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aCNRS / IN2P3, IJCLab - Université Paris-Saclay, Orsay, 91400, France

Abstract

A recent emittance measurement analysis pointed out the scarce calculation tools to evaluate precisely the method and
error calculations. In this paper, a new analysis technique is proposed and compared on realistic beam simulations
with the already existing linear regression method. This new analysis method is shown to be easier to implement and
provides results with a good level of confidence. Detailed calculations of the errors obtained with an Allison scanner,
as well as studies of the errors due to the analysis method, are presented.

Introduction

In a system subjected to linear forces, the particles oc-
cupy an elliptical space. Under non linear forces such as
space-charge effects or fringe fields for example, the el-
liptical shape of the beam phase space can be deformed
[1]. The transverse emittance of a beam is the region
occupied by its particles in the phase space (x, px) or
(y, py), where x and y are the position in the horizontal
or vertical planes and px and py their associated mo-
mentum. The emittance ε is in fact defined by the mean
particles’ action J of the phase space.

ε = 2πJ (1)

However position momemtum cannot be measured. To
ensure physical meaning and obtain a measurable quan-
tity, the emittance is redefined in the phase spaces (x, x′)
and (y, y′), with x′ = dx

dz and y′ =
dy
dz the position an-

gles, z being the trajectory axis of the beam. For a mea-
surement, the transverse emittance becomes a statistical
quantity, mathematically well defined by its expression
presented in equation 2. All expressions valid for the
phase space (x, x′) are also valid for (y, y′).

εrms =

√
σ2

xσ
2
x′ − σ

2
xx′ (2)

with :

σx =
√
< x2 > − < x >2 =

√
εrmsβ (3)
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σx′ =
√
< x′2 > − < x′ >2 =

√
εrmsγ (4)

σxx′ =

N∑
i

1
N

(xi− < x >)(x′i− < x′ >) = −εrmsα (5)

N is the total number of particles and i ∈ [1,N]. The
parameters α, β and γ are the Twiss parameters, which
give information on the size and orientation of the beam
ellipse in its phase space. With the knowledge of the
emittance, they are keys parameters to characterise a
beam and be able to study transport, optical aberrations
or other applications [1]. For these reasons, emittance
measurements are performed in many accelerator fa-
cilities at low or high energy beams. The real value
of the beam emittance is considered to be the measur-
able quantity εrms as defined by equation 2 which re-
mains valid regardless of the particle distribution. Dif-
ferent types of techniques or detectors have been de-
veloped to succeed at evaluating the beam emittance.
One of these is the three gradients method, using trans-
fer matrix of quadrupoles and drift [2]. By using three
different quadrupole strengths and measuring the beam
size σx on a beam monitor, it is possible to extract the
three differents parameters of the beam matrix defined
in equation 6.(

σ2
x σxx′

σxx′ σ2
x′

)
= εrms

(
β −α
−α γ

)
(6)

Using the same idea, employing three profile moni-
tors could be used instead of varying three times a
quadrupole strength. Dedicated beam diagnostics also
have been developed for beam emittance measurements
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such as the pepper-pot emittancemeter and the Allison
scanner [3, 4]. The first one is able to perform 4D trans-
verse beam emittance measurements when the second
one only performs 2D transverse measurements. 4D
measurements are an advantage if both planes (x, x′) and
(y, y′) are coupled. If not, separate 2D measurements of
each plane are sufficient for a complete characterisation
of the beam. The Allison scanner will be detailed in the
next section. In the case of the pepper-pot emittanceme-
ter, the beam particles pass through a collimator, which
is a plate with small holes of same size located at same
distance from each other so that the beam divergence
can be deduced. The beam is then divided in beam-
lets by the holes and they propagate up to a detector
within a known distance. The detector is in principle
a microchannel plate (MCP) coupled to a CCD camera
and a phosphorus screen. The pixels observed with the
camera or the intensity measured with the MCP allow a
reconstruction of the phase space of the beam. From the
phase space obtained with an emittancemeter, the anal-
ysis is not straightforward and beam parameters are not
easily extracted since background noise is involved dur-
ing the measurement.
A question arose when an Allison scanner was used to
perform emittance measurements as close as possible
to the exit of the source at 30 kV at the research plat-
form ALTO [5]. The detailed results of the measure-
ments performed at ALTO will be published in a fol-
lowing article. However, during the measurement cam-
paign, conservation of the beam emittance was not ob-
served. Different values of the emittance were measured
when various quadrupole strengths were applied. Ac-
cording to Liouville’s theorem, in a Hamiltonian sys-
tem, the volume occupied by all the particles in the
phase space is conserved over the time evolution of the
system. In the case of the rms emittance, which is sen-
sitive to distortions of the particle distribution, its con-
servation remains true if the forces present are purely
linear and respect Hamiltonian dynamics. In the case
of ALTO, however, conservation of the rms emittance
was not verified. Since the beam is only subjected to
the electrostatic forces of the quadrupoles during the
measurement, it was hypothesized that the beam’s shape
might bias the analysis. If the beam is very large such
as illustrated in Figure 1 (a), the obtained value of emit-
tance with the linear regression used in the literature is
bigger than the value given for a smaller beam such as
Figure 1 (b) [3].

