,𝑗 (𝑡) = 0 otherwise. The
final tracking solution involves harmonizing these perspective-specific
matrices {𝐴(1)(𝑡), 𝐴(2)(𝑡), 𝐴(3)(𝑡)} to ensure consistent and accurate tool
tracking.

4.2. Spatial detection

The spatial detection module is responsible for detecting the tools
in each frame of a laparoscopic video. The detection output 𝐷𝑡 =
(𝐵𝑡

𝑖 , 𝐶 𝑡
𝑖 ) of frame 𝑓𝑡 is a pair of bounding box coordinates and class

identities, with 𝐵𝑡
𝑖 = [𝑋𝑡

𝑖 , 𝑌 𝑡
𝑖 , 𝑊 𝑡

𝑖 , 𝐻 𝑡
𝑖 ] containing the center coordinates

(𝑋𝑡
𝑖 , 𝑌 𝑡

𝑖 ) and the spatial sizes (𝑊 𝑡
𝑖 , 𝐻 𝑡

𝑖 ) of the boxes and 𝐶 𝑡
𝑖 ∈ {0, 1,… , 6}

represents the class identity of the tools.
We use YOLOv7 (Wang et al., 2023a), a single shot object detec-

tor renowned for balancing accuracy and real-time inference, as the
backbone for our detection module. Pretrained on the Crowdhuman
(CH) (Shao et al., 2018) and MOT20 datasets (Dendorfer et al., 2020),
then finetune on the CholecTrack20 data, YOLOv7 produces tool class
identities 𝐶 = [0, 1,… , 6] and bounding boxes 𝐵 = [𝑋 , 𝑌 , 𝑊 , 𝐻],
followed by Non-Maximum Suppression (NMS) at a 0.3 threshold to
filter out redundant detections. The predicted bounding boxes are then
used to crop out the tool regions from the RGB image for the Re-ID
phase.

4.3. Re-identification by direction estimation

Re-identification of tool instances is essential for managing their
identities across time. It involves learning representations that can
4 
uniquely identify tool instances across frames. In a video frame where
multiple tools can share identical appearance, given that every tool
is uniquely tied to a tool operator which remains consistent for their
distinct trajectory, automatic estimation of these operators would be
helpful in overcoming the challenges of tracking surgical tools in
videos. The tools operators, however, are not observable from the
captured images. We argue that the operator of a tool can be discerned
from the originating direction of the tools termed the fro-direction.
We therefore propose a 3-step process of (1) data preprocessing, (2)
direction estimation, and (3) operator prediction, as shown in Fig. 3(b),
to indirectly infer the hidden operators from a given image by learning
tool direction.

4.3.1. Data preprocessing
We observed that the tool shaft, while not part of the bounding box

annotations, more consistently points toward the fro-direction than the
tip of the tool, which otherwise aligns with the to-direction. However,
there is a limitation — the tool shaft may not always be visible in the
images, especially when the tool is positioned near the corners of the
frame. Our preprocessing technique of image slicing and padding , shown
in Fig. 3(b), addresses this issue. Here, we crop the images using the
tool bounding boxes and pad the cropped images with a percentage
of the surrounding neighborhood pixels. Groundtruth and predicted
bounding boxes are used at training and testing times respectively.
Where a bounding box is at the border of the frame, zero filled padding
is applied. This approach helps to reveal the presence or absence of tool
shafts.

4.3.2. Direction estimation
We model the estimation of the direction 𝜃 of a surgical tool, given

its bounding box location 𝐵, using a Bayesian-inspired framework.
Specifically, the relationship between 𝜃 and 𝐵 follows Bayes’ rule as
shown in Eq. (1):

𝑃 (𝜃|𝐵) = 𝑃 (𝐵|𝜃) ⋅ 𝑃 (𝜃)
𝑃 (𝐵)

(1)

Here, 𝑃 (𝐵|𝜃) represents the likelihood of the tool’s bounding box given
its direction, 𝑃 (𝜃) is the prior probability of the direction, and 𝑃 (𝐵)
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is the evidence, representing the marginal probability of the bounding
box across all possible directions.

We approximate this framework using the Attention Mechanism 𝐀
n Eq. (2), which captures dependencies between bounding box features

and direction:

𝐀(𝐐,𝐊,𝐕) = 𝑆 𝑜𝑓 𝑡𝑚𝑎𝑥
(

𝐊𝐐𝑇
√

𝑑𝐊

)

𝐕 (2)

The Attention Mechanism is a common approach in neural networks
or learning dependencies between variables (Bahdanau, 2014). In this
ormulation, the likelihood 𝑃 (𝐵|𝜃) is approximated by the attention
lignment scores 𝑆 𝑜𝑓 𝑡𝑚𝑎𝑥 (𝐊𝐐𝑇 ∕

√

𝑑𝐊), which measure the relevance
of each direction based on the bounding box features, i.e., how much
attention (weight) each trocar direction should get based on the current
tool location. The prior probability 𝑃 (𝜃) is represented by the value
vector 𝐕, which learns a distribution over possible directions inde-
pendent of the bounding box features. The evidence 𝑃 (𝐵) serves as
a normalization term, implicitly handled through the 𝑆 𝑜𝑓 𝑡𝑚𝑎𝑥 oper-
ation. The query 𝐐, key 𝐊, and value 𝐕 are learned embeddings that
encode direction vectors, bounding box features, and direction priors,
respectively, from the input images using convolutional neural network
(CNN) layers. Specifically, we use EfficientNet-b0 (Tan and Le, 2019)
o encode these features.

The Attention Mechanism 𝐀 effectively approximates 𝑃 (𝜃|𝐵) by
earning the alignment between bounding box features and directional
riors within a differentiable framework. Unlike classical Bayesian
ethods where priors and likelihoods are explicitly defined, this ap-
roach allows the network to learn these distributions directly from
he data, providing flexibility for modeling complex spatial depen-
encies. By grounding the formulation in Bayes’ rule and leveraging
he interpretability of attention mechanisms, we provide a principled
pproach to estimating tool direction while maintaining compatibility
ith modern deep learning architectures.

4.3.3. Operator estimation
The tool operator 𝑂 is estimated as the conditional probability

(𝑂 ∣ [𝐀, 𝐶]), where 𝐀 represents the attention-based direction features
derived from Eq. (2)), and 𝐶 is the tool category. This estimation is
odeled using a fully connected layer, with the linear transformation

defined as:

𝑦 = 𝐰 ⋅ [𝐀, 𝐶] + 𝐛 (3)

where, 𝐰 and 𝐛 are the weight and bias parameters, and the input is the
concatenation of 𝐀 and 𝐶. To obtain the final probability distribution,
a SoftMax function is applied to 𝑦:

𝑃 (𝑂 ∣ [𝐀, 𝐶]) = SoftMax(𝑦) (4)

This process generates the probability of each operator 𝑂 given the tool
direction and category, enabling operator classification.