It was decided to investigate more closely the anal-
ysis method used to obtain the emittance value and to
estimate its associated error. This is the main purpose
of the present article. After recalling the definition of

Figure 1: Example of two measurement with very different values of
emittance when the only parameter changing is the strength of the
quadrupoles.

emittance and Twiss parameters, as well as the possible
devices or methods for measuring transverse beam emit-
tance, we will take a closer look at the operation of the
Allison scanner. Then, we will compare two methods
of emittance analysis using particle distribution simula-
tions: the first being the linear regression method found
in the literature, and the second being the new method
proposed. Finally, we will present the limitations of the
proposed method.

1. Allison scanner

The description of this type of detector is based on the
Allison scanner built at CNRS/IPHC-Strasbourg labora-
tory but the general principle remains the same [4, 6].
This Allison scanner was designed to measure low-
energy ion beams.

1.1. Hardware

The IPHC Allison scanner has a movable probe with
a thin aperture of a = 0.075 mm, controlled by a servo-
motor, in order to obtain a beamlet at a given position.
The range of the servo-motor limits the range of possi-
ble positions to measure. Inside the probe, two plates
of variable and opposite potential, as shown in Figure
2, will deflect the incoming particles of the beamlet. A
Faraday cup placed just after the rear slits measures the
current induced by the particles passing as a function
of applied voltage. The applied voltage differences be-
tween the two plates ∆V make it possible to obtain the
angular distribution of the beam by equation 7 [6]. U is
the kinetic energy of the particles and the other variables
are distances represented in Figure 2.

x′ =
∆V
4Ug

Le f f + 2δ2

δ1 + δ2 + Le f f
(7)
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Figure 2: Allison scanner schematic view. A possible curved trajec-
tory of a particle is shown in blue. The beam axis is in the z direction.
RR : electron repeller, FC : Faraday cup

The design of the probe allows the access to the po-
sition and angular distributions of the beam, and each
couple (x, x′) has an associated measured intensity I.
This applies not only to the IPHC’s emittancemeter but
to all Allison scanners.

1.2. Electronics
The deflecting plate potential of the IPHC Allison

scanner is obtained with a ±700 V DC bipolar power
amplifier. The range of polarization gives a limitation
on the possible divergence measurement of the beam.
An electron repeller of −1000 V is also coupled to
the Faraday cup to ensure that only the desired ions
are measured. The beam particles induce a current on
the Faraday cup, and the electronic signal undergoes
transformation. The signal first passes through a cur-
rent/voltage converter [7]. With this element, an offset
can be controlled before the conversion and an ampli-
fication of the voltage signal is possible by applying
a gain up to 1011. Finally the signal goes through an
Analog to Digital Converter coding on 16-bits. The nu-
merical signal is then exploited using a control system
based on LabVIEW [8]. In general cases, the polariza-
tion ranges of the plates or the accuracy of the electrical
devices will depend on the emittance range to be mea-
sured and the desired accuracy of the emittancemeter.

1.3. Software and control
Allison scanners require to monitor various param-

eters, including the scanning range in position, diver-
gence, and measurement duration. The LabVIEW inter-
face allows users to control these parameters but also to
display the acquisition progress during a measurement,
as shown in Figure 3. One key adjustable parameter is
the measurement step, which users can set within the
limits defined by the servo-motor for position and the
power supplies for angle. It will affect the precision and
the time of the measurement. Other significant param-
eters, not shown on Figure 3, are the HT-wait and the

orientation of the emittancemeter. The HT-wait defines
a time to wait after applying a voltage on the deflection
plates and before the start of the signal recording. Suf-
ficient time is required for the electronic stabilisation in
order to not affect the angle measurement by amplifying
the background noise. Defining the correct orientation
of the Allison scanner on the beam line is important in
order to have the appropriate x and x′ axis during a mea-
surement. One final major parameter that the user needs
to define is the reference position to determine the beam
center.

Figure 3: LabVIEW panel with an example of an emittance measure-
ment with some of its parameters. The yellow area on the left indicates
the parameters accessible to the user (beam energy, position, voltage
steps). The right part of the figure gives information on the location
of the saved files and the time of the measurement.

The data from a measurement are saved to file in the
ASCII format presented in Figure 4. The file header
summarizes the measurement steps, including the mini-
mum and maximum limits and the number of measure-
ment points for both position and angle, along with the
beam energy. Each position and angle are associated to
an index value. At the end of measurement, the (x, x′)
data of the 2D histogram are written in columns. The
first column is the time index, which is not used, the
second and third columns give the position and angle
indices and the fourth column represents the measured
intensity.

Figure 4: Example of ASCII file produced after an emittance mea-
surement.
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1.4. Calculation of emittance error due to Allison scan-
ner

Error calculations for beam emittance measurements
obtained in the form of a 2D histogram have already
been developed. However, these calculations were
performed under the assumption of a centered beam,
which uses simplified expressions of equations 3 and
4 [9]. The following demonstration uses the most
general expressions, presented in equations 3 and 4.
This means that the calculations can be used for any
emittance measurement where data on position x, angle
x′ and an intensity I are recorded. As a reminder, all
expressions valid for the (x, x’) plane are also true for
the (y, y’) plane.
With data from an Allison scanner, equations 3 to 5
cannot be directly applied since no information on
the number of particles per couple (x, x′) is available,
only the intensity I is measured and transformed into a
voltage. Therefore, these equations need to be adapted.
Using the weighted average w(x) defined in equation
8, new expressions for σx, σx′ and σxx′ are obtained in
equation 9 to 11.

w(x) =

∑
i xiIi∑

i Ii
(8)

σx =
√

w(x2) − w(x)2 (9)

σx′ =
√

w(x′2) − w(x′)2 (10)

σxx′ = w([x − w(x)][x′ − w(x′)]) (11)

In general, for a function f with two variables a and
b with known associated errors δa and δb, error δ f is
calculated by the equation 12 [10].

δ f (a, b) =

√(
∂ f
∂a

)2
δa2 +

(
∂ f
∂b

)2
δb2 (12)

Equation 2 and equations 8 to 11 depend on x, x’ and I
whose errors δx, δx′ and δI are known. The following
equation can be thus obtained for the weighted average:.

δw(x) =

√∑
i

(
∂w(x)
∂xi

)2
δx2 +

∑
i

(
∂w(x)
∂Ii

)2
δI2 (13)

with
∂w(x)
∂xi

=
Ii∑
i Ii

(14)

and
∀k ∈ [1,N],

∂w(x)
∂Ii

=
∑
k,i

(xi − xk)Ik(∑
i Ii

)2 (15)

The sums are calculated over all position and divergence
pairs. Errors δx, δx′ and δI are directly linked to the

conception of the Allison scanner and associated elec-
tronics chain up to the ADC. The motor precision and
the aperture size of the probe will set the value of δx.
The aperture size also has an impact on δx′ as does the
precision of the power supply to the plates curving the
trajectory of particles inside the probe [4]. The preci-
sion of the ADC will give the error for δI.
Knowing the expression for the error of the weighted
mean, we can then calculate the error for σx and σ′x.

δσx =

√( 1
2σx

)2
δw2(x2) +

(w(x)
σx

)2
δw2(x) (16)

where

δw(x2) =

√∑
i

(
∂w(x2)
∂xi

)2
δx2 +

∑
i

(
∂w(x2)
∂Ii

)2
δI2

(17)
with

∂w(x2)
∂xi

=
2xiIi∑

i Ii
(18)

and
∂w(x2)
∂Ii

=
∑
k,i

(x2
i − x2

k)Ik(∑
i Ii

)2 (19)

For δσx′ , x can be replaced by x′ in the above equations.
The error δσxx′ is calculated in the following way :

δσxx′ =
√

Dxδx2 + Dx′δx′2 + DIδI2 (20)

with

Dx =
∑

i

(
∂σxx′

∂xi

)2
(21)

Dx′ =
∑

i

(
∂σxx′

∂x′i

)2
(22)

DI =
∑

i

(
∂σxx′

∂Ii

)2
(23)

where

∂σxx′

∂xi
=

Ii∑
i Ii

(x′i − w(x′)) − Ii

∑
k

Ik(∑
i Ii

)2 (x′k − w(x′))

(24)
and

∂σxx′

∂x′i
=

Ii∑
i Ii

(xi − w(x)) − Ii

∑
k

Ik(∑
i Ii

)2 (xk − w(x))

(25)
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then

∂σxx′

∂Ii
=

[xi − w(x)][x′i − w(x′)]∑
i Ii

−
1(∑
i Ii

)2

∑
k

Ik(xk − w(x))(x′k − w(x′))

−
∑
k,i

(xi − xk)Ik(∑
i Ii

)3

∑
j

I j(x′j − w(x′))

−
∑
k,i

(x′i − x′k)Ik(∑
i Ii

)3

∑
j

I j(x j − w(x))

(26)

Finally, by applying equation 12 for evaluating the gen-
eral emittance error due to the Allison scanner δεA, the
following expression is obtained :

δεA =

√(σxσ
2
x′

ε

)2
δσ2

x +

(σx′σ2
x

ε

)2
δσ2

x′ +

(
σxx′

ε

)2
δσ2

xx′

(27)
This error can be propagated to additionally obtain

the error on the Twiss parameters.

δβA =

√(
∂β

∂σx

)2
δσ2

x +

(
∂β

∂εrms

)2
δε2

A

=

√(2σx

εrms

)2
δσ2

x +

( σ2
x

ε2
rms

)2
δε2

rms

(28)

δαA =

√(
∂α

∂σxx′

)2
δσ2

xx′ +

(
∂α

∂εrms

)2
δε2

A

=

√( 1
εrms

)2
δσ2

xx′ +

(
σxx′

ε2
rms

)2
δε2

A

(29)

δγA =

√(
∂γ

∂σx′

)2
δσ2

x′ +

(
∂γ

∂εrms

)2
δε2

A

=

√(2σx′

εrms

)2
δσ2

x′ +

( σ2
x′

ε2
rms

)2
δε2

A

(30)

The errors introduced by the analysis method are also
required to fully assess the error on the emittance value
and the quality of the measurement. This will be cov-
ered in a following section.