4.3.4. Supervision
Our Direction Estimation Network can be trained through multiple

paradigms, depending on the availability of labels. For full supervision,
he model is trained on and to predict the operator ID labels, employing
 weighted cross-entropy loss for class balancing as in Eq. (5), where
and �̂� are respectively the groundtruth and predicted labels for the

perators, 𝜎 is a sigmoid function, and 𝑤 is a weight vector for class
alancing.

𝐿 = −1
(

𝑦 log
(

𝜎(�̂�)
)

𝑤 + (1 − 𝑦) log(1 − 𝜎(�̂�)
)

)

(5)

In weak- and self-supervised learning, the model adopts a Siamese-
style approach, contrasting negative or dissimilar pairs and pulling
ositive or similar pairs closer using the margin-based loss in Eq. (6),

where 𝑦 is 0 for negative pairs and 1 for positive pairs, 𝑑 is the
5 
Euclidean distance between two pairs, and 𝑚 is the margin of distance
tolerance, set to 0.5 in our experiment.

𝐿 = 𝑑2𝑦 + max(𝑚 − 𝑑 , 0)2(1 − 𝑦) (6)

In the weak supervision scheme, we leverage the knowledge that
ools with different track IDs have different operator categories, helping

segregate positive and negative pairs. For the self-supervised setting,
we group pairs based on the tool’s direction assumption: in a frame
where there are multiple tools, they are considered opposing pairs and
their positive pairs are generated by a soft augmentation (e.g. scale,
perspective, slight rotation 𝜃 < 10◦, mixed). Conversely, in frames with
a single tool, negative pairs are generated by rotating the tool to a
different direction (usually 80◦ ≤ 𝜃 ≤ 100◦ and 170◦ ≤ 𝜃 ≤ 190◦), and
positive pairs are formed through soft augmentation.

4.4. Identity association using multi-perspective matching

The role of the identity association module is to link tool detec-
tions across frames, creating coherent tracks for surgical tools. It is
a critical step in understanding how these tools move and interact
during procedures. To tackle this challenge effectively, we introduce
 novel approach called Harmonizing Bipartite Graph Matching (HBGM).

This method is designed to handle the diverse perspectives of surgical
tool trajectories without conflicts, ensuring that every tool is tracked
accurately throughout the surgery. HBGM builds upon the Bipartite
graph matching (BGM) algorithm (Kuhn, 1955), which is a powerful
tool in its own right. What sets HBGM apart is its ability to manage
multiple track states for each tool instance. These states include:

1. New: Assigned at track initialization.
2. Active: Updated when a detection matches a track.
3. Lost: Assigned to an active track with no matching detection

at current time. The ‘‘Lost’’ state has a 5-second time-threshold
within which the track can be re-activated for all perspectives.

4. Out of Camera View (OOCV): Assigned if a track remains ‘‘Lost’’
for more than the time-threshold. This state marks the end of a
visibility trajectory. An ‘‘OOCV’’ track can only be re-activated
for intraoperative and intracorporeal perspectives.

5. Out of Body (OOB): Assigned if a tool track is judged to have
left the abdomen. This is determined when a track fails a class-
direction consistency check (described in Section 4.4.2). The
OOB state marks the end of an intracorporeal trajectory. Such
track can only be re-activated for intraoperative perspective.

6. Removed: Assigned if a track is initialized erroneously (e.g., after
the ‘‘New’’ state, it never progresses to ‘‘Active’’ for a prolonged
time) or not reassigned for a long period. Removed tracks are
excluded from history against a potential match.

The stages of HBGM are illustrated in Fig. 3(c) and discussed as follows:

4.4.1. Pairwise matching
To match tools across frames, we use pairwise distances between

predicted motion directions (𝜃) and detection boxes (𝐵), while ensuring
class (𝐶) consistency. For each predicted tool 𝑝𝑡𝑖 = {𝐵𝑡

𝑖 , 𝐶 𝑡
𝑖 , 𝜃𝑡𝑖} in frame

𝑡, and each active track 𝑞𝑡−1𝑗 = {𝐵𝑡−1
𝑗 , 𝐶 𝑡−1

𝑗 , 𝜃𝑡−1𝑗 , IDs} in the history
rajectories up to frame 𝑓𝑡−1, the distance metric 𝐷 𝑖𝑠𝑡𝑖,𝑗 is defined as:

Dist𝑖,𝑗 = 𝛼 ⋅ Distspatial(𝐵𝑡
𝑖 , 𝐵𝑡+1

𝑗 ) +
𝛽 ⋅ Distdirection(𝜃𝑡𝑖 , 𝜃𝑡+1𝑗 ) +
𝛾 ⋅ Distclass(𝐶 𝑡

𝑖 , 𝐶 𝑡+1
𝑗 ), (7)

where

Distspatial(𝐵𝑡
𝑖 , 𝐵𝑡+1

𝑗 ) = 1 −
|𝐵𝑡

𝑖 ∩ 𝐵𝑡+1
𝑗 |

𝑡 𝑡+1
, (8)
|𝐵𝑖 ∪ 𝐵𝑗 |
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is the Intersection over Union (IoU) similarity between the bounding
oxes 𝐵𝑡

𝑖 and 𝐵𝑡+1
𝑗 ,

Distdirection(𝜃𝑡𝑖 , 𝜃𝑡+1𝑗 ) = 1 −
𝜃𝑡𝑖 ⋅ 𝜃

𝑡+1
𝑗

‖𝜃𝑡𝑖‖ ⋅ ‖𝜃
𝑡+1
𝑗 ‖

, (9)

is the angular difference between motion directions, and

Distclass(𝐶 𝑡
𝑖 , 𝐶 𝑡+1

𝑗 ) =
{

1 − 𝑆 if 𝐶 𝑡
𝑖 = 𝐶 𝑡+1

𝑗

𝜏 if 𝐶 𝑡
𝑖 ≠ 𝐶 𝑡+1

𝑗 ,
(10)

ensures that tools of different classes are not matched (𝑆 is the class
robability score of the tool and 𝜏 is set above matching threshold).
ere, 𝛼, 𝛽, and 𝛾 are weights that balance the influence of spatial, mo-

ion, and class distances, respectively. A bipartite matching algorithm
s then used to minimize Dist𝑖,𝑗 and establish correspondences. Op-
ionally, a second bipartite association is performed for low-confidence
etections, following the method proposed by Zhang et al. (2022).