2. Analysis method

In the literature there are several ways to exploit the
data obtained with an Allison scanner [3, 11, 12, 13, 14,
15, 16, 17]. All techniques have in common the use
of equation 2, but the difficulty lies in dissociating the

background noise from the true beam signal. The ques-
tion is then how to eliminate the noise with minimum
contribution on the beam signal and without distorting
the result of the emittance analysis, or how to evalu-
ate the corresponding error δε correctly. One way is to
apply a threshold on the measured signal [11]. The ma-
jority of publications do not detail on how the emittance
value is obtained [12]. There are also more sophisti-
cated methods that have been developed such as a su-
perposition of gaussian fit and/or elliptical fits [13] or
a linear regression on the value of emittance as a func-
tion of the threshold applied on the signal [3, 13, 14].
However, these methods often lack sufficient informa-
tion for reproducibility, may not report errors associ-
ated with the final result [15], or do not provide enough
explanation on the results [16]. Additionally, none of
these methods attempt to evaluate the Twiss parameters
[17], which are crucial since the emittance alone does
not fully characterise a beam.
In this section, we will study in more details the method
using a linear fit which is the most commonly used at
the moment based on previous references. We will also
propose a new method. Both techniques will be com-
pared with simulated particle distributions in order to
find the best solution for our purpose.

2.1. Linear regression method
This method is based on gradually removing a por-

tion of the signal and calculating the emittance for each
threshold. The threshold n is a percentage of the maxi-
mum measured intensity Imax. The new intensity for all
couples (x, x′) is calculated with equation 31. We de-
fine Imes as the initial measured signal with no threshold
applied and Imax is the maximum value of all the values
of Imes for each couple (x, x′). The value Imax is never
modified in the subsequent steps

I j = Imes −
n

100
Imax (31)

with n ∈ [0; 100] and j ∈ [1,Nbin], where Nbin is the
number of bins of the 2D histogram. Before using
I j for the calculation of emittance and its associated
error, values I j are normalised between [0, 1] such as∑Nbin

1 I j = 1. After each subtraction, negative values
are all set to 0 as to not to bias calculations. Since
there was no real explanation as to when to stop the
subtraction procedure in the previous references, it
was decided to stop when εrms − δεA ≤ 0 because a
null or negative emittance has no physical meaning.
The characteristic plot of emittance as a function of n
obtained with this method is presented in Figure 5. It
is observed that after a sharp decrease of the value of
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emittance for the first few percent, due to the removal of
background noise, the emittance decreases more slowly
and with a linear tendency. This abrupt change of slope
doesn’t necessarily happen in the first few percent, it
depends on the signal-to-noise ratio. In the exemple of
Figure 5, the signal-to-noise ratio was very good. The

Figure 5: Example of calculated emittance as function of the num-
ber of removed percent of Imax for an emittance scan with an Allison
emittancemeter.

hypothesis of this method is that if a linear regression
is applied to the linear trend and extrapolated to zero,
then εrms = εrms(0). At zero, since no bias is introduced
to the signal due to the analysis, εrms(0) represent the
true value free from background noise.
A new question arises if a zoom is applied to the plot of
Figure 5, which is shown in Figure 6. Where should the
linear regression start ? Since there is no real answer in
the literature, it was decided to look for the maximum
slopes in the upper and lower areas defined by the
emittance errors. To achieve this, linear regressions
were initiated from the last calculated emittance value,
εrms(n). Points are added one by one. If the line exceeds
the error margin defined by εrms(n) ± δεA(n), the point
is rejected, and the previous point is designated as the
starting point for the regression. Both the minimum and
maximum error limits are tested to obtain the minimum
and maximum regressions shown on Figure 6 as yellow
and red straight lines.

To obtain the parameters of the linear regression
f (x) = ax + b which takes into account the errors
calculated for each value of emittance, the function
curve fit() from the scipy library of Python is used
[18, 19]. Finally, the result is εrms = b ± δb, where b
and δb are directly given by the function curve fit().
Another difficulty arises when in some cases, another

Figure 6: Zoom of Figure 5 in the vertical coordinate with additional
linear regression.The red line represents the maximum slope that ends
at the last point minus its error. The yellow line is the maximum slope
that ends at the last point plus its error. The green line is the linear
regression between the last and and start points given by the red and
yellow lines. The grey are is the region of emittance values within
the errors. The pink dotted line shows the starting point of the linear
regression defined by the maximum and minimum linear regression.

sharp change of slope was observed for very high
threshold values. This is because too much signal was
removed and very few values of I j are not equal to 0. It
is unclear whether an emittance can still be accurately
assessed with so few data points. Consequently, it
has been decided to stop the regression earlier. This
will be illustrated in subsection 2.3. In addition to the
first stopping condition εrms ± δεA ≤ 0, a condition
on the fluctuation of the slope is added. For this, the
first derivative of εrms, σx, σx′ and σxx′ as a function
of the threshold is calculated. In Figure 7, we can
observe that after the red dotted line, which marks the
stopping point, all the derivatives begin to fluctuate
more significantly than before the red line. These
fluctuations suggest that the last few signal points must
be rejected from the linear regression. Starting from
the initial point of the linear regression, an average of
the derivatives of σx, σx′ and σxx′ are calculated and
updated with each new point added. These averages are
noted respectively Dσx , Dσx′ and Dσxx′ . Each derivative
is compared to the average; if the value of two of
the three derivatives is greater than the average by a
factor 1.4, the corresponding point determines the last
emittance value used for the linear regression. Different
factors between 1 and 2 have been tested and the factor
1.4 is the one that gives the best results, indicating
that the value of εrms is accurate within the margin of
error δεA, and corresponds to the smallest value of δεA
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Figure 7: First derivative expressed in percent of εrms, σx, σx′ and
σxx′ as a function of the threshold. The red dotted line shows the
stopping point. Between 0 and 20, the large variation is due to the
subtraction of a major part of the background noise.

observed. It is not necessary to impose a condition on
the derivative of the emittance, as it depends on the
other three.

Finally, the exact same method of linear regression,
with or without stopping condition, can be applied for
σx, σx′ and σxx′ to extract the Twiss parameters.

2.2. The proposed new method

When applying a threshold on the total measured sig-
nal Itot =

∑Nbin
j=1 I j and not on the maximum signal Imax

and calculating the emittance, it was noticed that the
sharp change of slope always happened at around the
same value of emittance independently of the signal-
to-noise ratio (3 π.mm.mrad in the exemple given in
Figure 8). This was verified with different simulated
distributions of particles where the emittance is pre-
cisely known. The intensity for the j-th bin of the 2D-
histogram is calculated with equation 32. Nbin is the
total number of bins not equal to 0. It changes each
time a new threshold is applied, since the newly calcu-
lated values of I j which fall below 0 are always set to 0,
as previously done. The same method described in sec-
tion 1.4 is applied to calculate the emittance and Twiss
parameters and their associated error.

I j = Imes − Itot
n

100Nbin
(32)

The second derivative of the εrms = f (threshold) profile
displayed in Figure 8 shows systematically a maximum
for a given threshold depending on the background level

Figure 8: Calculated emittance as a function of threshold on Itot . Each
curve with a different color has a different signal-to-noise ratio ranging
from 32 % to 57 %. The red line shows the real value of the emittance.

(see fig. 9). For a same particle distribution, these max-
ima of εrms = f (threshold) occur systematically at the
same emittance value (red line on fig. 8). The addi-
tional studies in this paper have been carried out based
on this observation. Finding the maximum of the sec-
ond derivative give the position of the threshold which
correspond to the right value of the emittance and as-
sociated errors. The same methodology is used for the
Twiss parameters.

Figure 9: In red is represented the curve of the second derivative of
the calculated emittance as a function of the threshold on Itot , and the
black curve correponds to the calculated emittance as a function of
the threshold on Itot . The blue dotted line shows the correspondance
between the maximum of the second derivative and the real value of
the emittance.

2.3. Simulation and Comparison
The two analysis methods are studied and tested us-

ing simulated particle distributions, for which the emit-
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tance and Twiss parameters are known. Consequently,
it is possible to evaluated the strength and limits of each
method and determine the best technique to use on real
data.

2.3.1. Generated particles distributions
To generate particle distributions, the TraceWin code

developed by CEA IRFU is used [20]. Various particle
distributions of different shape, size and emittance are
generated with 109 particles uniformly filling the 4D
hyper-ellipsoid in phase-space. Two of them were de-
formed to simulate higher order effects. Two examples
are shown in Figure 10. All the relevant information on

Figure 10: Exemples of generated distributions.

the generated distributions are listed in Table 1. These

Id εrms β α γ

1 1.0 2.0 -0.5 0.6
2 1.0 3.0 -7.0 16.7
3 1.0 5.0 -2.0 1.0
4 1.0 15.0 -15.0 15.0
5 3.0 5.0 -2.0 1.0
6 3.0 15.0 -15.0 15.0
7 3.0 50.0 -30.0 18.0
8 10.0 2.0 -0.5 0.6
9 10.0 5.0 -2.0 1.0
10 80.0 55.0 -0.5 0.0
11 4.2 4.7 -7.8 13.2
12 4.2 33.6 -4.9 1.2

Table 1: Emittance and Twiss parameters of the different generated
distributions denoted by a number Id. Id 11 and 12 are distributions
with higher-order effects.

distributions are then converted to histograms in order
to reproduce the typical measured spectrum. To repro-
duce as much as possible the measurements done at the
ALTO facility with the Allison scanner, a bin size of 0.5
mm in position and 0.3 mrad was chosen. The num-
ber of particles per bin Ipart j , where j corresponds to the
bin number, is converted to an intensity value close to
the one of a measured signal (see eq. 33). The factor
b can be adjusted to modify the signal-to-noise ratio. It

was set arbitrarily to 0.9 and remained unchanged while
conducting the tests in this section. Max(Ipart j ) corre-
sponds to the maximal value of Ipart j in the histogram.