4.4.2. Track harmonization
The magic of HBGM happens during the harmonization stage, where

t skillfully handles track ID assignment ensuring consistent tool track-
ng across multiple perspectives — namely intraoperative, intracorpo-
eal, and visibility. The harmonization process relies on a structured

approach involving (a) class-direction consistency checks, (b) hierar-
chical ID assignment, and (c) referential integrity to effectively manage
tool trajectories under different states and handle potential conflicts in
track identification and state updates.

A. Class-Direction Consistency Check: HBGM validates that a track
maintains a joint matching of class (𝐶) and direction (𝜃) features across
time to remain active. This check is specifically for managing the
intracorporeal trajectory. A change in the class feature (or class ID)

hile the direction feature remains unchanged indicates that a new
ool 𝑗 has been introduced through the same trocar as previous tool
, marking the end of the tool 𝑖 intracorporeal trajectory and the start
f a new one:

If 𝜃𝑡𝑖 = 𝜃𝑡−1𝑗 and 𝐶 𝑡
𝑖 ≠ 𝐶 𝑡−1

𝑖 , then State𝑡−1𝑗 = OOB. (11)

This approach enforces a one-to-one correspondence between track
direction and class features for more stable and accurate tracking.

B. Hierarchical ID Initialization and State Updates: HBGM em-
ploys a hierarchical approach to manage new ID assignments and
tate updates effectively across perspectives. At the topmost level is

the intraoperative trajectory (𝑝 = 3) followed by the intracorporeal
trajectory (𝑝 = 2), and lastly the visibility trajectory (𝑝 = 1).

1. ID Initialization: A new ID in a higher perspective (𝑝 = 3) triggers
new IDs in all lower perspectives (𝑝 = 2, 𝑝 = 1). Similarly, new
IDs initialized in 𝑝 = 2 are also initialized in 𝑝 = 1.

2. State Updates: State changes in lower perspectives are propagated
in higher ones. For example,‘‘Lost’’ in 𝑝 = 1 implies ‘‘Lost’’ in
𝑝 = 2 and 𝑝 = 3. ‘‘OOCV’’ in 𝑝 = 2 implies ‘‘OOCV’’ in 𝑝 = 3.
Hierarchical state update is excluded for ‘‘New’’ state, which is
treated as ID initialization.

C. Referential Integrity: Once a tool’s track is established in one
perspective, every changes in its state is concurrently reflected across
all other perspectives. HBGM improves consistent track assignment
for unmatched detections and untracked tracks by cross-referencing
of historical data across perspectives. This minimizes ID switches and
facilitates track recovery after occlusion, OOCV or OOB. Also, persistent
trajectory patterns in 𝑝 = 3 is relied on to dynamically adjust thresholds
for the inactive tracks, aiding in robust recovery.
6 
Table 2
Experiment and hyperparameter settings.

Pre-training MOT20, CH Learning rate 3e−4
Pre-processing Crop, Resize Batch size 32
Post-processing NMS Epochs 132
Data augmentation Soft, Negative Optimizer Adam
Detector input shape 542 × 655 Weight decay 1e−5
Re-ID input shape 224 × 224 Model params 123M
Train/val/test splits 10/2/8 videos Lr decay schedule Plateaux
Detector loss func. BCE GPU resources 4 × V100
FSL Re-ID loss BCE Exp. training time 48 h
WSL Re-ID loss Cosine CL Baseline training time 139 h
SSL Re-ID loss Contrastive Ablation training time 120 h

4.4.3. Track recovery
Before initializing new tracks, the algorithm attempts to recover

unmatched detections at time 𝑡 by pairing them with inactive tracks
s at time 𝑡 − 1 using only directional (𝜃) and categorical (𝐶) features.
or each unmatched detection 𝑑′𝑖 ∈ 𝐃𝑡

unmatched and inactive track 𝑑𝑗 ∈
𝑡−1
inactive, a recovery score 𝑆𝑖𝑗 = 𝛼 ⋅ Distdirection(𝜃′𝑖 , 𝜃𝑗 ) + 𝛽 ⋅ 1(𝐶 ′

𝑖 ≠ 𝐶𝑗 ) is
omputed, where Dist𝑑 𝑖𝑟𝑒𝑐 𝑡𝑖𝑜𝑛(𝜃′𝑖 , 𝜃𝑗 ) measures directional similarity and
(𝐶 ′

𝑖 ≠ 𝐶𝑗 ) indicates categorical mismatch. The unmatched detection
′
𝑖 is assigned to the inactive track 𝑑𝑗 with the lowest score, provided
t falls below a predefined threshold 𝜏rec. If no valid match is found, a
ew track ID is initialized. This approach leverages feature consistency
o ensure seamless recovery and reduces the chance of ID switching or
rack loss.

4.4.4. Versatility
Optionally, HBGM can seamlessly integrate other re-identification

eatures, such as the Kalman filter (Kalman, 1960), appearance fea-
ures (Zhang et al., 2021), camera motion compensation (Aharon et al.,

2022), and similarity features (Wang et al., 2023b).
The Kalman filter (Kalman, 1960) enhances the spatial distance met-

ric term (Distspatial) in Eq. (7) by predicting the future positions of track
ounding boxes based on their previous states. The Euclidean distance

between these predicted positions and the current bounding box centers
is then calculated, yielding a more robust spatial cost component. For
appearance and other re-ID features, a corresponding distance cost is
omputed similarly to the direction features (Distdirection). Each re-ID

feature contributes its distance term, which is weighted and added to
the overall distance metric Dist𝑖,𝑗 in Eq. (7) before applying bipartite
matching for track assignment.

Overall, our approach ensures accurate track ID reassignment, mit-
igates identity fragmentation and switches, and provides fine-grained
track details and a rich trajectory history.

4.5. Baseline method

To demonstrate the efficacy of our sophisticated modeling, we
design aknowledge-based (KB) baseline, integrating predefined surgical
states and priors into existing trackers. In the context of laparoscopic
cholecystectomy, approximately 75% of the utilized tools in a proce-
dure exhibit unique categories and a known instance count, applicable
solely within the intraoperative trajectory perspective. The KB base-
line is a straightforward, non-trainable algorithm that incorporates
predefined constraints:

1. Inter-Class Switch Constraint: This utilizes the tool class fea-
tures to disallow identity switch across tool categories with
inter-class bounding box overlap, mostly observed in crowded
scenes and tool occlusion scenarios.