Ipart j =
b · Ipart j

Max(Ipart j )
(33)

To simulate a measurement with an Allison scanner, it
is also necessary to add a background noise Inoise to the
histogram using equation 34. A gaussian background
noise with µ = 0.02 and σ = 0.01 was simulated with
parameters taken from a background measurement with
the Allison scanner.

Ipart j = Ipart j + Inoise j (34)

Following this last modification, the histogram is now
as close as possible to a measurement and the different
analysis methods can be applied. The linear regression
has been tested with and without the stopping condition
presented in subsection 2.1.

2.3.2. Results
Tables 2 and 3 present the compiled results obtained

with the three different methods presented in subsection
2.1 and 2.2. Method 1 uses the linear regression with
only εrms ± δεA ≤ 0 as a stopping condition. Method
2 is the same with the additional stopping condition on
the average of the first derivative. Method 3 is based on
using the maximum of the second derivative (new pro-
posed technique). All emittance and Twiss parameters
results are compiled in Table 2 and 3.

The most noticeable result is that if the distribution
shape is very stretched (Ids 2, 4, 6, 7, 11 and 12), the er-
rors are very large with the three methods. For Id 4, the
results obtained with the linear regression are not even
exploitable. Indeed, from Figure 11, it is observable
that there are too few points to apply a correct linear re-
gression. No reliable region where the emittance varies
linearly with the threshold has been reached. In case of
Id 1, 3 and 8, all three methods give satisfying results,
though the value of the emittance is slightly overesti-
mated with the linear regression methods. Another out-
come of this study is that the linear regression method
has more difficulties to evaluate the correct Twiss pa-
rameters (see Table 2 and 3). We can’t use the error
calculated on the emittance since the value is extrapo-
lated. However, the errors of the Twiss parameters are
directly linked to the emittance error. This is not the
case when the second derivative method is used. An-
other difficulty is noticed with the linear regression in
the cases of Id 9 and 10. There is more than one lin-
ear slope where the regression could be applied for a
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Id Method 1 Method 2 Method 3

1

εrms 1.2 ± 0.0 1.2 ± 0.0 1.0 ± 0.0
β 2.6 ± 0.4 2.1 ± 0.1 2.0 ± 0.1
α −0.4 ± 0.0 −0.5 ± 0.0 −0.5 ± 0.0
γ 0.6 ± 0.2 0.7 ± 0.1 0.6 ± 0.0

2

εrms 1.2 ± 0.7 1.2 ± 0.8 1.1 ± 0.4
β 3.5 ± 0.6 3.4 ± 0.7 2.6 ± 0.8
α −6.6 ± 0.6 −6.6 ± 0.9 −6.1 ± 1.9
γ 18.7 ± 2.1 18.5 ± 2.9 14.5 ± 4.3

3

εrms 1.1 ± 0.0 1.1 ± 0.2 1.0 ± 0.1
β 6.1 ± 0.5 5.0 ± 0.7 4.9 ± 0.4
α −2.1 ± 0.0 −1.9 ± 0.2 −2.0 ± 0.1
γ 1.2 ± 0.2 1.0 ± 0.4 1.0 ± 0.1

4

εrms 15.0 ± 6.3 20.3 ± 3.2 1.1 ± 0.7
β 1.4 ± 0.3 1.2 ± 0.2 12.8 ± 6.2
α −1.0 ± 0.1 −0.8 ± 0.0 −12.8 ± 6.2
γ 1.1 ± 0.3 1.0 ± 0.2 12.8 ± 6.2

5

εrms 3.4 ± 0.1 3.5 ± 0.1 3.0 ± 0.1
β 5.7 ± 0.2 5.5 ± 0.2 4.9 ± 0.1
α −1.9 ± 0.0 −1.9 ± 0.0 −2.0 ± 0.0
γ 1.1 ± 0.1 1.1 ± 0.1 1.0 ± 0.0

6

εrms 3.3 ± 5.9 3.3 ± 5.9 3.0 ± 1.0
β 16.4 ± 1.3 16.1 ± 5.4 14.3 ± 4.6
α −14.7 ± 1.5 −14.5 ± 4.8 −14.4 ± 4.6
γ 16.6 ± 1.9 16.3 ± 5.4 14.4 ± 4.6

Table 2: Emittance and Twiss parameters obtained for the different
distributions presented in Table 1 from Id 1 to 6, using the methods
presented in section 2.1 and 2.2.

same distribution (see fig. 12). The emittance value
can be overestimated, as seen on the left of Figure 12,
or underestimated, as shown on the right. This demon-
strates that neither slope is able to accurately evaluate
the correct emittance value. This is not due to the sim-
ulated distribution, as this issue was also encountered
with real measurements. Finally, one last result con-
cerns the distributions with higher-order effects (Id 11
and 12). Id 12 has more deformation because of more
higher-order effects [21]. Even though the new method
succeeds in evaluating the beam parameters, it has diffi-
culties to give a good estimation of the Twiss parameter
β for Id 12, but it is also more difficult to draw an ellipse
on very deformed beam.