2. Maximum Instance Constraint: To mitigate identity fragmen-
tation, a new track assignment is allowed only if the assigned
trajectories per tool category remain within the allowable max-
imum track instances otherwise the matching threshold is in-
crementally lowered until the candidate tool is matched to a
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Table 3
Surgeon operator prediction based on direction feature embeddings for tool track re-identification — results showing the mean and per-class
average precision (% AP) and embedding temporal consistency (% Accuracy) from time 𝑡 − 𝑘 to 𝑡. (Grasper only).

Model Full supervision Weak supervision Self supervision

MSLH ASRH MSRH mAP 𝑇 𝑡
𝑡−1 𝑇 𝑡

𝑡−5 𝑇 𝑡
𝑡−25 𝑇 𝑡

𝑡0
𝑇 𝑡
𝑡−1 𝑇 𝑡

𝑡−5 𝑇 𝑡
𝑡−25 𝑇 𝑡

𝑡0
𝑇 𝑡
𝑡−1 𝑇 𝑡

𝑡−5 𝑇 𝑡
𝑡−25 𝑇 𝑡

𝑡0

Siamese baseline 92.3 81.5 11.2 61.7 80.0 78.1 74.7 68.1 64.6 62.1 58.2 51.1 62.1 61.0 58.6 47.8
ViT 92.1 77.7 10.2 60.0 78.7 76.7 73.2 67.3 63.0 58.7 53.4 50.3 64.8 62.1 57.7 51.0
CrossViT 91.7 79.6 9.7 60.3 78.5 76.8 73.9 69.8 61.7 60.0 57.5 50.3 61.8 60.7 58.2 47.4
ResNet-18 95.5 87.1 36.6 73.0 81.3 79.2 76.3 72.8 62.1 60.8 57.7 46.5 87.6 86.7 85.4 83.5
Efficientnet-B0 97.5 92.1 32.5 74.0 86.0 84.5 82.7 81.3 64.6 61.5 55.3 42.8 89.7 88.7 87.3 85.1
SMILETrack 89.8 75.7 13.6 59.7 78.5 76.9 73.7 62.3 62.0 60.0 54.5 50.6 61.7 60.4 56.7 46.1
Proposed estimator 97.5 93.0 53.0 81.2 91.0 89.0 88.6 87.4 63.6 61.8 58.3 47.5 91.6 90.7 89.9 88.4
V
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probable existing trajectory. Attempts to extend the application
of this constraint beyond intraoperative tracking, with non-
deterministic instance count, yield no meaningful results.

Aside from the KB baseline, we benchmark over 20 SOTA Deep
earning methodologies on CholecTrack20 dataset for surgical tool
etection, re-identification, and tracking. We adapt some of the SOTA
racking models for MCMOT to suit the surgical context of our study.

5. Experiments

5.1. Implementation details

The proposed model is implemented in PyTorch; implementation
details and hyperparameters are tabulated in Table 2. Depending on
ode availability, baseline models are outsourced from public reposi-
ories or re-implemented. We follow the official splits of the Cholec-
rack20 (Nwoye et al., 2023) dataset to set 10, 2, and 8 videos for

training, validation, and testing respectively.

5.2. Evaluation metrics

We assess the quality of the direction embeddings for track re-
dentification through a consistency accuracy metric: here, a predicted
ool’s direction is correct if the pairwise difference between its embed-
ings at time 𝑡 and 𝑡 − 1 is less than a predefined threshold (usually
= 0.5). We utilize extended time intervals 𝑡−𝑘, comparing embeddings

onsistency up till the past k frames, 𝑘 ∈ [1, 5, 25, start].
We follow the recommended protocol and metrics for Cholec-

rack20 (Nwoye et al., 2023) tool tracking evaluation. Here, we eval-
uate different aspects of the tracking performance using the stan-
dard metrics of higher-order tracking accuracy (HOTA) (Luiten et al.,
2021) (including its constituents: Localization Accuracy, LocA, Detec-
tion Accuracy, DetA, and Association Accuracy, AssA), the CLEAR met-
ics (Bernardin and Stiefelhagen, 2008) of multi-object tracking accu-

racy (MOTA), multi-object tracking precision (MOTP), mostly tracked
(MT), mostly lost (ML), partially tracked (PT), identity switch (IDSW),
track fragmentation (Frag). We also assess the identity F1 score (IDF1)
(Ristani et al., 2016), counting metrics (number of detections #Dets
and identities #IDs), and tracking speed in frame per second (FPS).

6. Results and discussion

First, our base detector, YOLOv7 (Wang et al., 2023a), yields
0.6% 𝐴𝑃0.5 and 56.1% 𝐴𝑃0.5∶0.95 for tool detection at an inference
peed of 20.6 FPS, demonstrating its effectiveness as a detector for our
racking model.

6.1. Results of surgeon operator prediction

We measure the quality of the direction features used for track
re-identification in this task. The proposed Estimator, built on the
EfficientNet-B0 (Tan and Le, 2019) backbone, demonstrates remarkable
performance in surgical tool re-identification across different supervi-
 b
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sion settings as evidenced by the results presented in Table 3. Lever-
aging EfficientNet-B0’s known efficiency and speed, it outperforms
several strong baselines: Siamese baseline, ResNet (He et al., 2016),

iT (Dosovitskiy et al., 2020), CrossViT (Chen et al., 2021), etc., in
capturing essential features for tool re-identification and achieving the
highest mean Average Precision (mAP) of 81.2% under supervised
setting. The inclusion of an attention head enhances its ability to learn
direction features, which is crucial for distinguishing between simi-
lar tool instances, thereby outperforming the baseline EfficientNet-B0
+4.2% mAP). Category-wise, the main surgeon’s right hand (MSRH),

which is the busiest and handles most of the tools, exhibits the greatest
detection difficulty with a 53% AP.

In the self-supervised setting, the proposed Estimator showcases
its versatility by consistently achieving high re-identification accuracy
(≥88%) over various time intervals, including longer time differences up
to the start of the video (e.g., 𝑇 𝑡

𝑡−25 and 𝑇 𝑡
𝑡0

). This demonstrates that the
learned direction-aware features effectively maintain consistency, even
when dealing with challenging long-term tracking scenarios; thanks
to the innovative image preprocessing technique of ‘‘image slicing and
padding ’’ that effectively addresses the visibility issue of tool shafts
in images, enhancing the model’s ability to capture directional infor-
mation. The direction features align closely with the tool operator’s
hand direction from the trocar port, emphasizing their relevance as
robust re-identification features for surgical tool tracking. This analysis
focus on grasper because it is the only tool with multiple instance
when considering intraoperative trajectory. We, however, observe a
slightly inferior performance when models are weakly-supervised on
track ID labels, which is the same supervisory signal for conventional
appearance re-ID models (Zhang et al., 2022; Aharon et al., 2022; Wang
et al., 2023b).

6.2. Ablation study on Re-ID features

The ablation study in Table 4 explores the impact of track re-
identification (Re-ID) features on multi-object tracking, categorizing
them into parametric and non-parametric groups. The non-parametric
features are bounding box location (IoU), low-confidence detection
(Byte) (Zhang et al., 2022), motion prediction using Kalman filter
(KF) (Kalman, 1960), camera-motion compensation (CMC) using BoT-
ORT-ReID (Aharon et al., 2022), and multi-class (MC) identity labels.

The parametric features are appearance features (AF) (Zhang et al.,
2021), similarity features (SF) (Wang et al., 2023b), and the proposed
direction features (DF) — Using the SSL paradigm.

In the non-parametric settings, IoU, BYTE, and KF show incremental
ontributions, with IoU + BYTE + MC achieving the highest HOTA
16.8%). Parametric features like AF, SF, and DF exhibit significant
ndividual capabilities, with DF standing out at 59.5% HOTA. Combi-
ations of AF + SF (32.4%) and AF + DF (62.6%) highlight synergies
etween appearance and directional features. Jointly, IoU + MC +
F excels (60.2%), and further additions (BYTE, AF) refine results,
ulminating in the optimal IoU + AF + SF + DF (61.5%) configuration.
his underscores the nuanced interplay of Re-ID features, with DF
roving effective independently, synergistically with AF and SF, and
eing judiciously combinable for enhanced tracking performance. The
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Table 4
Ablation study on track re-identification features. Using the intraoperative trajectory perspective @ 25 FPS.

Re-ID features Tracking results

IOU BYTE KF CMC MC AF SF DF HOTA↑ MOTA↑ IDF1↑
N

on
-p

ar
am

et
ric

✓ 14.8 57.3 8.7
✓ ✓ 14.7 59.2 8.8
✓ ✓ 13.9 62.2 7.7
✓ ✓ 13.5 60.7 7.3
✓ ✓ 16.6 58.7 9.6
✓ ✓ ✓ 16.8 57.2 9.8
✓ ✓ ✓ ✓ ✓ 13.9 60.5 7.5

Pa
ra

m
et

ric

✓ 19.1 51.3 12.1
✓ 25.5 40.9 19.4

✓ 59.5 72.5 65.4
✓ ✓ 32.4 73.3 31.9
✓ ✓ 62.6 78.8 71.4

✓ ✓ 62.2 77.7 70.9
✓ ✓ ✓ 62.0 78.2 70.3

Jo
in

t

✓ ✓ 22.8 64.8 16.3
✓ ✓ 29.1 49.7 25.0
✓ ✓ 61.3 78.5 67.8
✓ ✓ ✓ 60.2 78.8 66.8
✓ ✓ ✓ ✓ 57.9 75.9 63.6

✓ ✓ ✓ 25.2 66.7 20.7
✓ ✓ ✓ 60.7 78.9 67.6
✓ ✓ ✓ 60.6 77.8 68.0
✓ ✓ ✓ ✓ 61.5 78.5 69.3
✓ ✓ ✓ ✓ ✓ ✓ 57.6 77.3 64.2
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 55.5 65.4 62.1
t
B
f

Table 5
Ablation study on linear association algorithms and approach for combining multiple
re-ID costs.

Algorithm Re-ID costs ensemble Results

BM HBM Min Avg w.Avg Vote w.Vote w.A.V HOTA↑ MOTA↑ IDF1↑

✓ ✓ 12.2 23.1 18.3
✓ ✓ 29.3 58.5 26.8
✓ ✓ 37.4 79.9 39.8
✓ ✓ 36.7 74.9 33.2
✓ ✓ 56.4 80.1 60.0
✓ ✓ 58.0 74.4 63.1
✓ ✓ 61.5 78.5 69.3

study emphasizes the versatility of DF, showing its competence with
asic geometric features and in comprehensive multi-feature scenar-
os, providing insights for real-time applications. Incorporating DF, as
hown through the ablation experiments in Table 4, usually leads to a
ore significant improvement compared to incorporating appearance-

ased features, suggesting that the DF capture more than just visual
nd spatial cues.

6.3. Ablation study on track association algorithm

The comparative analysis between Bipartite Graph Matching (BGM)
and Harmonizing Bipartite Graph Matching (HBGM) in Table 5 reveals
a substantial enhancement with HBGM, exhibiting a noteworthy in-
crease of +17.1% HOTA, +35.4% MOTA, and +8.5% IDF1. Regarding
the use of multiple re-ID features, we explore the location, appearance,
similarity, and direction cost matrices and examine several possible
nsemble approaches. Contrary to the commonly used minimum (Min)
ethod, which tends to bias predictions toward the least cost matrix,

ensemble methods such as averaging (Avg) and voting (Vote) gives
higher scores showcasing the importance of consensus. The introduc-
tion of weighted averages (w.Avg) and weighted voting (w.Vote) results
in a more optimal solution, emphasizing the significance of weight-
ing by the individual strengths of the re-ID features for more robust
tracking. Specifically, averaging minimizes tracking error by reducing
variances leading to improved MOTA score. Voting improves identity
 c
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assignment consensus resulting in higher HOTA and IDF1 scores. Com-
bining the strengths of weighted averaging and voting (w.A.V) balances
and improves the tracking performances.

6.4. Analysis of multi-tool tracking results

We evaluate our method on the CholecTrack20 dataset, and com-
pare it with the state-of-the-art and baseline methods (Table 6). The ex-
isting models, including OCSORT (Maggiolino et al., 2023), TransTrack
(Sun et al., 2020), ByteTrack (Zhang et al., 2022), Bot-SORT (Aharon
et al., 2022), and SMILETrack (Wang et al., 2023b), exhibit varying
degrees of performance across HOTA metrics. While these models
show good detection and localization capabilities with relatively high
DetA, LocA, and MOTP scores, they struggle with tool track identity
association, evident in their low AssA and IDF1 scores. TransTrack is
affected the most with a record low HOTA of 7.4%. ByteTrack, Bot-
SORT, and SMILETrack, although relatively better, still show room
for improvement in HOTA scores ranging from 15.7% to 17.4%. This
illustrates that, given the similarity of most tools especially the ones
from the same category, relying on location and appearance/similarity
features is not sufficient for their correct re-identification across time.