To conclude, the new method is more efficient to eval-
uate both the emittance and the Twiss parameters. The
errors are also more reliable, as they are directly derived
from the calculations. The new proposed method is eas-
ier to implement and also faster. However, caution is
required. These tests were conducted under good con-
ditions, with appropriated binning, a correct signal-to-

Id Method 1 Method 2 Method 3

7

εrms 44.0 ± 18.1 44.4 ± 27.7 3.1 ± 2.8
β 4.7 ± 0.6 4.7 ± 0.4 46.1 ± 20.7
α −2.4 ± 0.3 −2.4 ± 0.2 −27.6 ± 12.4
γ 1.6 ± 0.2 1.6 ± 0.1 16.6 ± 7.5

8

εrms 8.9 ± 0.1 11.5 ± 0.2 10.0 ± 0.0
β 3.8 ± 0.3 2.6 ± 0.1 2.0 ± 0.0
α −0.4 ± 0.0 −0.5 ± 0.0 −0.5 ± 0.0
γ 0.6 ± 0.1 0.9 ± 0.0 0.6 ± 0.0

9

εrms 7.8 ± 0.3 7.5 ± 0.4 10.0 ± 0.1
β 10.9 ± 0.5 11.3 ± 0.6 5.0 ± 0.0
α −2.1 ± 0.0 −2.3 ± 0.0 −2.0 ± 0.0
γ 1.8 ± 0.2 1.7 ± 0.2 1.0 ± 0.0

10

εrms 65.1 ± 0.4 98.4 ± 0.7 79.7 ± 0.1
β 83.3 ± 2.7 60.9 ± 2.7 54.6 ± 0.1
α −0.5 ± 0.0 −0.5 ± 0.0 −0.5 ± 0.0
γ 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

11

εrms 4.7 ± 3.9 4.1 ± 5.2 4.3 ± 0.7
β 4.9 ± 0.4 5.4 ± 1.2 4.6 ± 0.8
α −7.6 ± 0.5 −8.4 ± 1.7 −7.6 ± 2.1
γ 13.9 ± 1.1 15.4 ± 3.2 12.6 ± 2.1

12

εrms 9.2 ± 6.2 11.9 ± 5.5 3.7 ± 0.6
β 14.9 ± 1.5 11.3 ± 1.3 22.6 ± 3.0
α −2.9 ± 0.3 −2.2 ± 0.2 −5.3 ± 0.7
γ 0.7 ± 0.2 0.6 ± 0.1 1.3 ± 0.2

Table 3: Emittance and Twiss parameters obtained for the different
distributions presented in Table 1 from Id 7 to 12, using the methods
presented in section 2.1 and 2.2.

noise ratio below 40% and threshold steps of 1%. It is
essential to investigate whether these parameters can in-
fluence the obtained beam parameters and to determine
if additional sources of error need to be considered.

3. Evaluation of additional errors

In this section, the step contribution during a mea-
surement, the threshold step and the signal-to-noise ra-
tio set up in the previous section are all tested separately
with the new proposed method. Each of them are sup-
posed to be independent. If necessary they can be in-
cluded with δεA to give the full error on the emittance
δεrms in equation 35. δεbin represents the error intro-
duced by the step contribution. δεt accounts for errors
associated with the threshold step and δεS N reflects the
error related to the signal-to-noise ratio.

δεrms =

√
δε2

A + δε2
bin + δε2

t + δε2
S N

(35)
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Figure 11: Emittance calculation as a function of applied threshold.
The green line is the linear regression giving the value of emiitance
using Method 2. The red and yellow lines are obtained with the linear
regression applying plus or minus its error.

Figure 12: Emittance calculation as a function of the threshold applied
with linear regression in case of Id 10. The left one was applied with
stopping condition on the change of slope, and on the right without
this stopping condition.

3.1. Measurement steps

The measurement duration with an Allison scanner is
directly linked to the measurement step. It can be very
long, up to a few hours, as the emittancemeter takes the
same amount of time to measure each point. Therefore,
the smaller the steps, the longer the measurement. Over
time, experimental difficulties may arise, such as beam
instability, which can affect the measurement. Users
must always try to find the best compromise between
the time and the precision of the measurement. It is very
important to evaluate the impact of the step in position
and divergence on the determination of the emittance
and the Twiss parameters.
The influence of the measurement step is independent
of the analysis method. To evaluate it, all distributions
presented in section 2.3.1 are converted to many differ-
ent histograms with binx length ∈ [0.25; 5] mm and a
binx′ length ∈ [0.1; 3] mrad. In this instance, no simu-
lated background noise is added so as to have no other
contribution on the emittance calculation than the bin-
ning. After analyzing a distribution as a function of the
binning in position and divergence, we can obtain a rep-
resentation similar to what is shown in Figure 13. In all
cases, it is immediately observed that the binning is size

dependent. The smaller σx and σx′ are, the smaller the
binning must be to have a precise evaluation of εrms. It
is very difficult to evaluate δεbin. It has been decided
to define a region where the emittance error will be
δεbin ≤ 10%. In real measurement conditions, it is nec-