The infusion of surgical knowledge base (KB) into ByteTrack, Bot-
SORT, and SMILETrack (resulting in KB variants) helps the identity
association and brings about significant improvements, particularly in
HOTA scores, ranging from 36.5% to 37.5%. Despite these enhance-
ments, the proposed model, SurgiTrack, surpasses all existing and
KB-infused models, achieving an outstanding HOTA score of 67.3%
in the fully supervised setting. SurgiTrack excels in individual HOTA
metrics, with high DetA (70.8%) and LocA (86.7%), emphasizing its
precision in tool detection and localization. The robust AssA score
of 64.1% underscores SurgiTrack’s proficiency in tool association or
re-identification, thanks to the tool direction features.

Comparatively, the SurgiTrack variants trained in weakly super-
vised (WSL) or self-supervised (SSL) manners also demonstrate strong
performance, with SSL showing a slightly higher AssA of 50.6%. No-
ably, WSL and SSL produce the highest MOTA and lowest ID switches.
eing the more competitive variant, the SSL-based SurgiTrack is pre-
erred in scenarios with limited annotated data. Our analysis also
over the counts of number of detections made, number of unique
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Table 6
Multi-perspective multi-tool tracking results @ 25 FPS.

Model HOTA metrics CLEAR metrics Identity metrics Count metrics Speed

Tracker HOTA↑ DetA↑ LocA↑ AssA↑ MOTA↑ MOTP↑ MT↑ PT↓ ML↓ IDF1↑ IDSW↓ Frag↓ #Dets #IDs FPS↑

Intraoperative trajectory (Groundtruth counts: #Dets = 29 994, #IDs = 70)

OCSORT 14.6 52.7 86.7 4.1 49.2 85.0 24 32 14 9.5 2921 2731 21 936 3336 10.2
FairMOT 5.8 25.8 75.9 1.3 5.0 73.9 3 24 43 4.3 4227 1924 15 252 4456 14.2
TransTrack 7.4 31.5 84.4 1.7 4.2 82.9 9 36 25 4.2 4757 1899 21 640 4079 6.7
ByteTrack 15.8 70.6 85.7 3.6 67.0 84.0 54 12 2 9.5 4648 2429 28 440 5383 16.4
Bot-SORT 17.4 70.7 85.4 4.4 69.6 83.7 58 11 1 10.2 3907 2376 29 302 4501 8.7
SMILETrack 15.9 71.0 85.5 3.7 66.4 83.8 55 13 2 9.2 4968 2369 28 821 5761 11.2

ByteTrack (KB) 36.5 70.1 85.4 19.1 74.5 83.7 58 10 2 33.3 2046 2406 29504 427 16.3
Bot-SORT (KB) 37.4 67.8 85.4 20.7 73.5 83.6 51 12 7 35.5 1638 2199 27 605 315 8.6
SMILETrack (KB) 37.5 65.7 85.6 21.6 71.4 83.8 49 13 8 35.7 1444 2021 26 517 266 11.0

SurgiTrack (FSL) 67.3 70.8 86.7 64.1 76.0 85.0 48 20 2 81.7 1891 2489 27 499 72 15.3
SurgiTrack (WSL) 56.5 71.7 86.5 44.7 78.9 84.8 54 14 2 60.3 1352 2368 28 120 79 15.3
SurgiTrack (SSL) 60.2 71.7 86.6 50.6 78.8 84.8 54 14 2 66.8 1373 2364 28 102 85 15.3

Intracorporeal Trajectory (Groundtruth counts: #Dets = 29994, #IDs = 247)

OCSORT 23.7 51.4 86.5 11.0 47.1 84.8 115 87 45 18.1 2953 2796 21 797 3526 10.2
FairMOT 7.5 19.7 76.1 2.9 5.4 74.0 19 60 168 6.0 2890 1496 11 287 3962 14.2
TransTrack 13.1 31.5 84.4 5.5 4.6 82.9 80 79 88 8.7 4648 1791 21 640 4079 6.7
ByteTrack 24.7 70.6 85.7 8.7 67.4 84.0 176 48 23 16.9 4515 2290 28 440 5383 16.4
Bot-SORT 27.0 70.7 85.4 10.4 70.0 83.7 188 38 21 18.9 3771 2238 29300 4501 8.7
SMILETrack 24.9 66.7 85.5 8.9 66.7 83.8 186 39 22 16.9 4868 2232 28 820 5779 11.2

SurgiTrack (FSL) 55.2 70.8 86.6 43.2 74.8 84.9 170 55 22 61.7 2257 2350 27 499 1092 15.3
SurgiTrack (WSL) 34.6 71.7 86.5 16.8 75.7 84.8 184 41 22 28.9 2300 2229 28 120 2257 15.3
SurgiTrack (SSL) 39.4 71.7 86.5 21.8 77.5 84.8 184 42 21 36.2 1761 2225 28 102 1480 15.3

Visibility trajectory (Groundtruth counts: #Dets = 29 994, #IDs = 916)

SORT 17.4 39.5 85.2 7.8 21.4 83.3 139 399 378 13.4 6619 2138 16 595 8844 19.5
OCSORT 37.0 52.6 86.5 26.2 50.2 84.8 300 371 245 35.9 2317 2260 22 197 3587 10.2
FairMOT 15.3 25.0 75.8 9.5 7.1 73.7 58 218 640 14.4 3140 1574 15 338 4875 14.2
TransTrack 19.2 31.6 84.4 11.8 5.8 82.9 224 280 412 16.1 4273 1403 21 640 4079 6.7
ByteTrack 41.5 70.7 85.7 24.8 69.3 84.0 591 217 108 36.8 3930 1704 28 440 5383 16.4
Bot-SORT 44.7 70.8 85.5 28.7 72.0 83.7 638 184 94 41.4 3183 1638 29300 4505 8.7
SMILETrack 41.3 71.0 85.6 24.4 68.9 83.8 619 192 105 36.5 4227 1641 28 821 5752 11.2

SurgiTrack (FSL) 61.6 70.9 86.6 53.9 75.4 84.9 551 244 121 68.9 2095 1778 27 499 1814 15.3
SurgiTrack (WSL) 58.4 71.7 86.5 47.8 76.8 84.8 601 201 114 62.3 1980 1650 28 120 2678 15.3
SurgiTrack (SSL) 62.8 71.7 86.5 55.3 78.0 84.8 598 202 116 69.4 1546 1648 28 102 2153 15.3
Table 7
Class-wise tracking accuracy and Impact of KB algorithm on state of the art models; [Intraoperative Perspective @ 25 FPS].

Method HOTA MOTA IDF1 Class-wise HOTA

Grasper Bipolar Hook Scissors Clipper Irrigator spec.bag

Without KB
ByteTrack 15.8 67.0 9.5 13.3 18.0 10.5 16.3 18.3 5.7 17.6
Bot-SORT 17.4 69.6 10.2 14.3 19.6 11.4 16.9 19.1 6.4 18.7
SMILEtrack 15.9 66.4 9.2 13.0 18.0 10.4 17.0 18.0 5.9 18.8

With KB
ByteTrack 36.5 74.5 33.3 29.1 24.2 41.3 14.6 22.7 12.5 24.1
Bot-SORT 37.4 73.5 35.5 33.0 28.9 39.8 16.3 27.7 14.6 19.1
SMILEtrack 37.5 71.4 35.7 31.9 30.4 40.8 17.2 29.2 14.5 24.8

Proposed
SurgiTrack (FSL) 67.3 76.0 81.7 60.8 49.3 75.6 26.6 40.9 24.9 38.1
SurgiTrack (WSL) 56.5 78.9 60.3 36.8 47.9 75.0 25.5 39.4 24.0 37.2
SurgiTrack (SSL) 60.2 78.8 66.8 45.8 48.0 75.1 25.5 39.5 24.1 37.2
h
b
h
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identities assigned, and the tracking speed as illustrated in Table 6.
SurgiTrack shows closer to the groundtruth identity counts. These
results demonstrate the effectiveness of our proposed method and
underscore its potential as an advanced solution for multi-tool tracking
in intraoperative scenarios.

6.5. Analysis of multi-perspective tracking results

Looking at the different trajectory perspectives, it is shown in
Table 6 that visibility tracking is the easiest with most of the existing
models showcasing their strengths. This is expected because deep learn-
ing models mostly rely on visual cues, which are captured by camera
in the visibility track scenario. The SSL variant of SurgiTrack record
a landslide top performance scores of 62.8% HOTA, 78.0% MOTA,
and 69.4% IDF1 in visibility tracking. The intracorporeal tracking is
 w

9 
the most challenging since the major factors marking the entry and
exit of the tools from the body are not readily visible. SurgiTrack
owever leverages the proposed direction-aware features, which could
e linked to the surgeon operators hands and its rich fine-grained
istory to estimate the out-of-view and out-of-body status of the tools
nd outperforms all the existing methods with wide margin. The intra-
perative trajectory comes in the middle in terms of difficulty. While
t may be challenging to ascertain the persistence of a trajectory after
e-insertion, the class features are also helpful especially for tools
f different categories. The direction features, however, has a better
endency of estimating the persistent identity of different tools of the
ame class with a +29.8% and +29.9% HOTA higher than similarity
nd appearance features respectively. Remarkably, SurgiTrack jointly
andle the 3 trajectory perspectives unlike the compared methods,
here we train separate model for each perspective.
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Fig. 4. Impact of direction estimation in tracking surgical tools at varying video sampling rates (i.e. 1, 5, 25 frames per seconds FPS). A demonstration is included in the qualitative
video.
Fig. 5. Performance assessment of SurgiTrack amidst surgical visual challenges. Overall performance is tabulated at the top, preceded by quantitative and qualitative results
showcasing tracking performance on specific visual challenge frames. Values in black denote comparable performance (within the average range, ±1.0). Values in green indicate
above-average performance, while red values indicate decreasing performance below average. The breakdown explores distinct tracking metrics focusing on detection, localization,
and association or re-identification. A demo is included in the qualitative results video.
6.6. Analysis of multi-class tracking results

We analyze in Table 7 the tracking performance per tool class and
observe that hook is the best tracked with a HOTA above 75.6% for
the proposed solutions. This class-agnostic tracking result reveals that
regularly used tools such as bipolar and clipper has a medium tracking
accuracy. Rarely used tools (e.g. scissors, irrigator) have the least
scores. The grasper with the most multiple instances is very difficult to
track, similarly the specimen bag is badly tracked due to its constantly
deforming shapes.

Revealed by this analysis, is the impact of the infusing surgical
knowledge in the existing trackers, via the KB baselines. This greatly
improves the tracking of multiple instances tools like grasper and
marginal improves on tracking of single instance tools. Meanwhile,
direction features learning the infusion of tool category and direction
eliminates the need for hard-coded domain knowledge, giving a bet-
ter performance. With superior performance over appearance-based
features in differentiating tools with identical appearances but differ-
ent directions (e.g., graspers), we demonstrate that the learned fea-
tures effectively capture direction-specific semantics, validating their
designation as ‘‘direction’’ features.
10 
6.7. Impact of direction estimation on tracking FPS

We measure the impact of direction estimation on variable video
sampling rates and show that it facilitates track re-identification in the
events of non-overlapping bounding boxes as shown in Fig. 4. Unlike
the compared models which are unable to track the tools at lower
video sampling rates, SurgiTrack maintains a relatively stable tracking
performance sampled across 1, 5, and 25 FPS in all the trajectory
perspectives. This result justifies the re-identification strength of the
proposed direction features and its modeling as a proxy to the tool op-
erators, initially identified as the most promising cue for differentiating
tool instances of the same class.

6.8. Tracking evaluation under surgical visual challenges

We analyze the tool tracking model across various surgical condi-
tions, measured through HOTA metrics in Fig. 5, to uncover insights
into how the model interacts with the complexities of the surgical
environment. The overall HOTA score across all frames for SurgiTrack
(SSL) peaks at 60%, providing a benchmark for comparison. Each visual
condition is scrutinized based on its impact on different aspects of
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Fig. 6. Qualitative result of SurgiTrack in comparison with some existing methods. Bounding box represents tool detection, tool name represents tool classification, number in
block parenthesis represents track identity, and scribble represents tracklet (max. 2 s). Green color indicates correctness, red indicates failure. A demo is included in the qualitative
results video.
tracking, encompassing detection (accuracy, precision, recall), local-
ization accuracy, and re-identification/association (accuracy, precision,
recall).