Figure 13: Example of emittance calculation in function of the bin-
ning in position and divergence for the case of Id 1 (see Table 1). The
size and color of dots depends on the range of emittance value. Pink
and grenat dots identify binning in position and divergence where the
emittance does not exceed a 10% discrepancy from the theoretical
emittance. The red rectangle shows the 10% fluctuation area, defined
to ensure that the error cannot be increased.

essary to have an order of magnitude of the real beam
size in order to set the good scanning settings. For this,
a first quick measurement can be done and a fast evalu-
ation of σx, σx′ and εrms is possible. From a complete
analysis of the simulated distribution (see Table 1), em-
pirical formulae are derived. These formulae estimate
the upper limit of measurement steps in order to remain
within the fluctuation area of 10% (see eq. 36 and 37).

binx =
0.8 · εrmse

0.6 · σx′e
(36)

binx′ =
1.4 · εrmse

2.0 · σxe

(37)

εrmse , σx′e and σxe would be the parameters of the beam
estimated with a quick first measurement. Respecting
this, δεbin = 0.1εrms.

3.2. Threshold step
The threshold step determines the percentage of the

total signal removed between each emittance evaluation
within the same analysis. To test the robustness of the
method, a step between 1 and 5% is studied to check if
the maximum of the second derivative is shifting. From
Figure 14, for very stretched distributions (Id 5 and 6),

10



it is observed that the threshold step doesn’t have a no-
ticeable impact since the error δεA due to the Allison
scanner is already very large. However for bigger dis-
tributions (Id 8 and 10) where δεA becomes negligible,
the threshold step effect is more visible. For every dis-

Figure 14: Emittance value and its associated error as a function of the
threshold step for different phase-space distributions (see Table 1).

tribution (see Table 1), we can notice that a step of 1%
is the best. But a larger step can widely improve the
time calculation and a 5% step is not necessarily worse
than a step of 2 or 3%. The threshold step doesn’t in-
duce a modification higher than 5% on the results of the
emittance calculations. It can be considered that the er-
ror due to the threshold step is δεt ≤ 5%. We can write
δεt = 0.05 · εrms.

3.3. Signal-to-noise ratio
As shown in Figure 8, sharp change in slope appears

when calculating the emittance as a function of the
threshold on Itot. In this case, the true emittance value
lies within the range defined by the emittance value and
its associated error bars, even when the signal-to-noise
ratio is degraded. The goal here is to determine whether
it is true for every threshold or if an additional error
term δεS N is needed. Each distribution was tested by
varying the value of b = 0.9 in equation 33. Figure 15
displays the results for beam distributions with very
different characteristics. For very stretched distribu-
tions, the error δεA dominates every other error. In any
other case, a very good signal-to-noise ratio allows
the best evaluation of the emittance. The emittance
estimation with this method is good enough for a
threshold value corresponding to the maximum second
derivative lower than 70-75% where δεS N ≤ 10%. In
the end, δεS N = 0.1εrms.

Finally, equation 38 presents the general expression
of the error on the emittance. In this equation a mea-
surement step small enough that can be evaluated with

Figure 15: Emittance value and its associated error as a function of
the threshold value corresponding to the maximum second derivative
for different phase space distributions (see Table 1).

equations 36 and 37 is used. Threshold step has to be
lower than 5%. The signal to noise ratio must not ex-
ceed the 75% threshold.

δεrms =

√
δε2

A + (0.1 · εrms)2 + (0.05 · εrms)2 + (0.1 · εrms)2

(38)

The contribution of the error from the step measure-
ment, the threshold step and the signal to noise ratio is
the same for the Twiss parameters α, β and γ.

δβ =

√
δβ2

A + (0.1 · β)2 + (0.05 · β)2 + (0.1 · β)2 (39)

δα =

√
δα2

A + (0.1 · α)2 + (0.05 · α)2 + (0.1 · α)2 (40)

δγ =

√
δγ2

A + (0.1 · γ)2 + (0.05 · γ)2 + (0.1 · γ)2 (41)

Conclusion

In this paper, we present a new analysis method to
extract beam parameters with an Allison scanner. This
new method was tested with known phase-space distri-
butions. Using this method, we obtained the emittance
and Twiss parameters for elliptical beams and beams
with higher-order effects. Detailed calculations of the
errors due to the Allison scanner were presented. We
also added internal systematic errors due to the analysis
method and measurement steps. This article provides
all the tools to analyse similar data in other experiments.
However, users must be careful with the quality of their
measurement and adapt rigorously the possible errors.
Finally, even if this method was developed for the anal-
ysis of an Allison scanner measurement, it can be used
for any measurement that gives the information for re-
constructing the phase space of a beam in a histogram,
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such as a pepper-pot emittancemeter. The same method-
ology can be taken for the error calculation where only
the value of δx, δx′ and δI have to be adapted for the in-
strument. An emittancemeter operates within a specific
range of emittance due to its geometry and electronics.
Therefore, it must be selected based on the expected or-
der of magnitude.
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