Under clear scenes, devoid of visual challenges, the model excels
with a substantial increase in performance (+7.0% HOTA, +12.8%
AssA), showcasing efficient tool discernment, precise localization, and
seamless tracking. In scenarios with bleeding, the model demonstrates
resilience, maintaining stable detection and localization, and showing
improved association. This suggests the model’s capability to detect
and locate tools even amidst dynamic visual changes and potential tool
discoloration from blood stains, which may have been treated as a form
of augmentation owing to the abundant bleeding case samples.

Conversely, in crowded scenes, the model faces challenges as nu-
merous tools closely packed together hinder detection accuracy, poten-
tially affecting accurate tracking. Disentangling cluttered tools proves
difficult, potentially affecting accurate identity matching (−4.1% AssA,
−4.4% AssRe). Smoke from coagulation tools decreases the tracking
score due to impaired visibility, resulting in significant missed de-
tections (−9.9% DetA, −11.1% DetRe) and diminishing association
accuracy.

The detection and localization accuracies remains unaffected in the
cases of occlusion likely due to groundtruth bounding boxes including
only the unoccluded tool regions. However, the occluded areas, which
are often the discriminative tooltips, pose challenges for tool classifi-
cation and re-identification tasks (−2.6% AssA, −2.8% AssRe), slightly
11 
impacting tracking performance. Rapid motion-induced blurring intro-
duces uncertainties in tool appearances, restricting the model’s ability
to accurately identify and track instruments, significantly reducing the
HOTA score by −9.8% and impacting all tracking aspects significantly.
Fluids such as blood and bile sometimes fouls the camera lens, impair
visibility, and disrupt consistent identity matching. This negatively
impact tracking in all aspects with a 6.0% reduction in HOTA score.

Limited camera coverage poses a major challenge, causing nu-
merous missed detections, although localizing focused tools remains
precise. Constrained trocar view hampers the model’s ability to track
and manage tool identities, especially complicating the interpretation
of tool direction, as a link to the operating surgeon’s hand. Specular
light reflection emerges as the most impactful visual challenge, leading
to a notable decrease in all tracking aspects, with a huge loss of 13.5%
points in HOTA. The excessive brightness from specular light obscures
visual details, leading to a 16.8% and 9.9% reduction in detection
and association accuracies respectively. Though rare in this dataset,
appearance changes in a single tool can also result from the use of
electrocautery instruments.

This analysis sheds light on how visual challenges during surgery
impact vision tasks such as tool tracking. While some pose significant
hurdles, others inadvertently offer clear visual cues that help track
tools. The insights can inform future enhancements to improve tool
tracking in challenging surgical environment.

Beyond the failure modes due to the surgical visual challenges, we
observe that the model experiences difficulties at the beginning of a
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Fig. 7. Qualitative result of SurgiTrack in comparison with a state of the art method (BotSORT) on tracking across variable frame rates (1FPS, 5FPS and 25FPS). Tick blue
bounding box represents tool detection at current time. dotted gray bounding boxes detection at previous times, tool name represents tool classification, track identity number is
written above each box. A demo is included in the qualitative results video.
video due to limited historical data for the HGBM to rely on, leading to
more frequent identity fragmentations, however, this usually stabilizes
in few seconds.

As a limitation, our approach would not detect a replacement of
a tool by another tool of the same class (and same manufacturer)
if operated via the same trocar port. This is because the proposed
direction feature is designed to uniquely differentiate tools based on
their originating directions — the trocar ports. Additional signals would
be needed to tackle this situation. The use of direction features may
face challenges in certain type of surgery such as endoscopic endonasal
surgery where the nostrils are closely space, or where trocars are closely
spaced with little or no directional difference.

6.9. Qualitative results and demos

In Fig. 6, we present a qualitative analysis of our method along-
side some of the existing approaches, complementing our quantitative
12 
evaluation. Performance-wise, transformer-based solutions (e.g., MOTR,
TrackFormer) struggle with precise tool localization. Location-based
methods (e.g., ByteTrack) mostly encounter identity mismatch issues.
Appearance-based trackers (e.g., Bot-SORT) demonstrate strengths but
sometimes misclassify tools and miss detections, akin to Similarity-
based trackers such as SMILETrack. Our method, SurgiTrack, displays
enhanced resilience in tracking tools jointly across multiple perspec-
tives compared to existing methods. Fig. 7 demonstrates SurgiTrack’s
robustness to variable frame rates (1, 5, 25 fps). This highlights the
impact of direction re-ID features compared to the appearance features
in the state-of-the-art method (BotSORT), which frequently assigns new
track IDs when there is insufficient overlap between bounding boxes.

Video Demonstration: Given that tracking is better appreciated in
motion, as an appendix, we provide a full video demonstrating in
detail the qualitative performance of our method across multiple eval-
uation settings. The demo video is available at https://vimeo.com/
951853260, and as supplementary material.

https://vimeo.com/951853260
https://vimeo.com/951853260
https://vimeo.com/951853260
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7. Conclusion

In this work, we propose, SurgiTrack, a novel deep learning ap-
proach for multi-class multi-tool tracking in surgical videos. Our ap-
roach utilizes an attention-based deep learning model for tool identity
ssociation by learning the tool motion direction which we conceived
s a proxy to linking the tools to the operating surgeons’ hands via the
rocars. We demonstrate that the motion direction features are superior
o location, appearance, and similarity features for the re-identification
f surgical tools given the non-distinctiveness of most tools’ appear-
nce, especially the ones from the same or similar classes. We show that
he direction features can be learnt in 3 different paradigms of full-,
eak-, and self-supervision depending on the availability of training

abels. We also design a harmonizing bipartite matching graph to
nable non-conflicting and synchronized tracking of tools across three
erspectives of intraoperative, intracorporeal, and visibility within the

camera field of view, which represent the various ways of considering
he temporal duration of a tool trajectory. Additionally, we benchmark
everal deep learning methods for tool detection and tracking on the

newly introduced CholecTrack20 dataset and conducted ablation stud-
es on the suitability of existing re-identification features for accurate
ool tracking. Our proposed model emerges as a promising solution
or multi-class multi-tool tracking in surgical procedures, showcasing
daptability across different training paradigms and demonstrating
trong performance in essential tracking metrics. We also evaluate
ur model across different surgical visual challenges such as bleeding,
moke, occlusion, camera fouling, light reflection, etc., and presents
nsightful findings on their impact on visual tracking in surgical videos.
ualitative results also show that our method is effective in handling
hallenging situations compare to the baselines and can effortlessly
rack tools irrespective of the video frame sampling rate.
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